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Abstract of the Dissertation

On Invariant Measures of the Exclusion Process

and Related Processes

by

Paul Heajoon Jung

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2003

Professor Thomas M. Liggett, Chair

This thesis studies the invariant measures I of the exclusion process and other

closely related interacting particle systems.

For the exclusion process with symmetric kernel p(x, y) = p(y, x), I has been

completely studied by analyzing the dual process. We give a brief overview

of those results and then prove some new results concerning cases for which

p(x, y) = p(y, x) except for finitely many x, y ∈ S where p(x, y) corresponds

to a transient Markov chain on a countable graph S. The two techniques used

in proving the new results include an approximation to the dual process and a

certain coupling known as the infinitesimal coupling.

Next, we consider asymmetric exclusion processes where in general we do

not have that p(x, y) = p(y, x). The characterization of I in these cases is

typically much more difficult. We will characterize I for exclusion processes

on Z with certain reversible transition kernels. Some examples for which I is

given include all reversible finite-range kernels that are asymptotically equal to

p(x, x+ 1) = p(x, x−1) = 1/2. One tool used in the proofs gives a necessary and

sufficient condition for reversible measures to be extremal in the set of invariant

viii



measures, which is an interesting result in its own right.

Finally, we will study I for a hybrid of the symmetric exclusion process and

the voter model. The reason such a hybrid is interesting is that the dual processes

for the two systems are closely related. The dual processes can thus be combined

to analyze the hybrid process. In fact, the dual of the hybrid process allows one to

also add spontaneous births and deaths of particles at no cost to the techniques

used. Also, an ergodic theorem for a process related to the hybrid process is

proved using certain coupling methods.
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CHAPTER 1

Introduction

1.1 Interacting particle systems

An interacting particle system is a stochastic process ηt for which particles live on

the vertices of some countably infinite graph S and behave according to dynamics

which depend on the configuration of particles in some surrounding neighborhood.

The study of these processes began in the late 1960’s and in a large part was

fuelled by the field of statistical dynamics. The motivation came from the idea

that (interacting) particle systems model certain processes in the natural and

physical world.

The first question to ask about any stochastic process is, to what distributions

does the process converge? In other words, what are the invariant (or equivalently,

stationary) measures? Thus, a fundamental issue concerning particle systems is

classifying the invariant measures I and giving properties of these measures. A

closely related problem is to characterize the set of all initial measures which

converge in distribution to a given invariant measure. The set of initial measures

which converge in distribution to µ ∈ I is called the domain of attraction of µ.

A large class of particle systems consists of systems for which at most one

particle can occupy a vertex or site at any given time. The state space for these

particle systems is given by X = {0, 1}S . Here a 1 at x ∈ S represents a particle
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occupying site x whereas a 0 indicates that x is vacant. A configuration is an

element η ∈ X where either η(x) = 0 or η(x) = 1 for each x ∈ S. All of the particle

systems that are studied in this thesis will have X as the state space. Therefore

we will from now on assume that P is the set of all probability measures on X.

Some examples of particle systems for which the state space is X are spin

systems. In particular, a particle system is known as a spin system if the state

space is X and the value of ηt switches at only one site for any given time t ∈ [0,∞)

(i.e. the transition from one state to another is given by η 7→ ηx where

ηx(u) =

 η(u) if u 6= x

1− η(u) if u = x).

The interpretation is that a particle is born when η(x) goes from 0 to 1 and a

particle dies when η(x) goes from 1 to 0. The rate at which η goes to ηx is given

by a nonnegative function c(x, η).

Let D(X) denote the set of all functions on X that depend on finitely many

coordinates. The generator for a spin system is given by the closure of the

operator Ω defined on D(X):

Ωf(η) =
∑
x

c(x, η)[f(ηx)− f(η)].

Under appropriate conditions on the flip rates c(x, η), the generator Ω uniquely

determines a Feller process on X. For a detailed account of the construction of

these processes we refer the reader to Chapter I of Interacting Particle Systems

(Liggett(1985)) which we will henceforth abbreviate as IPS.

For the most part, the processes studied here are not spin systems, but we have

introduced them here because they are related to the exclusion process which we

will study in detail. In fact, in Chapter 4 we will consider a generalization of

the exclusion process for which a certain spin system called the voter model is a
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special case.

The exclusion process is another example of a particle system with state space

X. Again, we think of 1’s as particles and 0’s as empty sites. A particle at site

x ∈ S waits an exponential time with parameter qx =
∑

y q(x, y) at which time

it chooses a y ∈ S with probability q(x, y)/qx. If y is empty then the particle

at x goes to y, while if y is occupied the particle at x does not move. The

exclusion process will be the focus of study in the next two chapters. As such,

the remainder of this chapter provides a brief introduction to this process.

1.2 The exclusion process

The exclusion process is one of the most well-known interacting particle systems.

This is in part due to its many applications. It is used in biology as a model

for the particle motion of ribosomes (Macdonald, Gibbs, and Pipkin(1968)), in

physics as a model for a lattice gas at infinite temperature (Spitzer(1970)), and

in ecology as a model in which two opposing species swap territory (Clifford and

Sudbury(1973)).

An intuitive description of the process is given at the end of the previous section.

For a technical description, let

sup
y

∑
x

q(x, y) <∞ and sup
x

∑
y

q(x, y) <∞ for q(x, y) ≥ 0.

Similar to spin systems, described previously, the generator for the exclusion

process is given by the closure of Ω defined on D(X). If

ηxy(u) =


η(y) if u = x

η(x) if u = y

η(u) if u 6= x, y
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then

Ωf(η) =
∑
x,y

q(x, y)η(x)(1− η(y))[f(ηxy)− f(η)]. (1.1)

The corresponding semigroup will be denoted by S(t).

The construction of the exclusion process is fully described in IPS. It is assumed

there that the transition kernel satisfies
∑

y p(x, y) = 1 (here p(x, y) is used

instead of q(x, y) since they can be thought of as probabilities), however, this is

just a normalization of the process we have just described. To see this, simply

add self-jump rates to the process we have described above:

q(x, x) = sup
z

∑
y

q(z, y)−
∑
y

q(x, y).

Dividing all transition rates by supz
∑

y q(z, y) gives us the process constructed

in IPS.

In the sequel, we will write p(x, y) instead of q(x, y) to indicate that the rates

have been normalized– with one exception: in Chapter 2 the rates p̄(x, y) will

not in general be normalized, but we write p̄(x, y) nonetheless since these rates

are derived from a normalized kernel p(x, y).

Many of the results in the following chapters require the analysis of the finite

exclusion process (exclusion processes where ηt(x) = 1 for finitely many x ∈ S,

for all t ≥ 0). Since the state space for a finite exclusion process starting with

n particles is the set of all subsets of S containing n elements, we introduce the

notation

Sn = Sn\{~x : xi = xj for some i < j}

as the state space of such a process. Also, let Y = ∪n≥1Sn denote all the finite

subsets of S.
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1.3 Results for the symmetric process

We will assume throughout the rest of this chapter that we are dealing with the

symmetric exclusion process where p(x, y) = p(y, x), and p(x, y) is irreducible.

Here the problems of characterizing I and the domains of attraction for µ ∈ I

have been completely solved. Theorems 1.3.2 and 1.3.3 (proved by Liggett and

Spitzer in the 1970’s) give a summary of these results.

For preliminaries, we describe in more detail the finite exclusion process At. The

process At is just the exclusion process with the added condition that its initial

state A0 has finitely many sites where η(x) = 1. We write |At| = n to denote the

number of sites that are 1’s. In particular At is a countable state Markov chain

that acts like n independent particles having transition rates p(x, y), except that

when a particle tries to move to an occupied site its motion is suppressed.

Although we do not prove Theorems 1.3.2 and 1.3.3, the following proposition

which is the main tool used in the two proofs, is worth stating. This next proposi-

tion is the reason why symmetric exclusion processes are fundamentally different

from asymmetric exclusion processes.

Proposition 1.3.1 (Spitzer). Suppose p(x, y) = p(y, x). If A ∈ Y and η ∈ X

then

P η[ηt(x) = 1 for all x ∈ A] = PA[η(x) = 1 for all x ∈ At]

for all t ≥ 0.

The dual nature of ηt and At in the above proposition is the reason why At

is known in the literature as the dual process. We do not give the proof of the

above lemma since we later prove a generalization of it in Proposition 4.2.1.

Before stating the two theorems we need some definitions. Denote the set of
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harmonic functions on S taking values between 0 and 1 as

H =

{
α : S → [0, 1] such that

∑
y

p(x, y)α(y) = α(x) for all x

}
.

Define να to be the product measure on X with marginals να{η : η(x) = 1, x ∈

S} = α(x). In the sequel we will abbreviate by writing να{η(x) = 1}.

Theorem 1.3.2 (Liggett, Spitzer). If p(x, y) is a symmetric, irreducible transi-

tion kernel on S then limt→∞ ναS(t) = µα exists for each α(x) ∈ H, and

Ie = {µα : α(x) ∈ H}.

One should note that by the Krein-Milman theorem I is the closed, convex hull

of its extreme points. Therefore characterizing Ie is equivalent to characterizing

I.

Let {X1(t), . . . , Xn(t)} be independent Markov chains on S with transition

probabilities

pt(x, y) = e−t
∑
n≥0

tn

n!
p(n)(x, y)

where p(n)(x, y) are the n-step transition probabilities corresponding to p(x, y).

Define the following function on S2,

g(x, y) = P (x,y)[X1(t) = X2(t) for some t > 0].

Theorem 1.3.3 (Liggett, Spitzer). Suppose that p(x, y) is symmetric and irre-

ducible on S. Suppose also that α(x) ∈ H and µ ∈ P.

(a) When g 6≡ 1, limt→∞ µS(t) = µα if and only if

lim
t→∞

∑
y

pt(x, y)µ{η(y) = 1} = α(x) for all x ∈ S, and (1.2)

lim
t→∞

∑
u,v

pt(x, u)pt(y, v)µ{η(u) = η(v) = 1} = α(x)α(y) for all x, y ∈ S.
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(b) When g ≡ 1, the only bounded harmonic functions are constant and

limt→∞ µS(t) = µα if and only if (1.2) holds and

lim
t→∞

E{x,y}µ{η(u) = 1 for all u ∈ At} = α2 for all x 6= y ∈ S.

The fact that all bounded harmonic functions are constant when g ≡ 1 will be

proved in the next section.

If g(x, y) = 1 for some (x, y) ∈ S2 then g(x, y) ≡ 1. To see this suppose

g(x, y) < 1 for some (x, y) ∈ S2. If z 6= x, y, then by irreducibility either a

particle can go from z to y without passing through x or a particle can go from

x to y without passing through z and from z to x without passing through y. In

either case, {X1(t), X2(t)} can go from (x, z) to (x, y) without passing through

S2\S2 so that g(x, z) < 1.

Also, it should be noted that g ≡ 1 implies that X(t) is recurrent but not

conversely. To prove the recurrence use the Chapman-Kolmogorov equation to

get

p2t(x, x) =
∑
y

pt(x, y)pt(y, x)

=
∑
y

[pt(x, y)]2 = P (x,x)[X1(t) = X2(t)].

So if X(t) is transient then g(x, y) < 1 for some x, y ∈ S since∫ ∞
0

P (x,x)[X1(t) = X2(t)] dt <∞

(this argument will be made more explicit in Section 4.3). An example of

a symmetric, irreducible recurrent Markov chain for which g 6≡ 1 is given in

Liggett(1974).

As stated earlier, we will not prove either result; however, the next section will

be devoted to proving a special case of Theorem 1.3.2 so as to give the reader a
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taste of the techniques used in the proofs of the general theorems. For a complete

treatment we direct the reader to Chapter VIII of IPS.

