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In Calculus, a definite integral
∫ b

a
f(x) dx is computed by dividing the interval

I = [a, b] into small subintervals I1, . . . , In and approximating∫ b

a

f(x) dx ≈
n∑

i=1

f(xi) |Ii|

Here |Ii| denotes the length of Ii and xi is any point in Ii. The limit, as the lengths

of each Ii approaches zero, gives the exact value of
∫ b

a
f(x) dx.

Examples: In mechanics, if f(x) is the density (mass per unit length) of a rod

[a, b] then
∫ b

a
f(x) dx is the total mass of the rod. In probability theory, if f(x) is

the density of a 1D probability distribution then
∫ b

a
f(x) dx is the total probability

on the interval [a, b].

Similarly, a definite double integral
∫∫

R
f(x, y) dx dy over a rectangle

R = [a1, b1] × [a2, b2] is computed by partitioning R into small subrectangles
R1, . . . , Rn , choosing any (xi, yi) ∈ Ri for i = 1, ..., n , and approximating∫∫

R

f(x, y) dx dy ≈
n∑

i=1

f(xi, yi)Area(Ri),

Here (xi, yi) is any point in Ri. The limit, as the area of each Ri approaches zero,
gives the exact value of

∫∫
R
f(x, y) dx dy

Examples: In mechanics, if f(x, y) is the density (mass per unit area) of a rect-
angular plate R, then

∫∫
R
f(x, y) dx dy is the total mass of the plate. In probability,

if f(x, y) is the density of a 2D probability distribution, then
∫∫

R
f(x, y) dx dy is

the total probability over the rectangle R.

1Formatting and illustrations by Michael Pogwizd.
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In the studies of probabilities, we often need to replace a 1D interval or 2D
rectangle with other objects that can be more complicated. So it becomes necessary
to generalize the notion of definite integral.

What is common between the above two examples? A function f has a domain
D (an interval or a rectangle) that can be divided into smaller pieces Di, and
each piece is measured by a positive number (its length or area), the smaller the
piece the smaller its measure. The measure of the whole domain D is the sum of
measures of its pieces:

µ(D) =
n∑

i=1

µ(Di)

where µ denotes that measure (the length or area). The integral can then be
approximated by

n∑
i=1

f(zi)µ(Di)

where zi is a point in Di.

The purpose of Real Analysis is to develop a machinery (a theoretical appara-
tus) for integrating functions on arbitrary domains. We will generalize the “length
of a line interval” and the “area of a rectangle” to an abstract notion of a “mea-
sure of an arbitrary set”. And we will learn how to integrate functions on arbitrary
domains.

The following chart summarizes the basic goals and terms of Real Analysis:

1D 2D General

Interval I Rectangle R =⇒ Space X

Length Area =⇒ Measure µ

Integral Double Integral
=⇒ Lebesgue Integral∫ b

a
f dx

∫∫
R
f(x, y) dx dy

∫
X
f dµ

The theory of (abstract) measures and Lebesgue integration provides a solid
foundation for modern Probability Theory. A good knowledge of Real Analysis is
an absolute must for anyone who plans to do research in Dynamical Systems or
Mathematical Physics.
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Lebesgue measure in R and R2: basic constructions1

Definition 1.1. An interval I ⊂ R is a set of the form [a, b] or [a, b) or (a, b] or
(a, b), where a ≤ b are real numbers. Its length is |I| = b− a

• Including or excluding the endpoints of the interval does not affect its length.

• Notation: A ⊎ B always means disjoint union of two sets A and B i.e., such that
A ∩ B = ∅. Furthermore, ⊎∞

n=1An always means the union of pairwise disjoint sets
An, i.e., such that An ∩Am = ∅ for all m ̸= n.

Lemma 1.2. If I = ⊎N
n=1In, then |I| =

∑N
n=1 |In|

Proof. If N = 2 and c is the common endpoint of I1 and I2, then |I1| + |I2| =
(b− c) + (c− a) = b− a = |I|. For N ≥ 2 use induction.

Definition 1.3. A (linear) elementary set is a finite union of disjoint intervals.
i.e. J = ⊎N

n=1In The total length of J is |J | =
∑N

n=1 |In|

• In are not necessarily adjacent intervals, there may be gaps in between.

Definition 1.4. A rectangle R ⊂ R2 is a set of the form R = I1 × I2, where
I1, I2 are intervals. The area of a rectangle is Area(R) = |I1| × |I2|

• We only consider rectangles with horizontal and vertical sides.

• Including or excluding the sides of the rectangles does not affect their areas.

Lemma 1.5. If R = ⊎N
n=1Rn, then Area(R) =

∑N
n=1Area(Rn).

Proof. For N = 2 the proof is a trivial calculation. For N ≥ 2 we first need to

extend the sides of Rn’s so that they run completely across R (see Figure 1). This

causes partitioning of some of the Rn’s into smaller rectangles, which can be done

one by one and using the already proved version of the lemma for N = 2. In the

end we get a partition of R by k1 ≥ 1 vertical lines and k2 ≥ 1 horizontal lines (like

a grid). Now the proof is a simple calculation using Lemma 1.2.

Figure 1: A partition of a rectangle into

smaller rectangles. Inner sides are extended

so that they run completely across R (top

to bottom and left to right).
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Definition 1.6. A (planar) elementary set is a finite union of disjoint rectan-
gles, i.e. B = ⊎n

i=1Ri. The area of an elementary set is Area(B) =
∑n

i=1Area(Ri)

Theorem 1.7.

(a) The length of a linear elementary set does not depend on how it is partitioned
into disjoint intervals.

(b) The area of a planar elementary set does not depend on how it is partitioned
into disjoint rectangles.

Proof. We prove part (b). Let B = ∪n
i=1Ri and B = ∪m

j=1R
′
j be two partitions of

an elementary set B into rectangles. Note that for each pair i, j the intersection
Rij = Ri ∩R′

j is a rectangle (which maybe empty). Now by Lemma 1.5:

n∑
i=1

Area(Ri)
1.5
=

n∑
i=1

m∑
j=1

Area(Rij) =
m∑
j=1

n∑
i=1

Area(Rij)
1.5
=

m∑
j=1

Area(R′
j).

The easier part (a) is left as an exercise.

Corollary 1.8.

(a) If J = ⊎n
i=1Ji is a finite union of disjoint linear elementary sets, then

|J | =
n∑

i=1

|Ji|

(b) If B = ⊎n
i=1Bi is a finite union of disjoint planar elementary sets, then

Area(B) =
n∑

i=1

Area(Bi)

Theorem 1.9. Finite unions, intersections and differences of elementary sets are
elementary sets.

Proof. A direct inspection. We omit details.

• A countable union of elementary sets is not necessarily an elementary set.

Exercise 1. Show that the open disk x2 + y2 < 1 is a countable union of planar elementary
sets. Show that the closed disk x2 + y2 ≤ 1 is a countable intersection of planar elementary sets.
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Definition 1.10. A ring is a nonempty collection of subsets of a set X closed
under finite unions, intersections and differences.

Definition 1.11. An algebra is a ring containing X itself.

Example 1. Linear elementary sets J ⊂ R make a ring. Planar elementary sets B ⊂ R2

make a ring.

Example 2. Linear elementary sets J ⊂ R do not make an algebra. If we consider all
finite unions of finite intervals and infinite intervals, then we will get an algebra. (An
infinite interval is a set [a,∞) or (a,∞) or (−∞, a] or (−∞, a), where a ∈ R1. The real
line R1 itself is also an infinite interval.)

Theorem 1.12.

(a) If a linear elementary set J is covered by intervals I1, . . . , In

(i.e. J ⊂ ∪n
i=1Ii), then |J | ≤

n∑
i=1

|Ii|

(b) If a planar elementary set B is covered by rectangles R1, . . . , Rn

(i.e. B ⊂ ∪n
i=1Ri), then Area(B) ≤

n∑
i=1

Area(Ri)

Proof. We prove (b). By Theorem 1.9, B1 = B ∩ R1 and Bi = B ∩ (Ri \ ∪i−1
j=1Rj)

are elementary sets. Obviously, Bi ⊂ Ri, hence Area(Bi) ≤ Area(Ri). Since Bi are
disjoint and B = ⊎n

i=1Bi, we have

Area(B)
1.8(b)
=

n∑
i=1

Area(Bi) ≤
n∑

i=1

Area(Ri).

The easier part (a) is left as an exercise.

Next we generalize the concepts of length in R1 and area in R2. This can be
done in parallel, as above, but for the sake of brevity we only do it for the 2D case
(i.e., for the area in R2). The conversion of all our definitions and theorems to the
simpler 1D case is left as an exercise.

For convenience, we want to avoid infinite areas at early stages of our construc-
tions. In this section we just fix a large finite rectangle X ⊂ R2 and only consider
subsets A ⊂ X. Note that elementary sets B ⊂ X make an algebra (because X is
an elementary set).

5



Definition 1.13. The outer measure of a set A ⊂ X is

µ∗(A) = inf

{ ∞∑
i=1

Area(Ri)

}
where the infimum is taken over all countable covers of A by rectangles.

(That is, such that A ⊂ ∪∞
i=1Ri.)

• µ∗(A) ≤ Area(X) (we can use countable cover {X, ∅, ∅, . . .})
• µ∗(B) ≤ Area(B) (if B = ⊎n

i=1Ri, then we can use countable cover {R1, . . . , Rn, ∅, ∅, . . .})

Figure 2: Visualization for calculating the outer measure of a set A in X

The following theorem is the first non-trivial fact of Real Analysis:

Theorem 1.14. For any elementary set B ⊂ X we have µ∗(B) = Area(B).

Proof. Suppose, by way of contradiction, that µ∗(B) < Area(B)

Let δ = Area(B) − µ∗(B) > 0. There is a countable cover of B by rectangles
B ⊂ ∪∞

i=1Ri such that
∑∞

i=1Area(Ri) < Area(B)− δ/2.

Lemma. For any rectangle R and any ε > 0 there is an open covering rectangle R′ ⊃ R
such that Area(R′ \R) < ε and a closed subrectangle R′′ ⊂ R such that Area(R \R′′) < ε.
Similar statements hold for elementary sets.
(Proof is a simple topology exercise and is omitted.)

Thus we can find a closed elementary subset B′ ⊂ B with Area(B′) >
Area(B) − δ/4. For each Ri we can find an open covering rectangle R′

i ⊃ Ri such
that Area(R′

i) < Area(Ri) + δ/2i+2. Now

∞∑
i=1

Area(R′
i) <

∞∑
i=1

Area(Ri) + δ/4 < Area(B′).

Since B′ is compact and covered by a countable union of open sets R′
i, there exists

a finite subcover, i.e., B′ ⊂ ∪n
i=1R

′
i for some n < ∞. According to Theorem 1.12∑n

i=1Area(R
′
i) ≥ Area(B′), a contradiction.
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Theorem 1.15. If A1 ⊂ A2, then µ
∗(A1) ≤ µ∗(A2)

Proof. Any countable cover of A1 by rectangles is also a cover for A2.

Theorem 1.16. If A ⊂
∪n

i=1Ai, then µ
∗(A) ≤

∑n
i=1 µ

∗(Ai)

This property is called subadditivity.

Proof. We can combine countable covers of A1, . . . , An into one countable cover of

A. (Recall that a finite union of countable sets is countable.)

Theorem 1.17. If A ⊂ ∪∞
i=1Ai, then µ

∗(A) ≤
∑∞

i=1 µ
∗(Ai)

This property is called σ-subadditivity.

Proof. We can combine countable covers of A1, A2, . . . into one countable cover of

A. (Recall that a countable union of countable sets is countable.)

Corollary 1.18. If B ⊂ ∪∞
i=1Bi, where B and all Bi’s are elementary sets, then

Area(B) ≤
∑∞

i=1Area(Bi).

Proof. Combine Theorem 1.17 and Theorem 1.14.

Definition 1.19. The inner measure of a set A ⊂ X is

µ∗(A) = Area(X)− µ∗(Ac)

where Ac = X \ A is the complement of A.

Note: The inner measure can be thought as the ’opposite’ of the outer measure. The

following is a way to visualize it: Cover X \A with a countable number of rectangles (as

with the outer measure). The complements of these rectangles are seen to be within A.
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Theorem 1.20. For any set A ⊂ X we have 0 ≤ µ∗(A) ≤ µ∗(A) ≤ Area(X).

Proof. The only non-trivial claim here is µ∗(A) ≤ µ∗(A) By Definition 1.19, this

is equivalent to Area(X)− µ∗(Ac) ≤ µ∗(A) i.e. µ∗(A) + µ∗(Ac) ≥ Area(X).

This follows from Theorem 1.16.

Definition 1.21. A set A ⊂ X is measurable iff µ∗(A) = µ∗(A)

The Lebesgue measure is defined by m(A) = µ∗(A) = µ∗(A).

Lemma 1.22. A set A ⊂ X is measurable if and only if

µ∗(A) + µ∗(Ac) = Area(X).

Proof. By Definition 1.19, the relation µ∗(A) = µ∗(A) is equivalent to Area(X) −
µ∗(Ac) = µ∗(A), which is the same as µ∗(A) + µ∗(Ac) = Area(X).

• The symmetry above implies: A is measurable ⇔ Ac is measurable

Theorem 1.23. Every elementary set B ⊂ X is measurable and its Lebesgue
measure is equal to its area, i.e. m(B) = Area(B).

Proof. If B is an elementary set, then Bc = X \ B is also an elementary set. Now

the result follows from Theorem 1.14, Corollary 1.8, and Lemma 1.22.

• An empty set is measurable and m(∅) = 0

Exercise 2. Prove that every countable set A ⊂ X is measurable and m(A) = 0.

Exercise 3. Let A ⊂ X consist of points (x, y) such that either x or y is a rational number. Is
A measurable? What is its Lebesgue measure?

Lemma 1.24. For any two sets A1, A2 ⊂ X (not necessarily measurable), we have

|µ∗(A1)− µ∗(A2)| ≤ µ∗(A1∆A2)

Proof. Recall that A1∆A2 = (A1 \A2) ∪ (A2 \A1).

By Theorem 1.16 and Theorem 1.15:

µ∗(A1) ≤ µ∗(A1 ∩A2) + µ∗(A1 \A2) ≤ µ∗(A2) + µ∗(A1∆A2).

Similarly, µ∗(A2) ≤ µ∗(A1) + µ∗(A1∆A2).
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Theorem 1.25. (Approximation) A set A ⊂ X is measurable if and only if for
any ε > 0 there exists an elementary set Bε ⊂ X such that µ∗(A∆Bε) < ε

Proof. (See Figure 3 for visualization of theorem)

Note: In this case we also have |m(A)−Area(Bε)| ≤ ε by Lemma 1.24

”⇐” Suppose ∀ε > 0 ∃Bε ⊂ X (elementary set) s.t. µ∗(A∆Bε) < ε

Since Ac∆Bc
ε = A∆Bε, we have µ∗(Ac∆Bc

ε) = µ∗(A∆Bε) < ε

|µ∗(A)−Area(Bε)|
1.14
= |µ∗(A)− µ∗(Bε)|

1.24
≤ µ∗(A∆Bε) < ε

Thus we have: |µ∗(A)−Area(Bε)| < ε and |µ∗(Ac)−Area(Bc
ε)| < ε

Using the triangle inequality, we get

|µ∗(A) + µ∗(Ac)−Area(X)| ≤ |µ∗(A)−Area(Bε)|+ |µ∗(Ac)−Area(Bc
ε)| < 2ε

Since this is true for any ε > 0, we must have µ∗(A) + µ∗(Ac) = Area(X)
Lemma 1.22 now implies that A is a measurable set.

“⇒” Let ε > 0

Let A ⊂ X be a measurable set. By Lemma 1.22, Ac is also measurable.

Choose a disjoint countable cover ⊎∞
i=1Ri ⊃ A so that

∑
iArea(Ri) < µ∗(A) + ε

Choose a disjoint countable cover ⊎∞
j=1R

′
j ⊃ Ac so that

∑
j Area(R′

j) < µ∗(Ac) + ε

Adding the two covers, we get:

∞∑
i=1

Area(Ri) +

∞∑
j=1

Area(R′
j) < µ∗(A) + µ∗(Ac) + 2ε

1.22
= Area(X) + 2ε. (1)

Now ∃N > 0 s.t.
∑

i>N Area(Ri) < ε

Define B = ∪N
i=1Ri , T = ∪i>NRi (the “tail”) , S = ∪∞

j=1(B ∩R′
j)

Note that µ∗(T )
1.17
≤

∑
i>N Area(Ri) < ε and A∆B = (A \B) ∪ (B \A)

It is easy to check that A \B ⊂ T and B \A ⊂ S

To estimate µ∗(S) note that

X =
(
∪∞
i=1Ri

)
∪
(
∪∞
j=1(R

′
j \B)

)
,

Since all the sets in this formula are elementary sets, using σ-subadditivity we get

∞∑
i=1

Area(Ri) +
∞∑
j=1

Area(R′
j \B) ≥ Area(X) (2)
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Subtracting (2) from (1) yields

∞∑
j=1

Area(R′
j)−

∞∑
j=1

Area(R′
j \B) =

∞∑
j=1

Area(R′
j ∩B) < 2ε

which shows that µ∗(S) < 2ε. Therefore

µ∗(A∆B) ≤ µ∗(T ) + µ∗(S) < ε+ 2ε = 3ε

Since ε is arbitrary, we conclude: ∃B ⊂ X (elementary set) s.t. µ∗(A∆B) ≤ ε

Figure 3: Visualization for Theorem 1.25

Theorem 1.26. Finite unions, intersections and differences of measurable sets
are measurable.

Proof. Routine verification by approximation (Theorem 1.25).

Theorem 1.27. (Additivity) If A1, . . . , An are disjoint measurable sets, then
m
(
⊎n

i=1Ai

)
=

∑n
i=1m(Ai).

Proof. Again, by approximation (Theorem 1.25).

Theorem 1.28. Countable unions and countable intersections of measurable sets
are measurable.

Proof. Let A = ∪∞
i=1Ai be a countable union of measurable sets A1, A2, . . ..

Define A′
i = Ai \ ∪i−1

j=1Ai, then A = ⊎∞
i=1A

′
i is a disjoint union of sets that are

measurable by Theorem 1.26. Moreover,

n∑
i=1

m(A′
i) ≤ µ∗(A) <∞
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so the series
∑∞

i=1m(A′
i) converges.

Let ε > 0. Since A′
1, A

′
2, ... are disjoint sets whose total measure is finite, (their union

is a subset of X, which has finite area), we can choose N so that
∑

i>N m(A′
i) < ε.

If we denote T = ∪i>NA
′
i, then by Theorem 1.17

µ∗(T ) ≤
∑
i>N

µ∗(A′
i) =

∑
i>N

m(A′
i) < ε.

The set A⋄ = ∪N
i=1Ai is measurable (by Theorem 1.26), so it can be approximated

by an elementary set Bε such that µ∗(A⋄∆Bε) < ε. Now

µ∗(A∆Bε) ≤ µ∗(A⋄∆Bε) + µ∗(T ) < 2ε.

Since ε > 0 is arbitrary, the set A is measurable by Approximation (Theorem 1.25).

Finally, countable intersections are complements of countable unions.

Exercise 4. Prove that every open set A ⊂ X is measurable (hint: represent it by a countable
union of rectangles). Prove that every closed set is measurable, too.

Theorem 1.29. (σ-additivity) If A1, A2, . . . are disjoint measurable sets, then
m
(
⊎∞

i=1Ai

)
=

∑∞
i=1m(Ai)

Proof. Note that A = ⊎∞
i=1Ai is a measurable set by Theorem 1.28.

Thus by Theorem 1.17

m(A) = µ∗(A) ≤
∞∑
i=1

µ∗(Ai) =

∞∑
i=1

m(Ai).

On the other hand: ∀n ≥ 1 we have ⊎n
i=1Ai ⊂ A, therefore

n∑
i=1

m(Ai)
1.27
= m

(
⊎n
i=1Ai

)
= µ∗

(
⊎n
i=1Ai

) 1.15
≤ µ∗(A) = m(A).

This implies m(A) =
∑∞

i=1m(Ai), as claimed.
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Theorem 1.30. (Continuity - I) Let A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · be a se-
quence of measurable sets (called monotonically decreasing sequence). Then
limn→∞m(An) = m(A), where A = ∩∞

n=1An

Proof. Let A′
i = Ai \Ai+1 for all i ≥ 1. Obviously, An = A ⊎ (⊎∞

i=nA
′
i)

Hence by Theorem 1.29

m(An) = m(A) +

∞∑
i=n

m(A′
i)

Since the series converges, its tail tends to zero as n→ ∞.

Theorem 1.31. (Continuity - II) Let A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · be a
sequence of measurable sets (called monotonically increasing sequence). Then
limn→∞m(An) = m(A), where A = ∪∞

n=1An

Proof. Let A′
1 = A1 and A′

i = Ai \Ai−1 for all i ≥ 2. Obviously, A = ⊎∞
i=1A

′
i

Hence by Theorem 1.29

m(An) =
n∑

i=1

m(A′
i) and m(A) =

∞∑
i=1

m(A′
i)

Now the sum of the series is the limit of its partial sums, thus m(An) → m(A).
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Lebesgue measure in R and R2: some extra facts2
First we extend the Lebesgue measure from rectangle X to the entire plane R2:

Definition 2.1. A set A ⊂ R2 is measurable if and only if A∩X is measurable
for every rectangle X ⊂ R2. Its measure is

m(A) = lim
n→∞

m(A ∩Xn),

where Xn = [−n, n]× [−n, n] is a growing sequence of rectangles.

• m(A) does not depend on the particular growing sequence of rectangles.

Alternative definition of Lebesgue measure in R2.

We can pave the plane R2 with rectangles

Xij = {(x, y) : i ≤ x < i+ 1, j ≤ y < j + 1}

and define
m(A) =

∑
i,j

m(A ∩Xij).

• m(A) does not depend on a particular pavement of R2 by rectangles

• Most theorems proved in Section 1 on rectangle X also hold on entire R2

• m(A) may be infinite (i.e. m(A) = ∞ for some measurable sets A ⊂ R2)

Theorem 2.2. The Lebesgue measure is translationally invariant.

i.e. if A ⊂ R2 is measurable and a ∈ R2, then the set

A+ a = {x+ a : x ∈ A}

is measurable and m(A+ a) = m(A).

Proof. If R is a rectangle, then R+a is a rectangle, too, and Area(R+a) = Area(R),

so all our constructions are invariant under translations.

Lebesgue measure in R.
This can be constructed in R by using intervals (and their length) instead of
rectangles (and area). The Lebesgue measure in R is translationally invariant,
too, i.e. if A is a measurable set and a ∈ R, then the set A + a = {x + a : x ∈ A}
is also measurable and m(A+ a) = m(A).
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Next we describe the collection of measurable sets in R and R2.

Definition 2.3. Let X be a set. A σ-algebra is an algebra of subsets of X closed
under countable unions and intersections.

The following lemma presents a minimal set of conditions that we need to verify
in order to show that a given collection of sets is a σ-algebra:

Lemma 2.4. A non-empty collection M of subsets of X is a σ-algebra if two
conditions hold:

(i) A ∈ M =⇒ Ac ∈ M, where Ac = X \ A;
(ii) A1, A2, . . . ∈ M =⇒ ∪∞

i=1Ai ∈ M.

In other words, a σ-algebra is any non-empty collection of subsets of X closed
under complementation and countable unions.

Proof. A straightforward verification.

Definition 2.5.

Measurable sets in R1 make a σ-algebra called Lebesgue σ-algebra (over a line)

Measurable sets in R2 make a σ-algebra called Lebesgue σ-algebra (over a plane)

Some examples of measurable sets.

Recall open sets in R and R2 are measurable. Thus closed sets are also measurable.

Any countable intersection of open sets (called Gδ in topology) is measurable.

Any countable union of closed sets (called Fσ in topology) is measurable.

In particular, the set of rational numbers in R is measurable. So is the set of
irrational numbers.

The above list of measurable sets is far from complete. The collection of measur-
able sets is very rich (as we will see shortly).

The following example (The Cantor set), is an example of a measurable set with
many interesting properties:
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Cantor set.

An interesting example of a measurable set is the middle-third Cantor set C. It
is a subset of the unit interval [0, 1] ⊂ R that has many useful properties. It is
constructed beginning with closed unit interval (C0 = [0, 1]), removing the middle
third open interval

C1 = C0 \ (13 ,
2
3
) = [0, 1

3
] ∪ [2

3
, 1],

then recursively removing the middle third intervals from each remaining closed
interval:

C2 = C1 \
[
(1
9
, 2
9
) ∪ (7

9
, 8
9
)
]
, etc.

This results in a decreasing sequence of sets C0 ⊃ C1 ⊃ C2 ⊃ · · · shown here:

C0

C1

C2

C3

C4

C5
...

A general formula for the set Cn is

Cn =
Cn−1

3

⊎(2
3
+
Cn−1

3

)
,

so that Cn is a disjoint union of two copies of Cn−1 compressed by factor 1
3
.

The Cantor set is the limit of this procedure, it is defined by

C = lim
n→∞

Cn = ∩∞
n=0Cn

We record the following properties of Cn’s and C:

• At each step we remove open intervals, so each Cn is a closed set

• The Cantor set C is a closed set (being an intersection of closed sets)

• Each Cn is a linear elementary set (a finite union of intervals)

• The length of Cn is decreased by factor 2
3
at each step: |Cn| = 2

3
|Cn−1|

• The length of Cn is, by induction, |Cn| = (2
3
)n

• By Continuity-I (Theorem 1.30), m(C) = lim
n→∞

m(Cn) = lim
n→∞

(2
3
)n = 0
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Theorem 2.6. If A ⊂ X is measurable and m(A) = 0, then every subset A′ ⊂ A
is measurable and m(A′) = 0.

Proof. By Theorem 1.15, µ∗(A′) ≤ µ∗(A) = m(A) = 0, hence µ∗(A′) = 0. Now by

Theorem 1.20, 0 ≤ µ∗(A
′) ≤ µ∗(A′)=0, hence µ∗(A

′) = 0.

Ternary description of the Cantor set.

The ternary number system has base 3 and uses three digits: 0, 1, and 2. Points
x ∈ (0, 1) are described in the ternary system by x = .d1d2d3 · · · where di’s are
ternary digits (0, 1, 2). For example,

1
3
= (.1000000 · · · )ternary 1

2
= (.1111111 · · · )ternary

If x ∈ (0, 1
3
), then d1 = 0; if x ∈ (1

3
, 2
3
), then d1 = 1; if x ∈ (2

3
, 1), then d1 = 2.

To use this in construction of the Cantor set, Step 1 would be to remove all numbers
with d1 = 1. Similarly, Step 2 would remove all the numbers with d2 = 1, etc.
Repeating these steps this leads to the removal of all numbers x ∈ (0, 1) whose
ternary representation x = .d1d2d3 · · · contains at least one 1.

Thus, the Cantor set C consists exactly of the numbers x ∈ (0, 1) whose ternary
representation x = .d1d2d3 · · · do not include 1’s, i.e., consist of 0’s and 2’s only.

Note: the number x = 1
3
does belong to the Cantor set, even though its ternary

representation (.1000000 · · · )ternary given above contains a 1. Why? Because this
number has two ternary representations; the other (which has no 1’s) is

1
3
= (.0222222222 · · · )ternary.

From this, the description of the Cantor set should be as follows: x ∈ C if and
only if x can be represented in the ternary system by a sequence of zeros and twos.

Which numbers x ∈ (0, 1) have multiple ternary representations? Only rational
numbers x = m

3n
where n ≥ 1 and 1 ≤ m ≤ 3n − 1. These number have exactly

two ternary representations, one ends with zeros and the other ends with twos.

A question arises: how many numbers are in the Cantor set C? Obviously, the
endpoints of the intervals making Cn will remain in C. Those are rational numbers
x = m

3n
where n ≥ 1 and 1 ≤ m ≤ 3n − 1. But there are many more numbers in

C, as we will see later.
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Recall some basic definitions and facts from set theory:

Cardinality.

Two sets A and B have the same cardinality if there is a bijection φ : A↔ B
We write card(A) = card(B).

A set A has cardinality smaller than that of B, card(A) < card(B), if there is an
injection φ : A→ B but not vice versa.

• For finite sets A and B, the relation card(A) = card(B) holds if and only if they have
the same number of elements.

• ‘Same cardinality’ is an equivalence relations. Thus all sets of the same cardinality
make an (equivalence) class.

The following two theorems are cited without proof:

Theorem 2.7. For any two sets A and B there is either an injection A → B, or
an injection B → A, or both.

Theorem 2.8. (Cantor-Bernstein-Schroeder)

If there is an injection A → B and an injection B → A, then there is a bijection
A↔ B, i.e., card(A) = card(B).

• Thus, for any two setsA andB there are three possibilities: .
card(A) = card(B) or card(A) > card(B) or card(A) < card(B)

• Recall: card(N) = card(Z) = card(Q) and card(N) < card(R)

Finite and countable cardinalities.

For a finite set A of n elements, we simply put card(A) = n.

For the set of integers N, we put card(N) = ℵ0 (‘aleph-null’).

All countable sets have cardinality ℵ0. In particular: card(Z) = card(Q) = ℵ0.

• Any countable union of countable sets is countable.

Continuum.

The cardinality of R is denoted by C and is called continuum. Thus,

card(I) = C for any interval I ⊂ R of positive length.

card(Rn) = C for every n ≥ 1

Note that ℵ0 < C

17



Continuum hypothesis.

States that there is no set A such that ℵ0 < card(A) < C. In particular, it implies
that every subset of R is either finite or countable or has the same cardinality
as R itself. The continuum hypothesis cannot be proved or disproved if one uses
standard mathematical axioms. Thus it may (or may not) be adopted as an inde-
pendent axiom. We do not assume it for the purposes of our course.

The Power set.

For any set A, the power set of A, denoted by 2A, is the set of all subsets of A.

Note: if card(A) = n <∞, then card(2A) = 2n.

Theorem 2.9. (Cantor)

For any set A we have card(A) < card(2A).

Proof. It is enough to show that no function f : A→ 2A can be surjective. That is,
given a function f : A → 2A, we need to prove the existence of at least one subset
B ⊂ A that B ̸= f(a) for any a ∈ A. Such a subset is given by the following
construction:

B = {b ∈ A : b /∈ f(b)}.

If B = f(a) for some a ∈ A, then both relations a ∈ B and a /∈ B would contradict

the definition of B.

Generalized continuum hypothesis.

States that for any set A there is no set B such that card(A) < card(B) < card(2A).
This implies that cardinalities make a simple sequence:

ℵ0 (the set N and other countable sets),

ℵ1 (the set 2N),

ℵ2 (the set 22
N
), etc.

This hypothesis cannot be proved or disproved either. We do not assume it for the
purposes of our course.
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Equivalence of R and 2N.

The set 2N can be identified with the set of all infinite sequences of zeros and ones.
Indeed, for any subset A ⊂ N we construct a unique sequence a1, a2, . . . such that
an = 1 if n ∈ A and an = 0 if n /∈ A. For example, the set of all even numbers is
represented by the sequence

{0 1 0 1 0 1 0 1 0 1 0 1 · · · }.

The set of all prime numbers is represented by the sequence

{1 1 1 0 1 0 1 0 0 0 1 0 · · · }.

On the other hand, the sequences of zeros and ones code real numbers in the
interval [0, 1], because every x ∈ [0, 1] has a binary representation x = .a1a2 . . .,
where an’s are zeros and ones. For example,

3
4
= (.11000000 · · · )binary, 1

3
= (.01010101010 · · · )binary.

Thus the set 2N can be bijectively mapped onto [0, 1], hence it its cardinality is C.

Exercise 5. Let U denote the set of all open subsets U ⊂ R. Prove that card(U) = C. Do the
same for open sets in R2. Hint: use a countable basis for the respective topology.

Cardinality of the Cantor set.

Recall that the Cantor set consists of numbers x ∈ [0, 1] whose ternary represen-
tation x = 0.b1b2 . . . does not contain ones, i.e., it consists of zeros and twos only.
Thus the Cantor set can be bijectively mapped onto 2N, hence its cardinality is C.

Recall that the Cantor set has Lebesgue measure zero, m(C) = 0. This suggests
that the Cantor set is “tiny” or “slim”. But it has the same cardinality as R.

Exercise 6. Let L denote the set of all Lebesgue measurable sets (in R). Prove that card(L) > C,
in fact card(L) = card(2R). (Hint: use the Cantor set and the Cantor theorem).
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The collection of all measurable sets has the same cardinality as the collection of
all subsets of R. It is not clear yet if there are any non-measurable sets at all.

The following theorem states there exist such sets:

Theorem 2.10. There exists a non-measurable set V ⊂ R.

Proof. The set V is called Vitali set. Its construction is not so simple.

We say that two real numbers x, y ∈ R are rationally equivalent if x−y ∈ Q, i.e.,
they differ by a rational number. One can check directly that this is an equivalence
relation. Each equivalence class is countable and can be thought of as a “shifted
copy” of the set of rational numbers. The collection of the classes is uncountable,
its cardinality is C.

Each equivalence class is dense, so they all intersect the unit interval [0, 1]. We
want to choose one (arbitrary) representative from each equivalence class in [0, 1].
The chosen numbers make a set (a subset of [0, 1]). This is Vitali set, denoted by
V . Note that V ⊂ [0, 1], and for each equivalence class C ⊂ R the intersection V ∩C
consists of a single point. Note that for any x, y ∈ V the difference x−y is irrational
(otherwise these two points would belong to the same class).

Next we argue that the Vitali set cannot be measurable. Let r1, r2, . . . denote all
rational number in [−1, 1]. From the construction of V it follows that the translated
sets Vi = V + ri are pairwise disjoint. Further note that

[0, 1] ⊂ ⊎∞
i=1Vi ⊂ [−1, 2].

(To see the first inclusion, consider any real number x ∈ [0, 1] and let v be the
representative in V for the equivalence class containing x; then x − v = r for some
rational number r ∈ [−1, 1].)

Now suppose V is measurable. Its measure m(V ) is a nonnegative real number.
All the “shifted” copies of V , i.e., the sets Vi = V + ri, are measurable, too, and
their measure is the same as that of V , i.e., m(Vi) = m(V ), due to the translation
invariance. This implies

m([0, 1]) = 1 ≤
∞∑
i=1

m(Vi) ≤ 3 = m([−1, 2]).

But the infinite sum in the middle can only be zero (if m(V ) = 0) or infinity (if

m(V ) > 0), a contradiction.
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The construction of the Vitali set V looks simple enough, but it touches upon
a subtle and controversial issue in mathematical logic – Axiom of Choice. Indeed,
how can we choose exactly one representative from each equivalence class? Is there
a rule? An algorithm? There are uncountably many classes out there, so no formal
procedure can handle all of them.

Axiom of Choice.

Asserts that such a selection is always possible. This principle does not follow
from other, standard logical axioms, so it has to be adopted as a separate one.
Axiom of Choice was formally introduced by Zermelo in 1904. Although originally
controversial, it is now used by most mathematicians without reservation, and it is
included in the standard form of axiomatic set theory. However, there are branches
of mathematics where the Axiom of Choice is avoided.

If we do not adopt the Axiom of Choice, there would be no way to construct
non-measurable sets or even prove their existence. Then we could just suppose
that all sets A ⊂ R are measurable...

For the purposes of this course we adopt the Axiom of Choice and hence admit
the existence of non-measurable sets.

Lebesgue measure in Rk, k ≥ 3.

We have constructed the Lebesgue measure in R and R2. Our construction easily
extends to Rk for k ≥ 3. In R3, for example, the Lebesgue measure generalizes
volume, and instead of intervals or rectangles, we have to use rectangular boxes.
All the basic facts for the Lebesgue measure m remain valid in spaces Rk, k ≥ 3.

Interestingly, though, the are new examples of non-measurable sets in R3 due
to the striking fact known as Banach–Tarski paradox:

Theorem 2.11. (Banach–Tarski)

Given a solid ball in R3, there exists a decomposition of the ball into a finite number
of non-overlapping pieces (i.e., subsets), which can then be put back together in
a different way to yield two identical copies of the original ball. The reassembly
process involves only moving the pieces around and rotating them, without changing
their shape or size.

Figure 4: Banach–Tarski paradox illustrated
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The Banach–Tarski is often stated, colloquially, as “a pea can be chopped up
and reassembled into the Sun”.

Now suppose the Lebesgue measure m in R3 is not only translation invariant
but also rotation invariant (which is a reasonable assumption). Then if the above
pieces of the ball were all measurable, we would immediately arrive at a contra-
diction with the additivity of the measure, because the volume of the original ball
doubles after the reassembly.

To resolve the contradiction, we either have to assume that the Lebesgue mea-
sure in R3 is not rotation invariant or admit that some of the above pieces of the
ball are not measurable. Thus the existence of non-measurable sets becomes a
more pressing issue in R3 than it was in R.

For the purposes of this course we assume that the Lebesgue measure m is
rotation invariant in both R2 and R3, though we will hardly need this.
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General measures3

Definition 3.1. A setX with a σ-algebraM of its subsets is called ameasurable
space. Sets A ∈ M are said to be measurable.

Example 3. For any set X, there are two trivial σ-algebras. One is minimal, it consists
of the sets X and ∅ only. The other is maximal, it contains all the subsets of X. The
latter is denoted by 2X .

Definition 3.2. Let (X,M) be a measurable space. A measure is a function µ,
defined on M, whose range is [0,∞] and which is σ-additive. The latter means
that for any sequence of disjoint measurable sets A1, A2, . . . ∈ M we have

µ
(
⊎∞

n=1An

)
=

∞∑
n=1

µ(An).

Note that ⊎∞
n=1An ∈ M because M is a σ-algebra.

To avoid trivialities, we shall also assume that µ(A) <∞ for at least one A ∈ M.
A measurable space with a measure is called a measure space.

Proposition 3.3. Let (X,M, µ) be a measure space. Then

(a) µ(∅) = 0.

(b) For any finite collection of disjoint measurable sets A1, . . . , An ∈ M and
A = ⊎n

i=1Ai we have µ(A) =
∑n

i=1 µ(Ai).

(c) For every measurable sets A ⊂ B we have µ(A) ≤ µ(B).

Proof.
(a): Let A ∈ M be such that µ(A) <∞. Then the sets A1 = A, A2 = ∅, A3 = ∅, . . .
are disjoint and ⊎∞

n=1An = A. By the σ-additivity

µ(A) = µ(A) + µ(∅) + µ(∅) + · · ·

which implies µ(∅) = 0. Note: without assuming that ∃A ∈ M : µ(A) <∞ the claim
(a) is false: there exists a (trivial) measure µ such that ∀A ∈ M : µ(A) = ∞.

(b): Given A1, . . . , An ∈ M, define An+1 = An+2 = · · · = ∅, then by the σ-additivity
we have

µ
(
⊎n
i=1Ai

)
= µ

(
⊎∞
i=1Ai

)
=

∞∑
i=1

µ(Ai) =

n∑
i=1

µ(Ai)

the last identity is based on the fact µ(∅) = 0 proven in (a).

(c): Due to (b) we have µ(B) = µ(A) + µ(B \A) and µ(B \A) ≥ 0.
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Exercise 7. Let X = {1, 2, 3}. Construct all σ-algebras of X.

Finite and countable spaces.

If X is finite or countable, we will always use the maximal σ-algebra 2X . In that
case for any measure µ on (X, 2X)

A = {x1, x2, . . .} =⇒ µ(A) = µ({x1}) + µ({x2}) + · · ·

Thus any measure µ on (X, 2X) is determined by its values µ({x}) on one-point
sets {x}, x ∈ X. One-point sets are also called singletons.

Restriction of a measure.

Let E ∈ M be a measurable set. One can check, by direct inspection, that the
collection

ME = {A ∩ E : A ∈ M}

is a σ-algebra over E. Note that ME ⊂ M, thus µ(B) is defined for every B ∈ ME.
It is now easy to see that the restriction of µ to ME is a measure.