1.4 Coupling

Coupling is arguably the most important technique when dealing with interacting

particle systems. The coupling of two processes with state spaces S1 and S2 is a

joint process defined on a common probability space, usually having S1 × S2 as

its state space. The two marginal processes of the joint process are exactly the

original two processes. Normally, the coupling is useful only if the two marginal

processes are not independent.

As an example we now give the transition kernel of a coupling of the Markov

chains X1(t) and X2(t) defined in the previous section (here we will not assume

they are independent). If x 6= z then

p((x, z), (y, z)) = p((z, x), (z, y)) = p((x, x), (y, y)) = p(x, y)

and p((a, b), (c, d)) = 0 elsewise.

This coupling can be described by saying that X1(t) and X2(t) evolve indepen-

dently until the first time they meet after which point they move together. If the

two processes eventually meet with probability one, then the coupling is said to

be successful.

As a second example, we will describe the dual process, At with k particles, as

a coupling of the processes X1(t), . . . , Xk(t). The particles Xi(t) and Xj(t) move

independently except that when Xi(t) at x tries to move to a site y which is

occupied by Xj(t), the two particles switch places. In other words, the coupling

is such that the particles move independently except that Xi(t) at x goes to y

at exactly the same time that Xj(t) at y goes to x. At is just the set of sites
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occupied by the k particles and can be thought of as an element of Sk. Since

p(x, y) = p(y, x), each marginal process can be taken to be a Markov chain on S

with transition kernel p(x, y).

Proposition 1.4.1. Suppose g ≡ 1. If f is a bounded harmonic function for the

dual process, At with k particles, then f is constant on Sk.

Proof. The crux of the proof is constructing a successful coupling of two finite

exclusion processes At and A′t starting from A,A′ ∈ Sk respectively. If we are

able to do this, then for all bounded harmonic f on Sk

|f(A)− f(A′)| = |Ef(At)−Ef(A′t)| ≤ E|f(At)− f(A′t)| ≤ 2‖f‖P (At 6= A′t)→ 0

showing that f is constant.

To construct the successful coupling of At and A′t, we start by writing At =

{X1(t), . . . , Xk(t)} and A′t = {X ′1(t), . . . , X ′k(t)} using the coupling described

right before the statement of the proposition. We can then couple the Xi(t)’s

and X ′j(t)’s so that Xi(t) moves independently of X ′j(t) until the first time it

meets X ′j(t) for some j. From that point on, Xi(t) and X ′j(t) move together.

Since g ≡ 1, this coupling of At and A′t is successful.

Corollary 1.4.2. If g ≡ 1, then all bounded harmonic functions on S are con-

stant.

Let νρ, ρ ∈ [0, 1] be the product measure on X with marginals νρ{η(x) = 1} = ρ.

We are now ready to prove the following special case of Theorem 1.3.2.

Theorem 1.4.3. Let p(x, y) be a symmetric, irreducible transition kernel on S.

If g(x, y) ≡ 1, then Ie = {νρ : ρ ∈ [0, 1]}.
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Proof. By De Finetti’s Theorem the statement that Ie = {νρ : ρ ∈ [0, 1]} is

equivalent to saying that µ is invariant if and only if µ is exchangeable.

By Proposition 1.3.1, µ ∈ I if and only if µ{η = 1 for all x ∈ A} is harmonic

for the chain At for all initial states A ∈ Y. Proposition 1.4.1 tells us that

such harmonic functions are constant, so it must be that µ ∈ I if and only if

µ{η = 1 for all x ∈ A} depends only on the cardinality of A. But this last

statement just says that µ is exchangeable completing the proof.
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CHAPTER 2

The Quasi-symmetric Exclusion Process

In this chapter we consider exclusion processes which have symmetric transition

kernels outside of a finite set. In particular, if p(x, y) = p(y, x) for all x, y ∈ S

and p(x, y) is irreducible then suppose that p̄(x, y) = p(x, y) for all (x, y) except

for n ordered pairs {(x1, y1), . . . , (xn, yn)}. At (xi, yi) we have the perturbation

p̄(xi, yi) = p(xi, yi) + εi for εi ≥ −p(xi, yi). Note that the xi’s and yi’s are

not necessarily distinct. We will say that transition kernels p̄(x, y) satisfying

the above requirement are quasi-symmetric. Note that in general p̄(x, y) is not

normalized thus it is possible that
∑

y p̄(x, y) 6= 1. In order to avoid complications

we will also assume throughout this chapter that p̄(x, y) is irreducible. As for

notation in this chapter, S(t) and I will denote the semigroup and invariant

measures of the symmetric process and S̄(t) and Ī the semigroup and invariant

measures of the quasi-symmetric process.

An analog of the dual process discussed in Section 1.3 does not exist for quasi-

symmetric processes which are not symmetric. However, an approximation to the

dual is available which makes the problem of characterizing I for quasi-symmetric

processes much more tenable than processes with no symmetry whatsoever. In

Section 2.1 we will state Theorem 2.1.1 which describes the invariant measures

for a quasi-symmetric process, and in Section 2.2 we will use an approximation

to the dual process to prove Theorem 2.1.1.
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The fact that quasi-symmetric kernels are mostly symmetric also allows us to

take advantage of a certain coupling technique in order to show that the family

of invariant measures {µρ : ρ ∈ [0, 1]} exists (where µρ = limt→∞ νρS(t)). This

last statement will be proven in Section 2.3.

2.1 The invariant measures

Let X̄(t) be a continuous-time Markov chain on S with respect to p̄(x, y). Note

that X̄(t) is transient with respect to p̄(x, y) if and only if the Markov chain with

respect to p(x, y), X(t), is transient.

Theorem 2.1.1. Suppose p̄(x, y) is quasi-symmetric and irreducible. Also, as-

sume that for {An} a sequence in Sk, each x ∈ S is only in finitely many An. If

X̄(t) is transient then

(a) for each µ̄ ∈ Ī there exists µ ∈ I such that

lim
n→∞

|µ̄{η(x) = 1 for all x ∈ An} − µ{η(x) = 1 for all x ∈ An}| = 0 (2.1)

for all sequences {An} satisfying the above, and

(b) for each µ ∈ I there exists a measure µ̄ ∈ Ī satisfying (2.1).

Since we have a characterization of I given by Theorem 1.3.2, the measure µ ∈ I

in part (a) must be unique. It would be interesting if one could somehow show

that µ̄ ∈ Ī in part (b) is unique as well, for if this were so then we would have a

one-to-one correspondence between I and Ī thereby giving us a characterization

of Ī.

From the point of view of practicality, Theorem 2.1.1 gives us as good of a

characterization of Ī as one could hope for. The reason for this is that even if

12



one were to show that µ̄ in part (b) was unique, one would not expect to be able

to calculate

µ̄{η(x) = 1 for all x ∈ A} (2.2)

explicitly for each A ∈ Y. The best one could hope for is to know the asymptotics

of (2.2) for some sequence {An} in Sk. But Theorem 2.1.1 already gives this to

us.

Besides giving information about Ī, the theorem has an interesting conse-

quence. One can ask the following question: Does a local perturbation of the

dynamics of a process have global consequences on the evolution?

If we think of the quasi-symmetric exclusion process as a perturbation of the

symmetric exclusion process then the answer is affirmative when S = Z and there

exists a reversible measure π(x) > 0 with respect to the transition kernel (i.e. a

measure satisfying π(x)p̄(x, y) = π(y)p̄(y, x)). To see this, consider the simple

case where

p̄(x, y) = 1/2 for all (x, y) 6= (0, 1) and p̄(0, 1) = 1/2 + ε, ε > 0.

It will be seen later (by Theorem 3.1.1) that the only extremal invariant measures

are the product measures {νc : c ∈ [0,∞]} with marginals

νc{η : η(x) = 1} =


c

1+c
for x ≤ 0

c+2cε
1+c+2cε

for x > 0.

If we choose a sequence of times {Tn} going to infinity so that

lim
n→∞

1

Tn

∫ Tn

0

νρS̄(t)dt = µ̄ρ

13



exists, then for any continuous f on X,∫
S̄(s)f dµ̄ρ = lim

n→∞

∫
S̄(s)f d

[
1

Tn

∫ Tn

0

νρS̄(t) dt

]
(2.3)

= lim
n→∞

1

Tn

∫ Tn

0

[∫
S̄(s+ t)f dνρ

]
dt

= lim
n→∞

1

Tn

∫ Tn+s

0

[∫
S̄(t)f dνρ

]
dt

= lim
n→∞

∫
f d

[
1

Tn

∫ Tn

0

νρS̄(t) dt

]
=

∫
f dµ̄ρ

so that µ̄ρ is invariant. Therefore µ̄ρ must be a mixture of the measures {νc : c ∈

[0,∞]}. Consequently

lim
x→∞

µ̄ρ{η(x) = 1} > lim
x→−∞

µ̄ρ{η(x) = 1},

however, this clearly shows that the perturbation at the origin affects the evolu-

tion of the process globally.

On the other hand, we will see from the proof of Theorem 2.1.1 that if µ ∈ I

and

lim
n→∞

1

Tn

∫ Tn

0

µS̄(t)dt = µ̄

exists, then µ̄ is asymptotically equal to µ. Thus we have a negative answer to

the above question on local perturbations having a global effect.

2.2 Approximating the dual

In order to prove Theorem 2.1.1 we will need to think of the symmetric exclusion

process in a different way so that we can couple ηt and At. Using a symmetric

transition kernel, assign to the subset {x, y} ∈ S2 an exponential clock with

rate p(x, y). Since p(x, y) = p(y, x), this assignment is well-defined. When the
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exponential clock for {x, y} goes off, the values for η(x) and η(y) will switch.

This motion describes the symmetric exclusion process.

We can now couple At with ηt using this new description. The process At is

equal to A0 until the first time that an exponential clock for {x, y} with x ∈ A0

and y /∈ A0 goes off. At that time At becomes (A0\x) ∪ y. Let ATt be the dual

process running backwards in time starting from time T so that ATt = AT−t.

Since the exponential times for {x, y} are uniformly distributed on [0, T ], we can

use the same clocks for both At and ATt . We then have that

{ηT (x) = 1 for all x ∈ AT0 } = {η0(x) = 1 for all x ∈ ATT}. (2.4)

One might recognize the similarity between (2.4) and Proposition 1.3.1.

Notice that when η(x) = η(y) = 1, switching values is the same as not switching

values. For the symmetric exclusion process, we can reinterpret this statement in

the following way. When a particle tries to move to an occupied site, instead of its

motion being suppressed, the two particles switch places. We therefore see that

this alternate way of thinking of the exclusion process is the reason that we are

able to couple At with {X1(t), . . . , Xk(t)} in Section 1.4. We will need the follow-

ing lemma which is a consequence of the coupling of At and {X1(t), . . . , Xk(t)}.

Lemma 2.2.1. Suppose {An0} is a sequence in Sk. If each x ∈ S belongs to only

finitely many An0 and the symmetric kernel p(x, y) corresponds to a transient

Markov chain on S, then for each fixed z ∈ S

lim
n→∞

P (z ∈ Ant for some t ≥ 0) = 0.

Proof. To remind the reader, we shall describe the coupling again. The particles

Xi(t) and Xj(t) move independently following the motions of a Markov chain

on S, except that when Xi(t) at x tries to move to a site y which is occupied
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by Xj(t), the two particles switch places. Since p(x, y) = p(y, x), this is just

the coupling of the two processes where Xi(t) at x goes to y at the same time

that Xj(t) at y goes to x. If An0 = {Xn
1 (0), . . . , Xn

k (0)}, then using this coupling

Ant = {Xn
1 (t), . . . , Xn

k (t)}. Therefore

lim
n→∞

PAn0 (z ∈ Ant for some t ≥ 0) ≤ lim
n→∞

k∑
i=1

PXn
i (0)(Xn

i (t) = z for some t ≥ 0) = 0.

Let

B = {x ∈ S : p̄(x, y) 6= p̄(y, x) for some y ∈ S}.

We will now describe a process Āt which approximates the process At. The

process Āt can be thought of as a family of Sn-valued functions Āt(Ā0, ω̄) indexed

by time t. The two arguments of Āt are the set Ā0 ∈ Sn such that Ā0∩B = ∅ and

ω̄ an element of the path space associated with the quasi-symmetric process. Let

P̄ν be the probability measure on the path space of the quasi-symmetric process

having ν as its initial distribution (likewise, let Pν be the probability measure on

the path space of the symmetric process with ν as its initial distribution).

If x ∈ Āt, y /∈ Āt∪B then Āt goes to (Āt\x)∪ y at rate p(x, y) according to the

exponential clock of {x, y}. If x ∈ Āt, y /∈ Āt ∪ Bc and the exponential clock for

{x, y} goes off then Āt goes to either Āt\x if ηt(x) = 1 or the cemetery state ∆

if ηt(x) = 0. Since the values of ηt(x) and ηt(y) switch when the clock for {x, y}

goes off, we will assume that the evaluation of ηt(x) is taken before the switch.

For a fixed T > 0, the process ĀTt follows the motion described above except

that it runs backwards in time from T to 0 while ηs runs forward in time; when

the exponential clock for {x, y} goes off, the evaluation of ηs(x) takes place after

the switching of ηs(x) and ηs(y) at time s = T − t takes place. Setting η(∆) ≡ 0,
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we then have following analog of (2.4) for the quasi-symmetric process ηt:

{ηT (x) = 1 for all x ∈ ĀT0 } = {η0(x) = 1 for all x ∈ ĀTT}. (2.5)

The processes At and Āt are coupled so that they start from the same A ∈ Y

and move together as much as possible (after the first time they are different, they

move independently); likewise for the processes ATt and ĀTt . Therefore denote

NA = {Āt starting from A equals At for all t ≥ 0}

and

N T
A = {ĀTt starting from A equals ATt for all t ∈ [0, T ]}.

Proof of Theorem 2.1.1. Fix A ∈ Y and suppose that both Āt and At start from

A. Let

fĀt(ω̄) =

 1 if η0(x) = 1 for all x ∈ Āt(ω̄)

0 otherwise

and define fAt similarly. Also if ĀTt and ATt both start from A, let

fĀTT (ω̄) =

 1 if ηT (x) = 1 for all x ∈ ĀTT (ω̄)

0 otherwise

and define fATT similarly.

Take µ̄ ∈ Ī. Since At = Āt on NA we have that∫
fAt dPµ̄ − P (N c

A) ≤
∫
fĀt1NA dP̄µ̄. (2.6)

Recall that S(t) is the semigroup of the symmetric process. By Proposition

1.3.1 (or equivalently by (2.4))∫
fAt dPµ̄ = EA

∫
1{η(x)=1∀x∈At} dµ̄ =

∫
1{η(x)=1∀x∈A} dµ̄S(t).
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By the argument given in (2.3) we can choose a sequence Tn so that

lim
n→∞

1

Tn

∫ Tn

0

µ̄S(t)dt

converges to µ ∈ I. By the fact that µ̄ ∈ Ī and by (2.5), we have∫
fĀT 1NA dP̄µ̄ ≤

∫
fĀTT 1NTA dP̄µ̄ ≤

∫
1{η0(x)=1∀x∈ATT (ω)} dP̄µ̄ = µ̄{η(x) = 1 for all x ∈ A}

for all T ≥ 0 so that (2.6) yields

µ{η(x) = 1 for all x ∈ A} − P (N c
A) ≤ µ̄{η(x) = 1 for all x ∈ A}. (2.7)

Using µ̄ ∈ Ī once more, we also have∫
1{η(x)=1∀x∈A} dµ̄−

1

Tn

∫ Tn

0

∫
1{ηt(x)=1∀x∈A}[1− 1NA ] dP̄µ̄ dt

=
1

Tn

∫ Tn

0

∫
1{ηt(x)=1∀x∈A} dP̄µ̄ dt−

1

Tn

∫ Tn

0

∫
1{ηt(x)=1∀x∈A}[1− 1NA ] dP̄µ̄ dt

=
1

Tn

∫ Tn

0

∫
1{ηt(x)=1∀x∈A}1NA dP̄µ̄ dt

so that

µ̄{η(x) = 1 for all x ∈ A} − P (N c
A) ≤ µ{η(x) = 1 for all x ∈ A}.

Combining this with (2.7) gives us

|µ̄{η(x) = 1 for all x ∈ A} − µ{η(x) = 1 for all x ∈ A}| ≤ P (N c
A). (2.8)

We complete the proof of part (a) by noting that Lemma 2.2.1 tells us limn→∞ P (N c
An) =

0.

The proof of part (b) is similar. Choose µ ∈ I. Again, we can choose a

subsequence Tm so that

lim
m→∞

1

Tm

∫ Tm

0

µS̄(t)dt
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converges to µ̄ ∈ Ī. Then

µ{η(x) = 1 for all x ∈ A} − P (N c
A) ≤ lim

m→∞

1

Tm

∫ Tm

0

∫
fAT 1NA dPµ dT

≤ lim
m→∞

1

Tm

∫ Tm

0

∫
1{η0(x)=1∀x∈ĀTT (ω)}1NTA dP̄µ dT

= lim
m→∞

1

Tm

∫ Tm

0

∫
1{ηT (x)=1∀x∈A}1NTA dP̄µ dT

≤ µ̄{η(x) = 1 for all x ∈ A}.

and

µ̄{η(x) = 1 for all x ∈ A} − P (N c
A) ≤ lim

m→∞

1

Tm

∫ Tm

0

∫
1{η0(x)=1∀x∈ĀTT (ω)}1NTA dP̄µ dT

≤ lim
m→∞

1

Tm

∫ Tm

0

EA

∫
1{η(x)=1∀x∈AT } dµ dT

= µ{η(x) = 1 for all x ∈ A}

so that we again obtain (2.8).

2.3 The infinitesimal coupling

Theorem 2.1.1 gives us information concerning the invariant measures, but tells

us little about the domains of attraction for those measures. In this section we

will prove the following theorem which concerns convergence starting from the

product measure νρ with marginals νρ{η(x) = 1} = ρ.

Theorem 2.3.1. Suppose p̄(x, y) is quasi-symmetric and irreducible. Also, as-

sume that for {An} a sequence in Sk, each x ∈ S is only in finitely many An. If

p̄(x, y) > 0 whenever p(x, y) > 0 and X(t) is transient then

lim
t→∞

νρS̄(t) = µρ ∈ Ī

exists for each ρ ∈ [0, 1] and

lim
n→∞

µρ{η(x) = 1 for all x ∈ An} = ρk. (2.9)
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The motivation behind Theorem 2.3.1 lies in the idea that the measures νρ are

natural initial measures for the process to start off with. So a natural question

to ask is whether or not limt→∞ νρS̄(t) exists. As we will see, (2.9) then follows

immediately from the proof of Theorem 2.1.1 (b).

Also, Theorem 2.3.1 strengthens the argument given in Section 2.1 concerning

local perturbations of the transition kernel having global effects on the evolu-

tion of the process. In particular, the theorem gives us conditions under which

limt→∞ νρS̄(t) is not very different from νρ.

The main tool used to prove Theorem 2.3.1 is the so called infinitesimal cou-

pling of the process ηt introduced by Andjel, Bramson, and Liggett(1988). In

this section we will describe the infinitesimal coupling and present two lemmas

concerning this coupling.

The infinitesimal coupling of the process ηt follows the motion of the basic

coupling (defined below) for the two processes ηt and ξst having joint initial mea-

sure ν̃ (also defined below). The marginal process ξst can be thought of as an

approximation of ηt+s for small values of s.

Let us now define the basic coupling of two exclusion processes ηt and ξt having

the same generator. Essentially, it is the coupling which allows ηt and ξt to move

together as much as possible. The generator for the basic coupling is the closure

of the operator Ω̃ defined on D(X× X):

Ω̃f(η, ξ) =
∑

η(x)=ξ(x)=1,η(y)=ξ(y)=0

p̄(x, y)[f(ηxy, ξxy)− f(η, ξ)] (2.10)

+
∑

η(x)=1,η(y)=0 and (ξ(y)=1 or ξ(x)=0)

p̄(x, y)[f(ηxy, ξ)− f(η, ξ)]

+
∑

ξ(x)=1,ξ(y)=0 and (η(y)=1 or η(x)=0)

p̄(x, y)[f(η, ξxy)− f(η, ξ)].

The initial measure ν̃ depends on the transition kernel of the process. To
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describe ν̃, we will consider the following simple kernel: Start with a symmetric

irreducible transition kernel p(x, y) on S. Pick some site to be the origin, 0, and

label one of its neighbors 1. Choosing ε > 0, we can define p̄(x, y) by

p̄(0, 1) = p(0, 1) + ε, p̄(x, y) = p(x, y) elsewise. (2.11)

In order to simplify the description of ν̃, we will assume throughout most of this

section that our transition kernel is given by (2.11). It is under this assumption

that we will explicitly describe ν̃ and prove the lemmas. At the end of the section

we will give an argument that extends the results to the general case.

We are now ready to describe ν̃ under the assumption of (2.11). Following

Andjel, Bramson, and Liggett(1988), the basic idea is to couple the measures νρ

and νρS̄(s) together for small values of s (in particular, we impose the restriction

s < 1
ε
). The problem is that one cannot explicitly write out the distribution

of νρS̄(s); however, it turns out that a first order approximation to νρS̄(s) is

good enough. Therefore, for the time being we will think of µs as some measure

νρS̄(s) + o(s) as s→ 0.

Our goal now is to define µs and ν̃ in such a way that ν̃ has a small number of

discrepancies (a discrepancy occurs when η(x) 6= ξ(x)). Then letting the coupled

process run according to the basic coupling, we can analyze the behavior of the

discrepancies to prove that the measure µρ = limt→∞ νρS̄(t) exists.

Let us now explicitly describe the initial coupling measure ν̃ which will carry

out our program. In doing so, we will also define the marginal measure µs which

approximates νρS̄(s). As a first step, let the coupled process (ηt, ξ
s
t ) have initial

marginal measures νρ and µs respectively. The measure ν̃ is then a product of a
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marginal measure for  ξs0(0) ξs0(1)

η0(0) η0(1)

 (2.12)

and independent Bernoulli random variables for all x 6= 0, 1. The Bernoulli

random variables give the probability ρ to η0(x) = ξs0(x) = 1 and 1 − ρ to

η0(x) = ξs0(x) = 0 for all x 6= 0, 1. The distribution of (2.12) is as follows:

Value Probability 1 1

1 1

 ρ2

 1 0

1 0

 ρ(1− ρ)− s[ρ(1− ρ)ε]

 0 1

0 1

 ρ(1− ρ)

 0 0

0 0

 (1− ρ)2

 0 1

1 0

 s[ρ(1− ρ)ε].

Note that this measure is well-defined for s < 1
ε
.

The probabilities above give the marginal distribution νρ to η0. Define the

measure µs as the marginal distribution for ξs0; it is a product of independent

Bernoulli random variables with parameter ρ at sites x 6= 0, 1 with the following

distribution for (ξs0(0), ξs0(1)):
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Value Probability

(1, 1) ρ2

(1, 0) ρ(1− ρ)− s[ρ(1− ρ)ε]

(0, 1) ρ(1− ρ) + s[ρ(1− ρ)ε]

(0, 0) (1− ρ)2

As desired, up to first order in s, (ξs0(0), ξs0(1)) has the same distribution as

(ηs(0), ηs(1)) under νρ. This is what lies behind the next lemma whose proof is

similar to that of Lemma 3.3 in Andjel, Bramson, and Liggett(1988).

Lemma 2.3.2. For any f ∈ D(X),

lim
s→0

Ef(ξs0)−
∫
f dνρS̄(s)

s
= 0.