Theorem 3.4. Let {Mα} be an arbitrary collection of σ-algebras of a set X. Then
their intersection ∩αMα is a σ-algebra of X as well.

Proof. Direct inspection. Note that the collection of σ-algebras here may be finite,

countable, or uncountable; its cardinality is not essential.

Theorem 3.5. Let G be any collection of subsets of X. Then there exists a unique
σ-algebra M∗ ⊃ G such that for any other σ-algebra M ⊃ G we have M∗ ⊂ M.
(In other words, M∗ is the minimal σ-algebra containing G.)

Proof. The σ-algebra M∗ is the intersection of all σ-algebras containing G.

Definition 3.6. We say that the minimal σ-algebra M∗ containing the given
collection G is generated by G. We also denote it by M(G).

Exercise 8. Let X = [0, 1] and G consist of all one-point sets, i.e. G =
{
{x}, x ∈ X

}
. Describe

the σ-algebra M(G).
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It is interesting to compare the notion of σ-algebra with topology. The stan-
dard topology in R is not a σ-algebra. On the other hand, the σ-algebra in the
previous exercise is not a topology.

Definition 3.7. Let X be a topological space. The σ-algebra M generated by the
collection of all open subsets U ⊂ X is called the Borel σ-algebra. Its members
are called Borel sets.

• We can take complements, so all closed sets are Borel sets.

• We can take countable intersections, so all Gδ sets are Borel sets.

• We can take countable unions, so all Fσ sets are Borel sets.

Example 4. In R, every countable set is Borel. The Cantor set is Borel. In fact,
virtually any set that can be precisely described is Borel. It is hard to find any specific
non-Borel set.

Exercise 9. Show that the Borel σ-algebra in R is generated by the collection of all intervals
(r1, r2) with rational endpoints r1, r2 ∈ Q.

Borel σ-algebra in R.
It contains many more sets than just open, closed, Gδ, and Fσ sets. If we take
countable unions of Gδ sets, we will get new sets that are also Borel. If we take
countable intersections of Fσ sets, we will get new sets that are also Borel. Then we
can take countable unions and countable intersections of those new sets, and get
some more new sets, all of which will be Borel, too. This process will never stop.
Its full description requires the so called transfinite recursion which is beyond the
scope of this course.

Recall that the collection of open sets in R has cardinality C. So does the col-
lection of closed sets. Constructing new sets by countable unions and intersections
will not increase the cardinality of the collection, so the collection of all Gδ and Fσ

sets still has cardinality C. Further steps in the above process will not increase the
cardinality of the collection either. This leads to the following theorem (its formal
proof is omitted):

Theorem 3.8. The cardinality of the Borel σ-algebra of R is C (i.e. continuum).

Exercise 10. Show that every Borel set in R is Lebesgue measurable, but not vice versa.

Exercise 11. [Bonus] Does there exist an infinite σ-algebra which has only countably many
members?
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Definition 3.9. Let (X,M) be a measurable space. For any X ∈ M, define
µ(A) = ∞ if A is an infinite set, and µ(A) = card(A) if A is finite. Then µ is
called counting measure.

Definition 3.10. Let (X,M) be a measurable space and x ∈ X. The measure δx
defined by

δx(A) = { 1 if x ∈ A
0 else

is called the delta-measure or the Dirac measure (concentrated at x).

Theorem 3.11. (σ-subadditivity) Let A1, A2, . . . ∈ M be measurable sets. Then

µ
(
∪∞

i=1Ai

)
≤

∞∑
i=1

µ(Ai)

Proof. Define A′
1 = A1 and A′

i = Ai \ (A1∪ · · ·∪Ai−1) for i ≥ 2. Note the following:

• A′
i are disjoint sets;

• A′
i ⊂ Ai for each i ≥ 1; therefore µ(A′

i) ≤ µ(Ai) by Proposition 3.3(c);

• ∪∞
i=1Ai = ∪∞

i=1A
′
i.

Now

µ
(
∪∞
i=1Ai

)
= µ

(
∪∞
i=1A

′
i

)
=

∞∑
i=1

µ(A′
i) ≤

∞∑
i=1

µ(Ai)

Theorem 3.12. (Continuity - I) Let A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · be a sequence
of measurable sets, and µ(A1) < ∞. Then limn→∞ µ(An) = µ(A), where A =
∩∞

n=1An.

Proof. Similar to Theorem 1.30.

Theorem 3.13. (Continuity - II) Let A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · be a sequence of
measurable sets. Then limn→∞ µ(An) = µ(A), where A = ∪∞

n=1An.

Proof. Similar to Theorem 1.31.

Exercise 12. Show that the assumption µ(A1) < ∞ in Theorem 3.12 is indispensable. Hint:
consider the counting measure on N and take sets An = {n, n+ 1, . . .}.
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In many cases σ-algebras tend to be rather large, an explicit definition (or
description) of µ(A) for all A ∈ M is often an impossible task. It is common to
define µ(A) on a smaller collection of sets, E, and extend it to M(E) automatically
by referring to general theorems.

Definition 3.14. A semi-algebra is a nonempty collection E of subsets of X
with two properties: (i) it is closed under intersections; i.e. if A,B ∈ E, then
A∩B ∈ E; and (ii) if A ∈ E, then Ac = ∪n

i=1Ai, where each Ai ∈ E and A1, . . . , An

are pairwise disjoint subsets of X.

Example 5. The collection of all finite and infinite intervals in R (cf. Example 2) make
a semi-algebra.

Exercise 13. Let X ⊂ R2 be a rectangle. Verify that the collection of all subrectangles R ⊂ X
is a semi-algebra.

Theorem 3.15. (Extension) Let E be a semi-algebra of X. Let ν be a function
on E, whose range is [0,∞) and which is σ-additive, i.e. for any A ∈ E such that
A = ⊎∞

i=1Ai for some Ai ∈ E, we have µ(A) =
∑∞

i=1 µ(Ai). Then there is a unique
measure µ on the σ-algebra M(E) that agrees with ν on E, i.e. µ(A) = ν(A) for
all A ∈ E.

We accept this theorem without proof. Its proof is basically the repetition of
our construction of the Lebesgue measure in R2.

Corollary 3.16. Let X ⊂ Rk be a rectangular box. There is a unique measure µ
on the Borel σ-algebra over X such that for every rectangular box R ⊂ X we have
µ(R) = Volume(R).

The following useful theorem is also given without proof:

Theorem 3.17. Let (X,M) be a measurable space and E a collection of subsets of
X that generates M, i.e. such that M(E) = M. Suppose two measures, µ1 and µ2,
agree on E, i.e. µ1(A) = µ2(A) for all A ∈ E, and µ1(X) = µ2(X). Then µ1 = µ2.
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• For any measure space (X,M, µ) and a real number c > 0 we can define a new measure
ν on M by ν(A) = cµ(A) for all A ∈ M. (The verification is straightforward.)

Theorem 3.18. Let µ be a translation invariant measure defined on the Borel
σ-algebra over R. Assume that µ(I) < ∞ for at least one interval I ̸= ∅. Then
there exists a constant c ≥ 0 such that µ(E) = cm(E) for every Borel set E; here
m is the Lebesgue measure.

Proof. Due to the translation invariance, all singletons have the same measure, i.e.,
µ({x}) = µ({y}) for all x, y ∈ R. If, µ({x}) > 0 for any (and then for all) x ∈ R, then
the measure of every infinite set would be infinite, which contradicts the assumption
µ(I) < ∞. Thus all singletons have measure zero, hence for every a < b we have
µ(a, b) = µ([a, b)) = µ((a, b]) = µ([a, b]).

Now let µ(I) < ∞ for a nonempty interval (a, b). Note that R = ⊎∞
n=−∞(a +

n|I|, b+ n|I|]. If µ(I) = 0, then µ(R) = 0, hence µ(A) = 0 ·m(A) for any Borel set,
and the theorem follows with c = 0.

If µ(I) > 0, then µ(R) = ∞. In this case we put c = µ(I)/|I|. Divide I into
k ≥ 2 intervals {Ii} of equal length. They also have equal µ measure due to the
translation invariance, hence

µ(Ii) = µ(I)/k = c|I|/k = c|Ii|.

Next for any interval J ⊂ R of length |J | = m
k |I|, we can represent J = ⊎m

j=1Jj
where |Jj | = |I|/k and obtain

µ(J) = mµ(J1) = mc|J1| = c|J |.

Thus the measure c−1µ agrees with the Lebesgue measure on all intervals with

rational lengths. Lastly we use the result of Exercise 9 and Theorem 3.17.

Exercise 14. Extend this theorem to R2: show that if µ is a translation invariant measure
defined on the Borel σ-algebra over R2 such that µ(R) < ∞ for at least one rectangle R ̸= ∅,
then there exists a constant c ≥ 0 such that µ(E) = cm(E) for every Borel set E ⊂ R2.

• The above fact remains valid in Rk:

Corollary 3.19. If µ is a translation invariant measure defined on the Borel σ-
algebra over Rk such that µ(R) < ∞ for at least one rectangular box R ̸= ∅, then
there exists a constant c ≥ 0 such that µ(E) = cm(E) for every Borel set E ⊂ Rk.
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Lastly, given a measure µ on a σ-algebra M, it is often convenient to complete it
in the way we constructed the Lebesgue measure.

Definition 3.20. A measure µ on a measurable space (X,M) is said to be com-
plete if every subset of any set of measure zero is measurable, i.e., if for any set
A ∈ M such that µ(A) = 0 and any subset B ⊂ A we have B ∈ M (in this case
obviously µ(B) = 0).

Definition 3.21. Sets of measure zero are called null sets. Their complements
are called full measure sets.

• A set A is of full measure iff µ(Ac) = 0.

• It is incorrect to say that A is of full measure iff µ(A) = µ(X). (This statement is
true only if µ(X) <∞.)

Theorem 3.22. (Completion) Let (X,M, µ) be a measure space. Then

M̄ = {A ∪ E : A ∈ M, E ⊂ N for some null set N}

is a σ-algebra. For every B = A ∪ E as above define µ̄(B) = µ(A). Then µ̄ is
a complete measure on (X, M̄). Moreover, if µ∗ is another complete measure that
agrees with µ on M, then µ∗ coincides with µ̄ on M̄.

Proof. Basically, the proof goes by direct inspection.

Definition 3.23. µ̄ is called the completion of µ.

• The completion of the measure constructed in Corollary 3.16 is exactly the Lebesgue
measure on X ⊂ Rk.

Corollary 3.24. For every Lebesgue measurable set A ⊂ Rk there exists a Borel
measurable set B ⊂ Rk and a Lebesgue null set N ⊂ Rk such that A = B ∪N .

• The union B ∪ N can be easily made disjoint. Indeed, by Theorem 3.22 there is a
Borel null set N0 ⊃ N . Then we define B1 = B \N0 and N1 = (N0 ∩ B) ∪N . Now
we have A = B∪N = B1⊎N1, where B1 is a Borel set and N1 is a Lebesgue null set.
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Measurable functions4
Recall: given two topological spaces X and Y , a function f : X → Y is said to be
continuous iff for any open set V ⊂ Y its preimage f−1(V ) ⊂ X is open, too.

• The preimage (also called inverse image) is defined by

f−1(V ) = {x ∈ X : f(x) ∈ V }.

Definition 4.1. Let (X,M) be a measurable space and Y a topological space.
A function f : X → Y is said to be a measurable function iff for any open set
V ⊂ Y its preimage is measurable, i.e. f−1(V ) ∈ M.

• Most interesting functions for us are real-valued (R) and complex-valued (C).

Theorem 4.2. Let (X,M) be a measurable space and Y, Z topological spaces. If
f : X → Y is measurable and g : Y → Z is continuous, then their composition
g ◦ f : X → Z is measurable.

Proof. For any open set V ⊂ Z the set g−1(V ) ⊂ Y is open, hence the set

f−1(g−1(V )) = (g ◦ f)−1(V ) ⊂ X is measurable (i.e., belongs in M).

Recall that in any topological space, the Borel σ-algebra is generated by open sets.

Definition 4.3. Let X, Y be topological spaces. A function f : X → Y is said to
be a Borel function iff for any open set V ⊂ Y its preimage f−1(V ) ⊂ X is a
Borel set.

Proposition 4.4. Continuous functions are Borel functions.

• There are many Borel functions that are not continuous.

Definition 4.5. Given a subset A ⊂ X the function

χA(x) = { 1 if x ∈ A
0 else

is called the characteristic function of A (or the indicator of A).

Exercise 15. Prove that A ∈ M if and only if χA is measurable.

Example 6. Let X = R with M being Borel σ-algebra. The function f = χQ (the indi-
cator of the set of rational numbers) is known as Dirichlet function. It is discontinuous
ar every point x ∈ R. At the same time it is a Borel function.
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In fact, virtually every function that can be precisely described is Borel. It is
hard to find any specific non-Borel function.

Theorem 4.6. Let (X,M) be a measurable space and f : X → Y a function. Then

(a) G = {E ⊂ Y : f−1(E) ∈ M} is a σ-algebra in Y ;

(b) if Y is a topological space and f measurable, then f−1(E) ∈ M for any Borel
set E ⊂ Y ;

(c) If Y and Z are topological spaces, f : X → Y is measurable and g : Y → Z
is a Borel function, then g ◦ f : X → Z is measurable.

Proof.
First, note that set-theoretic operations are preserved under inverse functions. That
is, if f : X → Y is a function, then for any sets A,B ∈ Y we have

f−1(A ∪B) = f−1(A) ∪ f−1(B)

f−1(A ∩B) = f−1(A) ∩ f−1(B)

f−1(A \B) = f−1(A) \ f−1(B)

f−1(Ac) = (f−1(A))c.

Similar identities hold for countable unions and intersections:

f−1
(
∪∞
n=1An

)
= ∪∞

n=1f
−1(An)

f−1
(
∩∞
n=1An

)
= ∩∞

n=1f
−1(An).

• Proof of (a): By direct inspection

A1, A2, . . . ∈ G =⇒ f−1(A1), f
−1(A2), . . . ∈ M

=⇒ f−1(∪nAn) = ∪nf
−1(An) ∈ M

=⇒ ∪nAn ∈ G.

Similarly,

A ∈ G =⇒ f−1(A) ∈ M =⇒ f−1(Ac) = (f−1(A))c ∈ M =⇒ Ac ∈ G.

Lastly we apply Lemma 2.4.

• Proof of (b): the collection G = {E ⊂ Y : f−1(E) ∈ M} is a σ-algebra (by (a))
and it contains all open sets. Hence it contains the Borel σ-algebra.

• Proof of (c): for any open set V ⊂ Z the set g−1(V ) ⊂ Y is Borel, hence (by (b))

the set f−1(g−1(V )) = (g ◦ f)−1(V ) ⊂ X is measurable, i.e., belongs in M.
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Definition 4.7. Extended real line, denoted by [−∞,∞], is R∪{∞}∪{−∞}.
The topology in [−∞,∞] is generated by standard open intervals (a, b) ⊂ R and
the following “infinite intervals”: (a,∞] and [−∞, b) for all a, b ∈ R. Any function
f : X → [−∞,∞] is called an extended real-valued function.

Theorem 4.8. Let (X,M) be a measurable space and f : X → [−∞,∞]. Then f
is measurable iff f−1

(
[−∞, x)

)
is a measurable set for every x ∈ R.

Proof. By Theorem 4.6(a) the collection G = {E ⊂ Y : f−1(E) ∈ M} is a σ-

algebra containing all open infinite intervals [−∞, x). Now we just need to check

that these intervals generate the Borel σ-algebra in [−∞,∞], i.e., applying countable

unions/intersections and complements produces all other open intervals in [−∞, x).

This is a routine exercise in topology.

Exercise 16. In the context of the previous theorem, prove that f is measurable iff f−1
(
[−∞, x]

)
is a measurable set for every x ∈ R.

Exercise 17. In the context of the previous theorem, prove that f is measurable iff f−1
(
[−∞, x)

)
is a measurable set for every rational x ∈ Q.

Exercise 18. Let (X,M) be a measurable space and f : X → [−∞,∞] and g : X → [−∞,∞]
two measurable functions. Prove the following sets are measurable:

{x : f(x) < g(x)} and {x : f(x) = g(x)}

Exercise 19. Show the following is a Borel function: f : R → R s.t.

f(x) ={ 1 if x ∈ Q
0 if x /∈ Q

Exercise 20. Show the following is a Borel function: f : R → R s.t.

f(x) ={ sin(1/x) if x ̸= 0
0 if x = 0

Exercise 21. Let f : R → R be a monotonically increasing function, i.e. f(x1) ≤ f(x2) for
x1 ≤ x2. Show that f is a Borel function.
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Theorem 4.9. Let (X,M) be a measurable space and u : X → R and v : X → R
two functions. Then f = (u, v) : X → R2 is measurable if and only if both u and v
are measurable.

Proof.
⇒ If f is measurable, then for any open set V ⊂ R we have u−1(V ) = f−1(V ×R) ∈
M because V × R is open in R2. Similarly v−1(V ) = f−1(R× V ) ∈ M

⇐ If u and v are measurable, then for any open intervals I, J ⊂ R we have

f−1(I×J) = u−1(I)∩v−1(J) ∈ M (as the intersection of two measurable sets). The

sets I × J generate the Borel σ-algebra in R2, thus our result follows from Theorem

4.6(a).

Corollary 4.10. Let (X,M) be a measurable space, u : X → R and v : X →
R two measurable functions, and Φ: R2 → R a continuous function. Then the
composition Φ(u(x), v(x)) : X → R is a measurable function. In particular, u+ v,
u− v, and uv are measurable functions.

Corollary 4.11. Let (X,M) be a measurable space and u : X → R and v : X → R
two functions. Then f(x) = u(x) + iv(x) is a measurable function from X to C if
and only if both u(x) and v(x) are measurable functions.

Corollary 4.12. Let (X,M) be a measurable space and f : X → C and g : X → C
two measurable functions. Then |f |, f+g, f−g, and fg are measurable functions.

Theorem 4.13. (Polar factorization) Let (X,M) be a measurable space and
f : X → C a measurable function. Then f = g|f |, where g : X → C is a measurable
function such that |g| = 1.

Proof. The set E = f−1({0}) is measurable. Note that h(z) = z/|z| is a continuous

function from C \ {0} to C, thus the function h ◦ f is measurable on X \ E. Define

g as follows: g = h ◦ f on X \ E and g = 1 on E.
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Arithmetic in the Extended Real Line [−∞,∞].

Arithmetic operations in [−∞,∞] are defined in an obvious way:

• a+∞ = ∞ for any a ∈ (−∞,∞],

• a+ (−∞) = −∞ for any a ∈ [−∞,∞),

• a · ∞ = ∞ for every a ∈ (0,∞],

• a · ∞ = −∞ for every a ∈ [−∞, 0), etc.

The sum ∞+ (−∞) is not defined. Most importantly, we put

0 · ∞ = 0

Limits in the Extended Real Line [−∞,∞].

The set [−∞,∞] is naturally ordered, any subset A ⊂ [−∞,∞] obviously has
inf A a supA. The convergence of sequences in [−∞,∞] is defined by using its
topology. For any sequence {an} in [−∞,∞] we naturally define lim inf an and
lim sup an:

lim sup
n→∞

an = inf{b1, b2, . . .}, bn = sup{an, an+1, . . .}. (4.1)

(Here inf can be replaced with lim, because b1 ≥ b2 ≥ · · · is a monotonically
decreasing sequence, hence it has a limit.)

Proposition 4.14. For any sequence of numbers a1, a2, . . . ∈ [−∞,∞] we have

(a) lim supn→∞(−an) = − lim infn→∞ an.

(b) lim supn→∞(an + bn) ≤ lim supn→∞ an + lim supn→∞ bn.

(c) lim infn→∞(an + bn) ≥ lim infn→∞ an + lim infn→∞ bn.

(d) limn→∞ an exists if and only if lim supn→∞ an = lim infn→∞ an, in which case
limn→∞ an equals to both lim supn→∞ an and lim infn→∞ an.
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Theorem 4.15. Let (X,M) be a measurable space and fn : X → [−∞,∞] mea-
surable functions. Then

g = sup
n≥1

fn and h = lim sup
n→∞

fn

are measurable functions. (Similarly for inf fn and lim inf fn.)

Proof. For any c ∈ R we have

{x : g(x) > c} = ∪∞
n=1{x : fn(x) > c},

hence g is measurable (cf. Theorem 4.8 and Exercise 9). Similarly, inf fn is a mea-

surable function. The function lim sup fn can be expressed as a combination of sup’s

and inf’s due to (4.1).

Corollary 4.16. Let (X,M) be a measurable space and fn : X → [−∞,∞] mea-
surable functions. If the limit

g(x) = lim
n→∞

fn(x)

exists for every x ∈ X, then g is a measurable function.

Corollary 4.17. Let (X,M) be a measurable space and f, g : X → [−∞,∞] are
measurable functions. Then

max{f(x), g(x)} and min{f(x), g(x)}

are measurable functions. Also,

f+(x) = max{f(x), 0} and f−(x) = −min{f(x), 0}

are measurable functions.
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Definition 4.18. The functions

f+(x) = max{f(x), 0} and f−(x) = −min{f(x), 0}

are called positive and negative parts of f , respectively.

• For any function f : X → [−∞,∞]

f = f+ − f− and |f | = f+ + f−. (4.2)

Theorem 4.19. If f = g − h and g ≥ 0, h ≥ 0, then f+ ≤ g and f− ≤ h.

Proof. If f(x) ≥ 0 then

f−(x) = 0 ≤ h(x) and f+(x) = f(x) = g(x)− h(x) ≤ g(x)

If f(x) ≤ 0 then

f+(x) = 0 ≤ g(x) and f−(x) = −f(x) = h(x)− g(x) ≤ h(x)

• In other words, f+ and f− are the “most economical” nonnegative functions whose
difference is the given function f .

Definition 4.20. A function f : X → Y is a simple function iff its range f(X)
is finite.

Proposition 4.21. If s : X → R is a measurable simple function whose (distinct)
values are α1, . . . , αn, then it can be represented by

s =
n∑

i=1

αi χAi

where Ai = s−1({αi}) are disjoint measurable sets such that X = ⊎n
i=1Ai.
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Theorem 4.22. Let (X,M) be a measurable space and f : X → [0,∞] a measur-
able function. Then there exist simple functions sn : X → R such that

0 ≤ s1 ≤ s2 ≤ · · · ≤ f

and sn(x) → f(x) as n→ ∞ for every x ∈ X.

Proof.

(i) Special case: X = [0,∞] and f(x) = x. Define simple functions by

φn =
n2n∑
j=1

j − 1

2n
χEj + nχ[n,∞]

where

Ej =
[j − 1

2n
,
j

2n

)
Intuitively, we divide the interval [0, n) into small pieces so that each subinterval
[k, k + 1) of length one is divided into 2n pieces, and treat the remaining infinite
interval [n,∞] as one piece. The total number of pieces is n2n +1. The function φn

collapses each piece into its left endpoint. It is easy to check that ∀x ∈ [0,∞]

0 ≤ φ1(x) ≤ φ2(x) ≤ · · · ≤ x, lim
n→∞

φn(x) = x. (4.3)

(ii) General case: we define simple functions by sn = φn ◦f . They are measurable

due to Theorem 4.6(c). They are simple because sn(X) ⊂ φn(X), which is a finite
set. For any x ∈ X we rewrite (4.3) as follows:

0 ≤ φ1(f(x)) ≤ φ2(f(x)) ≤ · · · ≤ f(x), lim
n→∞

φn(f(x)) = f(x).

Now replacing φn(f(x)) with sn(x) we get the desired:

0 ≤ s1(x) ≤ s2(x) ≤ · · · ≤ f(x), lim
n→∞

sn(x) = f(x),
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Lebesgue integration of nonnegative functions5

Definition 5.1. Let (X,M, µ) be a measure space and s : X → [0,∞) a nonneg-
ative measurable simple function represented by

s =
n∑

i=1

αi χAi
. (5.1)

Then we define the Lebesgue integral of s over X by∫
X

s dµ =
n∑

i=1

αi µ(Ai). (5.2)

• It is possible that for some i we have αi = 0 and µ(Ai) = ∞. In this case we use the
rule 0 · ∞ = 0.

Proposition 5.2. The formula (5.2) in Definition 5.1 holds even if the values
α1, . . . , αn are not distinct.

Proof. In (5.1) it is usually assumed that the values α1, . . . , αn are distinct. However,
if they are not, we can simply “lump together” the subsets Ai’s on which s takes the
same values. For example, if αi = αj for some i ̸= j, then

αiµ(Ai) + αjµ(Aj) = αi(µ(Ai) + µ(Aj)) = αiµ(Ai ∪Aj),

and note that s(x) = αi for all x ∈ Ai∪Aj . So we can replace the two terms αiµ(Ai)

and αjµ(Aj) in (5.2) with one, αiµ(Ai∪Aj), and the sum (5.2) will have n−1 terms

total. Repeating this lumping process, in less than n steps we will get a sum where

all the αi’s are distinct.

Definition 5.3. In the context of Definition 5.1, for any E ∈ M we define the
Lebesgue integral of s over E by∫

E

s dµ =
n∑

i=1

αi µ(Ai ∩ E).

Alternatively, we can restrict the function s and measure µ to E (as described in
Section 3) and define

∫
E
s dµ as in Definition 5.1. These two definitions of

∫
X
s dµ

agree (one can check via direct inspection).
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Proposition 5.4.

(a)
∫
E
s dµ ∈ [0,∞] for any such s : X → [0,∞].

(b) If µ(E) = 0 then
∫
E
s dµ = 0.

(c) If s ≡ c ≥ 0 is a constant function, then
∫
E
c dµ = c µ(E).

(d)
∫
E
0 dµ = 0 even if µ(E) = ∞.

(e) For any set A ∈ M we have
∫
X
χA dµ = µ(A).

Proof. Direct inspection.

Lemma 5.5. Let s, t : X → [0,∞) be two simple functions. Then∫
E

(s+ t) dµ =

∫
E

s dµ+

∫
E

t dµ

Proof. Let s =
n∑

i=1
αiχAi t =

m∑
j=1

βjχBj s.t.
n⊎

i=1
Ai =

m⊎
j=1

Bi = X

Now denote Ei,j = Ai ∩Bj ∩ E (so E = ⊎i,jEi,j). Note that

Ai ∩ E = ⊎jEi,j Bj ∩ E = ⊎iEi,j

On each Ei,j we have s = αi and t = βj hence s+ t = αi + βj

Thus s+ t is a simple function given by

s+ t =
∑
i,j

(αi + βj)χEi,j

Therefore
∫
E
(s+ t) dµ =

∑
i,j

(αi + βj)µ(Ei,j)

=
∑
i,j

αiµ(Ei,j) +
∑
i,j

βjµ(Ei,j)

=
∑
i

αi

∑
j

µ(Ei,j) +
∑
j

βj
∑
i

µ(Ei,j)

=
∑
i

αiµ(Ai ∩ E) +
∑
j

βjµ(Bj ∩ E)

=

∫
E
s dµ+

∫
E
t dµ
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Corollary 5.6. If 0 ≤ s ≤ t are two simple functions, then
∫
E
s dµ ≤

∫
E
t dµ.

Proof. The difference u = t− s is also a nonnegative simple function, hence∫
E
t dµ =

∫
E
(s+ u) dµ

5.5
=

∫
E
s dµ+

∫
E
u dµ ≥

∫
E
s dµ

This follows from Proposition 5.4(a) which states
∫
E u dµ ≥ 0

Definition 5.7. Let (X,M, µ) be a measure space and f : X → [0,∞] a nonneg-
ative measurable function (possibly taking value +∞). Then for any E ∈ M we
define the Lebesgue integral∫

E

f dµ = sup
s∈Lf

∫
E

s dµ,

where Lf =
{
s : X → [0,∞) measurable simple, 0 ≤ s ≤ f

}
Note that Lf ̸= ∅ as it always contains the function s ≡ 0.

Exercise 22. Verify that for simple functions, Definition 5.3 and Definition 5.7 agree.

Theorem 5.8. Basic properties of the Lebesgue integral

Let f, g : X → [0,∞] be measurable functions and A,B,E ∈ M measurable sets.

(a) if f ≤ g, then
∫
E
f dµ ≤

∫
E
g dµ;

(b) if A ⊂ B, then
∫
A
f dµ ≤

∫
B
f dµ;

(c) for any constant c ≥ 0 we have
∫
A
cf dµ = c

∫
A
f dµ;

(d) if µ(E) = 0, then
∫
E
f dµ = 0, even if f ≡ ∞;

(e)
∫
E
f dµ =

∫
X
χEf dµ.

(f) if
∫
X
f dµ <∞, then µ{x : g(x) = ∞} = 0.
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Proof. Basic properties of the Lebesgue integral (Theorem 5.8)

(a) For any simple function s we have s ∈ Lf =⇒ s ≤ f ≤ g =⇒ s ∈ Lg

(i.e. Lf ⊂ Lg), this implies sups∈Lf

{∫
E s dµ

}
≤ supt∈Lg

{∫
E t dµ

}
Which, by Definition 5.7, is equivalent to

∫
E f dµ ≤

∫
E g dµ

(b) For any {Ak}nk=1: Ak ∩A ⊂ Ak ∩B =⇒ µ(Ak ∩A) ≤ µ(Ak ∩B) (∀k)

For any s ∈ Lf :
∫
A s dµ =

∑n
k=1 αkµ(Ak ∩A) ≤

∑n
k=1 αkµ(Ak ∩B) =

∫
B s dµ

Since
∫
A s dµ ≤

∫
B s dµ (∀s ∈ Lf ) we conclude

∫
A f dµ ≤

∫
B f dµ

(c) • If c = 0:
∫
A 0 · f dµ =

∫
A 0 dµ = 0 = 0 ·

∫
A f dµ

• If f = s =
∑n

k=1 αkχAk
(simple):∫

A cf dµ =
∑n

k=1 cαk µ(Ak ∩A) = c
∑n

k=1 αk µ(Ak ∩A) = c
∫
A f dµ

• If c ̸= 0 and f is not simple: s ∈ Lcf ⇐⇒ 1
cs ∈ Lf

Thus,
∫
A cf dµ = sups∈Lcf

{∫
A s dµ

}
= sup 1

c
s∈Lf

{∫
A s dµ

}
= sup 1

c
s∈Lf

{
c
∫
A

1
cs dµ

}
= c sup 1

c
s∈Lf

{∫
A

1
cs dµ

}
= c supt∈Lf

{∫
A t dµ

}
= c

∫
A f dµ

(d) For any s ∈ Lf : Ak ∩ E ⊂ E =⇒ µ(Ak ∩ E) = 0 which gives us∫
E s dµ =

∑n
k=1 αkµ(Ak ∩ E) =

∑n
k=1 αk · 0 = 0

Thus,
∫
E f dµ = sups∈Lf

{∫
E s dµ

}
= sups∈Lf

{0} = 0

(e) (i) For s (simple): χEs =
∑n

k=1 αkχAk
χE =

∑n
k=1 αkχAk∩E

thus,
∫
X χEs dµ =

∑n
k=1 αkµ(Ak ∩ E) =

∫
E s dµ

(ii) Note that s ∈ LχEf ⇐⇒ s = χE s̃ (for some s̃ ∈ Lf )∫
X χEf dµ = sups∈LχEf

{∫
X s dµ

} (ii)
= sups̃∈Lf

{∫
X χE s̃ dµ

}
(i)
= sups̃∈Lf

{∫
E s̃ dµ

}
=

∫
E f dµ

(f) First, note the set E = {x : f(x) = ∞} = f−1({∞}) is measurable.

For any N > 0, we have f ≥ NχE , thus by Parts (a) and (c)∫
X f dµ ≥

∫
X NχE dµ = Nµ(E).

If µ(E) > 0, then (because our N is arbitrary) we would have
∫
X f dµ = ∞.

This contradiction proves (f).
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Exercise 23. Let x0 ∈ X and µ = δx0 the δ-measure. Assume that {x0} ∈ M. Show that for
every measurable function f : X → [0,∞] we have∫

X

f dµ = f(x0).

Exercise 24. Let X = N and µ the counting measure on the σ-algebra M = 2N. Show that for
every function f : X → [0,∞] we have∫

X

f dµ =
∞∑

n=1

f(n).

Theorem 5.9. Let (X,M, µ) be a measure space and s : X → [0,∞) a nonnega-
tive measurable simple function. Then

φ(E) =

∫
E

s dµ

is a measure on M.

Proof. Let s =
∑n

k=1 αkχAk
for any E ∈ M: φ(E) =

∑n
k=1 αkµ(Ak ∩ E).

(i) φ(∅) =
∑n

k=1 αkµ(Ak ∩ ∅) =
∑n

k=1 αkµ(∅) =
n∑

k=1

αk · 0 = 0

(ii) let E = ⊎∞
n=1En where E,En ∈ M (∀n ∈ N). Then

φ(E) = φ
(
⊎∞
m=1 Em

)
=

∑n
k=1 αkµ

(
Ak ∩ ⊎∞

m=1Em

)
=

∑n
k=1 αkµ

(
⊎∞
m=1 (Ak ∩ Em)

)
=

∑n
k=1

(
αk

∑∞
m=1 µ(Ak ∩ Em)

)
=

∑∞
m=1

(∑n
k=1 αkµ(Ak ∩ Em)

)
=

∑∞
m=1

(∫
Em

s dµ
)

=
∑∞

m=1 φ(Em) (i.e. φ is σ-additive, and thus a measure)

Theorem 5.10. Lebesgue’s Monotone Convergence

Let (X,M, µ) be a measure space and {fn} a sequence of meas. functions on X.

Suppose (a) 0 ≤ f1(x) ≤ f2(x) ≤ · · · ≤ ∞ for every x ∈ X

(b) fn(x) → f(x) (n→ ∞) for every x ∈ X

Then f is measurable and∫
X

fn dµ→
∫
X

f dµ (n→ ∞)

• This can be written as lim
n→∞

∫
X
fn dµ =

∫
X

lim
n→∞

fn dµ

42



Proof. Lebesgue’s Monotone Convergence (Theorem 5.10)

By Corollary 4.16, the limit function f is measurable, thus
∫
X f dµ exists.

By Theorem 5.8(a):
∫
X fn dµ ≤

∫
X fn+1 dµ (since fn ≤ fn+1)

This means the integrals
∫
X fn dµ make a monotonically increasing sequence. Thus

∃α ∈ [0,∞] :

∫
X
fn dµ→ α as n→ ∞

Next, we need to show: (i) α ≤
∫
X f dµ (ii) α ≥

∫
X f dµ

(i) By Theorem 5.8(b): fn ≤ f =⇒
∫
X fn dµ ≤

∫
X f dµ (∀n > 0)

=⇒ α ≤
∫
X f dµ (i)

(ii) Let s ∈ Lf and 0 < c < 1.

Consider the sets En = {x : fn ≥ cs(x)} (n = 1, 2, ...)

(a) each En is measurable (by Exercise 18)

(b) For x ∈ En: cs(x) ≤ fn(x) ≤ fn+1(x) ⇒ x ∈ En+1 (∀n > 0)

=⇒ En ⊂ En+1 (∀n > 0)

=⇒ E1 ⊂ E2 ⊂ ... (increasing sequence)

(c) We claim that X = ∪∞
n=1En. Let x ∈ X.

◦ f(x) = 0 ⇒ s(x) = 0, fn(x) = 0 (∀n > 0) ⇒ x ∈ En (∀n > 0)

◦ f(x) > 0 ⇒ cs(x) < f(x) (since c < 1) ⇒ cs(x) < fn(x) (for some n)

⇒ x ∈ En (for some n) ⇒ x ∈ ∪∞
n=1En

(d) For each n ≥ 1: α ≥
∫
X fn dµ

5.8(b)

≥
∫
En
fn dµ

5.8(e)
=

∫
X fnχEn dµ

5.8(a)

≥
∫
X csχEn dµ

5.8(e)

≥
∫
En
cs dµ

5.8(c)
= c

∫
En
s dµ

= c φ(En) (where we denote φ(En) =
∫
En

s dµ)

By (a), (b), (c), and Continuity-II (3.13): φ(En) → φ(X) =
∫
En
s dµ (n → ∞)

multiplying both sides by α, we obtain α ≥ cφ(En) → c
∫
X s dµ (n → ∞)

Thus, α ≥ c
∫
X s dµ (∀s ∈ Lf , c < 1)

c→1
=⇒ α ≥

∫
X s dµ (∀s ∈ Lf )

=⇒ α ≥
∫
X f dµ (ii)

By (i) and (ii),
∫
X fn dµ→ α =

∫
X f dµ (n → ∞)
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Theorem 5.11. Additivity

Let (X,M, µ) be a measure space and f, g : X → [0,∞] two nonnegative measurable
functions. Then ∫

X

(f + g) dµ =

∫
X

f dµ+

∫
X

g dµ.

Proof. Recall that for simple functions the additivity was proved in Lemma 5.5.
General functions f and g can be approximated by simple functions due to Theorem
4.22:

0 ≤ s1 ≤ s2 ≤ · · · ≤ f, sn → f

0 ≤ t1 ≤ t2 ≤ · · · ≤ g, tn → g

Note that sn + tn is a simple function for each n ≥ 1, and

0 ≤ (s1 + t1) ≤ (s2 + t2) ≤ · · · ≤ (f + g), (sn + tn) → (f + g)

Now we have by Lebesgue’s Monotone Convergence Theorem∫
X
(sn + tn) dµ

5.5
=

∫
X
sn dµ+

∫
X
tn dµ

↓ ↓ ↓∫
X
(f + g) dµ =

∫
X
f dµ+

∫
X
g dµ

The additivity theorem is proved.

Corollary 5.12. Linearity

Let (X,M, µ) be a measure space; f, g : X → [0,∞] two nonnegative measurable
functions; and c, d ≥ 0 two nonnegative constants. Then∫

X

(cf + dg) dµ = c

∫
X

f dµ+ d

∫
X

g dµ.

Proof. Combine Theorem 5.11 with Theorem 5.8(c)
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Theorem 5.13. Let (X,M, µ) be a measure space and fn : X → [0,∞] a sequence
of nonnegative measurable functions on X and

f(x) =
∞∑
n=1

fn(x) for every x ∈ X.

Then f is measurable and ∫
X

f dµ =
∞∑
n=1

∫
X

fn dµ.

(That is, summation and integration “commute” for nonnegative functions.)

Proof. Denote gN =
∑N

n=1 fn. By induction, Theorem 5.11 extends to finite sums,

∫
X
gN dµ =

N∑
n=1

∫
X
fn dµ

Note that g1 ≤ g2 ≤ · · · and gN → f as N → ∞. Now

∞∑
n=1

∫
X
fn dµ = lim

N→∞

N∑
n=1

∫
X
fn dµ = lim

N→∞

∫
X
gN dµ =

∫
X
f dµ

(the last identity follows from Lebesgue’s Monotone Convergence Theorem 5.10)

Corollary 5.14. If aij ≥ 0 for all i, j = 1, 2, . . ., then

∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij.

Proof. Let (X,M, µ) = (N, 2N, µ), where µ is the counting measure.

For each i ≥ 1 define a function fi : N → [0,∞) by fi(j) = aij (∀j ∈ N).

Then by Exercise 24
∫
N fi dµ =

∑∞
j=1 aij Therefore

∞∑
i=1

∞∑
j=1

aij =
∞∑
i=1

∫
N
fi dµ

5.13
=

∫
N

( ∞∑
i=1

fi

)
dµ =

∞∑
j=1

∞∑
i=1

aij .

in the end we used the result of Exercise 24 once again.

• Without assumption aij ≥ 0 Corollary 5.14 fails. As we remember from calculus,
the sum of an infinite series may depend on the order in which its terms are added.
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Motivating example.Let

• (X,M, µ) a measure space

• fn : X → [0,∞] nonnegative measurable functions

• fn(x) → f(x), as n→ ∞, for every x ∈ X (i.e., fn converge to f pointwise)

Here is a big question:

Is it true that
∫
fn dµ→

∫
f dµ?