Proof. Because νρ is invariant under a permutation of the coordinates ξ(x) and

ξ(y), ∫
f(ξxy){p̄(x, y)ξ(x)[1− ξ(y)] + p̄(y, x)ξ(y)[1− ξ(x)]} dνρ

=

∫
f(ξ){p̄(x, y)ξ(y)[1− ξ(x)] + p̄(y, x)ξ(x)[1− ξ(y)]} dνρ.

Since p̄(x, y) = p̄(y, x) for all (x, y) 6= (0, 1), (1, 0), we can subtract the right-hand

side of the above equation from the left-hand side to get∫
p̄(x, y)[f(ξxy)− f(ξ)]{ξ(x)[1− ξ(y)] + ξ(y)[1− ξ(x)]} dνρ = 0

for all (x, y) 6= (0, 1), (1, 0).
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Using (1.1), we therefore have that∫
Ωf dνρ =

∫ ∑
x,y

p̄(x, y)ξ(x)(1− ξ(y))[f(ξxy)− f(ξ)] dνρ

=

∫
{p̄(0, 1)ξ(0)(1− ξ(1))[f(ξ01)− f(ξ)] + p̄(1, 0)ξ(1)(1− ξ(0))[f(ξ01)− f(ξ)]} dνρ

=

∫
{p̄(0, 1)ξ(0)(1− ξ(1))[f(ξ01)− f(ξ)] + p̄(1, 0)ξ(0)(1− ξ(1))[f(ξ)− f(ξ01)]} dνρ

=

∫
ε ξ(0)(1− ξ(1)[f(ξ01)− f(ξ)] dνρ

=

∫
ε(ξ(1)− ξ(0))f dνρ.

But now, using the explicit expression for the distribution of ξs0, we also get for

s > 0 that

Ef(ξs0)−
∫
f dνρ

s
=

∫
ε(ξ(1)− ξ(0))f dνρ =

∫
Ωf dνρ.

By the definition of the generator∫
Ωf dνρ = lim

s→0

∫
f dνρS̄(s)−

∫
f dνρ

s
.

Combining the last two equations gives us

lim
s→0

Ef(ξs0)−
∫
f dνρS̄(s)

s
= 0.

Let (η
(u)
t , ξ

(u)
t ) be a process that runs according to the basic coupling. Its

initial distribution is a product of independent Bernoulli random variables giving

probability ρ to η
(u)
0 (x) = ξ

(u)
0 (x) = 1 and 1 − ρ to η

(u)
0 (x) = ξ

(u)
0 (x) = 0 for all

x 6= u and probability 1 to ξ
(u)
0 (u) = 1, η

(u)
0 (u) = 0.

Also, define (η̂t, ξ̂
s
t ) by conditioning (ηt, ξ

s
t ) on the event that ξs0(0) ξs0(1)

η0(0) η0(1)

 =

 0 1

1 0

 .
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This is the only event for which η0 and ξs0 differ. Note that after conditioning,

the distribution of the coupling no longer depends on s.

The proof of the next lemma follows that of Lemma 3.4 in Andjel, Bramson,

and Liggett(1988).

Lemma 2.3.3. If A ∈ Y then

| d
dt
νρS̄(t){η(x) = 1 for all x ∈ A}| ≤ ερ(1− ρ)

∑
u=0,1

∑
x∈A

E[ξ
(u)
t (x)− η(u)

t (x)].

Proof. Let

g(η) =
∏
x∈A

η(x).

Then g ∈ D(X), so f = S̄(t)g is also in D(X) by Theorem I.3.9 of IPS. Letting

νtρ = νρS̄(t), we compute

d

dt
νρS̄(t){η(x) = 1 for all x ∈ A}

= lim
s→0

1

s
[νt+sρ {η(x) = 1 for all x ∈ A} − νtρ{η(x) = 1 for all x ∈ A}]

= lim
s→0

1

s
[

∫
g dνt+sρ −

∫
g dνtρ]

= lim
s→0

1

s
[

∫
f dνsρ −

∫
f dνρ]

= lim
s→0

Ef(ξs0)−
∫
f dνρ

s

where the last equality follows from Lemma 2.3.2. This in turn equals

lim
s→0

Ef(ξs0)− Ef(η0)

s
= lim

s→0

Eg(ξst )− Eg(ηt)

s

= lim
s→0

1

s
E[
∏
x∈A

ξst (x)−
∏
x∈A

ηt(x)].
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The proof is completed by the inequalities

lim
s→0

1

s
|E
∏
x∈A

ξst (x)−
∏
x∈A

ηt(x)| ≤ lim
s→0

1

s
E|
∏
x∈A

ξst (x)−
∏
x∈A

ηt(x)|

≤ lim
s→0

1

s
P (ξst (x) 6= ηt(x) for some x ∈ A)

≤ lim
s→0

1

s

∑
x∈A

P (ξst (x) 6= ηt(x))

= ερ(1− ρ)
∑
x∈A

P (ξ̂t(x) 6= η̂t(x))

≤ ερ(1− ρ)
∑
u=0,1

∑
x∈A

P (ξ
(u)
t (x)− η(u)

t (x)).

The last inequality is due to a property given by the basic coupling: when the

two discrepancies  ξsT (x) = 1

ηT (x) = 0

 and

 ξsT (x) = 0

ηT (x) = 1


meet, they cancel each other out to result in no discrepancies for all t ≥ T .

We now give an argument that extends the infinitesimal coupling and the two

lemmas to a general quasi-symmetric kernel. The first thing is to realize that if

ε is negative, we can obtain analogs of the two lemmas if we make the following

changes to the distribution of (2.12):
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Value Probability 1 0

1 0

 ρ(1− ρ)

 0 1

0 1

 ρ(1− ρ)− s[ρ(1− ρ)|ε|]

 1 0

0 1

 s[ρ(1− ρ)|ε|]

 0 1

1 0

 0.

Next we see that if there are multiple differences between p(x, y) and p̄(x, y),

we can superimpose the changes to the distribution of ν̃ to get analogs of the two

lemmas. For instance if

p̄(w, y) = p(w, y) + ε1 and p̄(w, z) = p(w, z) + ε2 where εi > 0,

then when s < 1
ε1+ε2

, the distribution of the coupling at (w, y, z) at time 0 is identi-

cal to the marginal measures for (η0(w), η0(y), η0(z)) and for (ξs0(w), ξs0(y), ξs0(z)),

except at the values in the table below:
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Value Probability 1 0 0

1 0 0

 ρ(1− ρ)2 − s[ρ(1− ρ)2(ε1 + ε2)]

 1 0 1

1 0 1

 ρ2(1− ρ)− s[ρ2(1− ρ)ε1]

 1 1 0

1 1 0

 ρ2(1− ρ)− s[ρ2(1− ρ)ε2]

 0 1 0

1 0 0

 s[ρ(1− ρ)2ε1]

 0 1 1

1 0 1

 s[ρ2(1− ρ)ε1]

 0 0 1

1 0 0

 s[ρ(1− ρ)2ε2]

 0 1 1

1 1 0

 s[ρ2(1− ρ)ε2].

We have the following analog of Lemma 2.3.3:

Corollary 2.3.4. If A is any finite subset of S then there exists C < ∞ such

that

| d
dt
νρS̄(t){η(x) = 1 for all x ∈ A}| ≤ C

∑
u∈B

∑
x∈A

E[ξ
(u)
t (x)− η(u)

t (x)].
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The proof of the corollary is essentially the same as that of Lemma 2.3.3 so we

only make the following remark. It is important to note that a pair of discrepan-

cies of opposite type

 1

0

 and

 0

1

 occur together, but any two pairs do not

occur at the same time. Therefore, we still have that the only interaction between

discrepancies is when two discrepancies of opposite type cancel each other out.

We no longer assume that the transition kernel is given by (2.11). Instead,

we will prove Lemma 2.3.5 and Theorem 2.3.1 for a general quasi-symmetric

transition kernel.

Given the process (η
(u)
t , ξ

(u)
t ) described in the previous section, let X∗(t) mark

the position at time t of the discrepancy that starts at u. Notice that while the

process X∗(t) is not a Markov process, the joint process (X∗(t), ηt) is a Markov

process. Let

G∗(u, x) = Eu

∫ ∞
0

P (X∗(t) = x) dt

be the expected time that the discrepancy starting at u spends at x given that the

initial distribution of (X∗(t), ηt) for sites not equal to u are independent Bernoulli

random variables with parameter ρ. If X∗n is the embedded discrete-time process

for X∗(t), define

H∗(u, x) = sup
η
P (u,η)(X∗n = x for some n ≥ 1).

Lemma 2.3.5. If X(t) is transient and p̄(x, y) > 0 whenever p(x, y) > 0 then

G∗(u, x) <∞ for all u, x ∈ S.

Proof. Recall that

B = {x ∈ S : p̄(x, y) 6= p̄(y, x) for some y ∈ S}.

If the discrepancy is at site x, it goes to y at rate p̄(x, y) when ξ(u)(y) = η(u)(y) = 0

and at rate p̄(y, x) when ξ(u)(y) = η(u)(y) = 1. But when x /∈ B, p̄(x, y) = p̄(y, x).
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Therefore when X∗(t) /∈ B, X∗(t) moves according to the same transition rates

as X(t).

Couple X∗(t) and X(t) starting from u so that they move together as much as

possible and let

E = {ω : X∗(t)(ω) = X(t)(ω) for all t ≥ 0, Xn 6= u for all n ≥ 1}

where Xn, n ≥ 0 is the embedded discrete-time chain for X(t). Since B is finite

and X(t) is transient, and since p̄(x, y) > 0 whenever p(x, y) > 0, we see from

the argument above that infη P
(u,η)(E) > 0.

For each x we have

H∗(x, x) = sup
η
P (x,η) [{X∗n = x for some n ≥ 1} ∩ (E ∪ Ec)]

= sup
η
P (x,η)({X∗n = x for some n ≥ 1} ∩ Ec) ≤ 1− inf

η
P (x,η)(E).

Using Proposition 4-20 in Kemeny, Snell, and Knapp(1976) we get that for some

constant C,

G∗(u, x) ≤ C
∑
k≥0

(H∗(x, x))k <∞.

Proof of Theorem 2.3.1. We first prove that limt→∞ νρS̄(t) exists. By the inclusion-

exclusion principle we need only show that for each A ∈ Y,

lim
t→∞

νρS̄(t){η(x) = 1 for all x ∈ A} (2.13)

exists.

Suppose to the contrary that there exists some A for which (2.13) does not

exist. Then there exists a sequence {tn} going to infinity such that the set

{νρS̄(tn){η(x) = 1 for all x ∈ A}}
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must have at least two different limit points. Therefore it must be that∫ ∞
0

| d
dt
νρS̄(t){η(x) = 1 for all x ∈ A}|dt =∞.

On the other hand, by Corollary 2.3.4 and Lemma 2.3.5,∫ ∞
0

| d
dt
νρS̄(t){η(x) = 1 for all x ∈ A}|dt ≤ C

∫ ∞
0

∑
u∈B

∑
x∈A

E[ξ
(u)
t (x)− η(u)

t (x)]dt

≤ C
∑
u∈B

∑
x∈A

G∗(u, x) <∞,

a contradiction. Therefore (2.13) exists for all finite A.

Now by the proof of Theorem 2.1.1 (b) it must be that

lim
n→∞

|µρ{η(x) = 1 for all x ∈ An} − νρ{η(x) = 1 for all x ∈ An}| = 0

giving us (2.9).
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CHAPTER 3

The Asymmetric Exclusion Process on Z

As mentioned in the abstract, the study of the asymmetric exclusion process has

been much more elusive than that of the symmetric process. General classes of

invariant measures are known in the two cases where p(x, y) is doubly stochastic

(i.e.
∑

x∈S p(x, y) = 1 for all y ∈ S) or when there exists a reversible measure

π(x) > 0 on S (i.e. π(x)p(x, y) = π(y)p(y, x)). However, a complete description

of I is known only in the three cases when either

(a) p(x, y) is reversible and positive recurrent for either the particles or holes

(1’s or 0’s) (Liggett(1976))

(b) p(x, y) corresponds to certain random walks on Z (Liggett(1976) and Bram-

son, Liggett, and Mountford(2002)) or

(c) p(x, y) corresponds to a birth and death chain on Z+ (Liggett(1976)).

Almost nothing is known about the domains of attraction concerning invariant

measures in the asymmetric case, although we note here that there are some nice

theorems concerning the case where p(x, y) is an asymmetric simple random walk

on Z (see Liggett(1999)).

Our purpose in this chapter is to shed some more light on the problem of

classifying I and its respective domains of attraction for the asymmetric exclusion

process when a reversible measure π(x) exists for p(x, y). In order to describe
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the results of this chapter we must first discuss case (a) and state a special case

of (b) above.

We start by stating what is known for the mean zero case of (b). As defined

in the introductory chapter, νρ is the product measure on X with marginals

νρ{η(x) = 1} = ρ. Liggett(1976) uses a coupling of two exclusion processes to

show that when p(x, y) = p(0, y − x),
∑

x |x|p(0, x) < ∞, and
∑

x xp(0, x) = 0

on Z, the set of extremal invariant measures is

Ie = {νρ : ρ ∈ [0, 1]}. (3.1)

Before describing the invariant measures for case (a), we define some extremal

reversible invariant measures {ν(n)} when a reversible measure π(x) satisfying

∑
x

π(x)/[1 + π(x)]2 <∞ (3.2)

exists. This family of extremal reversible measures was first discovered by Liggett.

In particular, he breaks down (3.2) into three cases and writes

1. If
∑

x π(x) <∞, let An = {η :
∑

x η(x) = n} for nonnegative integers n.

2. If
∑

x 1/π(x) < ∞, let An = {η :
∑

x[1 − η(x)] = n} for nonnegative

integers n.

3. If
∑

x π(x)/[1 + π(x)]2 < ∞,
∑

x π(x) = ∞, and
∑

x 1/π(x) = ∞, there

exists a T ⊂ S for which
∑

x∈T π(x) < ∞ and
∑

x/∈T 1/π(x) < ∞. In this

case, let

An = {η ∈ A :
∑
x∈T

η(x)−
∑
x/∈T

[1− η(x)] = n}

for integers n.
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To define {ν(n)}, let νc be the product measure with marginals νc{η : η(x) =

1} = cπ(x)
1+cπ(x)

. Liggett shows that the measures

ν(n)(·) = νc(·|An) for n ∈ Z, (3.3)

ν(∞) = the pointmass on η(x) ≡ 1,

ν(−∞) = the pointmass on η(x) ≡ 0

are the unique stationary distributions for the positive recurrent Markov chains

on An (for the first two cases of the trichotomy, assume ν(n) = ν(−∞) for all

n ≤ 0). Note that changing T in the third case of the trichotomy above amounts

to a relabeling of the sequence {ν(n) : n ∈ Z}.

A simple consequence of Theorem B52 in Liggett(1999) is that the reversible

measures {ν(n)} are extremal in the set of invariant measures. For the first two

cases in the trichotomy of (3.2) above, these are the only extremal invariant

measures:

Theorem 3.0.6. If either
∑

x π(x) <∞ or
∑

x 1/π(x) <∞, then

Ie = {ν(n) : 0 ≤ n ≤ ∞}.

For a proof of this theorem we refer the reader to Theorem VIII.2.17 in IPS.

Note that this theorem corresponds exactly to case (a) at the very beginning of

this chapter.

Whenever a reversible measure π(x) on S exists, the product measures {νc :

c ∈ [0,∞]} are well-defined. A simple generator computation shows that these

measures are invariant for the exclusion process (see Theorem VIII.2.1 in IPS for

details). Applying Kakutani’s Dichotomy (e.g. page 244 of Durrett(1996)) we

have that
∑

x π(x)/[1 + π(x)]2 = ∞ is a necessary and sufficient condition for

the measures {νc : c ∈ [0,∞]} to be mutually singular. Since all the results in
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this chapter concern the reversible measures {νc : c ∈ [0,∞]}, we will assume

throughout the chapter that a reversible π(x) exists.

3.1 The results

In Section 3.2 we prove Theorem 3.2.1 which states that
∑

x π(x)/[1 + π(x)]2 =∞

is exactly the situation in which the measure νc is extremal invariant. Not only

does this result have some nice applications, but knowing that an invariant mea-

sure is extremal in the set of invariant measures has always been an interesting

question concerning particle systems. Examples of such results are Theorem

III.1.17 in Liggett(1999) and Theorem 1.4 in Sethuraman(2001). The main rea-

son extremality of invariant measures is interesting is its close connection with

ergodicity. In particular, if the initial measure for a process is an extremal in-

variant measure then the process evolution is ergodic with respect to time shifts.

This means that

(i) for all finite collections of times t1, . . . , tn, the joint distributions of

(ηt1+t, . . . , ηtn+t)

are independent of t and

(ii) if E is an event in the path space that is invariant under time shifts,

P (E) = 0 or 1.

Sections 3.3 and 3.4 use Theorem 3.2.1 to extract information about the invari-

ant measures of the process on Z. In particular, Section 3.3 modifies Liggett’s

original proof of the result stated above equation (3.1) to obtain the following

result:

Theorem 3.1.1. Let Z be irreducible with respect to a transition kernel p(x, y)
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for which there exists a reversible measure π(x). Suppose qi(z) is a transition

kernel such that
∑

z zqi(z) = 0 and
∑

z |z|qi(z) < ∞ for i = 1, 2, and suppose

that

lim
K→∞

∑
x≥0

∑
|z|≥|x−K|

|p(x, x+z)−q1(z)| = 0 and lim
K→∞

∑
x≤0

∑
|z|≥|x+K|

|p(x, x+z)−q2(z)| = 0.

(3.4)

(a) If
∑

x π(x)/[1 + π(x)]2 =∞ then Ie = {νc : c ∈ [0,∞]}.

(b) If
∑

x π(x)/[1 + π(x)]2 <∞ then Ie = {ν(n) : −∞ ≤ n ≤ ∞}.

In essence the above theorem says that when the transition probabilities are

asymptotically translation invariant and have an asymptotic mean of zero, the

reversible measures are the only invariant measures. Theorem 3.1.1 is merely

an extension (in the case where π(x) exists) of the result stated above equation

(3.1).

Condition (3.4) may seem somewhat daunting, but note that if limx→∞ p(x, x+

z) = q1(z), limx→−∞ p(x, x + z) = q2(z), and p(x, y) has finite range (i.e. there

exists an n such that p(x, y) = 0 for |x−y| > n), then (3.4) and
∑

z |z|q1(z) <∞

are both automatically satisfied. Also, the below condition which is somewhat

easier to grasp than (3.4) implies (3.4):∑
x≥0

∑
z

|p(x, x+ z)− q1(z)| <∞ and
∑
x≤0

∑
z

|p(x, x+ z)− q2(z)| <∞.

A typical situation for which the theorem holds is when the transition rates are

nearest-neighbor (p(x, y) = 0 when |x − y| > 1) and are given by p(x, x + 1) =

p(x, x− 1) = 1/2 except for finitely many x.

Note that the premises of the theorem together with the assumption that a

reversible π(x) exists imply that qi(z) must be symmetric. To see this suppose

q1(z) is not symmetric. Also, assume that q1(z1) > q1(−z1) > 0 for some z1 ∈ N.
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We can do this without loss of generality since q1(z) > 0 implies q1(−z) > 0 by

the reversibility of π(x). The mean zero assumption tells us there exists z2 ∈ N

such that q1(z2) < q1(−z2). If z3 is a multiple of both z1 and z2 then since

p(x, x+ z)→ q1(z) we can find x1 so that for x > x1, π(x) < π(x+ z3). But we

can also find x2 so that for x > x2, π(x) > π(x + z3), a contradiction. So q1(z)

must be symmetric. The proof that q2(z) is symmetric follows similarly.

The proof of the above theorem follows Liggett’s original outline and does not

actually require Theorem 3.2.1. However, the usefulness of Theorem 3.2.1 is seen

in the simplification of one part of Liggett’s original proof.

In Section 3.4 we prove a theorem concerning the nearest-neighbor exclusion

process on Z. For the statement of the theorem we will need the following defi-

nitions.

Let L− be the set of limit points of {π(x), x < 0} and L+ be the set of limit

points of {π(x), x > 0}.

Theorem 3.1.2. Suppose that inf |x−y|=1 p(x, y) > 0 for a nearest-neighbor exclu-

sion process on Z. Then nonreversible invariant measures can exist only when

either (a) L− = {0} and L+ = {∞}, or (b) L− = {∞} and L+ = {0}.

The above theorem in no way guarantees the existence of nonreversible invariant

measures as seen by the following example. Let

p(−1,−2) = p(−1, 0) = p(0,−1) = p(0, 1) = 1/2, (3.5)

p(x, x+ 1) = 1− p(x, x− 1) =
|x|+ 1

2|x|
otherwise.

This transition kernel gives us situation (a) in the theorem above. The reversible

invariant measures {νc : c ∈ [0,∞]} certainly exist, but it is easy to see that

condition (b) of Theorem 3.1.1 is satisfied by (3.5), therefore there are no nonre-

versible invariant measures.
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A curious aside is as follows. If in this example we start the process off with

initial measure νρ and take the limit of some converging sequence of measures

1

Tn

∫ Tn

0

νρS(t) dt (3.6)

then this limit is an invariant measure for the process (by the argument given

in (2.3)). In view of the previous discussion, this limit must converge to some

mixture of the extremal invariant measures {ν(n),−∞ ≤ n ≤ ∞}. It would be

interesting indeed to find out which mixture (3.6) converges to. Note here that

we started off with an initial state that concentrates on an uncountable number

of states, but the limiting distribution concentrates on a countable number of

states (which may very well be just the point masses of all 0’s or all 1’s).

Assume now that p(x, y) is an asymmetric, nearest-neighbor random walk ker-

nel with nonzero mean. We then have one of the situations described in Theorem

3.1.2, and one might correctly guess that there exists some nonreversible invariant

measure. In fact, as it turns out the measures

{νρ : ρ ∈ [0, 1]} (3.7)

are nonreversible invariant measures.

We note here that the set of measures in (3.7) is the same as the set of measures

in (3.1) but are of an entirely different nature. In the setting of (3.1) the measures

{νρ : ρ ∈ [0, 1]} are reversible for the nearest-neighbor random walk kernel with

mean zero, and they constitute the entire set of extremal invariant measures. On

the other hand, for a nearest-neighbor random walk kernel with nonzero mean,

the measures {νρ : ρ ∈ [0, 1]} are not reversible and

Ie = {νρ : ρ ∈ [0, 1]} ∪ {νc : c ∈ [0,∞]}.

This was proven by Liggett(1976).
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The discussion in the previous paragraphs might make us wonder for which

transition kernels a nonreversible invariant measure exists. To gain more in-

sight into the situation we introduce a concept known as the flux of an invariant

measure µ. We will continue to assume that the transition probabilities are

nearest-neighbor, but we will no longer assume they are translation invariant.

Define

flux(µ) = p(x, x+1)µ{η(x) = 1, η(x+1) = 0}−p(x+1, x)µ{η(x) = 0, η(x+1) = 1}.

(3.8)

Let 1x(η) = η(x) be the indicator function of {η(x) = 1}. By computing the

positive and negative terms of the left-hand side of
∫

Ω1xdµ = 0 it can be seen

that flux(µ) is independent of x.