Suppose for example that X = [0, 1], µ = m is the Lebesgue measure, and f(x) ≡
1, so that

∫
[0,1]

f dm = 1. Let ε > 0. The pointwise convergence means that for

every x ∈ [0, 1] there is Nx such that |fn(x)−f(x)| < ε for all n ≥ Nx. So if we wait
long enough, then the current value fn(x) will be almost equal to the limit value
f(x) = 1. Of course the waiting period Nx depends on x ∈ [0, 1], but the longer
we wait the more and more points x ∈ [0, 1] will have the above property |fn(x)−
f(x)| < ε. If we wait long enough, then those points will make an overwhelming
majority in [0, 1], i.e., the set of points A = {x ∈ [0, 1] : |fn(x) − f(x)| < ε} will
have measure m(A) > 1− ε for sufficiently large n. And then∫

[0,1]

fn dm ≥
∫
A

fn dm ≥
∫
A

(1− ε) dm = (1− ε)m(A) > (1− ε)2.

Thus the limit value of the integral cannot be smaller than one:

lim inf
n→∞

∫
[0,1]

fn dm ≥ 1 =

∫
[0,1]

f dm.

But can it be larger than one? The answer is Yes!

Suppose, for example, fn(x) = 1 + nχ(0, 1
n
). This function takes a constant value,

1, everywhere except a small open interval (0, 1
n
), on which its value is big (equal

to 1 + n). Then
∫
[0,1]

fn dm = 2 for every n ≥ 1, but the limit function is still

f(x) ≡ 1 and its integral still equals 1. We can say that the “mass” of each
function fn equals 2, but only half of that “mass” reaches the limit function f ; the
other half “escapes through holes” or “falls through cracks”. The role of “holes”
or “cracks” is played by the vanishing intervals (0, 1

n
).

46



Theorem 5.15. Fatou’s Lemma

Let (X,M, µ) be a measure space and fn : X → [0,∞] a sequence of nonnegative
measurable functions on X. Then∫

X

(
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

∫
X

fn dµ.

Proof. Recall the definition of lim inf (Equation 4.1)

lim inf
n→∞

fn = lim
n→∞

gn, gn = inf{fn, fn+1, ...}.

Note that g1 ≤ g2 ≤ . . . is a monotonically increasing sequence, hence by Lebesgue
Monotone Convergence (Theorem 5.10):

lim
n→∞

∫
X
gn dµ =

∫
X
( lim
n→∞

gn) dµ =

∫
X
(lim inf

n→∞
fn) dµ.

Also note that gn ≤ fn for each n = 1, 2, . . ., hence

5.8(a)
=⇒

∫
X
gn dµ ≤

∫
X
fn dµ

=⇒ lim inf
n→∞

∫
X
gn dµ ≤ lim inf

n→∞

∫
X
fn dµ

4.14(d)
=⇒ lim

n→∞

∫
X
gn dµ ≤ lim inf

n→∞

∫
X
fn dµ

=⇒
∫
X
(lim inf

n→∞
fn) dµ ≤ lim inf

n→∞

∫
X
fn dµ

Exercise 25. Let E ⊂ X be such that µ(E) > 0 and µ(Ec) > 0. Put fn = χE if n is odd and
fn = 1− χE if n is even. What is the relevance of this example to Fatou’s lemma?

Exercise 26. Construct an example of a sequence of nonnegative measurable functions fn : X →
[0,∞) such that f(x) = limn→∞ fn(x) exists pointwise, but∫

X

f dµ < lim inf
n→∞

∫
X

fn dµ.
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Theorem 5.16. Let (X,M, µ) be a measure space and f : X → [0,∞] a nonneg-
ative measurable function on X . Then

φ(E) =

∫
E

f dµ

is a measure on M.

Furthermore, for every nonnegative measurable function g on X, we have∫
X

g dφ =

∫
X

gf dµ

• The last identity allows us to write dφ = f dµ, rather informally.

Proof.

First we prove that φ is a measure:

(i) φ(∅) =
∫
∅ f dµ

5.8(d)
= 0

(ii) Let E = ⊎∞
n=1En for some E,En ∈ M. Then

φ(E) =
∫
E f dµ

5.8(e)
=

∫
X χEf dµ =

∫
X χ(⊎nEn)f dµ

=
∫
X

( ∞∑
n=1

χEn

)
f dµ =

∫
X

( ∞∑
n=1

χEnf
)
dµ

5.13
=

∞∑
n=1

∫
X χEnf dµ

5.8(e)
=

∞∑
n=1

∫
En
f dµ =

∑∞
n=1 φ(En)

Next we prove that
∫
X g dφ =

∫
X gf dµ

First suppose g = s =
∑m

i=1 αiχAi is a simple, then∫
X s dφ

5.12
=

m∑
i=1

αiφ(Ai) =
m∑
i=1

αi

∫
Ai
f dµ

5.8(c)
=

m∑
i=1

∫
Ai
αif dµ

5.8(e)
=

m∑
i=1

∫
X αiχAif dµ

5.11
=

∫
X

(
m∑
i=1

αiχAif

)
dµ =

∫
X sf dµ

Now let g ≥ 0 be arbitrary measurable function. By Theorem 4.22, g can be ap-
proximated by simple functions

0 ≤ s1 ≤ s2 ≤ · · · ≤ g, sn → g,

hence by Lebesgue’s Monotone Convergence Theorem∫
X
snf dµ =

∫
X
sn dφ→

∫
X
g dφ.
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On the other hand, since f ≥ 0, we have

0 ≤ s1f ≤ s2f ≤ · · · ≤ gf, snf → gf,

hence again by Lebesgue’s Monotone Convergence (Theorem 5.10)∫
X
snf dµ→

∫
X
gf dµ.

Thus we conclude ∫
X
g dφ =

∫
X
gf dµ

proving the theorem.

Corollary 5.17. Let (X,M, µ) be a measure space and f : X → [0,∞] a nonneg-
ative measurable function on X . Then for every A,B ∈ M, A ∩B = ∅∫

A⊎B
f dµ =

∫
A

f dµ+

∫
B

f dµ.

Proof. Using the measure φ(E) =
∫
E f dµ defined in Theorem 5.16∫

A⊎B f dµ = φ(A ⊎B)

= φ(A) + φ(B) Since φ is a measure on (X,M)

=
∫
A f dµ+

∫
B f dµ

So far we have only used Lebesgue integral for nonnegative functions. In the
next section we define Lebesgue integral for general real-valued and complex-valued
functions.
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Lebesgue integration of real/complex valued functions6

Definition 6.1. We say that a measurable function f : X → R or f : X → C
is Lebesgue integrable if ∫

X

|f | dµ <∞.

The set of all integrable functions is denoted by L1
µ(X).

• The function |f | is measurable due to Corollary 4.12.

• The above integral is defined since |f | ≥ 0 its value is either a nonnegative finite
number or infinity.

Recall that for a real-valued function f : X → R we have f = f+ − f− and
|f | = f+ + f− where f+ ≥ 0 and f− ≥ 0. This leads to the following:

Lemma 6.2. For any real-valued measurable function f : X → R∫
X

|f | dµ =

∫
X

f+ dµ+

∫
X

f− dµ.

The left integral is finite if and only if both right integrals are finite:∫
X

|f | dµ <∞ ⇐⇒
∫
X

f+ dµ <∞ and

∫
X

f− dµ <∞.

Definition 6.3. Let f : X → R be an integrable real-valued function. Then its
Lebesgue integral over any measurable set E ∈ M is defined by∫

E

f dµ =

∫
E

f+ dµ−
∫
E

f− dµ

Lemma 6.4. For any complex-valued measurable function f : X → C , denote by
u = Re (f) and v = Im (f) (such that f = u+ iv). Then

max{|u|, |v|} ≤ |f | ≤ |u|+ |v|

Therefore, |f | is integrable if and only if both u and v are integrable:∫
X

|f | dµ <∞ ⇐⇒
∫
X

|u| dµ <∞ and

∫
X

|v| dµ <∞.
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Definition 6.5. Let f : X → C be an integrable complex-valued function. Let
u = Re f and v = Im f be its real and imaginary parts (f = u + iv). Then the
Lebesgue integral of f over any measurable set E ∈ M is defined by∫

E

f dµ =

∫
E

u dµ+ i

∫
E

v dµ

• In other words, we integrate the real part and the imaginary part separately:

Re

∫
E

f dµ =

∫
E

Re f dµ and Im

∫
E

f dµ =

∫
E

Im f dµ. (6.1)

• The integral of a real-valued function is a (finite) real number.

• The integral of a complex-valued function is a (finite) complex number.

Two types of Lebesgue integrals?.

For nonnegative measurable functions f : X → [0,∞] we have defined the Lebesgue
integral

∫
X
f dµ twice: in Definition 5.3 and here in Definition 6.3. Do these

definitions agree? Not quite.

By Definition 5.3, the integral
∫
X
f dµ is always defined, though its value may be

finite or infinite. When its value is finite, then by Definition 6.3 (note that f = f+

in this case) f is integrable and its integral is the same as the one due to Definition
5.3. In this sense our definitions agree.

However, if the value of
∫
X
f dµ by Definition 5.3 is infinite, then by Definition 6.3

the function f is not integrable, so the integral
∫
X
f dµ is not defined. Thus

the new Definition 6.3 is just a restriction of the old Definition 5.3 to the category
of functions whose integral is finite.

This little disagreement will not cause us trouble. In fact, with the following
extension, Definition 6.3 will fully agree with Definition 5.3.
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Extension of Definition 6.3.

If one of the integrals
∫
E
f+ dµ and

∫
E
f− dµ is infinite, but the other finite, the

formula in Definition 6.3 still can be applied. Precisely,∫
E

f+ dµ = ∞,

∫
E

f− dµ <∞ =⇒
∫
E

f dµ = ∞

and ∫
E

f+ dµ <∞,

∫
E

f− dµ = ∞ =⇒
∫
E

f dµ = −∞

Occasionally this extension is used, and we will need it in Section 11.

Note though that if both integrals
∫
E
f+ dµ and

∫
E
f− dµ are infinite, then the

formula in Definition 6.3 makes no sense, because ∞−∞ is not defined.

Lemma 6.6. Let f ∈ L1
µ(X). If A ∩B = ∅ are disjoint measurable sets, then∫

A⊎B
f dµ =

∫
A

f dµ+

∫
B

f dµ.

Proof. We just need to break down all the three integral into Re f and Im f , and

then integrate the positive and negative parts separately applying Corollary 5.17.

Theorem 6.7. Linearity

Let f, g ∈ L1
µ(X) and α, β ∈ C. Then∫

X

(αf + βg) dµ = α

∫
X

f dµ+ β

∫
X

g dµ.

In particular, αf + βg ∈ L1
µ(X).

Proof. Note: the proof is tricky!

First we show that αf + βg is integrable. By standard triangle inequality

|αf + βg| ≤ |α| |f |+ |β| |g|

therefore due to Theorem 5.8(a,c) and Theorem 5.11∫
X
|αf + βg| dµ ≤ |α|

∫
X
|f | dµ+ |β|

∫
X
|g| dµ <∞.
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Next it is enough to prove two facts:∫
X
(f + g) dµ =

∫
X
f dµ+

∫
X
g dµ (6.2)∫

X
(αf) dµ = α

∫
X
f dµ (6.3)

the combination of which readily implies our theorem.

First we prove (6.2). Since we integrate the real part and imaginary part separately,
and since Re (f + g) = Re f + Re g and Im (f + g) = Im f + Im g, it will be enough to
treat real valued functions f, g : X → R only.

Next, it is tempting to break down each real-valued function into its positive and
negative parts. However, this will not work, because (f + g)+ ̸= f+ + g+ and
(f + g)− ̸= f− + g−, generally speaking.

We use a different trick. Denote h = f + g, then

h+ − h− = (f+ − f−) + (g+ − g−) =⇒ h+ + f− + g− = h− + f+ + g+.

Now on each side of the last equation we have a sum of nonnegative functions, thus
we can use Theorem 5.11 to get∫

X
h+ dµ+

∫
X
f− dµ+

∫
X
g− dµ =

∫
X
h− dµ+

∫
X
f+ dµ+

∫
X
g+ dµ.

Rearranging these integrals gives∫
X
h+ dµ−

∫
X
h− dµ =

∫
X
f+ dµ−

∫
X
f− dµ+

∫
X
g+ dµ−

∫
X
g− dµ.

Using Definition 6.3 gives ∫
X
h dµ =

∫
X
f dµ+

∫
X
g dµ,

which proves (6.2).

Now we prove (6.3). Suppose first that α ≥ 0 and f = f+ − f− is a real-valued
function. Then (αf)+ = αf+ and (αf)− = αf−, hence∫
X
(αf) dµ =

∫
X
(αf)+ dµ−

∫
X
(αf)− dµ

5.8(c)
= α

∫
X
f+ dµ− α

∫
X
f− dµ = α

∫
X
f dµ

If α < 0, then (αf)+ = −αf− and (αf)− = −αf+, hence∫
X
(αf) dµ =

∫
X
(αf)+ dµ−

∫
X
(αf)− dµ

5.8(c)
= −α

∫
X
f− dµ+α

∫
X
f+ dµ = α

∫
X
f dµ

Thus we proved (6.3) for any real α and any real-valued function f . To handle
complex constants α = a+ ib and complex-valued functions f = u+ iv, note that

αf = (au− bv) + i(av + bu),

hence by Definition 6.5∫
X
(αf) dµ =

∫
X
(au− bv) dµ+ i

∫
X
(av + bu) dµ,

and now we can use the already proved linearity for real-valued functions.
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Exercise 27. Let f, g ∈ L1
µ(X) be real-valued functions and f ≤ g. Show that∫

X

f dµ ≤
∫
X

g dµ.

Exercise 28. Let fn : X → [0,∞] be a sequence of measurable functions such that f1 ≥ f2 ≥
· · · ≥ 0 and limn→∞ fn(x) = f(x) for every x ∈ X. Suppose f1 ∈ L1

µ(X). Show that

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

Theorem 6.8. Integral triangle inequality

If f ∈ L1
µ(X) is a real-valued or complex-valued function, then∣∣∣∫

X

f dµ
∣∣∣ ≤ ∫

X

|f | dµ.

Proof.

Note: The analogy with the triangle inequality is clear if we replace integration
with summation.

Case 1 f : X → [−∞,∞] is a real-valued function with possible infinite values.

Then
∣∣∣∫X f dµ

∣∣∣ = ∣∣∣∫X f+ dµ−
∫
X f− dµ

∣∣∣
≤

∣∣∣∫X f+ dµ
∣∣∣+ ∣∣∣∫X f− dµ

∣∣∣ (triangle inequality in R)

≤
∫
X f+ dµ+

∫
X f− dµ (f+ ≥ 0 and f− ≥ 0)

=
∫
X(f+ + f−) dµ (Additivity: Theorem 5.11)

=
∫
X |f | dµ (Eq. (4.2))

Case 2 f : X → C is a complex-valued function with finite values.

Then
∫
X f dµ ∈ C =⇒ ∃θ ∈ [0, 2π) s.t.

∫
X f dµ = eiθ

∣∣∣∫X f dµ
∣∣∣

Therefore
∣∣∣∫X f dµ

∣∣∣ = e−iθ
∫
X f dµ

=
∫
X e−iθf dµ (By Linearity, Theorem 6.7)

= Re
∫
X e−iθf dµ (Because it is a real number)

=
∫
X Re

(
e−iθf

)
dµ (By Eq. (6.1))

≤
∫
X |f | dµ (Because Re (z) ≤ |z| for any z ∈ C)

Note: in the last step we also used the result of Exercise 27.
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Theorem 6.9. Lebesgue’s Dominated Convergence

Let fn : X → C be a sequence of measurable functions such that

lim
n→∞

fn(x) = f(x) ∀x ∈ X

Suppose there exists g ∈ L1
µ(X) such that

|fn(x)| ≤ g(x) ∀x ∈ X, ∀n = 1, 2, . . .

i.e., the functions fn(x) are dominated by g(x). Then

(a) f ∈ L1
µ(X)

(b) limn→∞
∫
X
|fn − f | dµ = 0

(c) limn→∞
∫
X
fn dµ =

∫
X
f dµ

Proof.

(a) The limit f(x) of measurable functions fn(x) is measurable by Corollary 4.16.
By standard calculus rules we also have |f(x)| ≤ g(x), hence∫

X
|f(x)| dµ

5.8(a)

≤
∫
X
g(x) dµ <∞

therefore f ∈ L1
µ(X)

(b) Similarly to Part (a), for every n ≥ 0,

|fn − f | ≤ |fn|+ |f | ≤ 2g =⇒ |fn − f | ∈ L1
µ(X).

Note also that
2g − |fn − f | ≥ 0,

thus Fatou’s lemma will apply to these functions. We also have

lim
n→∞

(2g − |fn − f |) = 2g − lim
n→∞

|fn − f | = 2g,

therefore∫
X 2g dµ =

∫
X limn→∞(2g − |fn − f |) dµ

=
∫
X lim infn→∞(2g − |fn − f |) dµ By Proposition 4.14(d)

≤ lim infn→∞
∫
X(2g − |fn − f |) dµ By Fatou’s Lemma

= lim infn→∞
(∫

X 2g dµ−
∫
X |fn − f | dµ

)
By Linearity, 6.7

=
∫
X 2g dµ− lim supn→∞

∫
X |fn − f | dµ By Proposition 4.14(a).
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Canceling
∫
X 2g dµ gives

lim sup
n→∞

∫
X
|fn − f | dµ ≤ 0.

Since this is a sequence of nonnegative numbers, this relation is only possible if

lim
n→∞

∫
X
|fn − f | dµ = 0.

(c) Using the linearity and the integral triangle inequality

0 ≤
∣∣∣∫

X
fn dµ−

∫
X
f dµ

∣∣∣ 6.7
=

∣∣∣∫
X
(fn − f) dµ

∣∣∣ 6.8
≤

∫
X

∣∣fn − f
∣∣ dµ→ 0

where in the end we used Part (b).

Corollary 6.10. Let f ∈ L1
µ(X) and let

E1 ⊃ E2 ⊃ · · ·

be a sequence of measurable sets such that µ(En) → 0 as n→ ∞. Then∫
En

f dµ→ 0 as n→ ∞

Proof. Denote E = ∩∞
n=1En. By Continuity-I (Theorem 3.12) we have

µ(E) = lim
n→∞

µ(En) = 0

Consider functions fn = χEnf for all n ≥ 1 By direct inspection

lim
n→∞

fn(x) = f̄(x) : =

{
0 if x /∈ E

f(x) if x ∈ E

Also note that |fn| ≤ |f | ∈ L1
µ(X), hence by the Lebesgue Dominated Convergence∫

En

f dµ
5.8(e)
=

∫
X
fn dµ

6.9→
∫
X
f̄ dµ

as n→ ∞, and ∫
X
f̄ dµ

5.17
=

∫
X\E

0 dµ+

∫
E
f dµ = 0,

where the first integral is 0 · µ(X \ E) = 0, and the second is zero due to Theorem

5.8.
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Role of sets of measure zero (null sets)7
Let (X,M, µ) be a measure space and Y a topological space.

Definition 7.1. Let P (x) be a property which a point x ∈ X may or may not
have. We say that P holds almost everywhere (a.e.) on a set E ⊂ X if there
exists N ⊂ X, µ(N) = 0, such that P holds at every x ∈ E \N .

Definition 7.2. Given two measurable functions f, g : X → Y , we say that f = g
a.e. if µ{x ∈ X : f(x) ̸= g(x)} = 0.

• f = g a.e. is an equivalence relation.

Definition 7.3. We say that a sequence of measurable functions fn(x) converges
a.e. to a limit function f(x) if µ{x ∈ X : fn(x) 9 f(x)} = 0.

A general philosophy of Real Analysis is that sets of measure zero are negligible,
what happens in those sets is insignificant. In many instances null sets are handled
somewhat casually or ignored altogether.

Theorem 7.4. Let f, g : X → [−∞,∞] or f, g : X → C be two measurable func-
tions. If f = g a.e., then

∫
E
f dµ =

∫
E
g dµ for any E ∈ M.

• In this theorem, either both integrals exist (⇒ equal) or both fail to exist.

Proof. Denote N = {x : f(x) ̸= g(x)}. By our assumption, µ(N) = 0.

Case 1: f, g : X → [0,∞] are nonnegative functions (with possible infinite values).
We decompose E as E = (E \ N) ⊎ (E ∩ N). Note that µ(E ∩ N) ≤ µ(N) = 0.
Therefore ∫

E
f dµ

5.17
=

∫
E\N

f dµ+

∫
E∩N

f dµ∫
E
g dµ

5.17
=

∫
E\N

g dµ+

∫
E∩N

g dµ.

The integrals over E \ N are equal because f = g on E \ N . The integrals over
E ∩N are both equal to zero, because µ(E ∩N) = 0; cf. Theorem 5.8(d).

Case 2: f, g : X → [−∞,∞] are real-valued functions (with possible infinite values).
By direct inspection, if f(x) = g(x), then f+(x) = g+(x) and f−(x) = g−(x).
Therefore f+ = g+ a.e. and f− = g− a.e. Now by Case 1∫

E
f dµ =

∫
E
f+ dµ−

∫
E
f− dµ =

∫
E
g+ dµ−

∫
E
g− dµ =

∫
E
g dµ.
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Case 3: f, g : X → C are complex-valued functions with finite values. Again, by
direct inspection, if f(x) = g(x), then Re f(x) = Re g(x) and Im f(x) = Im g(x).
Therefore Re f = Im g a.e. and Re f = Im g a.e. Now by Case 2∫

E
f dµ =

∫
E
Re f dµ+ i

∫
E
Im f dµ =

∫
E
Re g dµ+ i

∫
E
Im g dµ =

∫
E
g dµ.

• In plain words: a function f can be modified arbitrarily on a set of measure zero, and
this will not affect the value of its integral (over any set E).

Therefore, for the purpose of integration we do not even have to define a func-
tion f on the whole space X; it is enough to define it on a set of full measure. We
will say that such functions are defined almost everywhere.

Definition 7.5. Let (X,M, µ) be a measure space and Y a topological space. We
say that a function f with values in Y is measurable and a.e. defined on X if
there exists N ⊂ X with µ(N) = 0, such that f is defined on X \N and for every
open set V ⊂ Y we have f−1(V ) \N ∈ M.

• The function f above may also be defined on N or on any part of N .

Exercise 29. Let f be a function as above. Fix a y ∈ Y and define

f̃(x) =

{
f(x) if x ∈ X \N
y if x ∈ N

Show that f̃ : X → Y is measurable.

Exercise 30. Let f be a function as above and µ a complete measure. Let g : X → Y be an
arbitrary (not necessarily measurable) function. Define

f̃(x) =

{
f(x) if x ∈ X \N
g(x) if x ∈ N

Show that f̃ : X → Y is measurable.

Proposition 7.6.

(a) Let N1, N2, . . . be null sets. Then N = ∪∞
i=1Ni is a null set.

(b) Let A1, A2, . . . be full measure sets. Then A = ∩∞
i=1Ai is a full measure set.
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Proof. (Proposition 7.6)

(a) By the σ-subadditivity (Theorem 3.11)

µ
(
∪∞
i=1Ni

)
≤

∞∑
i=1

µ(Ni) =
∞∑
i=1

0 = 0,

hence µ(N) = 0.

(b) Note that Ac
i are null sets. Now

Ac =
(
∩∞
i=1Ai

)c
= ∪∞

i=1A
c
i

which is a null set due to Part (a).

• If f1, f2, . . . are measurable and a.e. defined functions, then there exists a full measure
set A ⊂ X on which all of these functions are defined.

“Almost everywhere” principle.

The convergence theorems proven in Sections 5–6 can be extended to functions
defined a.e., and the assumptions made on those functions only need to hold a.e.
For example, in Lebesgue’s Monotone and Dominated Convergence Theorems we
only need to assume that fn → f a.e., |fn(x)| ≤ g(x) a.e., etc. In Theorem 5.13,
we only need to assume that f(x) =

∑∞
n=1 fn(x) a.e., etc.

Theorem 7.7. Let {fn} be a sequence of complex measurable functions defined
a.e. on X and

∞∑
n=1

∫
X

|fn| dµ <∞.

Then the series f(x) =
∑∞

n=1 fn(x) converges for a.e. x ∈ X and

∞∑
n=1

∫
X

fn dµ =

∫
X

f dµ.

Proof. For each n ≥ 1 the function fn is supposed to be defined on a full measure
set, call it Sn. Then all these functions are defined on the intersection S = ∩∞

n=1Sn,
and S is a full measure set due to Proposition 7.6(b).

For each x ∈ S denote φ(x) =
∑∞

n=1 |fn(x)|. By Theorem 5.13 we have∫
S
φdµ =

∫
S

∞∑
n=1

|fn| dµ
5.13
=

∞∑
n=1

∫
S
|fn| dµ <∞.

(note: here we can integrate over X, instead of S, due to Theorem 7.4).
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According to Theorem 5.8(f), E = {x ∈ S : φ(x) <∞} is a full measure set. For
every x ∈ E we have

∑∞
n=1 |fn(x)| = φ(x) <∞, in particular, the series

∑∞
n=1 fn(x)

converges absolutely. Therefore f(x) =
∑∞

n=1 fn(x) is well defined (and finite) for
each x ∈ E. Also, f is measurable on E, as it is the limit of measurable functions
gN (x) =

∑N
n=1 fn(x), as N → ∞. To summarize: f is a measurable function defined

almost everywhere.

Next, by the triangle inequality

|f(x)| =
∣∣∣∣ ∞∑
n=1

fn(x)

∣∣∣∣ ≤ ∞∑
n=1

|fn(x)| = φ(x).

Since
∫
X φdµ <∞, this implies f ∈ L1

µ(X).

Now again we need functions gN (x) =
∑N

n=1 fn(x). By the triangle inequality

|gN (x)| =
∣∣∣∣ N∑
n=1

fn(x)

∣∣∣∣ ≤ N∑
n=1

|fn(x)| ≤
∞∑
n=1

|fn(x)| = φ(x),

so gN ’s are dominated by the integrable function φ. Also note that

gN (x) =
N∑

n=1

fn(x) →
∞∑
n=1

fn(x) = f(x)

for all x ∈ E.

Now by Lebesgue’s Dominated Convergence Theorem

N∑
n=1

∫
X
fn dµ

6.7
=

∫
X

N∑
n=1

fn dµ =

∫
X
gN dµ→

∫
X
f dµ

as N → ∞, proving the theorem.

Corollary 7.8. Borel-Cantelli Lemma

If Ek ∈ M and
∑∞

k=1 µ(Ek) < ∞, then almost every x ∈ X belongs to finitely
many of the sets Ek.

Proof. Just apply Theorem 7.7 to functions fn = χEn .

• The Borel-Cantelli Lemma consists of two parts. Above is the easier part. The harder
part involves probabilistic notion of independence (beyond the scope of this course).
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Exercise 31. In the above corollary, let A be the set of points which belong to infinitely many
of the sets Ek. Show that

A = ∩∞
n=1 ∪∞

k=n Ek.

Use this fact to prove the corollary without any reference to integration. Hint: use Theorem
3.11.

Definition 7.9. A sequence fn of functions X → C converges to a function
f : X → C uniformly on X if for any ε > 0 there exists N > 0 such that for all
n > N

sup
x∈X

|fn(x)− f(x)| < ε.

Equivalently, supx∈X |fn(x)− f(x)| → 0 as n→ ∞.

• Uniform convergence implies pointwise convergence, but not vice versa.

Example 7. Let X = (0, 1). Functions fn(x) = xn converge, as n→ ∞, to the function
f(x) = 0 pointwise, but not uniformly.

Exercise 32. Suppose µ(X) <∞. Let fn ∈ L1
µ(X) be complex measurable functions uniformly

converging to a function f ∈ L1
µ(X). Prove that

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ. (7.1)

Show that the assumption µ(X) < ∞ cannot be omitted, i.e., give an example of a sequence of
functions fn ∈ L1

µ(X) uniformly converging to a function f ∈ L1
µ(X) such that (7.1) fails.

Definition 7.10. A sequence fn of functions X → C converges to a function
f : X → C in measure if for any ε > 0 and δ > 0 there exists N > 0 such that
for all n > N

µ{x ∈ X : |fn(x)− f(x)| > ε} < δ.

Equivalently, µ{x ∈ X : |fn(x)− f(x)| > ε} → 0 as n→ ∞.

• Convergence in measure is, generally, weaker than the pointwise convergence.

Exercise 33. Suppose µ(X) < ∞ and fn are measurable functions defined a.e. on X. Prove
that if fn → f a.e. on X, then fn → f in measure. What happens if µ(X) = ∞?
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Example 8. Amazing shrinking sliding rectangles
SupposeX = [0, 1] andm is the Lebesgue measure. Let fn = χ[ j

2k
, j+1

2k
], where k = [log2 n]

and j = n− 2k. The first nine terms of this sequence are

χ[0,1], χ[0, 1
2
], χ[ 1

2
,1], χ[0, 1

4
], χ[ 1

4
, 1
2
], χ[ 1

2
, 3
4
] χ[ 3

4
,1], χ[0, 1

8
], χ[ 1

8
, 1
4
]

The graphs of these functions are vertical rectangles of the same height (= 1) but de-
creasing widths (= 1

2k
), and their bases keep moving (sliding) along the interval [0, 1],

from left to right, as n increases. The bases of these rectangles cover the interval [0, 1]
over and over again, infinitely many times.
This sequence converges to the zero function f ≡ 0 in measure, because

m
(
x : {|fn(x)− f(x)| > ε}

)
=

1

2k
→ 0 as n→ ∞

but fn(x) has no limit, as n→ ∞ for any point x ∈ [0, 1].

Exercise 34. Prove that if fn → f in measure, then there is a subsequence {fnk
} of {fn} such

that fnk
→ f a.e. on X. Hint: use Corollary 7.8.

Exercise 35. [Bonus] Suppose f ∈ L1
µ(X). Prove that ∀ε > 0 ∃δ > 0 such that

∫
E
|f | dµ < ε

whenever µ(E) < δ.

Our next general goal is to show that the values of the integrals for a function
f over different sets E ∈ M give plenty of information about f itself.

Theorem 7.11. Let (X,M, µ) be a measure space.

(a) If f : X → [0,∞] is measurable, E ∈ M, and
∫
E
f dµ = 0, then f = 0 a.e.

on E;

(b) If f ∈ L1
µ(X) and

∫
E
f dµ = 0 for every E ∈ M, then f = 0 a.e. on X;

Proof. (a) We need to prove that µ(S) = 0, where

S = {x ∈ E : f(x) > 0} = f−1((0,∞]) ∩ E.

Note that S = ∪n≥1Sn, where

Sn = {x ∈ E : f(x) > 1/n} = f−1((1/n,∞]) ∩ E

and S1 ⊂ S2 ⊂ · · · . Thus by Continuity-II (Theorem 3.13) we have µ(S) =
limn→∞ µ(Sn). If µ(S) > 0, then µ(Sn) > 0 for some n, and then∫

E
f dµ

5.8(b)

≥
∫
Sn

f dµ
5.8(a)

≥
∫
Sn

1
n dµ = 1

n µ(Sn) > 0,
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a contradiction. Thus µ(S) = 0 as claimed.

(b) If f : X → C is a complex-valued function, then∫
E
f dµ = 0 =⇒

∫
E
Re f dµ+ i

∫
E
Im f dµ = 0

=⇒
∫
E
Re f dµ = 0 and

∫
E
Im f dµ = 0

thus it is enough to prove the claim for real-valued functions f : X → R. Denote

E1 = {x : f(x) ≥ 0} = f−1([0,∞))

E2 = {x : f(x) ≤ 0} = f−1((−∞, 0])

Since
∫
E1
f dµ = 0 by our assumption, Part (a) implies f = 0 a.e. on E1. Similarly,∫

E2
f dµ = 0 by our assumption, then

∫
E2
(−f) dµ = 0, and again Part (a) implies

f = 0 a.e. on E2. Thus f = 0 a.e. on E1 ∪ E2 = X.

Corollary 7.12. If f ∈ L1
µ(X) and∣∣∣∫

X

f dµ
∣∣∣ = ∫

X

|f | dµ,

then there exists a constant θ ∈ [0, 2π) such that f = eiθ|f | a.e. on X.

Proof. Recall: in the proof of Theorem 6.8 we showed that ∃θ ∈ [0, 2π) such that∣∣∣∫
X
f dµ

∣∣∣ = ∫
X
Re

(
e−iθf

)
dµ ≤

∫
X
|f | dµ

and mentioned that |f | − Re
(
e−iθf

)
≥ 0. Now due to our assumption∫

X

(
|f | − Re

(
e−iθf

))
dµ = 0

thus
|f | − Re

(
e−iθf

)
= 0 a.e.

This also implies that Im
(
e−iθf

)
= 0 a.e. Therefore |f | = e−iθf a.e.
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Exercise 36.

(a) Let f : X → (0,∞] and µ(E) > 0. Show that
∫
E
f dµ > 0.

(b) Let f, g ∈ L1
µ(X) be real-valued functions and f < g. Assuming µ(X) > 0 show∫

E

f dµ <

∫
E

g dµ

Definition 7.13. Let (X,M, µ) be a measure space and f : X → C a measurable
function. The average value of f(x) over a set E ∈ M is

AE(f) =
1

µ(E)

∫
E

f dµ

provided the integral exists and µ(E) ∈ (0,∞).

Lemma 7.14.

(a) If f : X → R is a real-valued function and m ≤ f(x) ≤M for all x ∈ E, then
m ≤ AE(f) ≤M ;

(b) If f : X → C is a complex-valued function and f(x) ∈ R for all x ∈ E, where
R ⊂ C is a closed rectangular domain with horizontal and vertical sides, then
AE(f) ∈ R.

Proof.

(a) By Theorem 5.8(a), mµ(E) ≤
∫
E f(x) dµ ≤Mµ(E).

(b) just apply Part (a) to Re f and Im f separately.

Theorem 7.15. Let (X,M, µ) be a measure space and µ(X) <∞. Let f ∈ L1
µ(X)

and S ⊂ C a closed set. Suppose for every E ∈ M with µ(E) > 0 we have
AE(f) ∈ S. Then f(x) ∈ S a.e. on X.

Proof. For any closed rectangle R ⊂ C \ S let ER = {x : f(x) ∈ R} = f−1(R). If
µ(ER) > 0, we would have AER

(f) ∈ R by Lemma 7.14(b), which contradicts our
assumption. Therefore µ(ER) = 0. Now every open set in the plane is a countable
union of some closed rectangles. In particular, C \ S = ∪∞

i=1Ri, hence

f−1(S) = ∪∞
i=1f

−1(Ri) =⇒ µ(f−1(S)) ≤
∞∑
i=1

µ(f−1(Ri)) = 0
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thus f(x) ∈ S a.e.

Corollary 7.16. In particular, if
∫
E
f dµ is real-valued for every E, then f is

real-valued a.e. on X.
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Regularity of the Lebesgue measure8

Theorem 8.1. For any measurable set E ⊂ R and any ε > 0 there is an open
covering set V ⊃ E and a closed subset D ⊂ E such that m(V \ D) < ε. In
particular,

m(V \ E) < ε and m(E \D) < ε

Proof.

(i) Suppose first that E is bounded (i.e. E ⊂ I = [a, b] for some a < b).
Then m(E) <∞ and using the outer measure (Definition 1.13) we get

m(E) = µ∗(E) = inf
∞∑
i=1

|Ii|

where the infimum is taken over all countable covers of E by intervals, i.e., such that
E ⊂ ∪∞

i=1Ii. Thus for any ε > 0 there exist covering intervals ∪∞
i=1Ii ⊃ E such that

∞∑
i=1

|Ii| −m(E) < ε/2

Extending Ii’s slightly we can make them open and increase their total length by no
more than ε/2. More precisely, for each i ≥ 1 we find an open interval I ′i ⊃ Ii such
that |I ′i| − |Ii| < ε/2i+1. Then we have E ⊂ ∪∞

i=1I
′
i and

∞∑
i=1

|I ′i| −m(E) <

∞∑
i=1

|Ii|+ ε/2−m(E) < ε

The open set V = ∪∞
i=1I

′
i covers E and has the desired property:

m(V \ E) = m(V )−m(E) ≤
∞∑
i=1

|I ′i| −m(E) < ε

(ii) Let E be unbounded. Then we can represent R as a disjoint union of some
intervals, i.e., R = ⊎∞

k=1Ik. Each set Ek = E ∩ Ik is bounded and we can find an
open set Vk ⊃ Ek such that m(Vk \ Ek) < ε/2k. Now the set V = ∪∞

k=1Vk is open
and

m(V \ E) ≤
∞∑
k=1

m(Vk \ Ek) < ε.

(iii) The set Ec = R \ E is measurable, so due to (i)–(ii) there exists an open set

U ⊃ Ec such that m(U \ Ec) < ε. Its complement D = U c is a closed set, D ⊂ E,

and E \D = U \ Ec, hence m(E \D) = m(U \ Ec) < ε.

In other words, any measurable set can be arbitrarily well approximated by open
sets ‘from outside’ and by closed sets ‘from inside’.
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The following exercise demonstrates that approximation by open sets ‘from
inside’ or by closed sets ‘from outside’ is a bad idea:

Exercise 37. Find examples of Lebesgue measurable sets E1, E2 ⊂ R such that

m(E1) < inf{m(A) : E1 ⊂ A, A closed}

m(E2) > sup{m(V ) : V ⊂ E2, V open}.

The next theorem uses compact sets instead of closed sets:

Theorem 8.2.

(i) For any measurable set E ⊂ R we have

m(E) = inf{m(V ) : E ⊂ V, V open} (8.1)

and
m(E) = sup{m(K) : K ⊂ E, K compact} (8.2)

(ii) If m(E) <∞, then for any ε > 0 there exist an open covering set V ⊃ E
and a compact subset K ⊂ E such that m(V \K) < ε. In particular,

m(V \ E) < ε and m(E \K) < ε

Proof. Put R = ∪∞
n=1In, where In = [−n, n].

(a) First suppose that m(E) = ∞. Then (8.1) is trivial: for any open cover
V ⊃ E we have m(V ) ≥ m(E) = ∞. To prove (8.2), we use Theorem 8.1
by which there exists a closed set D ⊂ E such that m(E \ D) < 1. In that
case m(D) ≥ m(E) − 1 = ∞, hence m(D) = ∞. By standard Definition 2.1,
m(D) = limn→∞m(D ∩ In), hence supnm(D ∩ In) = ∞. Each set D ∩ In ⊂ E is
compact, which proves (8.2).

(b) Now suppose that m(E) < ∞. Now claim (i) follows from the stronger claim

(ii), so it is enough to prove (ii). Due to Theorem 8.1, there exist an open covering

set V ⊃ E and a closed subset D ⊂ E such that m(V \D) < ε/2. Since m(D) ≤
m(E) <∞ andm(D) = limn→∞m(D∩In), we can find n ≥ 1 such thatm(D∩In) >
m(D) − ε/2. Now the set K = D ∩ In is compact, K ⊂ E, and m(V \ K) =

m(V \D) +m(D \K) < ε.

Lebesgue measurable sets may be very complicated and “ugly”, but the above
theorems say that they are “approximately open” and “approximately closed”.
Sets with finite measure are “approximately compact”.
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The following approximation is also useful:

Corollary 8.3. If m(E) < ∞, then for every ε > 0 there exist a finite union of
disjoint bounded intervals J = ⊎N

n=1In such that m(E∆J) < ε.

Proof. Due to Theorem 8.2, for any ε > 0 there exists an open set V ⊃ E such
that m(V \ E) < ε/2. Any open set is a finite or countable union of disjoint open
intervals, thus V = ⊎∞

n=1In. Note that m(V ) =
∑∞

n=1 |In| < ∞, i.e., this series
converges. Thus there is N ≥ 1 such that

∑
n>N |In| < ε/2. Set J = ⊎N

n=1In. Now

E∆J = (E \ J) ∪ (J \ E) ⊂ (V \ J) ∪ (V \ E),

hence
m(E∆J) ≤ m(V \ J) +m(V \ E) < ε.

Theorem 8.4. For every measurable set E ∈ M

(a) there exists a Gδ-set G such that E ⊂ G and m(G \ E) = 0;

(b) there exists an Fσ-set F such that F ⊂ E and m(E \ F ) = 0.

Proof. Due to Theorem 8.1, there are open covering sets Vn ⊃ E and closed subsets

Dn ⊂ E such that m(Vn \Dn) < 1/n. Put G = ∩∞
n=1Vn and F = ∪∞

n=1Dn. Clearly,

G is Gδ and F is Fσ, and G ⊃ E ⊃ F . Also note that G \ F ⊂ Vn \ Dn for every

n ≥ 1, hence m(G \ F ) ≤ m(Vn \Dn) < 1/n, thus m(G \ F ) = 0.

Thus every measurable set is ‘almost’ Gδ (and ‘almost’ Fσ), up to a null set.

Regularity in Rk.

All the above theorems and proofs extend, almost verbatim, to the Lebesgue mea-
sure m in Rk, k ≥ 2. Instead of intervals, one needs to use rectangles in R2,
rectangular boxes in R3, etc.

More generally, we can consider other measures in Rk:

Definition 8.5. A measure µ defined on a σ-algebra M in Rk is called a Borel
measure if it is defined on all Borel sets (i.e. M contains all the Borel sets).
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Definition 8.6. A Borel measure µ is said to be outer regular if

µ(E) = inf{µ(V ) : E ⊂ V, V open} ∀E ∈ M.

A Borel measure µ is said to be inner regular if

µ(E) = sup{µ(K) : K ⊂ E, K compact} ∀E ∈ M.

A Borel measure µ is said to be regular if it is both outer regular and inner
regular.

For regular measures, the above approximation results hold true:

Exercise 38. Let f : R → [0,∞] be a Borel function, f ∈ L1
m(R), and consider the measure

ρ(E) =
∫
E
f dm, where m is the Lebesgue measure. Prove that ρ is regular. Hint: use the result

of Exercise 35.

Theorem 8.7. If µ(E) <∞ for any bounded set E ⊂ Rk, then the outer regularity
and inner regularity are equivalent.

Proof. It is basically a repetition of our arguments in the proofs of Theorem 8.1 and

Theorem 8.2, so we omit it.

Exercise 39. Show that the counting measure in Rk is inner regular, but not outer regular.
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Approximation of Lebesgue measurable functions9
In the previous section we showed Lebesgue measurable sets can be arbitrar-

ily well approximated by open sets (‘from outside’) and by compact sets (‘from
inside’). In this section, we will approximate Lebesgue measurable functions arbi-
trarily well by step and continuous functions.

Definition 9.1. A function f : R → C is Lebesgue measurable if for any open
set V ⊂ C its preimage f−1(V ) is a Lebesgue measurable set, i.e., belongs to the
Lebesgue σ-algebra.

Previously, the term measurable functions was always understood in the sense
of Borel functions (see Definition 4.3). Now we have two types of measurable func-
tions – Borel measurable and Lebesgue measurable. Note that Borel measurable
functions are Lebesgue measurable, but not vice versa.

f : Borel
:⇒ f : Lebesgue

Definition 9.2. A function φ : R → C is called a step function if φ =
∑n

i=1 αiχIi

for some αi ∈ C and disjoint finite intervals Ii ∈ R.

Do not confuse step functions with simple functions. Every step function is
simple, but not vice versa. For example, Dirichlet function (Example 6) is a simple
function but not a step function.

Roughly speaking, simple functions have simple range (a finite set) but may
have arbitrarily complicated domains (a measurable set). Step functions have
simple range (a finite set) and simple domain (a finite set of intervals).

Exercise 40. Let s : [a, b] → R be a simple Lebesgue measurable function. Show that for every
ε > 0 there is a step function φ : [a, b] → R and a Lebesgue measurable set E ⊂ [a, b] such that
s(x) = φ(x) on E and m

(
[a, b] \ E

)
< ε. Hint: use the regularity of m.

Exercise 41. Let f : [a, b] → R be a Lebesgue measurable function. Show that for every ε > 0
there is a step function g : [a, b] → R such that

m
{
x ∈ [a, b] : |f(x)− g(x)| ≥ ε

}
< ε.

Hint: use approximation by simple functions and then the previous exercise.

Exercise 42. Let f ∈ L1
m(R). Prove that there is a sequence {gn} of step functions such that

lim
n→∞

∫
R
|f − gn| dm = 0.

Hint: use the previous exercise.
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Definition 9.3. Let X be a topological space and f : X → C. The support of
f is defined by

supp f = {x ∈ X : f(x) ̸= 0}.

Also, Cc(X) denotes the set of all continuous functions with compact support.

Theorem 9.4. (Lusin)

Let f : R → C be a Lebesgue measurable function, A ⊂ R a Lebesgue measurable
set with m(A) <∞ such that f(x) = 0 for all x /∈ A. Then

(a) For every ε > 0 there exists a compact set K ⊂ A such that m(A \K) < ε
and the restriction of f to K is a continuous function.

(b) There exists g ∈ Cc(R) such that m
{
x : f(x) ̸= g(x)

}
< ε. Furthermore, we

may arrange it so that sup |g(x)| ≤ sup |f(x)|.

Proof.

We can assume that f : R → R, as otherwise we can deal with the real part and
imaginary part of f separately.

(a) Let V1, V2, . . . ⊂ R denote all open intervals with rational endpoints.

By Theorem 8.2, ∃ compact sets Kn ⊂ f−1(Vn) ∩A and K ′
n ⊂ f−1(V c

n ) ∩A s.t.

m
(
(f−1(Vn) ∩A) \Kn

)
< ε

2n+1 and m
(
(f−1(V c

n ) ∩A) \K ′
n

)
< ε

2n+1

hence
m
(
A \ (Kn ∪K ′

n)
)
< ε/2n

Now define K = ∩∞
n=1(Kn ∪K ′

n). It is a compact set, K ⊂ A, and m(A \K) < ε

Let fK = f |K denote the restriction of f to K. Note that f−1
K (Vn) = K ∩ (R \K ′

n),
which is an open subset of K, hence fK is continuous.

(b) By Corollary 8.3, there exists a finite union of disjoint bounded open intervals
J = ⊎N

n=1In such that m(A∆J) < ε. By the part (a), for each n = 1, . . . , N there
exists a compact subset Kn ⊂ An : = A ∩ In such that m(An \Kn) < ε/N and the
restriction of f to Kn is continuous.

Now we define g on each interval In = (an, bn) as follows:

(i) g(x) = f(x) for all x ∈ Kn

(ii) g(an) = g(bn) = 0

(iii) g(x) is extended linearly and continuously to the rest of In
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We clarify the meaning of (iii). The set V = In \ Kn is open so it is a finite
or countable union of disjoint open intervals In,i = (an,i, bn,i), i ≥ 1, such that the
endpoints an,i, bn,i belong to Kn∪{an}∪{bn}, and on this union g is already defined.

Now we set

g(x) = g(an,i) +
g(bn,i)− g(an,i)

bn,i − an,i
(x− an,i). ∀x ∈ In,i

Lastly, we set g(x) = 0 for all x ∈ R \ J . One can verify by direct inspection that g
is now continuous on R and has compact support (i.e. g ∈ Cc(R)).
We now have

m
{
x : f(x) ̸= g(x)

}
≤ m(A \ J) +

N∑
n=1

m(In \Kn)

≤ m(A∆J) +
N∑

n=1

m(An \Kn) < 2ε,

Corollary 9.5. Assume that the hypotheses of Lusin’s theorem are satisfied and
that |f | ≤ M . Then there is a sequence {gn} such that gn ∈ Cc(R) and |gn| ≤ M
for each n ≥ 1, and gn(x) → f(x) a.e.

Proof. By Lusin Theorem 9.4, for each n ≥ 1 there exists gn ∈ Cc(R) such that

m(En) < 2−n, En =
{
x : f(x) ̸= gn(x)

}
.

Since
∑∞

n=1m(En) <∞, the analogue of the Borel-Cantelli Lemma (Corollary 7.8)

implies that a.e. point x ∈ R belongs to finitely many En’s. That is, for a.e. x ∈ R
there exists N(x) such that x /∈ En for all n > N(x).

This implies gn(x) = f(x) for all n > N(x), in particular gn(x) → f(x).

Definition 9.6. Let X be a topological space and f : X → R (or [−∞,∞]). We
say that f is lower semicontinuous if {x : f(x) > a} is open for every a ∈ R. We
say that f is upper semicontinuous if {x : f(x) < a} is open for every a ∈ R.
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Proposition 9.7. Simple properties of semicontinuous functions:

(a) f is continuous ⇔ f is both upper and lower semicontinuous.

(b) If f is semicontinuous, then it is Borel.

(c) f is upper semicontinuous ⇔ −f is lower semicontinuous.

(d) If f is upper (lower) semicontinuous and c > 0, then cf is upper (lower)
semicontinuous.

(e) If f, g are upper (lower) semicontinuous, then f + g is upper (lower) semi-
continuous.

(f) If {fγ} is a family of upper (lower) semicontinuous functions, then inf fγ
(resp., sup fγ)is upper (lower) semicontinuous.

(g) V ⊂ X is open ⇔ χV is lower semicontinuous.

(h) A ⊂ X is closed ⇔ χA is upper semicontinuous.

(i) If fn ≥ 0 are lower semicontinuous, then
∑∞

n=1 fn is lower semicontinuous.

• Proof is straightforward, we leave it as an exercise.

Exercise 43. Prove that if f : X → R is upper (lower) semicontinuous and X is compact, then
f is bounded above (below) and attains its maximum (minimum).

Theorem 9.8. (Vitali-Caratheodory)

Let f : R → R be Lebesgue integrable function (i.e. f ∈ L1). Then for every ε > 0
there exist functions u, v : R → R, u ≤ f ≤ v, where u is upper semicontinuous
and bounded above, v is lower semicontinuous and bounded below, and∫

R
(v − u) dm < ε.

73



Proof. Vitali-Caratheodory Theorem 9.8

First, assume f ≥ 0. By Theorem 4.22, there exist simple functions 0 ≤ s1 ≤ s2 ≤
· · · converging to f pointwise. Then f =

∑∞
n=1 tn, where tn = sn − sn−1 (taking

t0 = 0) are nonnegative simple functions. Thus

f =

∞∑
i=1

αiχAi (9.1)

where αi > 0 and Ai ⊂ R are measurable sets (not necessarily disjoint).

We cam assume that m(Ai) < ∞ for each i, as otherwise we can partition Ai into
countably many pieces Aij = Ai ∩ [j, j + 1), each of finite measure, and replace
αiχAi with

∑∞
j=1 αiχAij in (9.1).

Note that
∫
R f dm =

∑∞
i=1 αim(Ai) <∞.

By Theorem 8.2 there exist compact setsKi and open sets Vi such that Ki ⊂ Ai ⊂ Vi
and m(Vi \Ki) <

ε
αi2i

Now we define

v =

∞∑
i=1

αiχVi and u =

N∑
i=1

αiχKi

where N is chosen so that ∑
i>N

αim(Ai) < ε

Then u is upper semicontinuous, by Proposition 9.7 (e),(h), and bounded above, v
is lower semicontinuous, by Proposition 9.7 (g),(i), and bounded below (by zero).

Thus,

v − u =

N∑
i=1

αiχVi\Ki
+

∞∑
i=N+1

αiχVi

≤
∞∑
i=1

αiχVi\Ki
+

∞∑
i=N+1

αiχAi

so that
∫
R(v − u) dm < 2ε.

In the general case, f = f+ − f−, and we attach u1 and v1 to f+ and u2 and v2
to f−, as above, and put u = u1 − v2 and v = v1 − u2. Note that −v2 is upper

semicontinuous and −u2 is lower semicontinuous (see Proposition 9.7 (c)).
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Corollary 9.9. Let f : R → R be a Lebesgue measurable function. Then there exist
Borel functions g, h : R → R such that g(x) = h(x) a.e. and g(x) ≤ f(x) ≤ h(x)
for every x ∈ X.

Proof. First, we prove the theorem for a function restricted on a finite interval.

Let N > 0 and let us restrict our function f onto the interval [−N,N ].

For any M ≥ 1 , let

fM (x) =


f(x) if |f(x)| ≤M

M if f(x) > M

−M if f(x) < −M

be the function f truncated at levels M and −M . Since fM is bounded on the finite
interval [−N,N ], it is integrable.

By Vitali-Caratheodory Theorem 9.8, For all n ≥ 1 there exist the respective func-
tions uM,n ≤ fM ≤ vM,n such that∫

[−N,N ]
(vM,n − uM,n) dm < 1/n.

Let uM = supn uM,n and vM = infn vM,n. Then uM ≤ fM ≤ vM and∫
[−N,N ]

(vM − uM ) dm = 0.

This implies uM = vM a.e. on [−N,N ], i.e., m(EM ) = 0, where

EM = {x ∈ [−N,N ] : uM (x) ̸= vM (x)}.

Taking the limit as M → ∞ we obtain f = lim fM ; in fact f(x) = fM (x) for all
M > M0(x) (the sequence fM (x) “stabilizes” as M → ∞).

Now define two Borel functions

gN = lim sup
M→∞

uM and hN = lim inf
M→∞

vM .

By direct inspection, gN ≤ f ≤ hN on [−N,N ]. Also, gN (x) = hN (x) for all

x ∈ [−N,N ] \ ∪MEM , hence gN (x) = hN (x) a.e. on [−N,N ].

Finally, we define g(x) = lim sup gN (x) and h(x) = lim inf hN (x) on the entire R.

75



Theorem 9.10. (Egorov)

Let µ(X) < ∞ and {fn} a sequence of complex measurable functions on X such
that limn→∞ fn(x) = f(x) for a.e. x ∈ X. Then for every ε > 0 there is E ⊂ X
such that µ(X \ E) < ε and fn → f uniformly on E.

Proof. For all i ≥ 1 and k ≥ 1 consider the “bad” set

Bi,k = {x ∈ X : |fi(x)− f(x)| ≥ 1/k}.

Due to a.e. convergence, for each k ≥ 1 a.e. point can only belong to finitely many
of Bi,k, thus µ

(
∩n≥1 ∪i≥n Bi,k

)
= 0. By Continuity-I (Theorem 3.12) we have

µ
(
∪i≥nBi,k

)
→ 0 as n→ ∞

Given ε > 0, for each k ≥ 1 there exists nk,ε ≥ 1 such that µ
(
∪i≥nk,ε

Bi,k

)
< ε/2k

Let
Bε =

∪
k≥1

∪
i≥nk,ε

Bi,k.

Note that
µ(Bε) ≤

∑
k≥1

µ
( ∪
i≥nk,ε

Bi,k

)
< ε

and

X \Bε = Bc
ε =

∩
k≥1

∩
i≥nk,ε

Bc
i,k,

i.e., for all x ∈ Bc we have |fi(x)−f(x)| < 1/k for all i ≥ nk,ε, which means precisely

a uniform convergence on E = Bc
ε.

Littlewood’s three principles of real analysis.

Littlewood stated three principles in his 1944 Lectures on the Theory of Functions.
They can be roughly expressed as follows:

• Every measurable set is nearly a finite union of intervals

• Every convergent sequence of functions is nearly uniformly convergent

• Every integrable function (of class Lp) is nearly continuous

The first principle is given by Corollary 8.3. The second one by Egorov’s Theorem
(Theorem 9.10). The third one, by Lusin’s Theorem (Theorem 9.4)

(Another version will be given in Section 11).
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Lebesgue integral versus Riemann integral10

Riemann integral (review).

Recall the definition of Riemann integral in calculus: given a function on a bounded
interval f : [a, b] → R, we consider all finite partitions I = ⊎n

i=1Ii of I = [a, b] into
subintervals Ii and denote ∆ = {Ii} and |∆| = max1≤i≤n |Ii|. Now the Riemann
integral is defined by ∫ b

a

f(x) dx = lim
|∆|→0

n∑
i=1

f(xi)|Ii|,

where xi ∈ Ii, provided the (finite) limit exists and does not depend on the details
of the partitions ∆ = {Ii} and the choice of points xi ∈ Ii.

Figure 5: Riemann integration (top, blue) versus Lebesgue integration (bottom, red).

Both integrals, Riemann and Lebesgue, are designed to compute “the area under
the graph of the function”. In the Riemann integration, we divide the domain
of the function into small pieces and count the total area of the resulting vertical
strips. In the Lebesgue integration, we divide the range of the function into small
pieces and count the total area of the resulting horizontal strips.

Roughly speaking, these are different ways of counting money when you’ve got
a pile of paper bills of various denomination. One way is to add up the values of
all the bills, one by one...

Like “one dollar plus ten dollars, plus five dollars, plus another one, plus another five...”

This is the idea of Riemann integration.

Another way is to sort the bills according to their denomination first – singles
into one pile, fives into another, tens into another, etc., and then count the bills in
each pile separately and multiply the number of bills in each pile by their common
value. This is the idea of Lebesgue integration.
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Riemann integral (Darboux’s definition).

A useful definition of Riemann integral is due to Darboux: for each partition
∆ = {Ii} denote

Mi = sup
x∈Ii

f(x) and mi = inf
x∈Ii

f(x).

Now consider the “upper” and “lower” sums

J̄ (∆) =
n∑

i=1

Mi|Ii| and J (∆) =
n∑

i=1

mi|Ii|.

J (∆) ≤ J̄ (∆)

Furthermore, for any two partitions ∆ = {Ii} and ∆′ = {I ′j} we have

J (∆) ≤ J (∆∗) ≤ J̄ (∆∗) ≤ J̄ (∆′)

where ∆∗ = {Ii ∩ I ′j} is the refinement of both ∆ and ∆′ (see the lemma below).

Therefore sup
∆

J (∆) ≤ inf
∆

J̄ (∆).

Now the Riemann integral is defined by∫ b

a

f(x) dx = sup
∆

J (∆) = inf
∆

J̄ (∆),

This only applies if the two terms are finite and equal. i.e.

sup
∆

J (∆) = inf
∆

J̄ (∆) ∈ R.

Intuitively, the Riemann integral exists iff the upper an lower sums are finite and
can be made arbitrarily close to each other by choosing a fine enough partition.

Lemma 10.1. Suppose ∆ = {Ii} is a partition of the interval I and ∆∗ = {I∗j }
is a refinement of ∆, i.e., every interval I∗j is a part of some interval Ii (I

∗
j ⊂ Ii).

Then
J (∆) ≤ J (∆∗) and J̄ (∆) ≥ J̄ (∆∗).

Proof. Whenever I∗j ⊂ Ii, we have

mi = inf
x∈Ii

f(x) ≤ inf
x∈I∗j

f(x) = m∗
j

Mi = sup
x∈Ii

f(x) ≥ sup
x∈I∗j

f(x) =M∗
j

Multiplying by |I∗j | and summing up over j proves the lemma.
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Theorem 10.2. Let f : [a, b] → R. If the Riemann integral

J =

∫ b

a

f(x) dx

exists, then f is Lebesgue integrable on [a, b] and its Lebesgue integral equals∫
[a,b]

f dm = J .

The converse is not true (see an example below).

Proof. Let ∆n denote a sequence of increasingly finer partitions of I = [a, b], for
example let ∆n = {In,i}, 1 ≤ i ≤ 2n, be the partition of I into 2n equal subintervals.

Note that each subinterval In,i in a part of one of the longer subintervals In−1,j , i.e.,
∆n is a refinement of ∆n−1. Denote Mn,i = supx∈In,i

f(x) and mn,i = infx∈In,i f(x).

Now define “upper” and “lower” functions f̄n and f
n
by

f̄n(x) =Mn,i and f
n
(x) = mn,i ∀x ∈ In,i.

Note that ∫ b

a
f̄n(x) dx = J̄ (∆n) and

∫ b

a
f
n
(x) dx = J (∆n).

Also note that

f̄1 ≥ f̄2 ≥ · · · ≥ f and f
1
≤ f

2
≤ · · · ≤ f

hence there exist limits

lim
n→∞

f̄n = f̄ ≥ f and lim
n→∞

f
n
= f ≤ f.

Now by Lebesgue’s Dominated Convergence Theorem∫
[a,b]

f̄ dm = lim
n→∞

∫
[a,b]

f̄n dm = lim
n→∞

J̄ (∆n) =

∫ b

a
f(x) dx

and ∫
[a,b]

f dm = lim
n→∞

∫
[a,b]

f
n
dm = lim

n→∞
J (∆n) =

∫ b

a
f(x) dx.

Therefore

=⇒
∫
[a,b]

(f̄ − f) dm = 0 =⇒
∫
[a,b]

|f̄ − f | dm = 0

(recall that f̄ ≥ f ≥ f , hence f̄ − f ≥ 0). Theorem 7.11(a) implies f̄(x) = f(x) a.e.,
thus f̄(x) = f(x) = f(x) a.e. Now Theorem 7.4 implies∫

[a,b]
f̄ dm =

∫
[a,b]

f dm =

∫
[a,b]

f dm

so our theorem follows.
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Example 9. Let f : [0, 1] → R be the Dirichlet function (Example 6) restricted to the
interval [0, 1], i.e., f(x) = 1 for x rational and f(x) = 0 for x irrational. It is not Riemann
integrable because J (∆) = 0 and J̄ (∆) = 1 for every partition ∆. On the other hand,
f is Lebesgue integrable and

∫
[0,1] f dm = 0.

Theorem 10.3. (Riemann-Lebesgue)

The Riemann integral ∫ b

a

f(x) dx

exists if and only if f is bounded and almost everywhere continuous.

• See the proof on the next page.

• The last condition means that the set

Ef = {x ∈ [a, b] : f is discontinuous at x}

has Lebesgue measure zero, i.e., m(Ef ) = 0. The set Ef may be complicated.

Example 10. A modified Dirichlet function f : [0, 1] → R is defined as follows: at
every irrational number x we set f(x) = 0 and at every rational number x = p/q, where
p/q is an irreducible fraction, we set f(x) = 1/q. This function is continuous at every
irrational number but discontinuous at every rational number. Thus Ef = Q∩ [0, 1] is a
countable and dense set. This function meets the conditions of the above theorem, thus
its Riemann integral exists. In fact,

∫ 1
0 f(x) dx = 0.

Figure 6: Modified Dirichlet function
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Proof. Riemann-Lebesgue Theorem 10.3

⇒ Suppose the Riemann integral exists.

If f was unbounded, then for each partition ∆ there would be a subinterval Ii ⊂ I
on which either Mi = ∞ or mi = −∞. Hence either J̄ (∆) = ∞ or J (∆) = −∞,
which is impossible by the Darboux definition of the Riemann integral.

Next for each subinterval I ′ ⊂ I define the oscillation of f on I ′ by

ωf (I
′) = sup

x∈I′
f(x)− inf

x∈I′
f(x).

The oscillation of f at a point x ∈ I is defined by

ωf (x) = lim
ε→0

ωf ([x− ε, x+ ε]).

Note: f is continuous at x if and only if ωf (x) = 0.

For each δ > 0 denote
Eδ = {x ∈ I : ωf (x) ≥ δ}.

The set of points where f is discontinuous is E = ∪δ>0Eδ.

If m(E) > 0, then there exists a δ0 > 0 such that m(Eδ0) > 0. Now consider an
arbitrary partition ∆ = {Ii} of I. If intIi ∩ Eδ0 ̸= ∅, then Mi − mi ≥ δ0. All
such subintervals Ii’s cover Eδ0 , hence their total length is ≥ m(Eδ0). This implies
J̄ (∆)− J (∆) ≥ δ0m(Eδ0) > 0.

Thus the upper sum J̄ (∆) and the lower sum J (∆) cannot get arbitrarily close to
each other, contradicting the Darboux definition of the Riemann integral.

⇐ Suppose f is bounded, |f | ≤M , and a.e. continuous.

We use the sequence of partitions ∆n from the proof of Theorem 10.2. Suppose
x ∈ [0, 1] is not an endpoint of the intervals In,i ∈ ∆n (i.e., x ̸= p/2q ∀p, q ∈ N),
and f is continuous at x (i.e. ωf (x) = 0). Then f̄(x) = f(x).

Therefore f̄ = f a.e., hence

lim
n→∞

J̄ (∆n) =

∫
[a,b]

f̄ dm =

∫
[a,b]

f dm = lim
n→∞

J (∆n),

which implies the existence of the Riemann integral.
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Example 11. The Dirichlet function is bounded, but discontinuous at every point.
Again we see that it is not Riemann integrable.

Example 12. The function f : [0, 1] → R defined by f(x) = 1/
√
x is Lebesgue in-

tegrable, but it is unbounded hence not Riemann integrable. However, an improper
Riemann integral ∫ 1

0
f(x) dx = lim

a→0+

∫ 1

a
f(x) dx

exists and is equal to the Lebesgue integral
∫
[0,1] f(x) dm

Example 13. The function f : [0,∞) → R defined by f(x) = (−1)n+1/n for n − 1 ≤
x < n, n = 1, 2, . . ., has a finite improper Riemann integral∫ ∞

0
f(x) dx = lim

A→0+

∫ A

0
f(x) dx =

∞∑
n=1

(−1)n+1

n
<∞.

But it is not Lebesgue integrable because∫
[0,∞]

|f(x)| dm =
∞∑
n=1

1

n
= ∞.

Improper Riemann integral vs Lebesgue integral.

The existence of an improper Riemann integral does not imply Lebesgue inte-
grability. More precisely, if f has a finite improper Riemann integral, then it is
Lebesgue integrable if and only if |f | has a finite improper Riemann integral. In
that case the Lebesgue integral is equal to the improper Riemann integral. (Note:
if f ≥ 0, then the existence of an improper Riemann integral is equivalent to
Lebesgue integrability.)

Exercise 44. Find a function f(x) on [0, 1] such that the improper Riemann integral
∫ 1

0
f(x) dx

exists (is finite), but f is not Lebesgue integrable.
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Lp spaces11

Definition 11.1. Let (X,M, µ) be a measure space. For each p ∈ (0,∞), Lp
µ(X)

denotes the set of functions f : X → C such that |f |p is integrable, i.e.

Lp
µ(X) = {f :

∫
X

|f |p dµ <∞}

• Note that |f(x)| ∈ [0,∞) for each x ∈ X, thus |f(x)|p is well defined for every
0 < p <∞, and |f |p is a non-negative function.

• For p = 1, this definition agrees with our earlier Definition 6.1 of L1
µ(X).

• The set Lp
µ(X) is actually a vector space with a norm, and we need certain tools to

introduce this norm.

Definition 11.2. A function φ : (a, b) → R, where −∞ ≤ a < b ≤ ∞ is said to
be convex if

φ(px+ qy) ≤ pφ(x) + qφ(y) (11.1)

for all a < x < y < b and p, q > 0, p+ q = 1.

• If the inequality in (11.1) is strict, we have a strictly convex function.

• Geometrically, this means that the secant line joining the points (x, φ(x)) and (y, φ(y))
lies above the graph of φ between x and y. A parabola y = x2 is a good example.

Lemma 11.3. A function f : (a, b) → R is convex if and only if for any a < s <
t < u < b

φ(t)− φ(s)

t− s
≤ φ(u)− φ(t)

u− t
.

Proof. Geometrically, this is obvious. Algebraically, one can use (11.1) and set

x = s, y = u, p =
u− t

u− s
, q =

t− s

u− s

Then t = px+ qy. The rest is straightforward calculation.

• If φ(x) is strictly convex, then the inequality in Lemma 11.3 is strict.
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Lemma 11.4. If φ is differentiable, then it is convex if and only if φ′ is mono-
tonically increasing, i.e. φ′(x) ≤ φ′(y) for all x < y.

Proof. This follows from the previous lemma.

• If the second derivative exists, then φ is convex if and only if φ′′(x) ≥ 0.

Theorem 11.5. If φ is convex on (a, b), then it is continuous on (a, b).

Proof. We prove that f is continuous at any point c ∈ (a, b). Choose a1 ∈ (a, c) and
b1 ∈ (c, b). Then by Lemma 11.3 we have for any ε > 0

φ(c)− φ(a1)

c− a1
≤ φ(c+ ε)− φ(c)

ε

which implies lim infx→c+ φ(x) ≥ φ(c). Similarly,

φ(c+ ε)− φ(c)

ε
≤ φ(b1)− φ(c+ ε)

b1 − c− ε
,

which implies lim infx→c+ φ(x) ≤ φ(c). Hence limx→c+ φ(x) = φ(c). The left hand

limit is treated similarly.

• This is not true on closed intervals [a, b].

Theorem 11.6. (Jensen’s inequality)

Let (X,M, µ) be a measure space and µ(X) = 1. Let f : X → (a, b) ⊂ R
be a Lebesgue integrable function, i.e., f ∈ L1

µ. Then for any convex function
φ : (a, b) → R we have

φ
(∫

X

f dµ
)
≤

∫
X

(φ ◦ f) dµ.

Note: the cases a = −∞ and b = ∞ are not excluded.

• See the proof on the next page.

• A measure µ on X such that µ(X) = 1 is often called probability measure.

An important remark: the integral
∫
X
(φ ◦ f) dµ here is understood in the “ex-

tended sense” (cf. Section 6). More precisely, the “negative” part of the integrand
belongs in L1

µ(X), i.e.,∫
X

(φ ◦ f)− dµ <∞, (see the proof below)
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but the positive part may not be in L1
µ(X), i.e., we can only claim that∫

X

(φ ◦ f)+ dµ ≤ ∞,

which possibly takes value ∞ (see an example below). Therefore the above integral∫
X

(φ ◦ f) dµ 6.3
=

∫
X

(φ ◦ f)+ dµ−
∫
X

(φ ◦ f)− dµ

is either finite, or equal to ∞ (but not −∞).

Example 14. Let X = (0, 1) and µ be the Lebesgue measure on X; note that µ(X) = 1.
Suppose f(x) = x and φ(x) = 1/x. Note that f ∈ L1

µ(X) and φ is convex on (0, 1). Now
(φ ◦ f)(x) = 1/x. The Riemann integral of this function∫ 1

0

1

x
dx = lnx |10 = ∞

is infinite (by elementary Calculus). Thus its Lebesgue integral is infinite, too (recall the
material in the end of Section 10).

Proof. Jensen’s inequality Theorem 11.6
First, note that

a = aµ(X) <

∫
X
f dµ < bµ(X) = b

(due to the result of Exercise 36(b) and the assumption µ(X) = 1), hence

t : =

∫
X
f dµ ∈ (a, b). (11.2)

Next, by Lemma 11.3 for any u ∈ (t, b)

β : = sup
s∈(a,t)

φ(t)− φ(s)

t− s
≤ φ(u)− φ(t)

u− t
<∞. (11.3)

Therefore, for any s ∈ (a, b) we have

φ(s) ≥ φ(t) + β(s− t)

(for s < t this follows from the definition of β in (11.3); for s > t this follows from
the middle inequality in (11.3), where u must be is replaced with s). Thus for any
x ∈ X

φ(f(x)) ≥ φ(t) + β(f(x)− t). (11.4)

Note in particular that

(φ ◦ f)− ≤ |φ(t) + β(f − t)| ≤ |φ(t)|+ |β|(|f |+ |t|),

85



hence ∫
X
(φ ◦ f)− dµ ≤ |φ(t)|+ |β|

(∫
X
|f | dµ+ |t|

)
<∞,

as we promised above.
Now we have two cases. First, if

∫
X(φ ◦ f)+ dµ = ∞, then

∫
X(φ ◦ f) dµ = ∞,

and Jensen’s inequality is trivial (a finite number ≤ infinity).
Second, if

∫
X(φ ◦ f)+ dµ < ∞, then φ ◦ f ∈ L1

µ(X). Now taking the integral of
(11.4) over X gives ∫

X

(
φ ◦ f − φ(t)− β(f − t)

)
dµ ≥ 0.

hence by the linearity (Theorem 6.7) we get∫
X
(φ ◦ f) dµ ≥ φ(t) + β

(∫
X
f dµ− t

)
= φ(t),

where the expression in the parentheses vanishes due to (11.2).

• If φ(x) is strictly convex, then Jensen’s inequality turns into an equality if and only
if f is constant a.e.

Example 15. Let φ(x) = ex. Then we get

e
∫
X f dµ ≤

∫
X
ef dµ.

Example 16. Let X = {1, 2, . . . , n} and µ({i}) = 1/n for every i = 1, . . . , n. Let
f(i) = ln ai for some a1, . . . , an > 0 and again φ(x) = ex. Then Jensen’s inequality
implies

(a1a2 · · · an)1/n ≤ a1 + a2 + · · ·+ an
n

(geometric mean is ≤ arithmetic mean). More general: if µ({i}) = pi for i = 1, . . . , n
and p1 + · · ·+ pn = 1, then

ap11 a
p2
2 · · · apnn ≤ p1a1 + p2a2 + · · ·+ pnan

(geometric weighted mean is ≤ arithmetic weighted mean).

Exercise 45. Prove that the supremum of any collection of convex functions on (a, b) is convex
on (a, b) (assume that the supremum is finite). Prove that a pointwise limit of a sequence of
convex functions is convex.

Exercise 46. Let φ be convex on (a, b) and ψ convex and nondecreasing on the range of φ.
Prove that ψ ◦ φ is convex on (a, b). For φ > 0, show that the convexity of logφ implies the
convexity of φ, but not vice versa.

86



Exercise 47. Assume that φ is a continuous real function on (a, b) such that

φ
(x+ y

2

)
≤ 1

2
φ(x) +

1

2
φ(y)

for all x, y ∈ (a, b). Prove that φ is convex. (The conclusion does not follow if continuity is
omitted from the hypotheses.)

Definition 11.7. If p, q > 1 and

1

p
+

1

q
= 1,

then we say that p and q are conjugate exponents.

• The most important case is p = q = 2.

• If p→ 1, then q → ∞; thus p = 1 and q = ∞ are considered as conjugate exponents.

Theorem 11.8. Let (X,M, µ) be a measure space and f, g : X → [0,∞] measur-
able functions. Let p and q be conjugate exponents.
Then we have Hölder inequality:∫

X

fg dµ ≤
[∫

X

fp dµ

]1/p[∫
X

gq dµ

]1/q
Equality holds here if and only if there exist α, β ≥ 0, not both equal to 0, such
that αf(x)p = βg(x)q a.e. (i.e., f(x)p and q(x)q are proportional to each other).

Proof. Denote

A =

[∫
X
fp dµ

]1/p
, B =

[∫
X
gq dµ

]1/q
If A = 0, then f = 0 a.e. (by Theorem 7.11a) and the case is trivial. Similarly, if
B = 0, then g = 0 a.e., and the case is trivial.

If A = ∞ and B > 0, then the Hölder inequality is trivial, as its right hand side is
∞. The same happens if B = ∞ and A > 0.

Thus we can assume that A ∈ (0,∞) and B ∈ (0,∞). Consider two functions:

F (x) = f(x)/A and G(x) = g(x)/B

(“normalized” versions of f and g). Note that∫
X
F p dµ =

∫
X
Gq dµ = 1.
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It is enough to prove ∫
X
FGdµ ≤ 1, (11.5)

and then complete the proof of the Hölder inequality as follows:∫
X
fg dµ = AB

∫
X
FGdµ ≤ AB =

[∫
X
fp dµ

]1/p[∫
X
gq dµ

]1/q
.

We are now proving (11.5). Note that F < ∞ and G < ∞ a.e., due to Theorem
5.8(f).

The following calculus lemma is the key step:

Lemma. If F,G ∈ [0,∞) are two nonnegative real numbers, then

FG ≤ 1
pF

p + 1
qG

q.

Proof of Lemma: If F = 0 or G = 0, the lemma is trivial. If F,G > 0, we can choose s, t ∈ R
such that F = es/p and G = et/q. Since φ(x) = ex is a convex function and 1

p + 1
q = 1, we

have
e

s
p+

t
q ≤ 1

pe
s + 1

q e
t.

In terms of F and G, the above inequality is exactly what Lemma claims.

Due to this lemma, we have for a.e. x ∈ X

F (x)G(x) ≤ 1
pF (x)

p + 1
qG(x)

q.

Integrating over X gives∫
X
FGdµ ≤ 1

p

∫
X
F p dµ+ 1

q

∫
X
Gq dµ = 1

p + 1
q = 1

proving (11.5). This completes the proof of the Hölder inequality.

We now turn to the characterization of equality. First, suppose that αf(x)p = βg(x)q

and, without loss of generality, β ̸= 0. Then g(x) = c1/qf(x)p/q, where c = α/β.
Now ∫

X
fg dµ = c1/q

∫
X
f
1+ p

q dµ = c1/q
∫
X
fp dµ

because 1
p + 1

q = 1. On the other hand,[∫
X
fp dµ

]1/p[∫
X
gq dµ

]1/q
=

[∫
X
fp dµ

]1/p[
c

∫
X
fp dµ

]1/q
= c1/q

∫
X
fp dµ

again because 1
p + 1

q = 1. Hence the Hölder inequality turns into an equality.

Now suppose that the Hölder inequality turns into an equality. Then it follows from
our proof of the Hölder inequality that we must have

F (x)G(x) = 1
pF (x)

p + 1
qG(x)

q a.e.

Now we look back into the proof of our lemma. Since φ(x) = ex is a strictly convex
function, the equality in the lemma is only possible when s = t, i.e., es = et, i.e.,
F p = Gq. Thus we have

F (x)p = G(x)q a.e.,

which implies that f(x)p and q(x)q are proportional to each other.
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Corollary 11.9. If p = q = 2, the Hölder inequality is the Schwarz inequality:[∫
X

fg dµ

]2
≤

[∫
X

f 2 dµ

]
·
[∫

X

g2 dµ

]
.

Equality holds here if and only if there exist α, β ≥ 0, not both equal to 0, such
that αf(x) = βg(x) a.e. (i.e., f(x) and q(x) are proportional to each other).

• If we replace integration with summation we obtain the familiar Cauchy-Schwarz
inequality from linear algebra:

(f · g)2 =
[∑

figi

]2
≤

[∑
f 2
i

]
·
[∑

g2i

]
= ∥f∥2∥g∥2.

where f = (f1, f2, . . .), g = (g1, g2, . . .) are vectors and f · g is their inner product.

Theorem 11.10. Let (X,M, µ) be a measure space and f, g : X → [0,∞] measur-
able functions. Let p ≥ 1. Then we have Minkowski inequality:[∫

X

(f + g)p dµ

]1/p
≤

[∫
X

f p dµ

]1/p
+

[∫
X

gp dµ

]1/p
.

• If p = 1, this is actually an equality.

• If p > 1, the equality holds if and only if there exist α, β ≥ 0, not both equal to 0,
such that αf(x) = βg(x) a.e. (i.e., f(x) and q(x) are proportional to each other).

Proof. If p = 1, we just use the linearity of Lebesgue integral (Theorem 5.11).

Assume p > 1. We can also assume that∫
X
(f + g)p dµ > 0,

∫
X
fp dµ <∞,

∫
X
qp dµ <∞ (11.6)

as otherwise the Minkowski inequality is trivial.

Note that
(f + q)p = f(f + g)p−1 + g(f + g)p−1.

Due to the Hölder inequality∫
X
f(f + g)p−1 dµ ≤

[∫
X
fp dµ

]1/p[∫
X
(f + g)(p−1)q dµ

]1/q
.

and ∫
X
g(f + g)p−1 dµ ≤

[∫
X
gp dµ

]1/p[∫
X
(f + g)(p−1)q dµ

]1/q
.
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Also note that

1

p
+

1

q
= 1 =⇒ p+ q = pq =⇒ (p− 1)q = p

Adding the above two integral inequalities gives∫
X
(f + g)p dµ ≤

([∫
X
fp dµ

]1/p
+

[∫
X
gp dµ

]1/p)[∫
X
(f + g)p dµ

]1/q
.