When an invariant measure µ is reversible it can easily be seen from (3.8)

that flux(µ) = 0. So if an invariant measure exists whose flux is nonzero it

must be nonreversible. If p(x, y) is a random walk kernel with nonzero mean,

the invariant measures {νρ : ρ ∈ [0, 1]} all have a positive flux with the flux

being maximized when ρ = 1/2 (a full discussion of this can be found in either

Janowski and Lebowitz(1994) or Part III of Liggett(1999)). This positive flux

is the reason why (3.7) is fundamentally different from (3.1). It would be quite

nice if one could prove that some nonreversible invariant measure exists whenever

p(x, x+1) > 1/2+ε for all x. The ε here serves the role of providing some positive

flux in the limit.

Finally, Section 3.5 will apply Theorem 3.2.1 to give information concerning

the domains of attraction (in a Cesaro sense) of reversible measures in the case

where
∑

x π(x)/[1 + π(x)]2 = ∞. The results of Section 3.5 only give sufficient

conditions for Cesaro convergence to an invariant measure, but are nonetheless

interesting since so little is known concerning domains of attraction for the asym-
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metric exclusion process. The key known results concerning domains of attraction

of asymmetric exclusion processes are stated in Andjel, Bramson, Liggett(1988).

They concern the limiting distribution of exclusion processes with asymmetric,

nearest-neighbor random walk kernels when the initial measures are certain prod-

uct measures. To get an idea of how difficult it is to prove anything of this sort,

we refer the reader to Andjel, Bramson, Liggett(1988).

3.2 Extremal reversible measures

In this section we state and prove Theorem 3.2.1. The common technique used

in the proof of this theorem and in the proofs of most of the other results in

this chapter is the coupling technique. In particular, we will be using the basic

coupling of ηt and ξt defined in (2.10). This is just the coupling ηt and ξt which

lets the two exclusion processes move together as much as possible.

Theorem 3.2.1. Suppose S is irreducible with respect to p(x, y). Then νc is

extremal invariant if and only if
∑

x π(x)/[1 + π(x)]2 =∞.

Proof. Suppose
∑

x π(x)/[1 + π(x)]2 <∞. By the definition of ν(n) ∈ I given in

(3.3) we have that

νc =
∞∑

n=−∞

νc(An)ν(n)

where An = ∅ if they have not been defined previously. Therefore νc is not

extremal invariant giving us one direction of the theorem. We will prove the

other direction.

Assume throughout that 0 < c <∞. Since νc is an invariant measure and since

all bounded continuous functions can be approximated uniformly by functions

that depend on finitely many coordinates then by Theorem B52 in Liggett(1999),
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we need only show that for any two functions f, g ∈ D(X),

lim
T→∞

1

T

∫ T

0

Eνcf(η0)g(ηt)dt =

∫
f dνc

∫
g dνc.

We claim that to show the above equation holds, it is enough to show that for

any A ∈ Y and for µc1,A(·) = νc(·|{η(x) = 1∀x ∈ A})

lim
T→∞

1

T

∫ T

0

µc1,AS(t)dt = νc. (3.9)

To see this define the measures µcζ,A(·) = νc(·|{η(x) = ζ(x)∀x ∈ A}) where ζ is a

configuration on {0, 1}A. We can write the measure νc as a linear combination

νc =
∑

ζ∈{0,1}A
aζµ

c
ζ,A

where we use the convention that ζ = i is the configuration in {0, 1}A such that

ζ(x) = i for all x ∈ A. For

fA =

 1 when η(x) = 1 for all x ∈ A

0 otherwise

we have that

lim
T→∞

1

T

∫ T

0

EνcfA(η0)g(ηt)dt = lim
T→∞

1

T

∫ T

0

a1

∫
S(t)g(η)dµc1,Adt =

∫
fAdν

c

∫
g dνc

which proves the claim.

Define µc0,A similarly to the way we defined µc1,A. If we assume a fixed A ∈ Y

then we can drop the subscript A so as to write µci = µci,A. The rest of the proof

will now argue that (3.9) holds.

Choose δ > 0 and couple the processes ηt and ξt using the basic coupling

starting with measures µc0 and µc1 so that η0 and ξ0 disagree only for x ∈ A. In

particular, since the basic coupling is the coupling which allows ηt and ξt to move
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together as much as possible, then ηt and ξt can differ at most at n sites where

|A| = n.

If there exists T̄ such that for all T > T̄

1

T

∫ T

0

[µc1S(t){ξ(0) = 1} − µc0S(t){η(0) = 1}]dt ≤ δ

then we must have that

lim
T→∞

1

T

∫ T

0

µc1S(t){ξ(0) = 1}dt = lim
T→∞

1

T

∫ T

0

µc0S(t){η(0) = 1}dt.

Keeping in mind the way that ηt and ξt are coupled, irreducibility then tells us

that

lim
T→∞

1

T

∫ T

0

µc1S(t)dt = lim
T→∞

1

T

∫ T

0

µc0S(t)dt.

But the measure νc lies stochastically between the left-hand side and the right-

hand side of the equation above, so in fact we must have that (3.9) holds.

We can therefore assume to the contrary that there exists a δ > 0 and a

sequence {Tn} such that

1

Tn

∫ Tn

0

[µc1S(t){ξ(0) = 1} − µc0S(t){η(0) = 1}]dt > δ (3.10)

for all n.

Pick ε > 0 so that

νc+ε{ξ(0) = 1} − νc−ε{η(0) = 1} < δ/3.

Using the basic coupling once more, couple the processes ηt and ξt starting off in

the measures µc1 and νc+ε so that λ1{(η, ξ) : η(x) ≤ ξ(x) for all x ∈ S\A} = 1

where λ1 is the coupling measure. If µ̂c = νc(·|{η(x) = 0 for some x ∈ A}) then

νc = γµc1 + (1− γ)µ̂c

42



for γ = νc{η(x) = 1 for all x ∈ A} (note that γ is equal to a1 used above).

Couple the measures µ̂c and νc+ε in a way similar to λ1 so that we get another

coupling measure λ2.

Choose a subsequence {Tnk} so that we can define some limiting invariant

measure

ω1 = lim
k→∞

1

Tnk

∫ Tnk

0

λ1S(t)dt.

Let νc1 be the η-marginal measure of ω1 so that in particular

νc1 = lim
k→∞

1

Tnk

∫ Tnk

0

µc1S(t)dt.

To complete the proof of the theorem we will need the following lemma:

Lemma 3.2.2. νc+ε ≥ νc1.

Proof of lemma. Let fx(η, ξ) = [1− η(x)]ξ(x),

Dm = {(η, ξ) : η(x) > ξ(x) at exactly m sites},

and D =
⋃
m≥1Dm. If νc+ε � νc1 then it must be that ω1(D) > 0. We claim that

this implies ∫
D

∑
x

fxdω1 = 0.

To prove the claim, assume to the contrary that
∫
D

∑
x fxdω1 > 0 so that there

exist sites for which η(x) < ξ(x). Let M be the largest m for which ω1(Dm) > 0.

Then by the irreducibility condition and by the fact that there exist sites for

which η(x) < ξ(x), we have ω1S(t)(DM) < ω1(DM) for t > 0. But this is a

contradiction to the invariance of ω1 proving the claim.

Now if the two processes ηt and ξt have the measures νc and νc+ε respectively

then let ω be the coupling measure for {(ηt, ξt)} which concentrates on νc ≤ νc+ε.
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For this coupling, the ω-probability that fx(η, ξ) = 1 for a given x is equal to the

left-hand side below:

(c+ ε)π(x)

1 + (c+ ε)π(x)
− cπ(x)

1 + cπ(x)
>

επ(x)

[1 + (c+ ε)π(x)]2
.

Since
∑

x π(x)/[1 + π(x)]2 =∞, by the Borel-Cantelli Lemma the ω probability

that
∑

x fx = ∞ is equal to 1. The measure ω1 is absolutely continuous with

respect to ω since

ω = γλ1 + (1− γ)λ2 = γω1 + (1− γ) lim
k→∞

1

Tnk

∫ Tnk

0

λ2S(t)dt

where λ2 is as defined above. Therefore
∫
E

∑
x fxdω1 = ∞ for any set E with

positive ω1 measure. But this contradicts
∫
D

∑
x fxdω1 = 0, so it must be that

ω1(D) = 0 proving the lemma.

We now turn back to the proof of the theorem. Since by the lemma we have

νc+ε ≥ νc1, then there exists a K such that for all k > K

1

Tnk

∫ Tnk

0

µc1S(t){η(0) = 1}dt− νc+ε{ξ(0) = 1} < δ/3.

If νc0 is some limiting measure of

1

Tnkl

∫ Tnkl

0

µc0S(t)dt

then an argument similar to that used in Lemma 3.2.2 shows that νc−ε ≤ νc0.

There then exists an L such that for l > L

νc−ε{η(0) = 1} − 1

Tnkl

∫ Tnkl

0

µc0S(t){ξ(0) = 1}dt < δ/3.

Altogether we have for l > L,

1

Tnkl

∫ Tnkl

0

[µc1S(t){ξ(0) = 1} − µc0S(t){η(0) = 1}]dt < δ

which contradicts inequality (3.10) so it must be that (3.9) holds completing the

proof of the theorem.
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3.3 The asymptotically mean zero process on Z

In this section we prove Theorem 3.1.1. To do so we will need to define Ĩ as the

set of invariant measures for the basic coupling and Ĩe as its extreme points.

Recall that fx(η, ξ) = [1 − η(x)]ξ(x). In order to simplify the notation we

further define the functions

hyx(η, ξ) = [1− η(y)][1− ξ(y)]fx(η, ξ), gyx(η, ξ) = η(y)ξ(y)fx(η, ξ),

and fyx(η, ξ) = η(y)[1− ξ(y)]fx(η, ξ).

In particular, using definition (2.10), we have for T a finite subset of S

Ω̃

(∑
x∈T

fx(η, ξ)

)
= −

∑
x∈T,y∈S

(p(x, y) + p(y, x))fyx(η, ξ) (3.11)

+
∑

x∈T,y /∈T

[p(x, y)gxy − p(y, x)gyx] +
∑

x∈T,y/∈T

[p(y, x)hxy − p(x, y)hyx].

Proof of Theorem 3.1.1. Let ν ∈ Ĩ. Then
∫

Ω̃(
∑

x∈T fx)dν = 0 for each finite

T ⊂ Z so that for T[m,n] = {x ∈ Z : m ≤ x ≤ n} we get

∑
x∈T[m,n],y∈Z

(p(x, y) + p(y, x))

∫
fyxdν (3.12)

=
∑

x∈T[m,n],y /∈T[m,n]

p(x, y)

∫
(gxy − hyx)dν +

∑
x∈T[m,n],y /∈T[m,n]

p(y, x)

∫
(hxy − gyx)dν.

Notice that the left-hand side of this equation is increasing in n and −m, so that

when we take the limit as n→∞ or as −m→∞, a limit exists. Also, since the

construction of the exclusion process assumes that supy
∑

x p(x, y) is finite and

since
∫
|gxy − hyx|dν ≤ 1 and

∫
|hxy − gyx|dν ≤ 1, the right-hand side sums in

(3.12) above are absolutely convergent for any fixed n and m.
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Choosing ε > 0 we can find N so that for n > N :

∑
x>n+N

∑
z<n−x

p(x, x+ z)

≤
∑

x>n+N

∑
z<n−x

|p(x, x+ z)− q1(z)|+
∑
|z|>N

|z|q1(z) < ε,

∑
0<x<n

∑
z>n+N−x

p(x, x+ z)

≤
∑

0<x<n

∑
z>n+N−x

|p(x, x+ z)− q1(z)|+
∑
|z|>N

|z|q1(z) < ε,

∑
x≤0

∑
z>n+N−x

p(x, x+ z)

≤
∑
x≤0

∑
z>n+N−x

|p(x, x+ z)− q2(z)|+
∑
|z|>N

|z|q2(z) < ε,

and

∑
x<−n−N

∑
z>−x−n

p(x, x+ z)

≤
∑

x<−n−N

∑
z>−x−n

|p(x, x+ z)− q2(z)|+
∑
|z|>N

|z|q2(z) <
ε

3
,

∑
−n<x<0

∑
z<−x−n−N

p(x, x+ z)

≤
∑
−n<x<0

∑
z<−x−n−N

|p(x, x+ z)− q2(z)|+
∑
|z|>N

|z|q2(z) <
ε

3
,

∑
x≥0

∑
z<−n−N−x

p(x, x+ z)

≤
∑
x≥0

∑
z<−n−N−x

|p(x, x+ z)− q1(z)|+
∑
|z|>N

|z|q1(z) <
ε

3
.

Now by the inequalities above and by (3.4) we can pass to the limit in (3.12)
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so as to write

lim
m→−∞

lim
n→∞

∑
x∈T[m,n],y∈Z

(p(x, y) + p(y, x))

∫
fyxdν

= lim
n→∞

∑
x∈T[0,n],y>n

[
q1(y − x)

∫
(gxy − hyx)dν + q1(x− y)

∫
(hxy − gyx)dν

]

+ lim
m→−∞

∑
x∈T[m,0],y<m

[
q2(y − x)

∫
(gxy − hyx)dν + q2(x− y)

∫
(hxy − gyx)dν

]
.

The right-hand side above is equal to

(3.13)

lim
l→∞

1

l

l∑
n=1

∑
x∈T[0,n],y>n

[∫
q1(y − x)(gxy − hyx) + q1(x− y)(hxy − gyx)dν

]

+ lim
k→∞

1

k

−k∑
m=−1

∑
x∈T[m,0],y<m

[∫
q2(y − x)(gxy − hyx) + q2(x− y)(hxy − gyx)dν

]
.

We will devote the next few paragraphs to showing that these limits are in fact

equal to zero.

Define the measures ν+ and ν− by choosing a subsequence nj so that the

following limits exist:

ν+ = lim
j→∞

1

nj

∑
1≤x≤nj

νx

ν− = lim
j→∞

1

|n−j|
∑

−1≥x≥n−j

νx

where νx is the x translate of ν. In the partial sums of (3.13) above, for j large

enough each term

qi(y − x)

∫
(gxy − hyx)dν
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appears |y − x| times when qi(y − x) > 0, so we can write (3.13) as

∑
z∈Z+

[zq1(z)

∫
(goz − hzo)dν+ − zq1(−z)

∫
(gzo − hoz)dν+] (3.14)

+
∑
z∈Z−

[−zq2(z)

∫
(goz − hzo)dν− + zq2(−z)

∫
(gzo − hoz)dν−]

Now consider two coupled processes with transition rates equal to q1(z) and

q2(z) respectively. The measures ν+ and ν− are translation invariant in x and

are also invariant measures for the coupled processes with respect to q1(z) and

q2(z) respectively. To see that ν+ is invariant with respect to q1(z), let Ω̃1 be the

generator for the coupled process of q1(z) and for A,B ∈ Y let

f(A,B) =

 1 when η(x) = ξ(y) = 1 for all x ∈ A, y ∈ B

0 otherwise.

Then ∫
Ω̃1f(A,B)dν+ = lim

k→∞

1

nk

∑
1≤x≤nk

∫
Ω̃1f(A+x,B+x)dν

= lim
k→∞

1

nk

∑
1≤x≤nk

∫
Ω̃f(A+x,B+x)dν = 0

where A+ x is the x translate A.

Since ν+ is invariant and translation invariant in x then Lemma VIII.3.2 in IPS

tells us
∫
fxydν

+ = 0 for all x, y. We can therefore write ν+ as ν+ = λν1+(1−λ)ν2

where ν1 concentrates on {(η, ξ) : η < ξ} and ν2 on {(η, ξ) : η ≥ ξ}. Therefore∫
(goz − hzo)dν+ = λ

∫
(goz − hzo)dν1 (3.15)

= λ[ν1{(η, ξ) : η(0) = 1, η(z) = 0} − ν1{(η, ξ) : η(0) = ξ(0) = 1, η(z) = ξ(z) = 0}

+ ν1{(η, ξ) : η(0) = ξ(0) = 1, η(z) = ξ(z) = 0} − ν1{(η, ξ) : ξ(0) = 1, ξ(z) = 0}]

= λ[ν1{(η, ξ) : η(0) = 1, η(z) = 0} − ν1{(η, ξ) : ξ(0) = 1, ξ(z) = 0}].
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Because ν1 and ν2 are mutually singular and ν+ = λν1 + (1 − λ)ν2, then it

must be that the measure ν1 is also invariant and translation invariant in x with

respect to q1(z). Hence by Theorem VIII.3.9 in IPS, the marginals of ν1 are

exchangeable causing the right-hand side of (3.15) to be equal to a constant c+.

Similarly, the expression
∫

(gzo − hoz)dν+ = c+. Using the same arguments we

have that
∫

(goz − hzo)dν− and
∫

(gzo − hoz)dν− are equal to a constant c−. Now

by the mean zero assumption, we get that expression (3.14) is equal to 0, but

since (3.13) and (3.14) are equal, we have in fact that

∑
x∈T,y∈Z

(p(x, y) + p(y, x))

∫
fxydν = 0 (3.16)

for every T ⊂ Z.

By the nonnegativity of
∫
fxydν it must be that

∫
fxydν = 0 for all x, y. There-

fore ν ∈ Ĩ implies that

ν{(η, ξ) : η < ξ or η ≥ ξ} = 1.

If
∑

x π(x)/[1 + π(x)]2 = ∞ we can use Theorem 3.2.1 to pick µ ∈ Ie and

νc ∈ Ie. On the other hand if
∑

x π(x)/[1 + π(x)]2 <∞ we can use the analysis

in the introduction of this chapter to pick µ ∈ Ie and ν(n) ∈ Ie. In either case

Proposition VIII.2.14 in IPS says that the coupling measure ν can be taken in Ie.

Since ν{(η, ξ) : η < ξ or η ≥ ξ} = 1, Proposition VIII.2.13 in IPS then tells us

that ν has marginals µ ≤ νc or µ ≥ νc in the first case, and µ ≤ ν(n) or µ ≥ ν(n)

in the second case.

Take first the case where
∑

x π(x)/[1 + π(x)]2 =∞. Supposing that µ 6= ν0 6=

ν∞, we have that there exists a c0 for which νc1 ≤ µ for all c1 < c0 and µ ≤ νc2

for all c2 > c0. By the continuity of the one parameter family of measures {νc}

it must be that µ = νc0 .
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If
∑

x π(x)/[1 + π(x)]2 <∞ then we have three cases (i), (ii), and (iii) as given

in the introduction. Theorem 3.0.6 gives the first two cases so we will consider

only (iii). If µ 6= ν(−∞) 6= ν(∞) then there exists an n ∈ Z such that either

µ = ν(n) or ν(n) < µ < ν(n+1). If the latter is true then µ concentrates on

A = {η :
∑

x∈T η(x) < ∞,
∑

x/∈T [1 − η(x)] < ∞} for some T ⊂ Z which means

that it must be a mixture of stationary distributions for the Markov chains on

An as described in the introduction to this chapter. But µ ∈ Ie so it must in fact

be equal to some ν(n) completing the proof.

We include in this section two more results which have proofs similar to that

of Theorem 3.1.1. We first need the following definition: given transition proba-

bilities p(x, y) define the boundary of a set T to be

∂T = {x /∈ T : p(x, y) > 0 for some y ∈ T }.

Proposition 3.3.1. Let S be irreducible with respect to p(x, y) and suppose that∑
x π(x)/[1 + π(x)]2 = ∞. If there exists a sequence of increasing sets Tn such

that ∪Tn = S and either limn→∞
∑

x∈∂Tn π(x) = 0 or limn→∞
∑

x∈∂Tn 1/π(x) = 0,

then Ie = {νc : c ∈ [0,∞]}.

Proof. Choose µ ∈ Ie. If limn→∞
∑

x∈∂Tn π(x) = 0 then couple ηt with ξt so that

they have the measures µ and νc respectively. If limn→∞
∑

x∈∂Tn 1/π(x) = 0 then

couple them vice versa. We will prove the case in which limn→∞
∑

x∈∂Tn π(x) = 0.

The other case follows similarly.

By (3.11),∑
x∈Tn,y∈S

[p(x, y) + p(y, x)]

∫
fyxdν

=
∑

x∈Tn,y /∈Tn

p(x, y)

∫
(gxy − hyx)dν +

∑
x∈Tn,y /∈Tn

p(y, x)

∫
(hxy − gyx)dν.

50



Just as in the above proof, the left-hand side of this equation is increasing in n

so that a limit exists as n→∞. The right-hand side above goes to 0 as n→∞

since

∑
x∈Tn,y /∈Tn

p(x, y)

∫
(gxy − hyx)dν +

∑
x∈Tn,y /∈Tn

p(y, x)

∫
(hxy − gyx)dν

≤
∑

x∈Tn,y /∈Tn

p(x, y)

∫
fydν +

∑
x∈Tn,y /∈Tn

p(y, x)

∫
fydν

≤ C
∑
y∈∂Tn

∫
fydν +

∑
y∈∂Tn

∫
fydν ≤ C

∑
y∈∂Tn

π(y) +
∑
y∈∂Tn

π(y).

Here C = supy
∑

x p(x, y) which is finite by the assumptions in the introduction.

Irreducibility now gives us
∫
fxydν = 0 for all x, y. The rest of the proof just

follows that of Theorem 3.1.1.

Note that if we change the hypothesis
∑

x π(x)/[1 + π(x)]2 =∞ to

∑
x

π(x)/[1 + π(x)]2 <∞

then Theorem 3.0.6 says that Ie = {ν(n), 0 ≤ n ≤ ∞}.

Corollary 3.3.2. If in Theorem 3.1.1 we replaced condition (3.4) with the condi-

tion that p(x, y) has finite range, limx→+∞ p(x, x+ z) = q1(z), and limx→−∞ π(x)

equals 0 or ∞ (or alternatively limx→−∞ p(x, x+ z) = q2(z), and limx→+∞ π(x)

equals 0 or ∞) then the result still holds.

Proof. Replace expression (3.13) in the proof of Theorem 3.1.1 with

lim
k→∞

1

k

k∑
n=1

∑
x∈T[0,n],y>n

[
q1(y − x)

∫
(gxy − hyx)dν + q1(x− y)

∫
(hxy − gyx)dν

]

+ lim
m→−∞

∑
x∈T[m,0],y<m

[
p(x, y)

∫
(gxy − hyx)dν + p(y, x)

∫
(hxy − gyx)dν

]
.
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The proofs of Theorem 3.1.1 and Proposition 3.3.1 imply that this expression is

0. The rest is proven above.

Before moving on to the next section let us discuss what the above results tell

us in the case where p(x, y) has finite range on Z. Proposition 3.3.1 together with

Theorem 3.0.6 says that if lim|x|→∞ π(x) equals 0 or ∞ then the reversible mea-

sures are the only invariant measures. If the limits limx→∞ π(x) and limx→−∞ π(x)

exist and one of them is nonzero and finite, then the combination of Theorem

3.1.1 and Corollary 3.3.2 imply that the only invariant measures are the reversible

ones. All together we have the following: if π(x) exists and has limits in both

directions for the finite-range exclusion process on Z, then unless the limit is 0 in

one direction and ∞ in the other direction, the only invariant measures are the

reversible ones. Of course, as seen in an example in the introduction, it is also

possible to have limx→∞ p(x, x + z) = q1(z) and limx→−∞ p(x, x + z) = q2(z) as

given in Theorem 3.1.1 and at the same time have the limit of π(x) to be 0 in one

direction, ∞ in the other. In those cases Theorem 3.1.1 rules out nonreversible

invariant measures. A similar comment can be made for Corollary 3.3.2. We

remind the reader, however, that if the transition probabilities are translation

invariant with a drift so that the limit of π(x) is 0 in one direction and ∞ in the

other direction, then Liggett(1976) tells us that {νρ : 0 ≤ ρ ≤ 1} is a class of

nonreversible invariant measures.