Now if the last factor is finite, we can just divide by it and get[∫
X
(f + g)p dµ

]1−1/q

≤
[∫

X
fp dµ

]1/p
+

[∫
X
gp dµ

]1/p
which is exactly the desired Minkowski inequality because 1− 1

q = 1
p .

So all we need is to check that ∫
X
(f + g)p dµ <∞. (11.7)

The following simple lemma will do the job:

Lemma. If f, g ∈ [0,∞) are two nonnegative real numbers and p > 1, then(f + g

2

)p

≤ fp + gp

2

Proof of Lemma: If f = 0 or g = 0, the lemma is trivial. If f, g > 0, the lemma follows from

the convexity of the function φ(x) = xp on the interval (0,∞).

Now note that f(x) < ∞ and g(x) < ∞ a.e., due to Theorem 5.8(f). Thus due to
the above lemma, we have for a.e. x ∈ X(f(x) + g(x)

2

)p
≤ f(x)p + g(x)p

2

Integrating over X and using our assumptions (11.6) proves (11.7).

We now turn to the characterization of equality. First, suppose that αf(x) = βg(x)
and, without loss of generality, β ̸= 0. Then g(x) = cf(x), where c = α/β, and by
direct calculation we can verify that the Minkowski inequality turns into an equality.

Now suppose that the Minkowski inequality turns into an equality. The main step of
the above proof of the Minkowski inequality is application of the Hölder inequality
twice: once to the functions f and (f + g)p−1 and then once again to the functions
g and (f + g)p−1. Then the equality requires

fp be proportional to (f + g)(p−1)q

and
gp be proportional to (f + g)(p−1)q

We see clearly that f must be proportional to g, as claimed.
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• If we replace integration in the Minkowski inequality with summation, we obtain the
familiar triangle inequality for the p-norm of vectors in linear algebra:

∥f + g∥p =
[∑

(fi + gi)
p

]1/p
≤

[∑
fp
i

]1/p
+

[∑
gpi

]1/p
= ∥f∥p + ∥g∥p,

where f = (f1, f2, . . .) and g = (g1, g2, . . .) are vectors.

Exercise 48. Suppose µ(X) = 1 and suppose f and g are two positive measurable functions on
X such that fg ≥ 1. Prove that

∫
X
f dµ ·

∫
X
g dµ ≥ 1.

Exercise 49. Suppose µ(X) = 1 and h : X → [0,∞] is measurable. Denote A =
∫
X
h dµ. Prove

that √
1 +A2 ≤

∫
X

√
1 + h2 dµ ≤ 1 +A.

Exercise 50. [Bonus] If m is Lebesgue measure on [0, 1] and if h is a continuous function on [0, 1]
such that h = f ′, then the inequalities in the previous exercise have a geometric interpretation.
From this, conjecture (for general X) under what conditions on h equality can hold in either of
the above inequalities, and prove your conjecture.

Definition 11.11. For a measurable function f : X → C and p > 0 we define the
“p-norm” of f by

∥f∥p =
[∫

X

|f |p dµ
]1/p

.

• Definition 11.1 can be now stated as Lp
µ(X) =

{
f : ∥f∥p <∞

}
• If µ is the Lebesgue measure on Rk, we will simply write Lp(Rk).

Definition 11.12. A special case: N and µ is a counting measure. Then functions
f : N → C can be regarded as complex-valued sequences ξ = {ξn}. Then

∥ξ∥p =
[ ∞∑
n=1

|ξn|p
]1/p

and
ℓp =

{
ξ : ∥ξ∥p <∞

}
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Theorem 11.13. If 1 ≤ p <∞, then Lp
µ(X) is a complex vector space.

Proof. Given f, g ∈ Lp
µ(X) and α, β ∈ C we have, by the Minkowski inequality

∥αf + βg∥p =
[∫

X
|αf + βg|p dµ

]1/p
≤

[∫
X

(
|αf |+ |βg|

)p
dµ

]1/p
(By triangle inequality for complex numbers)

≤
[∫

X
|αf |p dµ

]1/p
+

[∫
X
|βg|p dµ

]1/p
(By Minkowski inequality)

= |α| ∥f∥p + |β| ∥g∥p <∞ (By the linearity of the Lebesgue integral)

Thus Lp
µ(X) is closed under additions and multiplications by scalars.

Next we investigate the case p = ∞.

Definition 11.14. Let f : X → [0,∞] be measurable. A number s ≥ 0 is an
essential upper bound for f if

µ{x : f(x) > s} = µ(f−1(s,∞]) = 0

• The set of all essential upper bounds is either ∅ or a closed infinite interval [S,∞).

Definition 11.15. The smallest essential upper bound for a given function f is
called the essential supremum and denoted by ess-sup f . If f has no essential
upper bounds, we set ess-sup f = ∞.

Definition 11.16. The infinity-norm of a function f : X → C is defined by

∥f∥∞ = ess-sup |f |.

We also denote by
L∞
µ (X) =

{
f : ∥f∥∞ <∞

}
the space of essentially bounded functions.

• A special case: ℓ∞ denotes the space of bounded sequences.
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Example 17. The Dirichlet function (Example 6) takes two values, 0 and 1. Its essential
supremum is zero, because the value 1 is taken on a null set.

Exercise 51. Let f, g : X → [0,∞]. Show that ess-sup |f + g| ≤ ess-sup |f |+ ess-sup |g|.

Theorem 11.17. L∞
µ is a complex vector space.

Proof. ∥αf + βg∥∞ = ess-sup |αf + βg|
≤ ess-sup |αf |+ ess-sup |βg|
= |α| ess-sup |f |+ |β| ess-sup |g|
= |α| ∥f∥∞ + |β| ∥g∥∞

Theorem 11.18. (Hölder inequality for norms) Let p and q be complex conjugate
exponents, including the limiting cases p = 1, q = ∞ and p = ∞, q = 1. Then for
every f ∈ Lp

µ(X) and g ∈ Lq
µ(X) we have fg ∈ L1

µ(X) and

∥fg∥1 ≤ ∥f∥p ∥g∥q

Proof. If 1 < p, q <∞, we can just apply Hölder inequality to |f | and |g|.
Let p = ∞ and q = 1. Now

|f(x)g(x)| ≤ ∥f∥∞|g(x)| for a.e. x ∈ X

hence
∥fg∥1 =

∫
X
|fg| dµ ≤ ∥f∥∞

∫
X
|g| dµ = ∥f∥∞∥g∥1.

The case p = 1 and q = ∞ is handled similarly.

Exercise 52. When does one get equality in ∥fg∥1 ≤ ∥f∥∞ ∥g∥1?

Proposition 11.19. Let 1 ≤ p ≤ ∞. Then for every f, g ∈ Lp
µ(X) we have

∥f + q∥p ≤ ∥f∥p + ∥g∥p

and ∥cf∥p = |c| ∥f∥p.

Proof. See the proofs of Theorem 11.13 and Theorem 11.17.

• Thus, ∥ · ∥p has two properties of a norm. But it is not a norm, see the next example.
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Example 18. Let X = R and µ be the Lebesgue measure. The Dirichlet function χQ
(Example 6) satisfies ∥χQ∥p = 0 for every p ∈ [1,∞].

• ∥ · ∥p is not a norm, as there may be nonzero functions 0 ̸= f ∈ Lp
µ(X) with ∥f∥p = 0.

Lemma 11.20. Let f : X → C be measurable. Then

∃p ∈ [1,∞] : ∥f∥p = 0 ⇐⇒ f = 0 a.e. ⇐⇒ ∀p ∈ [1,∞] : ∥f∥p = 0.

Proof. Direct inspection. For p <∞ apply Theorem 7.11(a).

Definition 11.21. Let V be a complex vector space andW ⊂ V a linear subspace.
For two vectors v1, v2 ∈ V we say that v1 ∼ v2 iff v1−v2 ∈ W . This is an equivalence
relation. Denote by

[v] = {v1 ∈ V : v − v1 ∈ W}

the equivalence class containing v and

V/W = {[v] : v ∈ V }

the set of equivalence classes. Then V/W is a vector space with

[v] + [w] = [v + w], c[v] = [cv].

We call V/W the quotient space.

Lemma 11.22. Let (X,M, µ) be a measure space and

Nµ = {f : X → C measurable, f = 0 a.e.}

Then Nµ is a vector space.

Proof. Let f, g ∈ Nµ and α ∈ C. Then

{x : f + g ̸= 0} ⊂ {x : f ̸= 0} ∪ {x : g ̸= 0}

thus µ({x : f + g ̸= 0}) = 0, and so f + g ∈ Nµ. We also have

{x : αf ̸= 0} ⊂ {x : f ̸= 0}

hence αf ∈ Nµ.
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Definition 11.23. Let (X,M, µ) be a measure space and

Nµ = {f : X → C measurable, f = 0 a.e.}

For every 1 ≤ p ≤ ∞ we define the reduced Lp
µ(X) space by

Lp
µ = Lp

µ/Nµ.

• Lp
µ(X) is obtained from Lp

µ(X) by identifying functions that coincide a.e.

Corollary 11.24. Let 1 ≤ p ≤ ∞. Then Lp
µ(X) is a vector space with norm ∥ ·∥p.

Exercise 53. Suppose f : X → C is measurable and ∥f∥∞ > 0. Define

φ(p) =

∫
X

|f |p dµ = ∥f∥pp (0 < p <∞)

and consider the set E = {p : φ(p) <∞}. Each of the following questions is graded as a separate
exercise. Question (c) and (e) are bonus problems.

(a) Let r < p < s and r, s ∈ E. Prove that p ∈ E. Thus E is a connected set.

(b) Prove that logφ is convex in the interior of E and that φ is continuous on E.

(c) Is E necessarily open? Closed? Can E consist of a single point? Can E be any connected
subset of (0,∞)?

(d) If r < p < s, prove that ∥f∥p ≤ max
(
∥f∥r, ∥f∥s

)
. Show that this implies the inclusion

Lr
µ(X) ∩ Ls

µ(X) ⊂ Lp
µ(X).

(e) Assume that ∥f∥r <∞ for some r <∞ and prove that ∥f∥p → ∥f∥∞ as p→ ∞.

Distance in a normed vector space.

Recall if V is a vector space with norm ∥ · ∥, the distance (metric) on V is defined

d(u, v) = ∥u− v∥.

Definition 11.25. The space Lp
µ(X) with norm ∥ · ∥p becomes a metric space.

We say that a sequence of functions fn converges to f in the Lp norm (metric) if
∥fn − f∥p → 0 as n→ ∞.
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Proposition 11.26. Suppose f, f1, f2, . . . ∈ Lp
µ(X) and fn → f in the Lp norm.

Then fn → f in measure.

Types of convergence.

We have seen uniform convergence, pointwise convergence, convergence in measure,
and now – the convergence in the Lp norm (metric). For p < ∞, it is stronger
than the convergence in measure, but generally a little weaker than pointwise
convergence. For p = ∞, the convergence in the L∞ norm is equivalent to the
uniform convergence a.e.

Example 19. Recall the ‘Amazing shrinking sliding rectangles’ functions in Example 8.
This sequence converges to the zero function f ≡ 0 in the Lp norm for every p ∈ (0,∞),
but it does not converge at any point x. Note also that this sequence does not converge
in the L∞ norm.

Definition 11.27. A metric is complete if every Cauchy sequence converges to
a limit. A vector space V with norm ∥ · ∥ that induces a complete metric on it is
called Banach space.

• Reminder: a Cauchy sequence {an} has the following property:

∀ε > 0 ∃N ≥ 1 such that ∀m,n ≥ N we have |an − am| < ε

Theorem 11.28. Let 1 ≤ p ≤ ∞. Then Lp
µ(X) is a Banach space.

Proof. We consider separately two cases:

Case I: 1 ≤ p <∞.

Let {fn} be a Cauchy sequence in Lp
µ(X). We need to find f ∈ Lp

µ(X) such that
fn → f in the Lp norm. Example 19 warns us that the functions fn need not converge
pointwise, hence we cannot construct f as a pointwise limit of fn’s. Instead, we will
find a subsequence {fnk

} that converges pointwise a.e., and then define f(x) to be
the pointwise limit of fnk

(x).

Since {fn(x)} is a Cauchy sequence, for any k ≥ 1 there exists nk ≥ 1 such that for
all n′, n′′ ≥ nk we have ∥fn′ −fn′′∥p < 2−k. We can assume that n1 ≤ n2 ≤ · · · . The
subsequence fnk

(x) has the following property: ∥fnk+1
− fnk

∥p < 2−k.
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Define functions gk =
∑k

i=1 |fni+1 − fni |. Note that 0 ≤ g1 ≤ g2 ≤ · · · , hence there
is the limit function g(x) defined by

g = lim
k→∞

gk =

∞∑
i=1

|fni+1 − fni |.

By Fatou’s Lemma∫
X
gp dµ =

∫
X
lim inf gpk dµ ≤ lim inf

∫
X
gpk dµ.

Now ∫
X
gpk dµ = ∥gk∥pp =

∥∥∥∥ k∑
i=1

|fni+1 − fni |
∥∥∥∥p
p

≤
[ k∑
i=1

∥fni+1 − fni∥p
]p

(By Proposition 11.19)

≤
[ k∑
i=1

2−i

]p
≤ 1 (By our choice of ni’s)

Therefore
∫
X gp dµ ≤ 1. According to Theorem 5.8(f), g(x) <∞ a.e., thus the series∑∞

i=1(fni+1 − fni) converges absolutely a.e. We define the function f(x) by

f(x) = fn1(x) +

∞∑
i=1

(fni+1(x) − fni(x))

wherever the series converges (which happens a.e.) and set f(x) = 0 elsewhere.
Thus for a.e. x ∈ X

f(x) = lim
k→∞

[
fn1(x) +

k−1∑
i=1

(fni+1(x) − fni(x))

]
= lim

k→∞
fnk

(x).

In particular, f(x) is measurable.

Next we will show that fn → f in the Lp-metric and, in particular, f ∈ Lp
µ(X).

Let ε > 0. Since our sequence {fn} is Cauchy, there exists Nε ≥ 1 such that
∀m,n ≥ Nε we have ∥fn − fm∥p < ε. By Fatou’s Lemma for each m ≥ Nε∫

X
|f − fm|p dµ =

∫
X
lim inf
k→∞

|fnk
− fm|p dµ ≤ lim inf

k→∞

∫
X
|fnk

− fm|p dµ ≤ εp.

In particular, f − fm ∈ Lp
µ(X) and hence f ∈ Lp

µ(X), because Lp
µ(X) is a vector

space. We also have ∥f − fm∥p ≤ ε for all m ≥ Nε. This means fn → f in the Lp

metric.
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Case II: p = ∞.

Let {fn(x)} be a Cauchy sequence in L∞
µ (X). Note that ∥fn∥∞ is a bounded se-

quence, i.e., ∃M <∞ such that ∥fn∥∞ ≤M for all n ≥ 1. Define sets

Ak = {x : |fk(x)| > ∥fk∥∞}

and
Bm,n = {x : |fn(x)− fm(x)| > ∥fn − fm∥∞}

All of these are null sets, thus their union is a null set:

E =
(
∪∞
k=1Ak

)
∪
(
∪∞
m,n=1Bm,n

)
, µ(E) = 0

For each x ∈ X \E we have |fn(x)− fm(x)| < ∥fn − fm∥∞, thus fn(x) is a Cauchy

sequence (of complex numbers), hence it has a limit.

Define f(x) = limn→∞ fn(x) onX\E and f(x) = 0 on E. Next, we have |fn(x)| ≤M

for all x ∈ X \ E and all n ≥ 1, so |f(x)| ≤M for all x ∈ X \ E. Thus f ∈ L∞
µ (X).

Finally, fn → f converges is uniformly, thus ∥fn−f∥∞ = ess-sup (fn−f) → 0 (n → ∞)

Corollary 11.29. Let 1 ≤ p < ∞. If fn → f in the Lp
µ(X) metric, then there is

a subsequence {fnk
} such that fnk

→ f a.e.

Proof. Since fn → f in the Lp
µ(X) metric, it is a Cauchy sequence, hence the proof

of Case I above applies.

Exercise 54. Let µ(X) = 1. Each of the following questions is graded as a separate exercise.

(a) Prove that ∥f∥r ≤ ∥f∥s if 0 < r < s ≤ ∞.

(b) Under what condition does it happen that 0 < r < s ≤ ∞ and ∥f∥r = ∥f∥s <∞?

(c) Prove that Lr
µ ⊃ Ls

µ if 0 < r < s. If X = [0, 1] and m is the Lebesgue measure, show that
Lr
m ̸= Ls

m.

Exercise 55. [Bonus] For some measures, the relation r < s implies Lr(µ) ⊂ Ls(µ); for others,
the inclusion is reversed; and there are some for which Lr(µ) does not contain Ls(µ) if r ̸= s.
Give examples of these situations, and find conditions on µ under which these situations will
occur.

Exercise 56. (a) Show that
∫ π

2

0

√
x sinx dx < π

2
√
2
;

(b) Show that
[∫ 1

0
x

1
2 (1− x)−

1
3 dx

]3 ≤ 8
5 .
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Next we approximate Lp
µ(X) by simple functions and continuous functions.

Definition 11.30. Simple functions with a finite-measure support are de-
fined as follows:

S =
{
s : X → C simple, measurable, µ(s ̸= 0) <∞

}
.

Lemma 11.31. Let s =
∑n

i=1 αiχAi
be a simple function. We can assume that

αi ̸= 0 for all 1 ≤ i ≤ n. Let p <∞. Then we have

s ∈ Lp
µ(X) ⇐⇒ s ∈ S

Proof. Note that
∫
X |f |p dµ =

∑n
i=1 |αi|pµ(Ai). Then

∫
X |f |p dµ < ∞ if and only if

µ(Ai) <∞ for every i = 1, . . . , n, which means exactly that s ∈ S.

Theorem 11.32. S is dense in Lp
µ(X) for every 1 ≤ p <∞.

Proof.

First, let f : X → [0,∞). Then by Theorem 4.22 there exist simple functions
sn : X → R such that

0 ≤ s1 ≤ s2 ≤ · · · ≤ f

and sn(x) → f(x) as n → ∞ for every x ∈ X. Since f ∈ Lp
µ(X), we also have

sn ∈ Lp
µ(X), hence sn ∈ S by the above lemma. We also have |f − sn| → 0 as

n→ ∞ and |f − sn|p ≤ |f |p ∈ L1
µ(X) for all n ≥ 1. Thus by Lebesgue’s Dominated

Convergence theorem
∫
X |f − sn|p dµ→ 0, hence ∥f − sn∥p → 0.

Second, let f : X → R. Then we approximate f+ and f−, separately, by simple
functions sn ∈ S, as above.

Third, let f : X → C. Then we approximate Re f and Im f , separately, by simple

functions sn ∈ S, as above.

• This is not true for p = ∞ (for example, let X = R and f(x) ≡ 1).

• Recall Cc(R) denotes the space of cont. functions f : R → C with compact support.
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Theorem 11.33. Cc(R) is dense in Lp
m(R) for every 1 ≤ p <∞.

Proof. Due to Theorem 11.32 it is enough to show that for any simple function s ∈ S
and any ε > 0 there exists a continuous function g ∈ Cc(R) such that ∥s− g∥p < ε.
By Lusin’s Theorem 9.4(b) there exists g ∈ Cc(R) such that

m
{
x : s(x) ̸= g(x)

}
< ε

and
sup |g(x)| ≤ sup |s(x)| =: smax.

Therefore

∥s− g∥pp =
∫
X
|s− g|p dµ =

∫
{x : s(x) ̸=g(x)}

|s− g|p dµ < [2smax]
pε.

Since ε > 0 is arbitrary, the theorem is proved.

• This is not true for p = ∞ (for example, let f(x) ≡ 1).

• We can say that the Lp
m(R) space, for 1 < p <∞, is the completion (in the p-metric)

of the space Cc(R) of continuous functions with compact support.

• The previous statement is not true for p = ∞.

• If we restrict our domain to a finite interval [a, b], then much simpler functions –
polynomials – can be used to approximate integrable functions. The set of polyno-
mials on [a, b] is dense in Lp

m([a, b]) for any 1 ≤ p < ∞. Indeed, the above theorem
implies that the space of continuous functions C([a, b]) is dense in Lp

m([a, b]), and
then Weierstrass approximation theorem ensures that polynomials are dense in
C([a, b]). More precisely, the Weierstrass theorem states that every continuous func-
tion on [a, b] can be uniformly approximated as closely as desired by a polynomial
function. This last theorem is not a part of our course, though.

• Recall that a step function φ : R → C is defined by φ =
∑n

i=1 αiχIi for some
αi ∈ C and disjoint finite intervals Ii ⊂ R.

Theorem 11.34. Step functions f : R → C are dense in Lp
m(R).

Proof. Due to Theorem 11.33 it is enough to show that for any continuous function
f ∈ Cc(R) with compact support and any ε > 0 there exists a step function φ such
that ∥f −φ∥p < ε. Let [−A,A] ⊂ R be a large finite interval containing the support
of f , i.e., f(x) = 0 for |x| > A. Since f is continuous on the compact interval
[−A,A], it is uniformly continuous, hence for any ε > 0 there exists δ > 0 such that

|x′ − x′′| < δ ⇐⇒ |f(x′)− f(x′′)| < ε.

Let ∆ = {Ii}ni=1 be a finite partition of [−A,A] into small intervals of length ≤
δ and let xi ∈ Ii be arbitrary points. We define the step function by φ(x) =
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∑n
i=1 f(xi)χIi(x). Then |f(x)− φ(x)| ≤ ε for all x ∈ [−A,A], hence

∥f − φ∥pp =
∫
X
|f − φ|p dµ ≤ 2Aεp.

Since ε > 0 is arbitrary, the theorem is proved.

• We can say that the Lp
m(R) space, for 1 < p <∞, is the completion (in the p-metric)

of the space of step functions.

• The previous statement is not true for p = ∞.

• The above proof shows ∥f − φ∥∞ ≤ ε (i.e. cont. functions f ∈ Cc(R) with compact
support can be approximated arbitrarily well by step functions in the L∞ metric).

Next we describe the completion of the space Cc(R) of continuous functions with
compact support in the L∞ metric.

Definition 11.35. A function f : R → C is said to vanish at infinity if f(x) → 0
as |x| → ∞. The space of continuous functions vanishing at infinity is denoted by
C0(R).

• We have Cc(R) ⊂ C0(R), but not vice versa.

Theorem 11.36. The completion of Cc(R) in the L∞-metric is C0(R)
(modulo the identification of equivalent functions).

Proof. Let f1, f2 . . . ∈ Cc(R) be a Cauchy sequence (in the L∞ norm).

Due to Theorem 11.28 it converges to a limit function, fn → f ∈ L∞. We will show

(i) f ∈ C0(R);
(ii) every function f ∈ C0(R) is a limit of a sequence of functions fn ∈ Cc(R).

Proof of (i): For any continuous function g : R → C we have

sup |g| = ess-sup |g|.

Therefore
sup |fn − fm| = ess-sup |fn − fm| = ∥fn − fm∥∞.

Thus {fn} is a Cauchy sequence with respect to the usual sup norm on R. Therefore
fn → f uniformly everywhere on R (not just a.e.). A uniform limit of continuous
functions is a continuous function, hence f ∈ C(R). Now for any ε > 0 there exist
n ≥ 1 such that sup |fn− f | < ε and A > 0 such that fn(x) = 0 for all |x| > A. This
implies |f(x)| < ε for all |x| > A. Thus f ∈ C0(R).
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Proof of (ii): For any function f ∈ C0(R) and n ≥ 1 define fn as follows:

fn(x) =


f(x) if x ∈ [−n, n]
0 if |x| ≥ n+ 1

f(n) if x ∈ (n, n+ 1)

− f(n) if x ∈ (−n− 1,−n)

In other words, fn(x) agrees with f(x) on the interval [−n, n], is zero beyond the
slightly larger interval [−n− 1, n+ 1], and is extended linearly and continuously to
the two small intervals [n, n+ 1] and [−n− 1,−n]. See Figure 7. Also note that

sup
[n,n+1]

|fn(x)| ≤ |f(n)| and sup
[−n−1,−n]

|fn(x)| ≤ |f(−n)|.

Therefore
sup |fn − f | ≤ 2 sup

|x|≥n
|f(x)|.

Since f ∈ C0(R), we have sup
|x|≥n

|f(x)| → 0 as n→ ∞, thus fn → f in the L∞ norm.

f f

n n+1-n-n-1

fn=f fn=f

f f

fnfn

Figure 7: The original function f ∈ C0 (green, top panel) and the approximating
function fn ∈ Cc (blue, bottom panel).

Corollary 11.37. C0(R) with the L∞ norm is a Banach space.
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Exercise 57. [Bonus] Suppose 1 < p <∞ and f ∈ Lp
m((0,∞)) relative to the Lebesgue measure.

Define

F (x) =
1

x

∫ x

0

f(t) dt (0 < x <∞).

Prove Hardy’s inequality

∥F∥p ≤ p

p− 1
∥f∥p

which shows that the mapping f → F carries Lp
m((0,∞)) into Lp

m((0,∞)).

[Hint: assume first that f ≥ 0 and f ∈ Cc((0,∞)), i.e. the support of f is a finite closed interval
[a, b] ⊂ (0,∞). Then use integration by parts:∫ A

ε

F p(x) dx = −p
∫ A

ε

F p−1xF ′(x) dx

where ε < a and A > b. Note that xF ′ = f − F , and apply Hölder inequality to
∫
F p−1f dx.]
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Complex measures12
The following simple fact will serve as a motivation for this section:

Lemma 12.1. Let µ1 and µ2 be measures on (X,M), and c > 0

(a) We can define the constant positve multiple of a measure ν = cµ1 by

ν(E) = c · µ1(E) ∀ E ∈ M

(b) We can define the sum of two measures µ = µ1 + µ2 by

µ(E) = µ1(E) + µ2(E) ∀ E ∈ M

Proof. (a) By direct inspection (recall a remark made right before Theorem 3.18)

(b) Clearly, µ(A) ≥ 0 is a non-negative function on M.

For any E = ⊎∞
n=1En:

µ(E) = µ1(E) + µ2(E) =
∞∑
n=1

µ1(En) +
∞∑
n=1

µ2(En)

=
∞∑
n=1

[µ1(En) + µ2(En)] =
∞∑
n=1

µ(En),

Thus, µ is a σ-additive function, which makes it a measure.

For part (b) above, the essential step for the proof was the rearranging of an
infinite sum of non-negative numbers. We remember from Calculus that an infinite
series of non-negative numbers either converges or diverges to infinity, and its sum
is independent of the order in which its terms are added. This principe applies to
more than one series due to Corollary 5.14.

• However, this does not hold for infinite series with real or complex values (Example 26)

Measures make a vector space?.

We see that we can add measures and multiply them by positive constants (scalars).
Thus the collection of measures on (X,M) is ‘almost’ a vector space, except we
cannot subtract measures or multiply them by negative scalars (at least not yet...).
Next we will extend the notion of measure and define complex measures that will
make a vector space.

Another motivation for complex measures.

Recall that given a measure µ on (X,M) and a measurable function f ≥ 0 on X
we can define a measure ν by ν(E) =

∫
E
f dµ for all E ∈ M. (We write dν = f dµ

and call f the density of ν) But what if f takes negative values, or even complex
values? Would such a definition of ν give something like ‘complex measure’?
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Definition 12.2. A function λ : M → C is a complex measure if it is
σ-additive.

i.e. for any countable collection of pairwise disjoint measurable sets {Ei}∞i=1

λ
(
⊎∞

i=1Ei

)
=

∞∑
i=1

λ(Ei).

• The measures defined in earlier sections (denoted µ) are called positive measures.

• Observe not every positive measure is a complex measure. This is because positive
measures can take infinite values and complex measures cannot.

• Observe that the convergence of the series in Definition 12.2 is now part of the
requirement (unlike positive measures, where the corresponding series could either
converge or diverge to infinity).

Reminder: ◦ A complex series
∑∞

n=1 an converges absolutely if
∑∞

n=1 |an| <∞
◦ A series is absolutely convergent if and only if its sum is finite and
does not change after a rearrangement of its terms.

Lemma 12.3. The series
∑∞

i=1 λ(Ei) in Definition 12.2 must converge absolutely.

Proof. Indeed, the union of the sets Ei is not changed if the subscripts are permuted,

thus every rearrangement of the above series must converge to the same value.

Definition 12.4. A complex measure λ on (X,M) is dominated by a positive
measure µ if |λ(E)| ≤ µ(E) for all E ∈ M.

• Every complex measure has a dominating measure.

The smallest dominating measure can be constructed as follows:

Definition 12.5. Let λ be a complex measure on (X,M). Define |λ| on M by

|λ|(E) = sup
∞∑
n=1

|λ(En)|

where the supremum is taken over all measurable partitions E = ⊎∞
n=1En

Then |λ| is called the total variation of λ.

• The total variation |λ| actually is a positive measure (see the next theorem).
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• If λ is a positive measure, then of course |λ| = λ

Theorem 12.6. Let λ be a complex measure on (X,M).

(a) The total variation |λ| is a positive measure on (X,M) and dominates λ

i.e. |λ(E)| ≤ |λ|(E) ∀E ∈ M

(b) If µ is a positive measure on (X,M) dominating λ: |λ|(E) ≤ µ(E) ∀E ∈ M

Proof. Note: (a) and (b) imply |λ(E)| ≤ |λ|(E) ≤ µ(E) ∀E ∈ M

(a) Let E = ⊎∞
n=1En. First we show that

|λ|(E) ≥
∞∑
n=1

|λ|(En). (12.1)

Let ε > 0. We can find a partition En = ⊎∞
m=1Enm of En such that

|λ|(En) ≤
ε

2n
+

∞∑
m=1

|λ(Enm)|

Adding these inequalities up gives
∞∑
n=1

|λ|(En) ≤ ε+

∞∑
m,n=1

|λ(Enm)| ≤ ε+ |λ|(E)

(because E = ⊎∞
m,n=1Enm is a countable partition of E). Since ε > 0 is arbitrary,

we get (12.1). Now we prove that

|λ|(E) ≤
∞∑
n=1

|λ|(En). (12.2)

For any ε > 0 we can find a partition E = ⊎∞
m=1Am such that

|λ|(E) ≤ ε+
∞∑

m=1

|λ(Am)|

Denote Enm = En∩Am. Then λ(Am) =
∑∞

n=1 λ(Enm) and by the triangle inequality

|λ|(E) ≤ ε+

∞∑
m=1

∞∑
n=1

|λ(Enm)| = ε+

∞∑
n=1

∞∑
m=1

|λ(Enm)| ≤ ε+

∞∑
n=1

|λ|(En)

(because En = ⊎∞
m=1Enm is a partition of En). Since ε > 0 is arbitrary, we get

(12.2). Now (12.1) and (12.2) together imply that |λ| is a σ-additive. Thus Part
(a).

(b) We have

|λ|(E) = sup
∞∑
n=1

|λ(En)| ≤ sup
∞∑
n=1

µ(En) = µ(E)

the supremum is taken over all partitions of E ∈ M into measurable subsets En
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Our next goal is to show that the total variation |λ| is not only a positive mea-
sure, but a finite positive measure (i.e. |λ|(X) <∞).

First we need a technical lemma about complex numbers:

Lemma 12.7. If z1, . . . , zN ∈ C, then there exists S ⊂ {1, . . . , N} such that:∣∣∣∣∑
k∈S

zk

∣∣∣∣ ≥ 1

π

N∑
k=1

|zk|.

Proof. We use polar representation for complex numbers: zk = |zk|eiαk

For each θ ∈ [−π, π], let S(θ) denote the set of all k ∈ {1, . . . , N} for which
cos(αk − θ) > 0 (this condition means, geometrically, that the point zk lies in the
half-plane determined by the normal direction θ). Then∣∣∣∣ ∑

k∈S(θ)

zk

∣∣∣∣ = ∣∣∣∣ ∑
k∈S(θ)

zke
−iθ

∣∣∣∣ ≥ Re
∑

k∈S(θ)

zke
−iθ

= Re
∑

k∈S(θ)

|zk|ei(αk−θ)

=
∑

k∈S(θ)

|zk| cos(αk − θ)

=

N∑
k=1

|zk| cos+(αk − θ) : = g(θ)

where we adopt notation cos+ γ : = max{0, cos γ}. The last line defines g(θ).

Now g(θ) is a function on [−π, π], and it is easy to see that g(θ) is continuous.
Thus it takes a maximum at some point θ0. That maximum is at least as large as
the average of g(θ) over [−π, π]. Thus we have∣∣∣∣ ∑
k∈S(θ0)

zk

∣∣∣∣ ≥ g(θ0) ≥
1

2π

∫ π

−π
g(θ) dθ =

N∑
k=1

|zk|
1

2π

∫ π

−π
cos+(αk − θ) dθ =

1

π

N∑
k=1

|zk|

the last identity is based on the following elementary fact:

∀α :
∫ π

−π
cos+(α− θ) dθ =

∫ π

−π
cos+ θ dθ =

∫ π/2

−π/2
cos θ dθ = 2
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Theorem 12.8.

If λ is a complex measure on (X,M), then |λ| is a finite measure (i.e. |λ|(X) < ∞ )

Proof. First we need certain preparations.

Suppose that some set E has |λ|(E) = ∞. Put t = π(1 + |λ(E)|). Note that t is a
finite positive number. Since |λ|(E) > t, there is a countable partition E = ⊎En of
E such that

∑∞
n=1 |λ(En)| > t. Furthermore,

∑N
i=1 |λ(En)| > t for some N ≥ 1.

Apply Lemma 12.7 with zn = λ(En) to conclude that there is a subcollection S ⊂
{1, . . . , N} such that ∣∣∣∣∑

n∈S
λ(En)

∣∣∣∣ ≥ 1

π

n∑
n=1

|λ(En)| >
t

π

Consider the sets A = ⊎n∈SEn and B = E \A. We have

|λ(A)| =
∣∣∣∣∑
n∈S

λ(En)

∣∣∣∣ > t

π
≥ 1

and

|λ(B)| = |λ(E)− λ(A)| ≥ |λ(A)| − |λ(E)| > t

π
− |λ(E)| = 1.

In other words, every set E with |λ|(E) = ∞ can be split into two subsets E = A⊎B
such that |λ(A)| > 1 and |λ(B)| > 1. Since |λ|(E) = |λ|(A) + |λ|(B), at least one of
|λ|(A) and |λ|(B) has to be infinite, and without loss of generality we can assume
that |λ|(B) = ∞.

We now turn to the main part of the proof. Suppose |λ|(X) = ∞. Then we can
split X = A1 ⊎ B1 so that |λ(A1)| > 1 and |λ|(B1) = ∞. Then inductively we split
each Bk−1 into two parts, Ak and Bk, such that |λ(Ak)| > 1 and |λ|(Bk) = ∞. In
the end we get a countable sequence of disjoint sets Ak such that |λ(Ak)| > 1 for all
k. Now for the set A = ⊎∞

k=1Ak we have

λ(A) =

∞∑
k=1

λ(Ak)

where the series must converge absolutely by Lemma 12.3. But it cannot converge

absolutely because |λ(Ak)| > 1 for all k, a contradiction.

Remark: Observe that the range of λ is bounded, since |λ(E)| ≤ |λ|(E) ≤ |λ|(X)

i.e. All values of λ lie in a closed disk D of radius R = |λ|(X)

i.e. λ(E) ∈ D for all E ∈ M.
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Exercise 58. Let (X,M, µ) be a positive measure space. For f ∈ L1
µ define

µf (E) =

∫
E

f dµ (∀E ∈ M)

Show: (a) µf is a complex measure;

(b) |µf | = µ|f |, assuming that f is real-valued;

(c) |µf | = µ|f |, now for a general f ∈ L1
µ(X).

Definition 12.9. Denote M(X,M) the set of all complex measures on (X,M)

• For λ1, λ2 ∈ M(X,M) we define a measure λ = λ1 + λ2 by

λ(E) = λ1(E) + λ2(A) ∀E ∈ M

• For λ1 ∈ M(X,M) on (X,M) and c ∈ C we define a measure λ = cλ1 by

λ(E) = cλ1(E) ∀E ∈ M

• It is easy to check the λ’s defined above are measures.

Theorem 12.10. M(X,M) is a vector space with a norm ∥µ∥ = |µ|(X)

Proof. The verification is routine.

To show that ∥λ∥ = |λ|(X) is a norm, we need to check the following:

◦ ∥λ∥ = 0 implies λ = 0. Indeed, |λ(E)| ≤ |λ|(E) ≤ |λ|(X) = 0 (∀E ∈ M)

◦ λ = 0 implies ∥λ∥ = 0. Indeed, |λ|(X) = sup
∑

|λ(En)| = 0 where X = ⊎En

◦ |cλ|(X) = |c||λ|(X). Indeed, for all partitions X = ⊎En

|cλ|(X) = sup
∑

|cλ(En)| = sup |c|
∑

|λ(En)| = |c| sup
∑

|λ(En)| = |c||λ|(X)

◦ |λ1 + λ2|(X) ≤ |λ1|(X) + |λ2|(X). Indeed, for all partitions X = ⊎En

|λ1 + λ2|(X) = sup
∑

|(λ1 + λ2)(En)|

= sup
∑

|λ1(En) + λ2(En)|

≤ sup
∑

|λ1(En)|+ |λ2(En)|

≤ sup
∑

|λ1(En)|+
∑

|λ2(En)|

≤ sup
∑

|λ1(En)|+ sup
∑

|λ2(En)|

= |λ1|(X) + |λ2|(X)
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Exercise 59. [Bonus] Prove that the space M(X,M) with the norm ∥λ∥ is a Banach space
i.e. it is a complete metric space (every Cauchy sequence converges to a limit).

Hint: given a Cauchy sequence of complex measures {λn} you need to construct the limit measure
µ and prove that ∥λn − λ∥ → 0 as n→ ∞.

A particular class of complex measure consists of those taking real values
(positive or negative). Such measures are called signed measures or charges.

Definition 12.11. Let λ be a signed measure on (X,M) (i.e. a complex measure
with real values). Define

λ+ = 1
2
(|λ|+ λ) and λ− = 1

2
(|λ| − λ)

These are called positive and negative variations of λ.

Proposition 12.12. λ+ and λ− are finite positive measures.

Proof. Since |λ| is a finite measure (Theorem 12.8), it is a complex measure.

Thus λ+ and λ− are complex measures (being sums of complex measures).

Next, for every E ∈ M we have |λ(E)| ≤ |λ|(E), hence

λ+(E) = 1
2

(
|λ|(E) + λ(E)

)
≥ 0 and λ−(E) = 1

2

(
|λ|(E)− λ(E)

)
≥ 0

thus λ+ and λ− are positive measures.

Corollary 12.13. Every signed measure µ satisfies

λ = λ+ − λ− and |λ| = λ+ + λ−

The first formula above is called Jordan decomposition of λ:

λ = λ+ − λ−

Every signed measure is the difference between two finite positive measures.

• We will prove λ+ and λ− are minimal measures that satisfy Jordan decomposition.
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Definition 12.14.

Let µ be a positive measure and λ a complex measure on (X,M)

(a) λ is concentrated on A ∈ M if

λ(E) = λ(E ∩ A) ∀E ∈ M

(b) Two complex measures λ1 and λ2 are mutually singular (written λ1 ⊥ λ2)

if there exist disjoint subsets A1, A2 ⊂ X s.t λ1 is concentrated on A1

and λ2 is concentrated on A2.

(c) λ is absolutely continuous with respect to µ (written λ≪ µ) if

µ(E) = 0 ⇒ λ(E) = 0 ∀E ∈ M

Note: The set A in (a) and the sets A1, A2 in (b) are not unique.

λ is concentrated on A if and only if

E ⊂ Ac = ∅ =⇒ λ(E) = 0 ∀E ∈ M

If λ≪ µ and µ is concentrated on A, then λ is concentrated on A as well.

Suppose that 0 ̸= c ∈ C; then

(i) λ≪ µ ⇐⇒ cλ≪ µ

(ii) λ is concentrated on A ⇐⇒ cλ is concentrated on A.

(iii) λ1 ⊥ λ2 ⇐⇒ ∃A : λ1 is conc. on A and λ2 is conc. on Ac

Example 20.

Let µ be a positive measure on (X,M) and f ∈ L1
µ. Then the measure µf defined by

µf (E) =

∫
E
f dµ (recall Exercise 58)

is absolutely continuous with respect to µ, i.e. µf ≪ µ.

Remark: We will see that any complex measure λ≪ µ is actually one of the
above type. (i.e. λ = µf for some f ∈ L1

µ)
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Proposition 12.15.

Let µ’s be positive measures and λ’s complex measures on (X,M)

(a) λ is concentrated on A, then |λ| is concentrated on A

(b) If λ1 ⊥ λ2, then |λ1| ⊥ |λ2|

(c) If λ1 ⊥ µ and λ2 ⊥ µ, then λ1 + λ2 ⊥ µ

(d) If λ1 ≪ µ and λ2 ≪ µ, then λ1 + λ2 ≪ µ

(e) If λ≪ µ, then |λ| ≪ µ

(f) If λ1 ≪ µ and λ2 ⊥ µ, then λ1 ⊥ λ2

(g) If λ≪ µ and λ ⊥ µ, then λ = 0

Proof. Straightforward verification.

Exercise 60. Let µ be a positive measure on (X,M) and f, g ∈ L1
µ.

Define µf and µg (as in Exercise 58). Prove the following:

(a) µf is concentrated on A if and only if µ{x ∈ Ac : f(x) ̸= 0} = 0;

(b) µf ⊥ µg if and only if µ{x ∈ X : f(x)g(x) ̸= 0} = 0;

(c) if f ≥ 0, then µ≪ µf ⇐⇒ f(x) > 0 for µ− a.e. x ∈ X.

Exercise 61. Let λ be a positive measure on (X,M)

(a) Prove λ is concentrated on A if and only if λ(Ac) = 0

(b) Give a counterexample to this statement in the case of a complex measure λ

Definition 12.16. A positive measure µ on (X,M) is said to be σ-finite if there
exists a countable sequence {Xn}∞n=1 ⊂ M s.t. X = ∪nXn and µ(Xn) <∞ ∀n

• The sets Xn can be made disjoint (i.e. we may assume X = ⊎∞
n=1Xn)
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Theorem 12.17. Lebesgue Decomposition

Let µ be a positive σ-finite measure and λ a complex measure on (X,M).

Then there is a unique pair of complex measures λa and λs such that

λ = λa + λs

and λa ≪ µ and λs ⊥ µ

Theorem 12.18. Radon-Nikodym

Let µ be a positive σ-finite measure and λa ≪ µ a complex measure absolutely
continuous with respect to µ on (X,M).

Then there is a unique h ∈ L1
µ (up to µ-equivalence) such that

λa(E) =

∫
E

h dµ

(i.e. λa = µh) We can also write dλa = h dµ, or h = dλa / dµ

Note: h is called the Radon-Nikodym derivative of λa w.r.t. µ.

Proof. Theorem 12.17 and Theorem 12.18

These two theorems will be proved together. First we address the uniqueness.

Uniqueness of Lebesgue Decomposition. Suppose (λ′a, λ
′
s) is another pair of

measures satisfying the requirements. Then λa + λs = λ′a + λ′s, hence

λ′a − λa = λs − λ′s

where λ′a − λa ≪ µ and λs − λ′s ⊥ µ due to Proposition 12.15, parts (d) and (c),
respectively. Hence both differences are zero due to Proposition 12.15 (g).

Uniqueness of Radon-Nikodym derivative. Suppose h′ ∈ L1
µ is another func-

tion satisfying the requirements. Then ∀E ∈ M∫
E
(h− h′) dµ =

∫
E
h dµ−

∫
E
h′ dµ = λa(E)− λa(E) = 0

Hence h− h′ = 0 a.e. due to Theorem 7.11 (b).
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Existence. First assume that µ is a finite measure, i.e., µ(X) <∞. Then σ = µ+|λ|
is a finite positive measure on X. Note that if σ(E) = 0 for some E ∈ M, then
µ(E) = 0 and |λ|(E) = 0, implying λ(E) = 0. Thus µ and λ are both absolutely
continuous with respect to σ.

Now let X = A1 ⊎ A2 ⊎ · · · ⊎ An be a finite partition of X into measurable sets.
We denote this partition by P and define a function hP on X by

hP =

n∑
i=1

λ(Ai)

σ(Ai)
χAi ,

i.e., hP takes value λ(Ai)/σ(Ai) on Ai (in the exceptional case where σ(Ai) = 0
we set hP ≡ 0 on Ai). Note that hP plays the role of a rough approximation to
the density of λ w.r.t. σ. Note that 0 ≤ |hP | ≤ 1, because for each i we have
|λ(Ai)| ≤ |λ|(Ai) ≤ σ(Ai).

Further, we have∫
X
hP dσ =

n∑
i=1

λ(Ai)

σ(Ai)
σ(Ai) =

n∑
i=1

λ(Ai) = λ(X).

Also note that∫
X
|hP |2 dσ =

n∑
i=1

|λ(Ai)|2

σ(Ai)
≤

n∑
i=1

|λ(Ai)| ≤ |λ|(X) <∞,

so the following upper bound is finite:

H = sup
P

∫
X
|hP |2 dσ <∞.

Let another partition Q = {B1, . . . , Bm} of X be a refinement of P (i.e., every
Bj is contained in one of the Ai’s). It is important to note that∫
X
hQh̄P dσ =

∑
Ai

∑
Bj⊂Ai

λ(Bj)

σ(Bj)

λ̄(Ai)

σ(Ai)
σ(Bj) =

∑
Ai

λ(Ai)

σ(Ai)

λ̄(Ai)

σ(Ai)
σ(Ai) =

∫
X
hP h̄P dσ

Therefore∫
X
|hQ|2 dσ =

∫
X

(
hP + (hQ − hP )

)(
h̄P + (h̄Q − h̄P )

)
dσ

=

∫
X
|hP |2 dσ +

∫
X
|hQ − hP |2 dσ

+

∫
X
hP (h̄Q − h̄P )

)
dσ +

∫
X
h̄P (hQ − hP )

)
dσ

(the above two integrals vanish due to the previous identity)

=

∫
X
|hP |2 dσ +

∫
X
|hQ − hP |2 dσ

≥
∫
X
|hP |2 dσ
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Now for each n ≥ 1 let Pn be a partition of X such that

H − 1

4n
≤

∫
X
|hPn |2 dσ ≤ H

Let Qn be the refinement of the partitions P1, . . . , Pn (obtained by taking intersec-
tions of the elements of P1, . . . , Pn). Then

H − 1

4n
≤

∫
X
|hPn |2 dσ ≤

∫
X
|hQn |2 dσ ≤ H

Note that Qn+1 is a refinement of Qn, thus∫
X
|hQn+1 − hQn |2 dσ =

∫
X
|hQn+1 |2 dσ −

∫
X
|hQn |2 dσ ≤ 1

4n

By the Schwarz inequality∫
X
|hQn+1 − hQn | dσ ≤

[∫
X
|hQn+1 − hQn |2 dσ

]1/2[∫
X
dσ

]1/2
≤ 1

2n

√
σ(X)

Therefore∫
X

( ∞∑
n=1

|hQn+1 − hQn |
)
dσ =

∞∑
n=1

∫
X
|hQn+1 − hQn | dσ ≤

√
σ(X) <∞

This implies that the series
∑∞

n=1 |hQn+1 − hQn | converges a.e. (with respect to σ),
thus the series

h(x) = hQ1(x) +
∞∑
n=1

hQn+1(x)− hQn(x)

converges absolutely at almost every point x ∈ X. Its partial sum is hQn(x), thus

h(x) = lim
n→∞

hQn(x)

is defined a.e. with respect to the measure σ.

Our next goal is to show that h is the density of λ, i.e. λ(A) =
∫
A h dσ for any

A ∈ M. Let Rn denote the refinement of Qn and the two-set partition {A, X \A}.
Then, as before,∫

X
|hRn − hQn |2 dσ =

∫
X
|hRn |2 dσ −

∫
X
|hQn |2 dσ ≤ 1

4n

and by the Schwarz inequality∫
X
|hRn − hQn | dσ ≤

[∫
X
|hRn − hQn |2 dσ

]1/2[∫
X
dσ

]1/2
≤ 1

2n

√
σ(X)

Therefore ∫
A
|hRn − hQn | dσ → 0
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Now we have

λ(A) =

∫
A
hRn dσ =

∫
A
hQn dσ +

∫
A
(hRn − hQn) dσ

Taking the limit n→ ∞ we get∣∣∣∣∫
A
(hRn − hQn) dσ

∣∣∣∣ ≤ ∫
A
|hRn − hQn | dσ → 0,

thus

λ(A) = lim
n→∞

∫
A
hQn dσ

Applying Lebesgue Dominated Convergence Theorem gives

λ(A) =

∫
A

lim
n→∞

hQn dσ =

∫
A
h dσ

as desired. We will denote h = hλ.

Similarly, we can find a function hµ (again, defined a.e.) s.t. for any A ∈ M:

µ(A) =

∫
A
hµ dσ

Since µ is a positive measure, we have hµ ≥ 0. Now define X0 and X1 by

X0 = {x : hµ(x) = 0 or not defined}

X1 = Xc
0 = {x : hµ(x) > 0}

Then we define two complex measures λa and λs by

λa(A) = λ(A ∩X1)

λs(A) = λ(A ∩X0)

for all A ∈ M. Then it is clear that λa + λs = λ and λs ⊥ µ.

It remains to show that λa ≪ µ. We construct the density of λa as

h(x) =


hλ(x)

hµ(x)
if x ∈ X1

0 if x ∈ X0

Then for any measurable set A ⊂ X1 we have

λa(A) = λ(A) =

∫
A
hλ dσ =

∫
A
hhµ dσ =

∫
A
h dµ

which implies λa ≪ µ.

116



Last case: σ-finite measures. It remains to extent our proof of existence to
σ-finite measures µ. Thus assume that X = ⊎∞

n=1Xn so that µ(Xn) <∞ for each n.

Each Xn can be treated as a measurable space with σ-algebra Mn = {A ∈
M : A ⊂ Xn}. Then the restrictions of µ and λ to Mn will be a positive and a
complex measure on Xn, respectively, we will denote them by µn and λn. Each µn
is finite, so our proof applies and gives us decompositions

Xn = Xn,0 ⊎Xn,1

as above and
λn = λn,a + λn,s

and a density hn = dλn,a/dµn on Xn.

We want to define two complex measures λa and λs on X by

λa(A) =
∞∑
n=1

λn,a(A ∩Xn) =
∞∑
n=1

λn(A ∩Xn,1) =
∞∑
n=1

λ(A ∩Xn,1)

λs(A) =

∞∑
n=1

λn,a(A ∩Xn) =

∞∑
n=1

λn(A ∩Xn,0) =

∞∑
n=1

λ(A ∩Xn,0)

Note that for i = 0, 1 we have

∞∑
n=1

|λ(A ∩Xn,i)| ≤
∞∑
n=1

|λ|(A ∩Xn,i) = |λ|
(
A ∩ ⊎Xn,i

)
≤ |λ|(X)

thus the above series converge absolutely and their values are within the bounded
disk of radius |λ|(X). Hence the above definitions give us indeed two complex mea-
sures, λa and λs.

The density h = dλa/dµ simply coincides with the corresponding hn on each Xn

because

λa(A) =
∞∑
n=1

λn,a(A ∩Xn) =
∞∑
n=1

∫
A∩Xn

hn dµn =

∫
A
h dµ

and we have h ∈ L1
µ because∫

X
|h| dµ =

∞∑
n=1

∫
Xn

|hn| dµn =

∞∑
n=1

|λa|(Xn) = |λa|(X) <∞

• The existence is usually proved by referring to Riesz Representation Theorem. Our
proof is more elementary and constructive. It is modeled on the journal article:

Bradley, R. C. An Elementary Treatment of the Radon-Nikodym Derivative, Amer. Math. Monthly 96(5) (1989), 437–440.

Corollary 12.19. If λ≪ µ then λ = h dµ for some h ∈ L1
µ.
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Extensions.

The Lebesgue Decomposition and the Radon-Nikodym theorem can be extended
to the case where both µ and λ are positive σ-finite measures. But we cannot go
beyond σ-finiteness, as the following exercise shows.

Exercise 62. Let X = [0, 1], µ the Lebesgue measure on X, ν the counting measure on X.
Show:

(a) ν is not σ-finite.

(b) ν has no Lebesgue decomposition νa + νs with respect to µ.

(c) A Lebesgue-measurable function h : X → C is in L1
ν if and only if A : = {x ∈ X : h(x) ̸= 0}

is countable, and
∑

x∈A |h(x)| <∞. In this case
∫
E
h dν =

∑
x∈E∩A h(x) for all E.

(d) µ≪ ν but there is no h ∈ L1
ν such that dµ = h dν.

Theorem 12.20. Characterization of absolute continuity

Let µ be a positive measure and λ a complex measure on (X,M). TFAE:

(a) λ≪ µ

(b) ∀ε > 0 ∃δε > 0 s.t. µ(E) < δε =⇒ |λ(E)| < ε (∀E ∈ M)

Proof. • The property (b) justifies the name absolute continuity.

• If λ is a positive but not finite measure, then (a), (b) are not equivalent

(see Example 21). Thus (b) should not be used as the definition

(b)⇒(a) µ(E) = 0 ⇒ µ(E) < δε (∀δε > 0) ⇒ |λ(E)| < ε (∀ε > 0) ⇒ λ(E) = 0

(a)⇒(b) BWOC, suppose (b) is false. Then

∃ε > 0 : ∀n ≥ 1 : ∃En ∈ M : µ(En) < 2−n and |λ(En)| > ε (thus |λ|(En) > ε)

Put
An = ∪∞

i=nEi A = ∩∞
n=1An

On the one hand, µ(An) ≤
∑∞

i=1 2
−i = 2−n+1, and A1 ⊃ A2 ⊃ · · · , implying

µ(A) = limn→∞ µ(An) = 0

On the other hand, |λ|(A) = limn→∞ |λ|(An) ≥ lim supn→∞ |λ|(En)| ≥ ε

This contradicts the assumption λ≪ µ, due to Proposition 12.15(e).
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Example 21. Let X = (0, 1), µ be the Lebesgue measure, and λ(E) =
∫
E t

−1 dt. Then
λ is an infinite positive measure and λ≪ µ, but the property (b) does not hold. Indeed,
just consider the sets En = ( 1n ,

2
n)...

Theorem 12.21. Polar representation

Let λ be a complex measure on (X,M). Then there is a measurable function
h : X → C such that |h| = 1 and dλ = h d|λ|.

Proof. Since λ ≪ |λ| (Proposition 12.15 a), we have dλ = h d|λ| for some h ∈ L1
|λ|.

All we need is to show that |h| = 1. It is enough to show that |h| = 1 a.e. with
respect to |λ|, as then h can be redefined on the null set {x : |h(x)| ̸= 1}.

(i) First we show that |h| ≥ 1 a.e. For any 0 < r < 1 denote Ar = {x : |h(x)| < r}.
For any partition Ar = ⊎∞

n=1En we have∑
n

|λ(En)| =
∑
n

∣∣∣∣∫
En

h d|λ|
∣∣∣∣ ≤ ∑

n

r|λ|(En) = r|λ|(Ar)

hence |λ|(Ar) ≤ r|λ|(Ar), which is only possible if λ(Ar) = 0. Lastly,

|λ|
(
{x : |h(x) < 1}

)
= |λ|

(
∪nA

1− 1
n

)
≤

∑
n

|λ|
(
A

1− 1
n

)
= 0.

(ii) Second we show that |h| ≤ 1 a.e. For any E ∈ M with |λ|(E) > 0 we have∣∣∣∣ 1

|λ|(E)

∫
E
h d|λ|

∣∣∣∣ = ∣∣∣∣ 1

|λ|(E)
λ(E)

∣∣∣∣ = |λ(E)|
|λ|(E)

≤ 1

i.e. all the |λ|-averages of h are in the unit disk. Due to Theorem 7.15 all the values

h(x) are in the unit disk as well (i.e. |h(x)| ≤ 1 a.e.)

Theorem 12.22. Let µ be a positive measure on (X,M).

Suppose g ∈ L1
µ and dλ = g dµ Then d|λ| = |g| dµ

Proof. Due to Polar representation, h d|λ| = dλ = g dµ for some measurable h such
that |h| = 1. This implies, for any bounded measurable f∫

X
fh d|λ| =

∫
X
fg dµ

Now for any E ∈ M let f = χE h̄, then

|λ|(E) =

∫
E
d|µ| =

∫
E

g

h
dµ =

∫
E
h̄g dµ.
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Thus d|λ| = h̄g dµ. Since |λ| is a positive measure, h̄g ≥ 0 a.e. w.r.t. µ, hence

h̄g = |h̄g| = |h̄| · |g| = |g|

a.e. w.r.t. µ. This implies d|λ| = |g| dµ, as claimed.

Theorem 12.23. Hahn decomposition

Let λ be a real-valued measure on (X,M). Then there is a decomposition X = A⊎B
of the space X into two measurable parts A and B such that for any E ∈ M

λ+(E) = λ(E ∩ A), λ−(E) = −λ(E ∩B)

Proof. Due to Polar representation, dλ = h d|λ|, where |h| = 1. Since λ is real, it
follows that h is real (first, a.e., and therefore everywhere, by redefining on a null
set). Hence h = ±1. Put

A = {x : h(x) = 1}, B = {x : h(x) = −1}

Since λ+ = 1
2(|λ|+ λ) and since

1

2
(1 + h) =

{
h on A

0 on B

we have, for any E ∈ M,

λ+(E) =
1

2

∫
E
(1 + h) d|λ| =

∫
E∩A

h d|λ| = λ(E ∩A).

Since λ(E) = λ(E ∩ A) + λ(E ∩ B) and since λ = λ+ − λ−, we conclude that

λ−(E) = −λ(E ∩B), as claimed.

Corollary 12.24. Let λ be a real-valued measure on (X,M). If λ = λ1 − λ2,
where λ1 and λ2 are positive measures, then λ1 ≥ λ+ and λ2 ≥ λ−.

Proof. Since λ ≤ λ1, we have for any E ∈ M

λ+(E) = λ(E ∩A) ≤ λ1(E ∩A) ≤ λ1(E)

Next, since λ1 − λ2 = λ+ − λ−, we have λ− ≤ λ2.

• Thus, in the Jordan decomposition the measures λ+ and λ− are minimal.
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• The rest of this section is presented without proofs.

Let X and Y be vector spaces with norms and Λ: X → Y a linear mapping.

Definition 12.25. The norm of Λ is

∥Λ∥ = sup{∥Λx∥ : x ∈ X, ∥x∥ = 1}
= sup{∥Λx∥/∥x∥ : x ∈ X, x ̸= 0}

We say that Λ is bounded if ∥Λ∥ <∞.

Theorem 12.26. The following conditions are equivalent:

(a) Λ is bounded;

(b) Λ is continuous on X;

(c) Λ is continuous at some point x ∈ X.

Definition 12.27. In a special case, where Y = C, we deal with linear function-
als L : X → C and call

X∗ = {all bounded linear functionals L : X → C}

the dual space (to X). It is a vector space with norm ∥L∥.

Now consider Lp
µ(X) on a measure space (X,M, µ) with 1 ≤ p ≤ ∞. Let q

be the exponent conjugate to p, i.e., 1
p
+ 1

q
= 1. Given a function g ∈ Lq

µ(X), we

construct a linear functional Φg : L
p
µ(X) → C by

Φg(f) =

∫
X

fg dµ

It is bounded (by Hölder inequality) and ∥Φg∥ ≤ ∥g∥q (here ∥g∥q denotes the norm
in the Lq

µ(X) space).
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Theorem 12.28. Let µ be a finite or σ-finite measure and 1 ≤ p < ∞. Then for
every bounded linear functional Φ: Lp

µ(X) → C there exists a unique g ∈ Lq
µ(X)

(up to equivalence) such that

Φ(f) =

∫
X

fg dµ ∀f ∈ Lp
µ(X),

i.e. Φ = Φg. Furthermore, ∥Φ∥ = ∥g∥q.

• In other words, the dual space Lp
µ(X)∗ can be identified with Lq

µ(X), they
are isometrically equivalent to each other.

• For 1 < p <∞, the theorem holds without σ-finiteness.

• This theorem does not hold for p = ∞, see the next exercise.

Exercise 63. [Bonus] Let X = [0, 1] and m the Lebesgue measure. Show that L∞
m(X)∗ ⊃

L1
m(X), but L∞

m(X)∗ ̸= L1
m(X) (in the sense g → Φg). (Hint: Use the following consequence of

the Hahn-Banach theorem: If X is a Banach space (i.e. a complete metric space, in which every
Cauchy sequence converges to a limit) and A ⊂ X is a closed subspace of X, with A ̸= X, then
there exists f ∈ X∗ with f ̸= 0, and f(x) = 0 for all x ∈ A.)
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Differentiation of measures13

Differentiation of functions.
A function f : R → C is differentiable at x ∈ R and f ′(x) = A

if the following limit exists:

lim
h→0

f(x+ h)− f(x)

h
= A

Equivalently, we can rewrite this limit as

lim
a→x−, b→x+

f(b)− f(a)

b− a
= A

In the last version, it is essential that a ≤ x ≤ b, i.e., x ∈ I = [a, b] and both a
and b converge to x, i.e., |I| → 0. So we can rewrite the above limit once again as

lim
x∈I=[a,b], |I|→0

f(b)− f(a)

|I|
= A

In the epsilon-delta language, we can rewrite this as

∀ε > 0 ∃δε > 0:
∣∣∣f(b)− f(a)

m(I)
− A

∣∣∣ < ε

for every closed interval I = [a, b] ⊂ R s.t. x ∈ I and m(I) < δε.

Definition 13.1. Let µ be a complex measure on R (with Borel σ-algebra).
Then F (x) = µ

(
(−∞, x)

)
is called the distribution function of the measure µ.

• In this section, µ will usually denote a complex measure.

• Reminder: m always denotes the Lebesgue measure on R (and on Rk).

Theorem 13.2. The following two conditions are equivalent:

(a) The distribution function F is differentiable at x ∈ R and F ′(x) = A;

(b) ∀ε > 0 ∃δε > 0:
∣∣ µ(I)
m(I)

− A
∣∣ < ε for every open interval I ⊂ R s.t. x ∈ I,

m(I) < δε.

Proof. First we need to verify that both (a) and (b) imply µ({x}) = 0. Then we

can easily relate the statement (b) to the above definition of differentiability (open

intervals can be replaced with closed ones and vice versa because µ({x}) = 0).

Motivated by this we will define derivatives of measures in Rk.
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Definition 13.3. Denote the open ball of radius r > 0 centered on x ∈ Rk by

B(x, r) = {y ∈ Rk : |y − x| < r}

If µ is a complex measure on Rk (with Borel σ-algebra), then we denote

(Qrµ)(x) =
µ
(
B(x, r)

)
m
(
B(x, r)

)
and define the symmetric derivative of µ at x (if the limit exists) by

(Dµ)(x) = lim
r→0

(Qrµ)(x)

Exercise 64. Let µ be a complex Borel measure on R and assume that its symmetric derivative
(Dµ)(x) exists at some x0 ∈ R. Does it follow that its distribution function F (x) = µ((−∞, x))
is differentiable at x0?

Definition 13.4. If µ is a complex measure on Rk (with Borel σ-algebra), then
the maximal function Mµ : Rk → [0,∞] defined by

(Mµ)(x) = sup
0<r<∞

(Qr|µ|)(x) = sup
0<r<∞

|µ|
(
B(x, r)

)
m
(
B(x, r)

) .
• Note that the numerator is bounded because |µ|

(
B(x, r)) ≤ |µ|(Rk) < ∞, while the

denominator grows to infinity as r → ∞.

Lemma 13.5. The maximal function Mµ is lower semicontinuous.

i.e. the set {x : Mµ(x) > a} is open for every a ∈ R.

Proof. If µ = 0, then (Mµ)(x) ≡ 0 (trivial case). If µ ̸= 0, then |µ| > 0, so
(Mµ)(x) > 0 for all x ∈ Rk. Now for all a ≤ 0 we have {x : Mµ(x) > a} = Rk, an
open set. For a > 0, note that Mµ(x) > a means

∃r > 0, t > a : |µ|(B(x, r)) = tm(B(x, r))

Now choose δ > 0 such that (r + δ)k < rkt
a . Then for any y ∈ B(x, δ) we have

B(y, r + δ) ⊃ B(x, r), so

|µ|(B(y, r + δ)) ≥ |µ|(B(x, r)) = tm(B(x, r)) = t
[ r

r + δ

]k
m(B(y, r + δ))

> am(B(y, r + δ))

hence (Mµ)(y) > a for all y ∈ B(x, δ).
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Example 22. The maximal function Mµ is not necessarily upper semicontinuous. For
instance, let µ be a uniform measure on the unit interval [0, 1], i.e., let dµ

dm = χ[0,1]. Then

(Mµ)(x) = 1 for all 0 < x < 1 and (Mµ)(x) = 1
2 for x = 0 and x = 1.

Lemma 13.6. The Covering Lemma

Let W = ∪N
i=1B(xi, ri) be a finite union of open balls in Rk.

Then there is S ⊂ {1, 2, . . . , N} such that

(a) the balls B(xi, ri), i ∈ S, are disjoint;

(b) W ⊂ ∪i∈SB(xi, 3ri);

(c) m(W ) ≤ 3k
∑

i∈S m
(
B(xi, ri)

)
.

Proof. Order the balls by their size, so that r1 ≥ r2 ≥ · · · ≥ rN .

Put i1 = 1, and discard all the balls intersecting B(xi1 , ri1). Let B(xi2 , ri2) be the

first (biggest) ball among the remaining ones (if there are any), and so on, as long

as possible. Then (a) is obvious.

To prove (b) note that all the balls discarded right after B(xik , rik) is selected and

before the next one, B(xik+1
, rik+1

), is selected are not larger than B(xik , rik) and

intersect it, thus they lie within B(xik , 3rik). That proves (b).

Finally, (c) follows from (b) since m(B(x, 3r)) = 3km(B(x, r)) for any ball B(x, r)

1

2
3

45

6

7

8

9

i1

i2

i3

i4

(1) (2) (3)

W

(1) Order the balls by their radii (largest to smallest)

(2) Start with the largest ball and disregard any other balls intersecting it,

repeat using the next largest ball, etc. We obtain a set of disjoint balls.

(3) The balls formed with 3×radii on the selected balls form a covering of W
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Theorem 13.7. Let µ be a complex measure on Rk. Then ∀z > 0

m(Mµ > z) ≤ 3k∥µ∥
z

where ∥µ∥ = |µ|(Rk).

• Roughly speaking, the maximal function cannot be large on a large set.

Proof. Fix z > 0 and let K ⊂ {Mµ > z} be a compact set. For any x ∈ K there
exists an open ball B(x) such that |µ|(B(x)) > zm(B(x)). Since K ⊂ ∪xB(x),
there is a finite subcover, K ⊂ ∪N

i=1B(xi). By the covering lemma, there is a disjoint
subcollection B1, . . . , BM such that

m(K) ≤ 3k
M∑
j=1

m(Bj) ≤
3k

z

M∑
j=1

|µ|(Bj) ≤
3k

z
∥µ∥

(at the last step we used the disjointness of the Bj ’s. Lastly, by the regularity of the
Lebesgue measure (Theorem 8.2),

m(Mµ > z) = sup
K⊂{Mµ>z}

m(K) ≤ 3k

z
∥µ∥

Definition 13.8. Weak L1 space is the space of measurable functions

L1
W (Rk) =

{
f : Rk → C

∣∣ zm{|f | > z} is bounded on z ∈ (0,∞)
}

The value
sup

0<z<∞
zm{|f | > z}

may be called the “weak L1 norm” of f . (Though it is not a norm by any means.)

Proposition 13.9. For all f ∈ L1
m(Rk) and z > 0 we have m(|f | > z) ≤ z−1∥f∥1.

Thus L1
m(Rk) ⊂ L1

W (Rk).

Exercise 65. Prove this proposition.

Example 23. There are functions in L1
W (Rk) that are not in L1

m(Rk). For k = 1, such
a function is f = 1/x. For k ≥ 2, take f(x) = 1/∥x∥k.
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Definition 13.10. For every f ∈ L1
m(Rk) define the maximal function

Mf : Rk → [0,∞] by

(Mf)(x) = sup
0<r<∞

1

m(B(x, r))

∫
B(x,r)

|f | dm.

Note that m(B(x, r)) = m(B(0, r)) does not depend on x.

• We have Mf =Mµf , if µf is defined by dµf = f dm.

• According to Theorem 13.7, the ‘maximal function’M induces an operator L1
m(Rk) →

L1
W (Rk). It is bounded in the sense that the weak L1 norm of Mf is ≤ 3k∥f∥1.

Definition 13.11. If f ∈ L1
m(Rk), then any point x ∈ Rk for which

lim
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dm(y) = 0

is called a Lebesgue point of f .

• Roughly speaking, x is a Lebesgue point if f does not oscillate too much near x, in
an average sense.

• This definition depends on the representative of f in the equivalence class. That is,
changing f on a null set may affect its Lebesgue points.

Lemma 13.12. If f is continuous at x, then x is a Lebesgue point of f .

Lemma 13.13. If x is a Lebesgue point of f , then

f(x) = lim
r→0

1

m(B(x, r))

∫
B(x,r)

f dm

(but the converse is not true).

Exercise 66. Let f ∈ L1
m(Rk). Show that |f(x)| ≤ (Mf)(x) at every Lebesgue point x of f .
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Exercise 67. Let

f(x) =

{
0 if x < 0 or x > 1

1 if 0 < x < 1

Is it possible to define f(0) and f(1) such that 0 and 1 become Lebesgue points of f?

Exercise 68. [Bonus] Construct a function f : R → R such that f(0) = 0 and 0 is a Lebesgue
point of f , but for every ε > 0

m
{
x ∈ R : |x| < ε and |f(x)| ≥ 1

}
> 0,

i.e. f is essentially discontinuous at 0.

Theorem 13.14. If f ∈ L1(Rk), then almost every point x ∈ Rk is a Lebesgue
point of f .

Proof. Define

(Trf)(x) =
1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dm(y)

and put
(Tf)(x) = lim sup

r→0
(Trf)(x)

We have to prove that Tf = 0 a.e. in Rk.
Pick z > 0 and n ≥ 1. Since Cc(Rk) is dense in L1

m(Rk) (Theorem 11.33 extended
to Rk), there exists g ∈ Cc(Rk) such that ∥f − g∥1 < 1/n. Put h = f − g.

Since g is continuous, Tg = 0. By triangle inequality

(Trh)(x) ≤
[

1

m(B(x, r))

∫
B(x,r)

|h| dm
]
+ |h(x)|

Taking the limit r → 0 gives
Th ≤Mh+ |h|

Since Trf ≤ Trg + Trh, taking the limit r → 0 gives

Tf ≤ Tg + Th ≤Mh+ |h|
Therefore

{Tf > 2z} ⊂ {Mh > z} ∪ {|h| > z}
Now we have

m
(
{Tf > 2z}

)
≤ m(Mh > z) +m(|h| > z)

≤ 3k∥h∥1
z

+
∥h∥1
z

≤ 3k + 1

zn

where we used Theorem 13.7, Proposition 13.9, and in the end – our assumption

∥h∥1 < 1/n. Since ε > 0 is arbitrary, we have m
(
{Tf > 2z}

)
= 0 for any z > 0.

This implies Tf = 0 a.e.
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Theorem 13.15. Let µ be a complex measure on Rk such that µ≪ m. Then the
Radon-Nikodym derivative f = dµ/dm is almost everywhere equal to the symmetric
derivative of µ, i.e.

dµ

dm
= Dµ m-a.e.

Equivalently, for any Borel set E ⊂ Rk

µ(E) =

∫
E

(Dµ) dm

Proof. Since f ∈ L1
m(Rk), Theorem 13.14 guarantees that a.e. x ∈ Rk is a Lebesgue

point of f , which means

f(x) = lim
r→0

1

m(B(x, r))

∫
B(x,r)

f dm = lim
r→0

µ(B(x, r))

m(B(x, r))
= (Dµ)(x)

Next we explore some other ways of computing symmetric derivatives.

Definition 13.16. We say that Borel sets Ei ⊂ Rk shrink nicely to a point
x ∈ Rk if there exists α > 0 such that for some sequence of balls B(x, ri) with
ri → 0 we have

Ei ⊂ B(x, ri)

and
m(Ei) ≥ αm(B(x, ri)) ∀i ≥ 1

(Note: it is not required that Ei’s contain x.)

Example 24.

(a) Any sequence of intervals Ii ∋ x in R such that m(Ii) → 0 shrinks to x nicely

(b) Any sequence of balls or cubes in Rk containing x and whose sizes converge to zero
shrinks nicely to x

(c) The sequence of rectangles [−1
i ,

1
i ]× [− 1

i2
, 1
i2
] does not shrink nicely to 0.
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Theorem 13.17. If x ∈ Rk is a Lebesgue point of f ∈ L1
m(Rk), then for any

sequence {Ei} that shrinks nicely to x we have

f(x) = lim
i→∞

1

m(Ei)

∫
Ei

f dm.

Proof. Applying the definition of nicely shrinking sets gives

0 ≤ α

m(Ei)

∫
Ei

|f(y)− f(x)| dm(y)

≤ 1

m(B(x, ri))

∫
B(x,ri)

|f(y)− f(x)| dm(y) → 0

as i→ ∞. Now

1

m(Ei)

∫
Ei

f dm =
1

m(Ei)

∫
Ei

f(x) dm+
1

m(Ei)

∫
Ei

(f − f(x)) dm

The fist integral on the right hand side is simply equal to f(x), and the second one

converges to zero as i→ ∞.

Definition 13.18. Let E ⊂ Rk be a measurable set and x ∈ Rk. Then

lim
r→0

m(E ∩B(x, r))

m(B(x, r))

is called the metric density of E at x (if the limit exists).

• The metric density is a number in the interval [0, 1]. It shows how “solid” the set is
near the point x.

• If E is open, then its metric density is 1 at every point x ∈ E.

• If E is a closed ball, then its metric density is 1 at every interior point x ∈ intE, it
is 1

2 at every boundary point x ∈ ∂E, and it is 0 at every outside point x ∈ Ec.

Definition 13.19. Points x ∈ Rk where the given set E ⊂ Rk has metric density
1 are called Lebesgue points of E.
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Theorem 13.20. For every measurable set E ⊂ Rk the metric density is 1 at a.e.
point x ∈ E and 0 at a.e. point x ∈ Ec.

Proof. If m(E) < ∞, then χE ∈ L1 and we use Theorem 13.14 along with Lemma

13.13. If µ(E) = ∞, we use the sequence of finite-measure subsets EN = E∩B(0, N)

that ‘exhaust’ E as N → ∞.

• Thus, every measurable set E is “solid” at almost every point x ∈ E.

Corollary 13.21.

(a) If ε > 0, then there is no measurable set E ⊂ R such that

ϵ <
m(E ∩ I)
m(I)

< 1− ε

for every finite nontrivial interval I ⊂ R.

(b) If ε > 0 and
m(E ∩ I)
m(I)

> ϵ

for every finite nontrivial interval I ⊂ R, then m(Ec) = 0.

(c) If ε > 0 and
m(E ∩ I)
m(I)

< 1− ε

for every finite nontrivial interval I ⊂ R, then m(E) = 0.
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Functions of bounded variation and absolute continuity14
Let us recall the main fact in standard calculus:

Fundamental Theorem of Calculus (FTC).

• (Easy Part) If f : [a, b] → R is continuous and

F (x) =

∫ x

a

f(t) dt

then F ′(x) = f(x) for all x ∈ (a, b).

• (Hard Part) If F : [a, b] → R is continuously differentiable, then

F (x)− F (a) =

∫ x

a

F ′(t) dt

for all x ∈ [a, b].

Note that in both parts of the FTC the Riemannian integral is used.

Our goal is to extend this theorem to Lebesgue integrable functions.

Theorem 14.1. FTC in L1 (the easy part)

If f ∈ L1
m(R) and

F (x) =

∫
(−∞,x]

f dm

for x ∈ R, then F ′(x) = f(x) at every Lebesgue point x of f .

Proof. Let δi → 0. Theorem 13.17 with Ei = [x, x + δi] shows that the right-hand

derivative of F exists at every Lebesgue point x of f and that it is equal to f(x). If

we set Ei = [x− δ, x] instead, we obtain the same result for the left-hand derivative

of F at x.

Extending the hard part of the FTC to L1 functions will take a considerable
effort. Let us formulate our goals first.

We want to find a class of functions f : [a, b] → R such that

f(x)− f(a) =

∫
[a,x]

f ′ dm ∀x ∈ [a, b] (FTC)

Obviously, f must be differentiable, at least almost everywhere. Furthermore, f ′

must be integrable, i.e., we need f ′ ∈ L1([a, b]). But is this enough?
Answer: No! See a striking counterexample below.
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Cantor function (a.k.a. “Devil’s staircase”). Recall page 15 : the middle-
third Cantor set C ⊂ [0, 1] was constructed by a recursive removal of open
intervals from [0, 1] where at each step we remove the middle-third open interval
from every closed intervals left at the previous step.

Now we define the Cantor function f : [0, 1] → [0, 1] as follows. We set f(0) = 0
and f(1) = 1. On the middle-third open interval (1

3
, 2
3
) removed at the first step,

f(x) takes constant value 1
2
. On the two middle-third open intervals removed at

the second step, it takes constant values 1
4
and 3

4
, respectively, etc.

Generally, at the n-th step we must remove 2n−1 open intervals, each of length
1

3·2n−1 . The Cantor function takes a constant value on each of those intervals,
and those values are set to 2i−1

2n
where i = 1, . . . , 2n−1 counts the open intervals

removed at the nth step, from left to right.

This defines the Cantor function on all the removed intervals, i.e., on [0, 1] \ C.
Its graph is shown below. It is monotonically increasing and its values are binary
rational numbers k

2n
, with all n ≥ 1 and 1 ≤ k ≤ 2n − 1. These numbers make a

dense set in the interval [0, 1]. Thus we can now define the Cantor function f on
the Cantor set C itself by continuity. For every point x ∈ C we set

f(x) : = sup
y∈[0,1]\C, y<x

f(y) = inf
y∈[0,1]\C, y>x

f(y)

These sup and inf coincide due to the denseness of the set f([0, 1] \ C).

Summary: the Cantor function f : [0, 1] → [0, 1] is continuous, monotonically in-
creasing (though not strictly). It is constant on every open interval in [0, 1] \C, so
its derivative f ′(x) is zero at every point x ∈ [0, 1] \ C. Since m(C) = 0, we have
f ′(x) = 0 almost everywhere on [0, 1].

Exercise 69. Show that f(C) = [0, 1], i.e., the Cantor function f maps the Cantor set C (which
is a null set!) onto the whole interval [0, 1].
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Figure 8: Cantor function (“Devil’s staircase”).

We now return to our goal: find a class of functions f : [a, b] → R such that

f(x)− f(a) =

∫
[a,x]

f ′ dm ∀x ∈ [a, b] (FTC)

The Cantor function f is continuous, differentiable almost everywhere, its deriva-
tive f ′ is integrable, but (FTC) fails because

f(1)− f(0) = 1 ̸= 0 =

∫
[0,1]

f ′ dm

This example shows that (FTC) may fail on bad (anomalous) functions that ex-
perience ‘rapid growth on tiny sets’.

Next we define a class of continuous functions that do not have such a patho-
logical behavior.
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Definition 14.2. A function f : [a, b] → C is said to be absolutely continuous
(AC) on an interval [a, b] if ∀ε > 0 ∃δ > 0 such that if n ∈ N and

(α1, β1), . . . , (αn, βn)

are disjoint subintervals of [a, b], then

n∑
i=1

(βi − αi) < δ =⇒
n∑

i=1

|f(βi)− f(αi)| < ε.

• Note: the set ∪n
i=1(αi, βi) is small (in the sense of Lebesgue measure), and absolute

continuity means that the total change of f on it must be small, too.

• If f is absolutely continuous, then f is continuous, even uniformly continuous.

• But the converse is not true: the Cantor function is continuous (and uniformly
continuous), but not absolutely continuous. This will be shown later; see a discussion
following Theorem 14.5.

Theorem 14.3. Suppose that f : [a, b] → C has the following properties:

(a) f(x) is differentiable at almost all x ∈ [a, b]

(b) f ′ ∈ L1([a, b])

(c) (FTC) holds

Then f must be absolutely continuous.

Proof. Let µ = µf ′ be the complex measure defined by dµ = f ′ dm. Then |µ|
is a finite positive measure and |µ| ≪ m. By Theorem 12.20, ∀ε > 0 ∃δ > 0:
m(E) < δ =⇒ |µ|(E) < ε. Thus

n∑
i=1

|f(βi)−f(αi)| =
n∑

i=1

∣∣∣∣∫
(αi,βi)

f ′ dm

∣∣∣∣ ≤ ∫
∪n
i=1(αi,βi)

|f ′| dm = |µ|
(
∪n
i=1(αi, βi)

)
< ε.

Corollary 14.4. The function F (x) in Theorem 14.1 is absolutely continuous.

Our next big goal is to show that the converse is also true, i.e., any absolutely
continuous function f(x) has properties (a)–(c) of Theorem 14.3.
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Theorem 14.5. Let f : [a, b] → R be a continuous and monotonically increasing
function (not necessarily strictly). Then the following properties are equivalent:

(a) f is absolutely continuous

(b) f maps sets of measure zero into sets of measure zero;

(c) f is differentiable a.e. on [a, b], f ′ ∈ L1
m([a, b]) and (FTC) holds.

Proof. We will show that (a)⇒(b)⇒(c).

(a)⇒(b) Let E ⊂ [a, b] be a null set, i.e., m(E) = 0. We have to show that

m
(
f(E)

)
= 0. Without loss of generality, assume that a, b /∈ E.

Choose ε > 0 and let δ > 0 be as in Definition 14.2. Due to the regularity of the
Lebesgue measure (Theorem 8.1) there is an open cover V ⊃ E such that m(V ) < δ.
The open set V is a finite or countable union of disjoint intervals (αi, βi). Then∑

(βi − αi) < δ and our choice of δ ensures that∑
i

(
f(βi)− f(αi)

)
≤ ε

[Definition 14.2 was stated in terms of finite sums; thus the above bound holds for
every partial sum of the (possibly) infinite series; taking the limit gives the above
bound for the whole series.]

Since E ⊂ V , we have f(E) ⊂ f(V ) ⊂ ∪i[f(αi), f(βi)]. Thus

µ∗
(
f(E)

)
≤

∑
i

(
f(βi)− f(αi)

)
≤ ε

Since ε > 0 is arbitrary, we have µ∗
(
f(E)

)
= 0, and due to the completeness of the

Lebesgue measure m
(
f(E)

)
= 0 (in particular, f(E) is measurable).

(b)⇒(c) We want to define a finite positive measure µ on [a, b] by

µ(E) = m
(
f(E)

)
for any Lebesgue measurable set E ⊂ [a, b]. First of all, we need to make sure that
f(E) is a Lebesgue measurable set. Then we need to verify to check that µ is a finite
positive measure. This will be done below, now let us finish the proof of (c).

Due to (b), m(E) = 0 implies µ(E) = m
(
f(E)

)
= 0. Hence µ ≪ m and by the

Radon-Nikodym theorem dµ = h dm for some function h ∈ L1
m([a, b]). Thus

f(x)− f(a) = m
(
f([a, x])

)
= µ([a, x]) =

∫
[a,x]

h dm

Due to Theorem 14.1 we have f ′(x) = h(x) for every Lebesgue point x of h, i.e.,
almost everywhere on [a, b]. So h can be replaced with f ′ in the above formula.

(c)⇒(a) Follows immediately from Corollary 14.4.
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It remains to verify that the formula

µ(E) = m
(
f(E)

)
indeed defines a finite positive measure on I = [a, b]. If it is a measure, then it is
finite, because µ(I) = m(J) = f(b)− f(a) <∞, where J = f(I) = [f(a), f(b)].

Case 1 Let the function f be strictly monotonically increasing. Then f : I → J is
a bijection, so the inverse function f−1 is well defined. It is clearly continuous and
monotonically increasing. Thus images of Borel sets under f are preimages of Borel
sets under f−1, hence they are Borel sets. For any Lebesgue measurable set E ⊂ I
we have E = E1 ∪ E0 where E1 is a Borel set and E0 is a null set (Corollary 3.24).
Thus f(E) = f(E1) ∪ f(E0) is the union of a Borel set f(E1) and a null set f(E0),
as m

(
f(E0)

)
= 0 due to assumption (b). Thus f(E) is Lebesgue measurable.

Next we verify that µ is a measure. If E = ⊎nEn is a countable disjoint union
of Lebesgue measurable subsets of I, then f(E) = ⊎nf(En), and therefore

µ(E) = m
(
f(E)

)
= m

(
⊎nf(En)

)
=

∑
n

m
(
f(En)

)
=

∑
n

µ(En)

This completes Case 1. In the future we will only need to use Theorem 14.5 for
strictly increasing functions. But for the sake of completeness we outline the proof
for non-strictly increasing functions, too.

Case 2: Let the function f be non-strictly increasing. Then it still maps I = [a, b]
onto J = [f(a), f(b)], but it is no longer one-to one. If f(x′) = f(x′′) for some
x′ < x′′, then due to the monotonicity, f(x) = f(x′) for all x ∈ [x′, x′′]. Thus for each
y ∈ J the preimage f−1(y) is either a single point or a closed interval Iy = [α, β] ⊂ I.
Clearly, for y ̸= y′ we have Iy ∩ Iy′ = ∅, so those intervals are disjoint. Thus there
are at most countably many of them. Let N = {y ∈ J : m(Iy) > 0} denote the
countable set of points whose preimages are nontrivial intervals.

Now we show that f(E) ⊂ J is a Borel set for every Borel set E ⊂ I. Let
G = {E ⊂ I : f(E) is Borel}. We can verify that G is a σ-algebra by Lemma
2.4. For its condition (i), note that f(Ec) = [J \ f(E)] ∪ N ′ for some N ′ ⊂ N .
Since f(E) is Borel and N ′ is countable, f(Ec) is also Borel. For (ii), note that
f(∪nEn) = ∪nf(En), so if each f(En) is Borel, then f(∪nEn) is Borel, too. Next
note that for any subinterval I ′ ⊂ I the set f(I ′) ⊂ J is a subinterval, hence Borel.
So G is a σ-algebra containing all subintervals, hence it contains all Borel sets.

Next, f(E) ⊂ J is Lebesgue measurable for any Lebesgue measurable set E ⊂ I
by exactly the same argument as in Case 1.

Lastly, we verify that µ is a measure. If E = ⊎nEn is a countable disjoint union
of Lebesgue measurable subsets of I, then their images f(En) can only intersect at
some points y ∈ N , and those countably many points cannot affect the Lebesgue
measures of the sets f(En), therefore

µ(E) = m
(
f(E)

)
= m

(
∪nf(En)

)
=

∑
n

m
(
f(En)

)
=

∑
n

µ(En)
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Images of measurable sets under continuous monotonic functions. In
the previous proof, we carefully verified that f(E) was a Lebesgue measurable
set for any Lebesgue measurable E ⊂ I. One may think that this fact is a
triviality. How can a nice continuous function map good (measurable) sets into
bad (non-measurable) sets?

This is not a triviality. Some continuous monotonically increasing functions actu-
ally map measurable sets into non-measurable sets. Let f be the Cantor function
(“Devil’s staircase”). Denote

N =
{

k
2n
, n ≥ 1, 0 ≤ k ≤ 2n

}
the set of binary rational numbers – these are the values of f on the open intervals
whose union is [0, 1] \ C. Let A ⊂ [0, 1] be any non-measurable set. Then the set
A0 = A \ N is also non-measurable. Now B = f−1(A0) ⊂ C. Since the Cantor
set C is a null set and B is its subset, B is Lebesgue measurable. So we have
f(B) = A0, where B is measurable and A0 is not.

In our proof that f(E) was a Lebesgue measurable set for any Lebesgue measur-
able E ⊂ I, the crucial element was assumption (b) saying that f maps null sets
into null sets. This assumption, of course, rules out the Cantor function.

As a side result of our discussion: Cantor function is not absolutely continuous.

• Possible exercise for the future: Let f : [0, 1] → [0, 1] be the Cantor function. Then
h(x) = f(x)+x is a continuous strictly monotonically increasing function [0, 1] → [0, 2].
Show that
(a) h(C) has measure one (here C is the Cantor set)
(b) there exist measurable sets A ⊂ [0, 1] such that h(A) is not measurable

Next we extend our analysis to non-monotonic functions. This brings us to
functions of bounded variation.
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Definition 14.6. The total variation function V x
a of a function f : [a, b] → C

is defined by

V x
a = sup

n∑
i=1

|f(ti)− f(ti−1)|

where the supremum is taken over all n and all ordered sequences

a = t0 < t1 < t2 < · · · < tn−1 < tn = x.

If V b
a < ∞, then f is said to be of bounded variation on [a, b], denoted by

f ∈ BV[a, b], and the value of V b
a is called the total variation of f over [a, b].

• V x
a is non-decreasing in x.

• If f is monotonic, then V x
a = |f(x)− f(a)|.

• We have the additivity: V b
a = V c

a + V b
c for every a < c < b.

• For the Dirichlet function f = χQ we have V b
a = ∞ for all a < b.

Exercise 70. Show that

(a) If f ∈ C1([a, b]), then V b
a ≤

∫ b

a
|f ′(x)| dx

(b) If f ∈ C([a, b]) is continuous on [a, b], differentiable on (a, b) and |f ′(x)| is bounded on
(a, b), then f is of bounded variation on [a, b] (Hint: use the Mean Value Theorem)

Exercise 71. Let

f(x) =

{
x cos π

x if 0 < x ≤ 1

0 if x = 0

Show that V 1
0 = ∞.

Exercise 72. Let

f(x) =

{
x2 cos π

x if 0 < x ≤ 1

0 if x = 0

Show that V 1
0 <∞, i.e., f is of bounded variation on [0, 1].

• A function f : [a, b] → C is of bounded variation if and only if Re f and Im f are of
bounded variation.
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Lemma 14.7. Suppose f(x) : [a, b] → R is of bounded variation on [a, b]. Then
V + f and V − f are non-decreasing.

Proof. For x < y we have

V y
a − V x

a = V y
x ≥ f(x)− f(y) ⇒ V x

a + f(x) ≤ V y
a + f(y)

and
V y
a − V x

a = V y
x ≥ f(y)− f(x) ⇒ V x

a − f(x) ≤ V y
a − f(y)

Corollary 14.8. Let f : [a, b] → R be of bounded variation on [a, b]. Then there are
monotonically increasing functions u, v : [a, b] → R such that f = u−v. Moreover,
u and v may be chosen strictly monotonically increasing.

Proof. Set u = 1
2(V + f) and v = 1

2(V − f). These functions are monotonically
increasing and f = u− v.

But u and v may not be strictly monotonically increasing, though. Then we can

replace them with, say, u+ x and v+ x, which are strictly monotonically increasing

and satisfy the same relation f = u− v.
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We now return to absolutely continuous functions.

Exercise 73. Let f, g be absolutely continuous on [a, b]. Show that

(a) f ± g are absolutely continuous on [a, b]

(b) fg is absolutely continuous on [a, b]

(c) if f(x) ̸= 0 for all x ∈ [a, b], then 1/f is absolutely continuous on [a, b]

Lemma 14.9. Suppose f(x) is absolutely continuous on [a, b]. Then

(a) f is of bounded variation on [a, b];

(b) V , V + f , and V − f are absolutely continuous on [a, b].

Proof.
(a) Let ε = 1 and δ > 0 as in Definition 14.2. For any [c, d] ⊂ [a, b] with d− c < δ

we have V d
c ≤ 1. Then we can divide [a, b] into N ≤ b−a

δ + 1 subintervals of length
< δ and get V b

a ≤ N .

(b) Due to Exercise 73(a) it is enough to show that V is AC, i.e., for any ε > 0

there is a δ > 0

n∑
i=1

(βi − αi) < δ =⇒
n∑

i=1

∣∣V βi
a − V αi

a

∣∣ < ε

in the notation of Definition 14.2. But∣∣V βi
a − V αi

a

∣∣ = V βi
a − V αi

a = V βi
αi

= sup
∑
j

|f(ti,j+1)− f(ti,j)|

where
αi = ti,0 < ti,1 < · · · < ti,ni−1 < ti,ni = βi

is a partition of (αi, βi). Note that∑
i

∑
j

(ti,j+1 − ti,j) =
∑
i

(βi − αi) < δ

thus by Definition 14.2 applied to the given AC function f we have∑
i

∑
j

|f(ti,j+1)− f(ti,j)| < ε

Taking the supremum gives a bound

n∑
i=1

∣∣V βi
a − V αi

a

∣∣ ≤ ε

which shows that V is AC.
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Exercise 74. A function f : [a, b] → C is said to be Lipschitz continuous if ∃L > 0 such that
|f(x) − f(y)| ≤ L|x − y| for all x, y ∈ [a, b]. Prove that if f is Lipschitz continuous, then f is
absolutely continuous and |f ′| ≤ L a.e. Conversely, if f is absolutely continuous and |f ′| ≤ L
a.e., then f is Lipschitz continuous (with that constant L).

Finally we are in a position to prove our main result:

Theorem 14.10. FTC in L1 (the hard part)

A function f : [a, b] → C is absolutely continuous if and only if f is differentiable
for a.e. x ∈ [a, b], f ′ ∈ L1([a, b]), and (FTC) holds.

Proof. The “if” part was already proved in Theorem 14.3.

So let f be AC on [a, b]. It is enough to prove the claim for Re f and Im f separately,
so we can assume that f : [a, b] → R is real-valued.

According to Lemma 14.7 and Corollary 14.8

f = u− v, u =
1

2
(V + f + x), v =

1

2
(V − f + x)

is the difference between two strictly monotonically increasing functions, each of
which is AC due to Lemma 14.9 (note that f(x) = x is AC due to Exercise 74). Now
we apply Theorem 14.5 to u and v and get u′, v′ ∈ L1

m([a, b]) and

u(x)− u(a) =

∫
[a,x]

u′ dm v(x)− v(a) =

∫
[a,x]

v′ dm (14.1)

Therefore f ′ = u′ − v′ ∈ L1
m([a, b]) and subtracting the second equation in (14.1)

from the first one gives (FTC).

Exercise 75. Let

f(x) =

{
x2 cos π

x2 if 0 < x ≤ 1

0 if x = 0

(a) Show that f(x) is differentiable at every point x ∈ [0, 1] (including x = 0)

(b) Verify that f ′(x) does not belong to L1([0, 1])

Conclude that f is not absolutely continuous.
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The following theorem arrives at the hard part of the FTC from a different set of
hypotheses:

Theorem 14.11. FTC in L1 (the hard part; alternative version)

Suppose f : [a, b] → C be differentiable at every point x ∈ [a, b] and f ′ ∈ L1([a, b]).
Then (FTC) holds.

• Note: the differentiability at every point x ∈ [a, b] is essential.

• This theorem can be given without proof (its proof is in Rudin’s book).

Exercise 76. In Exercise 72 we showed that the following function had bounded variation:

f(x) =

{
x2 cos π

x if 0 < x ≤ 1

0 if x = 0

(a) Show that f(x) is differentiable at every point x ∈ [0, 1] (including x = 0)

(b) Verify that f ′(x) does belong to L1([0, 1])

Conclude that f is absolutely continuous.

Exercise 77. Let f : [a, b] → R be absolutely continuous. Prove that V x
a ≤

∫
[a,x]

|f ′|dm. For an

extra credit: is the equality always true?

Exercise 78. [Bonus] Let f : [0, 1] → R be absolutely continuous on [δ, 1] for each δ > 0,
continuous at x = 0, and of bounded variation on [0, 1]. Prove that f is absolutely continuous
on [0, 1]. (Note: you can use the “extra credit” part of the previous exercise only if you properly
finish it first.)
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Lastly we prove two important facts related to AC and BV functions.

Theorem 14.12. Lusin N property

Let f : [a, b] → R be absolutely continuous.
Then it maps sets of measure zero into sets of measure zero. That is,

∀N ⊂ [a, b] : m(N) = 0 ⇒ m
(
f(N)

)
= 0

• The converse is not true, even if f is continuous and differentiable (Exercise 75).

• Theorem 14.12 does not extend to functions of bounded variation (Exercise 69).

Proof. Let N ⊂ [a, b] be a null set. Due to the regularity of the Lebesgue measure
(Theorem 8.1), ∀δ > 0 there is an open cover V ⊃ N such that m(V ) < δ. The
open set V is a finite or countable union of disjoint intervals (αi, βi). On each closed
interval [αi, βi] the continuous function f takes a minimum at some xi ∈ [αi, βi] and
a maximum at some yi ∈ [αi, βi]. Then

f
(
[αi, βi]

)
= [f(xi), f(yi)]

and
f(N) ⊂ f(V ) ⊂ ∪if

(
[αi, βi]

)
Now we have

m
(
f
(
[αi, βi]

))
= f(yi)− f(xi) =


∫
[xi,yi]

f ′ dm if xi ≤ yi

−
∫
[yi,xi]

f ′ dm if yi < xi

Let Ii denote the interval between xi and yi (in whichever order they come). Since
f(yi)− f(xi) ≥ 0, we can simply write

f(yi)− f(xi) =

∣∣∣∣∫
Ii

f ′ dm

∣∣∣∣ ≤ ∫
Ii

|f ′| dm ≤
∫
(αi,βi)

|f ′| dm

Summing over i gives

m
(
f(N)

)
≤ m

(
f(V )

)
≤

∑
i

m
(
f
(
[αi, βi]

))
≤

∫
V
|f ′| dm

Since |f ′| ∈ L1
m([a, b]), we have by Theorem 12.20 that for any ε > 0 there exists

δε > 0 such that
∫
E |f ′| dm < ε whenever m(E) < δε. Thus for any ε > 0 we can

choose an open cover V ⊃ N of measure m(V ) < δε, and that gives us m
(
f(N)

)
< ε.

Since ε > 0 is arbitrary, we have m
(
f(N)

)
= 0.
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Theorem 14.13. Lebesgue monotone differentiation

Let f : [a, b] → R be monotonically increasing.
Then it is differentiable almost everywhere.
Furthermore, f(b)− f(a) ≥

∫
[a,b]

f ′ dm.

• A strict inequality is possible (example: the Cantor function).

D+f(x)

D+f(x)

D-f(x)

D-f(x)

D-g(x)

D-g(x)

D+g(x)

D+g(x)

y=f(x)

y=g(x)=-f(-x)

Note: lines 
of the same 
 color are 
  parallel

Proof. The proof is long but its steps are visually clear.

Dani derivatives. Let us define the following limits:

D+f(x) = lim sup
h→0+

f(x+ h)− f(x)

h
(‘upper right’)

D+f(x) = lim inf
h→0+

f(x+ h)− f(x)

h
(‘lower right’)

D−f(x) = lim sup
h→0−

f(x+ h)− f(x)

h
(‘upper left’)

D−f(x) = lim inf
h→0−

f(x+ h)− f(x)

h
(‘lower left’)

These are called Dani derivatives. They always exist, for any function, and take
values in [−∞,∞]. Clearly, f ′(x) exists if and only if

−∞ < D+f(x) = D+f(x) = D−f(x) = D−f(x) <∞

Obviously,
D+f(x) ≥ D+f(x), D−f(x) ≥ D−f(x). (14.2)

Actually, since our function f is increasing, then all of the Dani derivatives must be
non-negative, i.e., restricted to [0,∞].

Main claim. It will be enough to prove that

D−f(x) ≥ D+f(x), D+f(x) <∞ (14.3)

for almost every point x ∈ [a, b].
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Main claim ⇒ Theorem. If we prove the first inequality in (14.3) for any mono-
tonically increasing function f(x), then it will apply to the function g(x) = −f(−x),
too. And it will give

D−g(−x) ≥ D+g(−x)

for almost every x. It is easy to note that D−g(−x) = D+f(x) and D+g(−x) =
D−f(x); see the figure. Hence we get

D+f(x) ≥ D−f(x)

for almost every x. Combining this with (14.3) and (14.2) gives

D−f(x) ≥ D+f(x) ≥ D+f(x) ≥ D−f(x) ≥ D−f(x)

which is only possible if all the Dani derivatives are equal:

D−f(x) = D+f(x) = D+f(x) = D−f(x)

The second bound in (14.3) ensures that they are all finite. So Theorem will be

proved once we establish (14.3). After a brief digression, the proof will be continued.

Definition 14.14. Let f : [a, b] → R be a continuous function.

(a) A point x ∈ [a, b] is said to be invisible from the right if there exists
x1 > x such that f(x) < f(x1).

(b) A point x ∈ [a, b] is said to be invisible from the left if there exists x1 < x
such that f(x) < f(x1).

invisible from the right invisible from the left

Lemma 14.15.

(a) The set of all points invisible from the right is open, i.e., it is a union of
open intervals (αn, βn), and for each interval we have f(αn) ≤ f(βn).

(b) The set of all points invisible from the left is open, i.e., it is a union of
open intervals (αn, βn), and for each interval we have f(αn) ≥ f(βn).

Proof. The openness follows from the continuity of f . The relation f(αn) between

and f(βn) is easy to verify “by way of contradiction”.
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Proof. of Theorem 14.13 (continued). Our argument will be clearer if we assume first
that f is a continuous function. In the end we extend it to discontinuous functions.
We begin with the proof of the first inequality of (14.3).

First inequality in (14.3): Auxiliary claim. It is enough to show that for any
positive real numbers u < v we have

m(Nuv) = 0, Nuv = {x ∈ [a, b] : D−f(x) < u < v < D+f(x)} (14.4)

as then taking the union of ∪u<vNuv over all positive rationals u < v will give us

m
(
{x ∈ [a, b] : D−f(x) < D+f(x)}

)
= m

(
∪0<u<v, u,v∈QNuv

)
= 0

which is exactly the first inequality in (14.3).
The way (14.4) will be proved is that we will show that for any open interval

(α, β) ⊂ [a, b] we have
m
(
Nuv ∩ (α, β)

)
≤ u

v (β − α) (14.5)

and then due to Corollary 13.21 (c) we will conclude that m(Nuv) = 0.

Proof of auxiliary claim (14.5).
If D−f(x) < u for some x ∈ (α, β), then there is a point x1 < x such that

f(x1)− f(x)

x1 − x
< u ⇒ f(x1)− ux1 > f(x)− ux

Therefore x is invisible from the left for the function g(x) = f(x) − ux. Due to
Lemma 14.15 (b), the set of such points inside (α, β) is open and consists of open
intervals (αn, βn) such that for each interval we have

f(αn)− uαn = g(αn) ≥ g(βn) = f(βn)− uβn

or equivalently
f(βn)− f(αn) ≤ u(βn − αn)

Similarly, if D+f(x) > v for some x ∈ (αn, βn), then there is a point x1 > x such
that

f(x1)− f(x)

x1 − x
> v ⇒ f(x1)− vx1 > f(x)− vx

Therefore x is invisible from the right for the function g(x) = f(x) − vx. Due to
Lemma 14.15 (a), the set of such points inside (αn, βn) is open and consists of open
intervals (αnk, βnk) such that for each interval we have

f(βnk)− vαnk = g(αnk) ≤ g(βnk) = f(βnk)− vβnk

or equivalently
f(βnk)− f(αnk) ≥ v(βnk − αnk)
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Clearly the set Nuv∩ (α, β) is covered by the intervals (αnk, βnk), and it follows from
our previous inequalities that∑

n,k

(βnk − αnk) ≤ 1
v

∑
n,k

[f(βnk)− f(αnk)]

≤ 1
v

∑
n

[f(βn)− f(αn)]

≤ u
v

∑
n

(βn − αn)

≤ u
v (β − α)

This implies (14.5), and hence m(Nuv) = 0 and the first inequality of (14.3).

Second inequality in (14.3). Let N = {x ∈ [a, b] : D+f(x) = ∞}. If x ∈ N , then
for any C > 0 there is a point x1 > x such that

f(x1)− f(x)

x1 − x
> C ⇒ f(x1)− Cx1 > f(x)− Cx

Thus x is invisible from the right for the function g(x) = f(x)−Cx. Due to Lemma
14.15 (a), the set of such points is open and consists of open intervals (αn, βn) such
that for each interval we have

f(βn)− Cαn = g(αn) ≤ g(βn) = f(βn)− Cβn

or equivalently
f(βn)− f(αn) ≥ C(βn − αn)

Therefore, since N ⊂ ∪n(αn, βn), we obtain

m(N) ≤
∑
n

(βn − αn) ≤ 1
C

∑
n

[f(βn)− f(αn)] ≤ 1
C [f(b)− f(a)]

Since this is true for any C > 0, we have m(N) = 0.

Discontinuous functions. Things get a little messy. First we note that discontinuous
monotonically increasing functions are not too bad. At least for any point x there exist
a left limit f(x−) = limy→x− f(y) and a right limit f(x+) = limy→x+ f(y). We also have
f(x−) ≤ f(x) ≤ f(x+). In the above argument we use g(x) = f(x)−cx for various constants
c > 0; this function also has a left limit and a right limit values at every point. It also satisfies
g(x−) ≤ g(x) ≤ g(x+).

Now let f be either continuous or at least have a left limit and a right limit values at
every point x such that f(x−) ≤ f(x) ≤ f(x+). Then we redefine invisible points as follows:
A point x ∈ [a, b] is invisible from the right if there exists x1 > x such that f(x+) < f(x1).
A point x ∈ [a, b] is invisible from the left if there exists x1 < x such that f(x+) < f(x1).

Now in Lemma 14.15 (a) we replace f(αn) ≤ f(βn) with f(αn+) ≤ f(βn+). Similarly,
in Lemma 14.15 (b) we replace f(αn) ≥ f(βn) with f(αn+) ≥ f(βn−). Then Lemma 14.15
extends to discontinuous functions of the above type.

The arguments in the previous two subsections extend to discontinuous functions as well,

with one minor adjustment: each point of the sets Nuv and N is either inside of one of the

respective open intervals (αn, βn) or on its boundary (i.e., it may coincide with either αn or

βn). All the measure estimates remain valid, though.
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Integral inequality. For each n ≥ 1 define the following approximation to f ′(x):

gn(x) =
f(x+ 1

n)− f(x)
1
n

= n
[
f(x+ 1

n)− f(x)
]

(if it happens that x+ 1
n > b, we just set f(x+ 1

n) : = f(b)).
Now we have gn → f ′, as n → ∞, almost everywhere on [a, b]. Since f is

increasing, we have gn ≥ 0 and f ′ ≥ 0. Due to Fatou’s lemma∫
[a,b]

f ′ dm ≤ lim inf

∫
[a,b]

gn dm

= lim inf n

∫
[a,b]

[
f(x+ 1

n)− f(x)
]
dm

= lim inf n

∫
[b,b+ 1

n
]
f dm− n

∫
[a,a+ 1

n
]
f dm

The first term is equal to f(b) and the second term is ≥ f(a), hence∫
[a,b]

f ′ dm ≤ f(b)− f(a)

This completes the long proof of Theorem 14.13...

Corollary 14.16. Every function f : [a, b] → C of bounded variation is differen-
tiable almost everywhere.

Proof. To differentiate f , we differentiate Re f and Im f separately, thus it is enough

to prove this corollary for real-valued functions. Now we just combine Corollary 14.8

with Theorem 14.13.
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Differentiable transformations15

Linear transformations. From linear algebra, we know that any linear trans-
formation T : Rk → Rk is defined by a k × k matrix, which we will denote by
A = (aij). It takes a point (x1, . . . , xk) ∈ Rk to a point (y1, . . . , yk) ∈ Rk by the
rule y = Ax, where x = (x1, . . . , xk)

T and y = (y1, . . . , yk)
T are column-vectors.

Note that the origin (0, . . . , 0) is always mapped to itself.

More generally, a linear transformation with shift is defined by y = Ax+a, where
a is a fixed vector. Now the origin is shifted to a. If a = (0, . . . , 0)T , then we get
the transformation without shift.

Proposition 15.1. Let T : Rk → Rk be a linear transformation, with or without
shift, defined by y = Ax+ a. Then for any measurable set E ⊂ Rk we have

m
(
T (E)

)
= cm(E)

where the scaling factor is c = | detA|.

Proof. From linear algebra, we know that the map T is a bijection if and only if the
matrix A is not singular, i.e., detA ̸= 0. If it is singular, then T maps Rk into a
lower-dimensional subspace, hencem(T (E)) = 0 for any set E ⊂ Rk, so we get c = 0.

If A is not singular, then the inverse map T−1 is also linear and defined by
x = A−1y + a1, where a1 = −A−1a. Hence T−1 : Rk → Rk is a continuous map.
Thus for every Borel set E ⊂ Rk the set T (E) is Borel (Proposition 4.4).

We define a new measure µ on the Borel σ-algebra in Rk by µ(E) = m
(
T (E)

)
. Now

for any Borel set E and any fixed vector b ∈ Rk we have

µ(E + b) = m
(
T (E + b)

)
= m(AE +Ab+ a) = m(AE + a) = m

(
T (E)

)
= µ(E)

(we used the translation invariance of the Lebesgue measure m). Hence the measure
µ is also translation invariant. Due to Corollary 3.19 we have µ = cm with some
constant c ≥ 0.

To find the value of c, it is enough to compute it as c = m(T (E))
m(E) for one set E. If we

choose E to be the unit box, E = {0 ≤ x1 ≤ 1, . . . , 0 ≤ xk ≤ 1}, then the calculation

is elementary (see Rudin’s book, Section 2.23) and gives c = | detA|.

• Every linear transformation with detA = ±1 preserves the Lebesgue measure. In
particular, every isometry (translation, rotation, reflection) preserves the Lebesgue
measure.

• We will denote points in Rk by x and occasionally by x when we need to use the
coordinates of x as a column-vector. Thus x and x will be interchangeable in our
formulas.
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Definition 15.2. Let T : V → Rk be a (nonlinear) transformation defined on an
open set V ⊂ Rk. Its derivative T ′(x) at a point x ∈ V is a k × k matrix A that
satisfies

lim
h→0

∥T (x+ h)− T (x)−Ah∥
∥h∥

= 0

provided the limit exists. We will write T ′(x) = A.

Lemma 15.3. If the transformation T : V → Rk is defined coordinate-wise, by k
functions of k variables

y1 = f1(x1, . . . , xk), . . . , yk = fk(x1, . . . , xk)

then T ′(x) is the matrix of their partial derivatives: A = (∂fi/∂xj).

Proof. Just use h = hei in Definition 15.2 and take the limit as h → 0; here ei
denotes the ith canonical basis vector in Rk.

Corollary 15.4. If T : Rk → Rk is a linear transformation defined by y = Ax+a,
then its derivative is T ′(x) = A at every point x ∈ Rk.

• Thus | detT ′(x)| = | detA| is the factor by which the Lebesgue measure is multiplied
by a linear transformation.

Definition 15.5. If T : V → Rk is differentiable at x ∈ V , then JT (x) = detT ′(x)
is called the Jacobian of T at x.
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Theorem 15.6. Let T : V → Rk be continuous on V and differentiable at x ∈ V .
Then

lim
r→0

m(T (B(x, r)))

m(B(x, r))
= | detT ′(x)|

B(x,r)
T

T(B(x,r))

Proof. The formula in Definition 15.2 can be written as

T (x+ h)− T (x) = Ah+ gh, ∥gh∥ = o(∥h∥)

For all x+ h ∈ B(x, r) we have ∥h∥ < r and so

T (x+ h) = T (x) +Ah+ gh, ∥gh∥ = o(r)

Thus for any ε > 0 there is rε > 0 such that for all r < rε we have

T (x+ h) = T (x) +Ah+ gh, ∥gh∥ < εr (15.1)

for all x+ h ∈ B(x, r).

Now suppose for a moment that the transformation T is linear. Then

T (x+ h) = T (x) +Ah (i.e., gh = 0) (15.2)

Suppose also that detA ̸= 0. Then the image T (B(x, r)) of the ball B(x, r) is
an ellipsoid centered on T (x) (see the picture). More precisely, the boundary of
T (B(x, r)) is made by vectors T (x) + Ah with ∥h∥ = r, i.e., by vectors T (x) + y
with ∥A−1y∥ = r. This means yT (AAT )−1y = r2. The matrix AAT is symmetric
and positive definite, hence it has an orthonormal basis of eigenvectors u1, . . . ,uk

and positive eigenvalues, which we can denote by λ21, . . . , λ
2
k. If y = c1u1+· · ·+ckuk,

then the above equation means c21λ
−2
1 + . . .+ c2kλ

−2
k = r2. This equation corresponds

to an ellipsoid in Rk with semi-axes λ1r, . . . , λ1r. Its volume is

m
(
T (B(x, r))

)
= Ckr

kλ1 · · ·λk = m(B(x, r))| detA|

where Ck denotes the volume of the unit ball in Rk (a standard constant). The
above ellipsoid is centered on T (x) and its orientation in Rk is determined by the
vectors u1, . . . ,uk (they define the directions of its axes).
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For nonlinear maps we have an additional term gh in (15.1) whose norm is < εr.
This means that the figure T (B(x, r)) has boundary that is within distance < εr
from the boundary of the above ellipsoid. Thus E′

r ⊂ T (B(x, r)) ⊂ E′′
r , where

E′
r and E′′

r are ellipsoids centered on T (x) with the same directions of axes as the
above ellipsoid but with the semi-axes given by r(λ1 ± ε), . . . , r(λk ± ε), where +
corresponds to E′′

r and − to E′
r. The Lebesgue measure of T (B(x, r)) is bounded by

Ckr
k

k∏
i=1

(λi − ε) ≤ m
(
T (B(x, r))

)
≤ Ckr

k
k∏

i=1

(λi + ε)

Therefore
k∏

i=1

(
1− ε

λi

)
≤ m(T (B(x, r)))

m(B(x, r))
≤

k∏
i=1

(
1 +

ε

λi

)
Since ε > 0 can be made arbitrarily small in the limit r → 0, we obtain the claim of
the theorem.

It remains to deal with the singular case detA = 0. Now the linear transfor-

mation (15.2) takes B(x, r) into a subspace of a lower dimension; more precisely -

into a lower dimensional ellipsoid centered on T (x) whose dimensions (semi-axes)

are proportional to r. The nonlinear transformation (15.1) takes B(x, r) into a figure

which is in the εr-neighborhood of that ellipsoid. It can be imagined as a thin plate

(‘pancake’) whose dimensions are proportional to r and whose ‘width’ (‘thickness’)

is proportional to εr. Thus its volume is O(εrk). Dividing by m(B(x, r)) = Ckr
k

and taking the limit r → 0 gives us zero, as claimed.

• Our proof appeals to geometric intuition and requires some knowledge of linear
algebra. But it is not entirely rigorous – it hides some unpleasant technical details
that can be found in Rudin’s book (Lemma 7.23 and Theorem 7.24).
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• The following is a (global) change of variables rule:

Theorem 15.7. Let T : V → Rk be continuous and differentiable at every point
x ∈ V and one-to-one. Then for any measurable function f : Rk → [0,+∞]∫

T (V )

f dm =

∫
V

(f ◦ T ) | detT ′| dm

We will prove a lemma first, and then prove the theorem.

Lemma 15.8. T maps null sets into null sets.

Proof. Intuitively, the map T ‘expands’ the Lebesgue measure by a finite factor
| detT ′(x)| at every point x ∈ V (by Theorem 15.6), so it should be impossible to
‘expand’ a set of measure zero into a set of positive measure.

Since T ′(x) exists at every point x ∈ V , we have

lim sup
h→0

∥T (x+ h)− T (x)∥
∥h∥

<∞ (15.3)

For any m,n ≥ 1 let Vm,n ⊂ V consist of points x ∈ V such that

∥T (x+ h)− T (x)∥ ≤ m∥h∥ ∀∥h∥ ≤ 1/n (15.4)

Due to (15.3), we have ∪m,nVm,n = V .

Let N ⊂ V be a null set. Then Nm,n = N ∩ Vm,n is also a null set. So for any
ε > 0 it can be covered by a countable union of balls B(xi, ri) such that xi ∈ Nm,n

and ri ≤ 1/n in such a way that
∑

im(B(xi, ri)) < ε. [To do this, first cover Nm,n

by an open set W of a very small measure ≪ ε, then partition W into countably
many boxes {Ri} of a very small diameter ≪ 1/n, then for each box Ri find a point
xi ∈ Nm,n∩Ri (if none exists, just remove Ri from W ), then set ri = diamRi. This
gives B(xi, ri) ⊃ Ri and m(B(xi, ri)) ≤ Ckm(Ri). Hence

∪iB(xi, ri) ⊃W ⊃ Nm,n

and ∑
i

m(B(xi, ri)) < Ck

∑
i

m(Ri) ≤ Ckm(W ) < ε

where Ck > 0 is a constant depending only on the dimensionality k.]

Now each ball B(xi, ri) is mapped by T into a ball of radius ≤ mri, due to (15.4),

so its volume grows by a factor ≤ mk. Thus T (Nm,n) will be covered by countable

many balls of total Lebesgue measure ≤ mkε, hence m(T (Nm,n)) ≤ mkε. Since

ε > 0 is arbitrary, we actually have m(T (Nm,n)) = 0, and taking the union over all

m,n ≥ 1 gives m(T (N)) = 0.
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Proof. (of Theorem 15.7). This is done in several steps.

Step 1. T maps Lebesgue measurable sets into Lebesgue measurable sets. (Note:

this does not simply follow from the continuity of T ; recall our discussion on page 138 .)

Indeed, let E ⊂ V be a Lebesgue measurable set. Due to regularity of
the Lebesgue measure (Theorem 8.4) there exists an Fσ-set F ⊂ E such that
m(E \ F ) = 0. Due to the continuity of T , the image T (F ) is also an Fσ-set, thus
it is Borel measurable. And the image T (E \ F ) is a null set due to Lemma 15.8.
Hence T (E) is the union of a Borel set and a null set, hence it is Lebesgue measurable.

Step 2. For n ≥ 1, let Vn = {x ∈ V : ∥T (x)∥ < n}. Note that Vn is open, Vn ⊂ Vn+1

and ∪n≥1Vn = V . For each n ≥ 1 we define a new measure on V by

µn(E) = m(T (E ∩ Vn)) (15.5)

Why is it a measure? Because T (E ∩ Vn) is Lebesgue measurable due to Step 1,
and since T is one-to-one, µn is σ-additive. Also µn is a finite measure because
µn(V ) ≤ m(B(0, n)) < ∞ (this was the reason for replacing V temporarily by Vn).
Now µn ≪ m by another application of Lemma 15.8. Thus due to Theorem 13.15

µn(E) =

∫
E
(Dµn) dm

Step 3. We claim that for all x ∈ Vn

(Dµn)(x) = | detT ′(x)| (15.6)

Indeed, Vn is open, hence B(x, r) ⊂ Vn for sufficiently small r > 0. Due to (15.5)

µn(B(x, r)) = m
(
T (B(x, r))

)
If we divide by m(B(x, r)) and refer to Theorem 15.6, we obtain (15.6).

Step 4. Thus we can write

m(T (E ∩ Vn)) =
∫
Vn

χE | detT ′| dm =

∫
V
χE∩Vn | detT ′| dm

Taking the limit n→ ∞ and applying the Lebesgue Monotone Convergence gives

m(T (E)) =

∫
V
χE | detT ′| dm

for every measurable set E ⊂ V .

Step 5. Let A ⊂ Rk be a Borel set. Since T is continuous, E = T−1(A) is also a
Borel set and E ⊂ V . Note that T (E) = A ∩ T (V ) and χE = χA ◦ T . Thus∫

T (V )
χA dm = m(A ∩ T (V )) = m(T (E)) =

∫
V
(χA ◦ T ) | detT ′| dm (15.7)
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Step 6. Next we extend (15.7) to Lebesgue measurable sets A ⊂ Rk. First, if N
is a null set, then N ⊂ AN for a Borel null set AN . For A = AN , the first integral
in (15.7) is zero, hence so is the second one, hence (χAN

◦ T ) | detT ′| = 0 a.e. Now
χN ≤ χAN

, therefore (χN ◦ T ) | detT ′| = 0 a.e. Thus

m(N ∩ T (V )) =

∫
T (V )

χN dm =

∫
V
(χN ◦ T ) | detT ′| dm (15.8)

(because both integrals are zero). Since every Lebesgue measurable set E ⊂ Rk is a
disjoint union, E = A⊎N , of a Borel set A and a null set N , and then χE = χA+χN .
Now adding (15.7) and (15.8) gives∫

T (V )
χE dm =

∫
V
(χE ◦ T ) | detT ′| dm (15.9)

Step 7. Once we have (15.9), it is clear that∫
T (V )

s dm =

∫
V
(s ◦ T ) |detT ′| dm

for every simple function s ≥ 0 on Rk. Another application of the Lebesgue Mono-

tone Convergence completes the proof of the theorem.

• We did not prove that f ◦ T is a measurable function. In fact, this is not necessarily
true! What our proof does establish is that the product (f ◦T ) | detT ′| is a measurable
function.

Corollary 15.9. Suppose that
(i) φ : (a, b) → (α, β) is a monotonically increasing differentiable function such that

lim
x→a+

φ(x) = α and lim
x→b−

φ(x) = β

(ii) f ≥ 0 is a Lebesgue measurable function. Then∫
[α,β]

f dm =

∫
[a,b]

(f ◦ φ) |φ′| dm

Proof. If φ is strictly monotonically increasing, then it is one-to-one and the result

follows from Theorem 15.7 (we just set k = 1 and V = (a, b)). If φ is not strictly

monotonically increasing, then it is constant on some intervals. On those intervals

φ′ = 0, so they do not affect the value of the second integral; thus they can be

collapsed and removed, after which φ becomes strictly monotonically increasing (we

omit the details of this “collapsing” procedure).
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• This corollary easily extends to integrable functions f ∈ L1
m(a, b) and monotonically

decreasing differentiable functions φ : (a, b) → (α, β) such that

lim
x→a+

φ(x) = β and lim
x→b−

φ(x) = α

Exercise 79. Let f ≥ 0 and f ∈ L1(R). Find

lim
n→∞

∫
[0,1]

f(nx) dm(x)

Exercise 80. Let f, g : [a, b] → C be two AC functions. Prove the integration-by-parts formula∫
[a,b]

f ′g dm = f(b)g(b)− f(a)g(a)−
∫
[a,b]

fg′ dm

Exercise 81. Let f ≥ 0 and f ∈ L1([0,∞)) and g(x) : = 2xf(x2) for all x ∈ [0,∞). Show that
g ∈ L1([0,∞)) and ∫

[0,∞)

f dm =

∫
[0,∞)

g dm

Exercise 82. [Bonus] Let f : R → R be integrable, i.e., f ∈ L1
m(R). Define a function g : R → R

by

g(x) =

{
f
(
x− 1

x

)
if x ̸= 0

0 if x = 0

Prove that g(−1/x) = g(x) and ∫
R
f dm =

∫
R
g dm
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Product spaces16

Definition 16.1. Let X and Y be two sets. Its Cartesian product X × Y is
the set of all (ordered) pairs (x, y), with x ∈ X and y ∈ Y . If A ⊂ X and B ⊂ Y ,
then the set A×B ⊂ X × Y is called a rectangle.

Definition 16.2. Let (X,M) and (Y,N) be two measurable spaces. For every
A ∈ M and B ∈ N the set A × B is called a measurable rectangle in X × Y .
Any finite union E = R1 ∪R2 ∪ · · · ∪Rn of disjoint measurable rectangles is called
an elementary set. The collection of elementary sets is denoted by E .

Proposition 16.3. E is an algebra, i.e. finite unions, intersections, differences
and complements of elementary sets are elementary sets.

Proof. A straightforward verification. (Recall also Example 1.)

• Note: E is not a σ-algebra.

Definition 16.4. We denote by M ×N the (minimal) σ-algebra in X × Y gen-
erated by elementary sets (equivalently, by measurable rectangles).

Definition 16.5. Let E ⊂ X × Y and x ∈ X, y ∈ Y . Then

Ex = {y′ : (x, y′) ∈ E} ⊂ Y

is called the x-section of E and

Ey = {x′ : (x′, y) ∈ E} ⊂ X

is called the y-section of E.

158



Theorem 16.6. If E ∈ M ×N, then Ex ∈ N and Ey ∈ M for every x ∈ X and
every y ∈ Y .

Proof. Let Ω = {E ⊂ X × Y : Ex ∈ N ∀x ∈ X}. We will show that

(a) Ω contains all measurable rectangles

(b) Ω is a σ-algebra.

Then it will follow that Ω ⊃ M × N, because M × N is the minimal σ-algebra
containing all measurable rectangles.

Proof of (a): if E = A×B is a measurable rectangle, then Ex = B for x ∈ A and
Ex = ∅ for x /∈ A, so Ex ∈ N in either case.

Proof of (b): First, if E ∈ Ω, then for every x ∈ X we have Ex ∈ N, hence (Ec)x =
(Ex)

c ∈ N, thus Ec ∈ Ω. Second, if Ei ∈ Ω and E = ∪iEi, then Ex = ∪i(Ei)x ∈ N,
thus E ∈ Ω (σ-additivity).

According to Lemma 2.4, Ω is a σ-algebra. The proof for Ey is similar.

Definition 16.7. Let f : X × Y → Z be a function.
For every x ∈ X, the function fx on Y is defined by fx(y) = f(x, y).
For every y ∈ Y , the function f y on X is defined by f y(x) = f(x, y).

(these can be regarded as sections of a function of two variables.)

Theorem 16.8. Let Z be a topological space and f : X × Y → Z a measurable
function (with respect to the σ-algebra M×N). Then

(i) fx is N-measurable on Y for each x ∈ X;

(ii) f y is M-measurable on X for each y ∈ Y ;

Proof. Let V ⊂ Z be an open set. The measurability of f means that

Q = f−1(V ) = {(x, y) : f(x, y) ∈ V } ∈ M×N

Note that for each x ∈ X

Qx = {y : (x, y) ∈ Q} = {y : fx(y) ∈ V }

and by Theorem 16.6 we have Qx ∈ N thus fx is N-measurable. Similarly, fy is

M-measurable.
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Definition 16.9. A monotone class M is a collection of sets with the following
properties:

(i) Ai ∈ M, Ai ⊂ Ai+1 (i = 1, 2, . . .) =⇒ ∪∞
i=1Ai ∈ M;

(ii) Bi ∈ M, Bi ⊃ Bi+1 (i = 1, 2, . . .) =⇒ ∩∞
i=1Bi ∈ M.

• Note: σ-algebras are monotone classes, but not vice versa.

Example 25. Any finite collection of sets {A1, . . . , An} makes a monotone class (check
it out!), but in order to be a σ-algebra it must contain all their unions, intersections,
differences, complements, etc.

The following are analogues of Theorem 3.4 and Theorem 3.5:

Lemma 16.10. Let {Mα} be an arbitrary collection of monotone classes of a set
X. Then their intersection ∩αMα is a monotone class of X as well.

Proof. Direct inspection. Note that the collection of monotone classes here may be

finite, countable, or uncountable; its cardinality is not essential.

Lemma 16.11. Let F be any collection of subsets of X. Then there exists a unique
monotone class M∗ ⊃ F such that for any other monotone class M ⊃ F we have
M∗ ⊂ M. (In other words, M∗ is the minimal monotone class containing F .)

Proof. M∗ is the intersection of all monotone classes containing F .

Minimal monotone class containing all rectangles. It is easy to see that if
X ⊂ R is a finite interval, then the collection of all subintervals I ⊂ X (including
all open, closed, and semiopen intervals) is a monotone class. Similarly, if X ⊂ R2

is a rectangle, then the collection of all subrectangles R ⊂ X is a monotone class.
More generally, the collection of all measurable rectangles in X × Y defined above
is a monotone class.

Recall now that the collection of finite unions of subintervals I ⊂ X is an algebra;
cf. Example 2. It is not a monotone class. The minimal monotone class containing
all finite unions of intervals includes all Gδ and all Fσ sets, in particular the Cantor
set C, so it is very rich.
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The minimal monotone class containing all finite unions of measurable rectan-
gles (i.e., all elementary sets) in X × Y is very rich:

Theorem 16.12. The minimal monotone class containing E, i.e., containing all
elementary sets in X × Y is the entire σ-algebra M×N.

Proof. Let G denote the minimal monotone class containing E . We claim that

(a) P,Q ∈ G ⇒ P \Q ∈ G;

(b) P,Q ∈ G ⇒ P ∪Q ∈ G.

Indeed, for any set P ⊂ X × Y (measurable or not) let us denote

Ω(P ) = {Q ⊂ X × Y : P \Q ∈ G, Q \ P ∈ G, P ∪Q ∈ G}

One can verify, by direct inspection, that

(i) Q ∈ Ω(P ) ⇔ P ∈ Ω(Q) (symmetry)

(ii) Ω(P ) is a monotone class (since so is G)

Now fix P ∈ E . Then E ⊂ Ω(P ) (because E is an algebra). Hence G ⊂ Ω(P ).

Now fix Q ∈ G. Then Q ∈ Ω(P ) for all P ∈ E . By (i) we have P ∈ Ω(Q) for all
P ∈ E . Therefore E ⊂ Ω(Q), and then G ⊂ Ω(Q). This proves our claims (a) and (b).

Note that G ⊂ M ×N, because M ×N is a monotone class. Thus if we show that
G is a σ-algebra, it would imply that G = M ×N, as desired. Next we check that
G is a σ-algebra.

First, if Q ∈ G, then Qc = (X × Y ) \Q ∈ G by the property (a) above. Second, if

Pi ∈ G and P = ∪iPi, then Qn = P1 ∪ · · · ∪ Pn ∈ G for every n ≥ 1 by property

(b) above. Lastly, since Qn ⊂ Qn+1, the sets {Qn} make a monotone sequence,

hence ∪nQn ∈ G because G is a monotone class. Thus P = ∪nQn ∈ G proving the

σ-additivity of G. According to Lemma 2.4, G is a σ-algebra.
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Our next goal is to construct the product of measures.

Theorem 16.13. Let (X,M, µ) and (Y,N, λ) be two measure spaces with σ-finite
positive measures µ and λ. Let Q ∈ M×N. Define

φ(x) = λ(Qx) for every x ∈ X

ψ(y) = µ(Qy) for every y ∈ Y

Then φ is M-measurable, ψ is N-measurable, and∫
X

φdµ =

∫
Y

ψ dλ. (16.1)

• Note that

λ(Qx) =

∫
Y
χQ(x, y) dλ(y)

and similarly

µ(Qy) =

∫
X
χQ(x, y) dµ(x)

Thus we can rewrite (16.1) as∫
X

(∫
Y
χQ(x, y) dλ(y)

)
dµ(x) =

∫
Y

(∫
X
χQ(x, y) dµ(x)

)
dλ(y). (16.2)

Proof. Let Ω denote the class of all Q ∈ M × N for which the conclusion of the
theorem holds. We claim that Ω has the following properties:

(a) Every measurable rectangle belongs in Ω

(b) If Q1 ⊂ Q2 ⊂ · · · and each Qi ∈ Ω, then ∪iQi ∈ Ω

(c) If {Qi} are disjoint members of Ω, then ⊎iQi ∈ Ω

(d) If µ(A) <∞ and λ(B) <∞, and if A×B ⊃ Q1 ⊃ Q2 ⊃ · · · for some Qi ∈ Ω,
then ∩iQi ∈ Ω.

To prove (a) note that if Q = A×B is a measurable rectangle, then

λ(Qx) = λ(B)χA(x) and µ(Qy) = µ(A)χB(y)

therefore each of the integrals in (16.1) equals µ(A)λ(B).
To prove (b), let φi and ψi be associated with Qi in the way in which φ and ψ

are associated with Q. The continuity (Theorem 3.13) of µ and λ implies pointwise
convergence

φi(x) → φ(x) and ψi(y) → ψ(y)

as i → ∞, for every point x ∈ X and y ∈ Y . Also note that φi and ψi are
monotonically increasing sequences of functions. Since they are assumed to satisfy
the conclusion of the theorem, (b) follows from the Lebesgue Monotone Convergence.
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The claim (c) is easy for finite disjoint unions, because the characteristic function
of the union is the sum of the characteristic functions of the sets. Now for countable
disjoint unions, (c) follows from (b).

The proof of (d) is like that of (b), except we use the Lebesgue Dominated
Convergence, which is legitimate since µ(A) <∞ and λ(B) <∞.

Now due to σ-finiteness of µ and λ we have X = ⊎Xn with µ(Xn) < ∞ and
Y = ⊎Ym with µ(Ym) <∞. Define

Qmn = Q ∩ (Xn × Ym)

and let G be the class of all Q ∈ M×N such that Qmn ∈ Ω for all m,n. Then (b)
and (d) show that G is a monotone class. Also, (a) and (c) show that E ⊂ G. Now
Theorem 16.12 implies that G ⊃ M×N.

Thus Qmn ∈ Ω for every Q ∈ M × N and all m,n. Since Q = ⊎m,nQmn, we

conclude from (c) that Q ∈ Ω. This completes the proof.

Definition 16.14. Let (X,M, µ) and (Y,N, λ) be two measure spaces with σ-
finite positive measures µ and λ. Then we can define a measure, µ× λ, on M×N
by

(µ× λ)(Q) =

∫
X

λ(Qx) dµ(x) =

∫
Y

µ(Qy) dλ(y).

The measure µ× λ is called the product of the measures µ and λ.

• The fact that µ × λ is indeed a measure (i.e., its σ-additivity) follows immediately
from Theorem 5.13.

• Observe that µ× λ is also a σ-finite positive measure.

• Now we can rewrite (16.2) as∫
X×Y

χQ d(µ× λ) =

∫
X

(∫
Y
χQ(x, y) dλ(y)

)
dµ(x)

=

∫
Y

(∫
X
χQ(x, y) dµ(x)

)
dλ(y). (16.3)

Exercise 83. Show that µ× λ is a unique measure on M×N such that

(µ× λ)(A×B) = µ(A)λ(B)

for all measurable rectangles A×B in X × Y . (Hint: similar to the proof of Theorem 16.13.)
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Fubini Theorem17

Theorem 17.1. Fubini

Let (X,M, µ) and (Y,N, λ) be two measure spaces with σ-finite positive measures.
Let f be an (M×N)-measurable function on X × Y . Then

(a) Suppose 0 ≤ f ≤ ∞. Define, for each x ∈ X and y ∈ Y

φ(x) =

∫
Y

fx dλ, ψ(y) =

∫
X

f y dµ

Then φ is M-measurable, ψ is N-measurable, and∫
X×Y

f d(µ× λ) =

∫
X

φdµ =

∫
Y

ψ dλ. (17.1)

(b) Suppose f is complex-valued and∫
X

φ∗ dµ <∞ where φ∗(x) =

∫
Y

|f |x dλ

Then f ∈ L1
µ×λ.

(c) Suppose f ∈ L1
µ×λ. Then

fx ∈ L1
λ for a.e. x ∈ X,

f y ∈ L1
µ for a.e. y ∈ Y,

φ(x) =

∫
Y

fx dλ ∈ L1
µ,

ψ(y) =

∫
X

f y dµ ∈ L1
λ,

and the above equation (17.1) holds.

• Note that equation (17.1) can be written as∫
X×Y

f d(µ× λ) =

∫
X

(∫
Y
f(x, y) dλ(y)

)
dµ(x)

=

∫
Y

(∫
X
f(x, y) dµ(x)

)
dλ(y) (17.2)

(a double integral is represented by iterated integrals).

Corollary 17.2. Suppose f ≥ 0. If one iterated integral in (17.2) exists, then all
the three integrals exist and are equal.

(For non-positive functions, this is not true, see Example 26 below.)

• The corollary is obtained by a combination of (b) and (c).
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Proof. We begin with (a).

Proof of (a). According to Theorem 16.8, fx and fy are measurable non-negative
functions, thus the definitions of φ and ψ are legitimate. The rest of the proof
consists of three steps:

Step 1: Indicator functions. Let Q ∈ M×N and f = χQ. Then our target equation
(17.2) is exactly (16.3) obtained earlier.

Step 2: Simple functions. Suppose f =
∑N

n=1 αnχQn with some αn ≥ 0, where
Qn ∈ M×N and X × Y = ⊎N

n=1Qn. Then the conclusion is obtained due to Step 1
and the obvious linearity of (17.2)

Step 3: General functions. Given a measurable f ≥ 0, there is an increasing sequence
of simple nonnegative functions {sn} converging to f pointwise (Theorem 4.22):

0 ≤ s1 ≤ s2 ≤ · · · and sn(x, y) → f(x, y)

for every (x, y) ∈ X × Y . If φn is associated with sn in the same way in which φ is
associated with f , then Step 2 implies∫

X
φn dµ =

∫
X×Y

sn d(µ× λ)

The Lebesgue Monotone Convergence applied on (Y,N, λ) shows that

0 ≤ φ1(x) ≤ φ2(x) ≤ · · · and φn(x) → φ(x)

for every x ∈ X. Taking the limit n → ∞ and using Lebesgue Monotone Conver-
gence again, now on (X,M, µ), gives the first equality in (17.2). The second one is
similar.

Proof of (b). Due to (a), we have∫
X×Y

|f | d(µ× λ) =

∫
X

(∫
Y
|f |x dλ(y)

)
dµ(x) =

∫
X
φ∗ dµ <∞

This implies (b).

Proof of (c). It is enough to prove (c) for real-valued f , then the complex case
follows directly due to Definition 6.5 and (6.1).

If f ∈ L1
µ×λ is a real-valued function, then f = f+ − f−, where f+ and f− are

nonnegative integrable functions (Lemma 6.2). Let φ± be associated with f± in the
same way in which φ is associated with f . Then (a) implies∫

X
φ± dµ =

∫
X×Y

f± d(µ× λ) <∞
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hence φ± ∈ L1
µ. In particular, φ±(x) <∞ for a.e. x ∈ X. This can be rephrased as

(f±)x ∈ L1
λ for a.e. x ∈ X. Therefore

fx = (f+)x − (f−)x ∈ L1
λ

for a.e. x ∈ X. This is the first claim in (c). The second one is similar.
Next, for a.e. x ∈ X the above conclusions hold and by the linearity of the

Lebesgue integrals we have

φ(x) =

∫
Y
fx dµ =

∫
Y
(f+)x dµ−

∫
Y
(f−)x dµ = φ+(x)− φ−(x)

thus φ ∈ L1
µ. This is the third claim in (c). The fourth one is similar.

Lastly, we can apply (17.1) to f+ and f− separately, based on the part (a) which
is already proven. This gives∫

X
φdµ =

∫
X
φ+ dµ−

∫
X
φ− dµ

=

∫
X×Y

f+ d(µ× λ)−
∫
X×Y

f− d(µ× λ) =

∫
X×Y

f d(µ× λ)

This is the first equation in (17.1). The second one is similar.
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It is instructive to see a few counterexamples that show that the assumptions
of Fubini’s theorem cannot be dispensed with.

Example 26. Let X = Y = N and µ = λ be the counting measure. Then µ× λ is the
counting measure on X ×Y (check this!). Define a function f(x, y) on X ×Y as follows:
f(i, j) = aij for i, j ≥ 1, where

aij =


1 if i = j

−1 if i = j + 1

0 otherwise

The values of f , presented in a matrix form, are

1 0
. . .

−1 1 0
. . .

0 −1 1 0
. . .

. . . 0 −1 1
. . .

. . .
. . .

. . .
. . .


Then we have ∫

X

(∫
Y
f(x, y) dλ(y)

)
dµ(x) =

∑
i

∑
j

aij = 1

On the other hand, ∫
Y

(∫
X
f(x, y) dµ(x)

)
dλ(y) =

∑
j

∑
i

aij = 0.

Incidentally, we found a sequence {aij} of real numbers such that∑
i

∑
j

aij ̸=
∑
j

∑
i

aij

The reason why Fubini’s theorem does not apply here is that f /∈ L1
µ×λ.

See a Lebesgue-measure version of this example in Rudin, page 166.
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Example 27. Let X = Y = [0, 1]. Let µ be the Lebesgue measure on [0, 1] and λ be
the counting measure on [0, 1]. Define a function f(x, y) on X × Y (the unit square) as
follows:

f(x, y) =

{
1 if x = y

0 otherwise

In other words, f is the characteristic function of the diagonal. Then we have∫
X

(∫
Y
f(x, y) dλ(y)

)
dµ(x) = 1

because the inner integral is equal to 1 for every x ∈ X.
On the other hand, ∫

Y

(∫
X
f(x, y) dµ(x)

)
dλ(y) = 0

because the inner integral is equal to 0 for every y ∈ Y .
The reason why Fubini’s theorem does not apply is that λ is not a σ-finite measure.

• Note that in the above example the function f is M × N measurable. Indeed, the
diagonal D = {x = y} can be obtained as

D = ∩n≥1Qn

where Qn is the union of small squares placed along the diagonal:

Qn =

n∪
i=1

[
i−1
n , i

n

]
×

[
i−1
n , i

n

]

• In the above two examples, Fubini’s theorem failed because either the function f or
one of the measures µ and λ were “too big”. A more sophisticated example can be
constructed where the measures and the function are “small”. More precisely, in that
example µ(X) = λ(Y ) = 1 and f only takes values 0 and 1. In that example the
iterated integrals in (17.2) exist but are different. The reason why Fubini’s theorem
fails is that f happens to be not measurable with respect to the product σ-algebra
M×N. But this example is too complicated to discuss in class; see Rudin, page 167.
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Exercise 84. Let an ≥ 0 for n = 1, 2, . . ., and for t ≥ 0 let

N(t) = #{n : an > t}

Prove that
∞∑

n=1

an =

∫ ∞

0

N(t) dt

Exercise 85. [Bonus] Generalize the previous exercise as follows. Let ϕ : [0,∞) → [0,∞) be an
increasing locally absolutely continuous function (the latter means that ϕ is AC on every finite
interval) such that ϕ(0) = 0. Find a formula for

∑∞
n=1 ϕ(an) in terms of N(t).

Exercise 86. Let f ∈ L1([0, 1]) and f ≥ 0. Show that∫ 1

0

f(y)

|x− y|1/2
dy

is finite for a.e. x ∈ [0, 1] and, as a function of x, integrable with respect to the Lebesgue measure
on [0, 1].

Exercise 87. Use Fubini’s theorem and the relation

1

x
=

∫ ∞

0

e−xt dt for x > 0

to prove that

lim
A→∞

∫ A

0

sinx

x
dx =

π

2

Completeness of the product measure. The measure µ× λ is not necessarily
complete. In fact, in most cases it is not complete.

Indeed, suppose that there is a non-empty null set A ⊂ X and a non-measurable
set B ⊂ Y . Then a simple application of Theorem 16.6 shows that A × B is not
measurable. On the other hand, A×B is a subset of a null set, A× Y .

A particularly interesting example is X = Y = R and µ = λ = m the Lebesgue
measure. By the above argument the product measure m×m on R2 is not com-
plete, thus it is not the Lebesgue measure on R2. It turns out, however, that the
completion of m×m is the Lebesgue measure on R2, see below.
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Theorem 17.3. Let mk denote the Lebesgue measure on Rk. Then the completion
of ms ×mt is the Lebesgue measure ms+t.

Proof. LetBk andMk denote the Borel and Lebesgue σ-algebras in Rk, respectively.
Note that Bk ⊂ Mk. The theorem is proved in five steps.

Step 1: Bs+t ⊂ Bs ×Bt

(
⊂ Ms ×Mt

)
. Indeed, Bs+t is generated by open sets in

Rs+t, in particular by open rectangular boxes, each of which is in Bs ×Bt.

Step 2: ms+t and ms ×mt coincide on Bs+t. Indeed, these two measures agree on
rectangles, then we can apply either Theorem 3.17 or Corollary 3.19.

Step 3: Bs+t = Bs ×Bt. The inclusion “⊂” was proved in Step 1. For the other
inclusion “⊃” it is enough to show that

A ∈ Bs, B ∈ Bt ⇒ A×B ∈ Bs+t (17.3)

because the sets A × B generate Bs ×Bt. So we need to prove (17.3). If A ∈ Bs

and B ∈ Bt are open, then A× B is open, hence it is in Bs+t. Now fix an open se
B ∈ Bt and consider

Gs = {A ⊂ Rs : A×B ∈ Bs+t}
It is a σ-algebra in Rs containing open sets, hence Gs ⊃ Bs. This means A × B ∈
Bs+t provided A ∈ Bs and B is open. Next fix A ∈ Bs and consider

G′
t = {B ⊂ Rt : A×B ∈ Bs+t}

It is a σ-algebra in Rt containing open sets, henceG′
t ⊃ Bt. This means A×B ∈ Bs+t

provided A ∈ Bs and B ∈ Bt.

Step 4: Ms ×Mt ⊂ Ms+t. Let E ∈ Ms and F ∈ Mt. By Theorem 8.4, there are
A,B ∈ Bs such that B ⊂ E ⊂ A and ms(A \B) = 0. Then

B × Rt ⊂ E × Rt ⊂ A× Rt

On the other hand, due to Steps 2 and 3

ms+t((A× Rt) \ (B × Rt)) = ms+t((A \B)× Rt) = (ms ×mt)((A \B)× Rt)

= ms(A \B) ·mt(Rt) = 0 · ∞ = 0

Since ms+t is complete, we have E × Rt ∈ Ms+t. Similarly, Rs × F ∈ Ms+t. Thus

E × F = (E × Rt) ∩ (Rs × F ) ∈ Ms+t

Since these sets E × F generate Ms ×Mt, Step 4 is proved.

Step 5: ms+t and ms×mt coincide on Ms×Mt. Indeed, let Q ∈ Ms×Mt ⊂ Ms+t

(due to Step 4). By Theorem 8.4, there are A,B ∈ Bs+t ⊂ Ms ×Mt (due to Step
1) such that B ⊂ Q ⊂ A and ms+t(A \ B) = 0. Therefore (ms × mt)(A \ B) = 0
due to Step 2. As a result, (ms ×mt)(Q \B) = 0 thus

(ms ×mt)(Q) = (ms ×mt)(B)
Step 2
= ms+t(B) = ms+t(Q)

This completes the proof of Step 5.
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Next we look into measurable functions on complete measure spaces.

Lemma 17.4. Let (X,M, µ) a measure space and (X,M, µ) be its completion. If
f is an M-measurable function, then there exists an M-measurable function g such
that f = g a.e. with respect to µ, i.e., {f ̸= g} ⊂ N with µ(N) = 0.

Proof. It suffices to do this for non-negative functions f ≥ 0. In that case, due to
Theorem 4.22, there are simple M-measurable functions

0 = s0 ≤ s1 ≤ s2 ≤ · · · and sn → f

Therefore

f =

∞∑
n=1

(sn − sn−1) =

∞∑
i=1

ciχEi

for some ci ≥ 0 and Ei ∈ M. Due to Theorem 3.22 there are sets Ai, Ni ∈ M such

that Ai ⊂ Ei ⊂ Ai∪Ni and µ(Ni) = 0. Now we define g =
∑∞

i=1 ciχAi and complete

the proof because {f ̸= g} ⊂ ∪∞
i=1Ni, which is a null set.

Lemma 17.5. Let (X,M, µ) and (Y,N, λ) be two measure spaces with complete
σ-finite positive measures. Let h be an (M×N)-measurable function on X × Y
such that h = 0 a.e. with respect to µ× λ. Then for µ-almost every x ∈ X we
have hx(y) = 0 a.e. on Y (in particular, hx is N-measurable for µ-almost every
x ∈ X). A similar statement holds for hy.

Proof. Denote
P = {(x, y) ∈ X × Y : h(x, y) ̸= 0}

It is assumed that (µ× λ)(P ) = 0. Thus there exists Q ∈ M×N such that P ⊂ Q
and (µ× λ)(Q) = 0. By Theorem 16.13∫

X
λ(Qx) dµ = (µ× λ)(Q) = 0 (17.4)

Now let N = {x ∈ X : λ(Qx) > 0}. It follows from (17.4) that µ(N) = 0.
For every x /∈ N we have the following:

(i) λ(Qx) = 0

(ii) Since Px ⊂ Qx and λ is a complete measure, we have that λ(Px) = 0, too.
Moreover, all subsets of Px belong in N

(iii) As a result, hx is N-measurable and hx = 0 a.e. on Y

This completes the proof of the lemma.
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The following is a version of the Fubini theorem for complete measure spaces.
In particular, it applies to the Lebesgue measures on Rk.

Theorem 17.6. Let (X,M, µ) and (Y,N, λ) be two measure spaces with complete
σ-finite positive measures. Let f be an (M×N)-measurable function on X × Y .
Then

(a) fx is N-measurable for almost every x ∈ X

(b) f y is M-measurable for almost every y ∈ Y

All the other conclusions of the standard Fubini theorem hold.

Proof. Due to Lemma 17.4, we have

f = g + h

where

(i) g is (M×N)-measurable

(ii) h = 0 a.e. with respect to µ× λ

Note that fx = gx + hx and fy = gy + hy.

Now the standard Fubini Theorem 17.1 applies to g. And Lemma 17.5 shows

that fx = gx a.e. on Y for µ-almost all x ∈ X. Similarly, fy = gy a.e. on X for

λ-almost all y ∈ Y .

Exercise 88. Let E be a Lebesgue measurable subset of R2. Suppose that for a.e. x ∈ R the
set Ex = {y ∈ R : (x, y) ∈ E} has Lebesgue measure zero. Prove that for a.e. y ∈ R the set
Ey = {x ∈ R : (x, y) ∈ E} has Lebesgue measure zero. Compute m2(E).
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Convolution and layer-cake integration18

Definition 18.1. Let f, g ∈ L1
m(R) be two Lebesgue integrable functions. Then

their convolution h = f ∗ g is defined by

h(x) =

∫
R
f(x− t) g(t) dm(t) (18.1)

(whenever the integral exists).

Lemma 18.2. We have f ∗ g = g ∗ f , i.e., convolution is a symmetric operation.

Proof. Applying the change of variable φ(t) = x− t and Corollary 15.9 gives∫
R
f(x− t) g(t) dm(t) =

∫
R
f(t) g(x− t) dm(t)

(wherever one integral exists, so does the other, and they are equal).

• For every x ∈ R, the function f(x − t) can be represented as f ◦ φ, where φ(t) =
x − t. By the change-of-variable rule (Corollary 15.9) we have f(x − t) ∈ L1

m(R)
and

∫
R f(x − t) dm(t) =

∫
R f dm. Thus in (18.1) we integrate the product of two

integrable functions.

• It is not always true that if f, g ∈ L1
m(R) then fg ∈ L1(R). For example, consider

f = g = x−1/2χ[0,1], then f, g ∈ L1(R) but fg /∈ L1(R). Thus the existence of the
integral in (18.1) is not guaranteed for any x ∈ R; actually this fact is far from
obvious.
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Theorem 18.3. Let f, g ∈ L1(R). Then∫
R
|f(x− t) g(t)| dm(t) <∞

for almost every x ∈ R, thus h(x) in (18.1) exists for almost every x ∈ R. More-
over, h ∈ L1(R) and we have the following Young inequality:

∥h∥1 ≤ ∥f∥1∥g∥1 (18.2)

Proof. Due to Lemma 17.4, there exist Borel functions f0 and g0 such that f0 = f
a.e. and g0 = g a.e. The integral (18.1) is unchanged if we replace f by f0 and g by
g0. So we may assume, to begin with, that f and g are Borel functions.

Define a function F on R2 by

F (x, y) = f(x− y) g(y)

It is a Borel function because F = (f ◦ φ) · (g ◦ ψ), where φ(x, y) = x − y and
ψ(x, y) = y are obviously Borel functions.

Note that∫
R

(∫
R
|F (x, y)| dm(x)

)
dm(y) =

∫
R
|g(y)|

(∫
R
|f(x− y)| dm(x)

)
dm(y)

The inner integral is ∫
R
|f(x− y)| dm(x) =

∫
R
|f | dm = ∥f∥1

due to the translation invariance of the Lebesgue measure. Therefore∫
R

(∫
R
|F (x, y)| dm(x)

)
dm(y) = ∥f∥1 ∥g∥1 <∞ (18.3)

Thus by Fubini Theorem 17.1 (b) we have F ∈ L1(R2) and the clause (c) of the same
theorem implies that h(x) exists for almost every x ∈ R and h ∈ L1(R). Finally,

∥h∥1 =
∫
R
|h| dm ≤

∫
R

(∫
R
|f(x− y) g(y)| dm(y)

)
dm(x)

=

∫
R

(∫
R
|f(x− y) g(y)| dm(x)

)
dm(y) = ∥f∥1 ∥g∥1

due to (18.3).

• If we assume that f, g ≥ 0, then ∥h∥1 = ∥f∥1∥g∥1.
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Exercise 89. Suppose f ∈ L1(R) and g ∈ Lp(R) for some 1 ≤ p ≤ ∞. Show that f ∗ g exists at
a.e. x ∈ R and f ∗ g ∈ Lp(R), and prove that

∥f ∗ g∥p ≤ ∥f∥1∥g∥p.

Hints: the case p = ∞ is simple and can be treated separately. If p < ∞, then use Hölder
inequality and argue as in the proof of the previous theorem.

Exercise 90. Let f ∈ L1(R) and

g(x) =

∫
R
f(y) e−(x−y)2 dm(y).

Show that g ∈ Lp(R), for all 1 ≤ p ≤ ∞, and estimate ∥g∥p in terms of ∥f∥1. You can use the

following standard fact:
∫∞
−∞ e−x2

dx =
√
π.

Exercise 91. [Bonus] Let E = [1,∞) and f ∈ L2
m(E). Also assume that f ≥ 0 a.e. and define

g(x) =

∫
E

f(y) e−xy dm(y).

Show that g ∈ L1(E) and
∥g∥1 ≤ c ∥f∥2

for some c < 1. Estimate the minimal value of c the best you can.
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Definition 18.4. Let (X,M, µ) be a measure space with a σ-finite positive mea-
sure µ. Let f : X → [0,∞] be a measurable function. Then

g(t) = µ{f > t} = µ({x ∈ X : f(x) > t})

is called the distribution function of f .

• In probability theory, where µ(X) = 1, the distribution function is defined slightly
differently, as F (t) = µ{f ≤ t}. Thus F (t) = 1− g(t).

• The distribution function g(t) is monotonically decreasing (though not necessarily
strictly). Thus it is a Borel measurable function.

Theorem 18.5. Let f and µ be as above. Suppose φ : [0,∞] → [0,∞] is a mono-
tonic increasing function that is absolutely continuous on every finite interval [0, T ]
and satisfies φ(0) = 0 and limt→∞ φ(t) = φ(∞). Then∫

X

(φ ◦ f) dµ =

∫ ∞

0

µ{f > t}φ′(t) dt. (18.4)

• Special case: if φ(t) = t, we obtain a useful formula∫
X
f dµ =

∫ ∞

0
µ{f > t} dt,

which is sometimes given as a definition of the Lebesgue integral. This formula is
known as layer-cake integration.

X

f

x

f(x)

t

{f>t}=Et

Figure 9: Layer Cake integration.
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Proof. (of Theorem 18.5) Let

E = {(x, t) ∈ X × [0,∞] : f(x) > t}

denote the region “under the graph” of f(x).
First we check that E is µ × m measurable. Indeed, if f is simple, then E is

just a finite union of measurable rectangles. In general, we can approximate f by a
sequence of simple functions (recall Theorem 4.22)

0 ≤ s1 ≤ s2 ≤ · · · ≤ f, sn → f

Now each sn corresponds to a measurable set En and we have E = ∪n≥1En, thus E
is measurable.

Now let Et = {x ∈ X : (x, t) ∈ E} denote the t-section of E. Then

g(t) = µ{f > t} = µ(Et) =

∫
X
χEt dµ =

∫
X
χE(x, t) dµ(x)

The right hand side of (18.4) is therefore∫ ∞

0
µ(Et)φ′(t) dt =

∫ ∞

0
φ′(t)

(∫
X
χE(x, t) dµ(x)

)
dt

Due to the Fubini theorem, part (a), we can interchange the order of integration:∫ ∞

0
φ′(t)

(∫
X
χE(x, t) dµ(x)

)
dt =

∫
X

(∫ ∞

0
χE(x, t)φ

′(t) dt

)
dµ(x)

Now χE(x, t) = χ[0,f(x))(t) and by Theorem 14.5∫ ∞

0
χ[0,f(x))(t)φ

′(t) dt =

∫ f(x)

0
φ′(t) dt = φ(t)− φ(0) = φ(f(x))

Therefore the right hand side of (18.4) becomes
∫
X(φ ◦ f) dµ, as desired.

Exercise 92. Let f : R → R be Lebesgue measurable.

(a) Prove that the set
A = {(x, y) ∈ R2 | y < f(x)}

is Lebesgue measurable (in the two-dimensional sense)

(b) Let f ≥ 0. Is it always true that
∫
R f dm equals the Lebesgue measure of A?

(c) Prove that {(x, y) ∈ R2 | y = f(x)} is a null set.

Exercise 93. [Bonus] Let f : R2 → R be such that fx is Borel-measurable for every x ∈ R and
fy is continuous for every y ∈ R. Prove that f is Borel-measurable. (See hint on p. 176 in
Rudin’s book.)
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Definition 18.6. For every Lebesgue measurable function f : Rk → C define the
maximal function Mf : Rk → [0,∞] by

(Mf)(x) = sup
0<r<∞

1

m(B(x, r))

∫
B(x,r)

|f | dm

whenever the integral exists.

• Earlier we defined this function only for f ∈ L1(Rk), and in that case we proved
Mf ∈ L1

W (Rk).

Theorem 18.7. If f ∈ L1(Rk) and Mf ∈ L1(Rk), then f = 0 a.e.

Proof. Indeed, if
∫
Rk |f | dm > 0, then there is bounded region E ⊂ Rk such that∫

E |f | dm > 0. Now

(Mf)(x) ≥ sup
0<r<∞

1

m(B(x, r))

∫
E∩B(x,r)

|f | dm

and this gives us (Mf)(x) ≥ c|x|−k for some c > 0 and all sufficiently large |x|. It is
a calculus exercise to see that the function |x|−k has infinite Riemann integral over

the set χRk\B(0,r) for any r > 0. Thus, for any bounded region E ⊂ Rk, the function

|x|−kχRk\E is not integrable on Rk.

• The situation in the Lp spaces with p > 1 is different:

Theorem 18.8. [Hardy–Littlewood]

Let 1 < p ≤ ∞. If f ∈ Lp(Rk), then Mf ∈ Lp(Rk).

Can be given without proof. The proof is in Rudin’s book.
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