3.4 The nearest-neighbor process on Z

Assume throughout this section that we are dealing with the irreducible, nearest-

neighbor exclusion process on Z. In this case, a reversible π(x) always exists

so we need not make this assumption. Similar to the discussion at the end of
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the last section, we will show that if inf |x−y|=1 p(x, y) > 0 then the only possible

nonreversible measures are in the case where the limit of π(x) is 0 in one direction

and ∞ in the other direction.

In order to prove the next two propositions we need the following lemma the

proof of which is given in Corollary 5.2 of Liggett(1976):

Lemma 3.4.1 (Liggett). If inf |x−y|=1 p(x, y) > 0 and ν ∈ Ĩe, then exactly one of

the following holds:

(a) ν{(η, ξ) : η = ξ} = 1,

(b) ν{(η, ξ) : η ≤ ξ, η 6= ξ} = 1,

(c) ν{(η, ξ) : η ≥ ξ, η 6= ξ} = 1,

(d) ν(B) = 1,

(e) ν{(η, ξ) : (ξ, η) ∈ B} = 1,

where B = {(η, ξ) : ∃x ∈ Z such that η(y) ≤ ξ(y) for all y < x, η(y) < ξ(y)

for some y < x, η(z) ≥ ξ(z) for all z ≥ x, η(z) > ξ(z) for some z ≥ x}.

Proposition 3.4.2. If inf |x−y|=1 p(x, y) > 0 and π(x) has some finite, nonzero

limit point as x goes to ∞ and some finite, nonzero limit point as x goes to −∞,

then Ie = {νc : c ∈ [0,∞]}.

Proof. The assumptions imply that
∑

x π(x)/[1 + π(x)]2 = ∞ so Theorem 3.2.1

tells us Ie ⊃ {νc : c ∈ [0,∞]}. We will show the reverse containment.

Choose a sequence {nk} extending in both directions so that finite, nonzero

limits of π(nk) exist. For any probability measure µ on X, the set of limit points

L+ of {µ{ξ(nk) = 1}, k > 0} satisfies one of the following properties:
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(i) L+ = {1} or L+ = {0}.

(ii) L+ = {1, 0}.

(iii) L+ contains some limit point between 0 and 1.

The same is true for the set of limit points L− of {µ{ξ(nk) = 1}, k < 0}.

Now suppose we couple νc with another extremal invariant measure µe, the two

measures corresponding to the processes ηt and ξt respectively. Since Theorem

3.2.1 tells us that νc is extremal, Section VIII.2 in IPS implies there exists a

coupling measure such that ν ∈ Ĩe.

If µe satisfies condition (i) for both L+ and L− then there are two possibilities:

either L+ = L− or L+ 6= L−. Suppose first that L+ = L− = {1} for µe. If in

this case we have that µe{ξ(z) = 1} < 1 for some z then we can choose c < ∞

large enough so that νc{η(z) = 1} > µe{ξ(z) = 1}. But this contradicts the

assumption that νc{η(nk) = 1} = cπ(nk)/[1 + cπ(nk)] has limits less than 1 for k

going to∞ and −∞. To see this suppose the coupling measure satisfies ν(B) = 1

as defined in Lemma 3.4.1. Given

0 < ε < 1− lim
k→∞

cπ(nk)/[1 + cπ(nk)] (3.17)

we can choose K large enough so that

1− ε < ν{(η, ξ) : ∃x < K such that η(y) ≤ ξ(y)∀y < x, η(y) < ξ(y) for some y < x,

η(z) ≥ ξ(z)∀z ≥ x, η(z) > ξ(z) for some z ≥ x}.

This, however, contradicts L+ = 1. Similarly we cannot have that ν{(η, ξ) :

(ξ, η) ∈ B} = 1. So Lemma 3.4.1 tells us that η ≤ ξ which contradicts νc{η(z) =

1} > µe{ξ(z) = 1}. It must be that µe = ν∞. A similar argument shows that if

L+ = L− = {0} for µe then µe = ν0.
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Consider the second case where L− 6= L+; without loss of generality we will

assume that L− = {0}.

We claim that given ε > 0, we can find n such that µe{ξ(n) = 0} < ε and

µe{ξ(n + 1) = 0} < ε. To see this suppose that for some ε > 0 there exists no n

for which this is true. Then since L+ = {1}, there are infinitely many x > 0 for

which µe{ξ(x) = 0} < ε/4 and infinitely many y > 0 for which µe{ξ(y) = 0} ≥ ε.

Choosing νc so that limk→∞ cπ(nk)/[1+cπ(nk)] = 1−ε/2 gives us a contradiction

to Lemma 3.4.1 and thus proves the claim.

Given the same ε > 0 we can choose m < n so that µe{ξ(m − 1) = 1} < ε.

Since we have that ν ∈ Ĩe then
∫

Ω̃(
∑

x∈T fx)dν = 0 for each finite T ⊂ Z. By

(3.11),

∑
m≤x≤n,y∈Z

(p(x, y) + p(y, x))

∫
fyxdν (3.18)

=
∑

x=m or n,y=m−1 or n+1

[
p(x, y)

∫
(gxy − hyx)dν + p(y, x)

∫
(hxy − gyx)dν

]
which is increasing in n and −m.

Due to our choice of m and n above,
∫
hn,n+1dν < ε and µe{ξ(m− 1) = 1} < ε;

moreover

P (A) − P (A
⋂
B
⋂
C) ≤ P (Bc) + P (Cc) implies that νc{η(n + 1) = 1, η(n) =

0} −
∫
gn+1,ndν < 2ε so that

∑
m≤x≤n,y∈Z

(p(x, y) + p(y, x))

∫
fyxdν

< p(n, n+ 1)

∫
gn,n+1dν − p(n+ 1, n)

∫
gn+1,ndν + 3ε

< p(n, n+ 1)νc{η(n) = 1, η(n+ 1) = 0}

− p(n+ 1, n)νc{η(n) = 0, η(n+ 1) = 1}+ 5ε.
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By the reversibility of νc

p(n, n+ 1)νc{η(n) = 1, η(n+ 1) = 0} = p(n+ 1, n)νc{η(n) = 0, η(n+ 1) = 1}

so equation (3.18) is in fact equal to 0. Since we have assumed here that L− = {0}

and L+ = {1} for µe then choosing 0 < c < ∞ for then we have a contradiction

s.

Suppose µe satisfies condition (ii) for either L+ or L− so that either L+ = {0, 1}

or L− = {0, 1}. Choose νc with 0 < c <∞. Again we contradict Lemma 3.4.1.

Combining all the above arguments we have that either µe = ν0, µe = ν∞, or

µe satisfies (iii) in some direction. Assuming the latter we can, without loss of

generality, choose 0 < c0 <∞ so that

lim
k→∞

c0π(nk)/[1 + c0π(nk)] = lim
l→∞

µe{ξ(nkl) = 1}.

For all c > c0,

lim
k→∞

cπ(nk)/[1 + cπ(nk)] > lim
l→∞

µe{ξ(nkl) = 1}.

By Lemma 3.4.1 either µe ≤ νc or ν(B) = 1 where B is defined in the lemma.

Similarly, for all c < c0, either µe ≥ νc or ν{(η, ξ) : (ξ, η) ∈ B} = 1. Combining

these two arguments gives νc1 ≤ µe ≤ νc2 for all c1 < c0 < c2. By the continuity

of the one parameter family of measures νc, µe = νc0 .

Proposition 3.4.3. If inf |x−y|=1 p(x, y) > 0, limx→∞ π(x) = ∞, and π(x) has a

finite, nonzero limit point as x goes to −∞, then Ie = {νc : c ∈ [0,∞]}.

Proof. Again, by Theorem 3.2.1 we need only show that Ie ⊂ {νc : c ∈ [0,∞]}.

We argue first that without loss of generality we can assume the limit points

of {π(x), x < 0} are all finite. Assume to the contrary that ∞ is a limit point.
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For any R > 0 we can find x < −R such that min(π(x), π(x + 1)) > R since

inf |x−y|=1 p(x, y) > 0. The conditions of Proposition 3.3.1 are then satisfied so

that Ie = {νc : c ∈ [0,∞]} holds.

Couple νc with another extremal invariant measure µe, the two measures cor-

responding to the processes ηt and ξt respectively. As argued above there exists

a coupling measure such that ν ∈ Ĩe.

Let L− be the the set of limit points of {µe{ξ(x) = 1}, x < 0}. Note that L− is

slightly different from L− described in Proposition 3.4.2 in that L− is the set of

limit points for a subset of {µ{ξ(x) = 1}, x < 0}. L− satisfies one of the following

properties:

(i) L− contains some limit point between 0 and 1.

(ii) L− = {1, 0}.

(iii) L− = {1}.

(iv) L− = {0}.

The same is true for the set L+ of limit points {µe{ξ(x) = 1}, x > 0}.

Suppose L− satisfies (i). Choose a sequence xn → −∞ so that 0 < limn→∞ µe{ξ(xn) =

1} < 1 exists. Since we can assume that the limit points of {π(x), x < 0} are all

finite, there exists a subsequence {xnk} such that limk→∞ π(xnk) <∞ exists.

Consider the two cases where limk→∞ π(xnk) = 0 and where limk→∞ π(xnk) > 0.

Assume the latter case first. Choose 0 < c0 <∞ so that

lim
k→∞

c0π(xnk)/[1 + c0π(xnk)] = lim
n→∞

µe{ξ(xn) = 1}.

For all c > c0,

lim
k→∞

cπ(xnk)/[1 + cπ(xnk)] > lim
n→∞

µe{ξ(xn) = 1}.
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Using the argument at the end of Proposition 3.4.2, we have that for all c1 <

c0 < c2, νc1 ≤ µe ≤ νc2 . Consequently, it must be that µe = νc0 .

Now assume that limk→∞ π(xnk) = 0 so that for all 0 < c < ∞ the coupling

satisfies either νc ≤ µe or ν{B} = 1 where B is given in Lemma 3.4.1. If νc ≤ µe

for all 0 < c <∞ then µe = ν∞, a contradiction to L− satisfying (i). So it must

be that ν{B} = 1.

We claim that for any r < 1 there exists m < 0 such that µe{ξ(m) = 1} > r and

µe{ξ(m−1) = 1} > r. By the hypothesis of the theorem we can choose a sequence

{xl} going to −∞ so that 0 < liml→∞ π(xl) < ∞ exists. If inf |x−y|=1 p(x, y) > p

then choose c so that

lim
l→∞

cpπ(xl)

1 + cpπ(xl)
> r.

Since π(xl−1) > pπ(xl), it follows that liml→∞
cπ(xl−1)

1+cπ(xl−1)
> r. Now since ν{B} =

1 there exists a K such that l > K implies µe{ξ(xl) = 1} > r and µe{ξ(xl− 1) =

1} > r which proves the claim.

Since we have that ν ∈ Ĩe then
∫

Ω̃(
∑

x∈T fx)dν = 0 for each finite T ⊂ Z. By

(3.11),

∑
m≤x≤n,y∈Z

(p(x, y) + p(y, x))

∫
fyxdν

=
∑

x=m or n,y=m−1 or n+1

[
p(x, y)

∫
(gxy − hyx)dν + p(y, x)

∫
(hxy − gyx)dν

]
which is increasing in n and −m.

Using the claim above along with the fact that limx→∞ π(x) =∞, we can argue
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just as we argued in the case where L− 6= L+ of (i) in Proposition 3.4.2, to get

∑
m≤x≤n,y∈Z

(p(x, y) + p(y, x))

∫
fyxdν

< p(m,m− 1)

∫
gm,m−1dν − p(m− 1,m)

∫
gm−1,mdν + 3ε

< p(m,m− 1)νc{η(m) = 1, η(m− 1) = 0}

− p(m− 1,m)νc{η(m) = 0, η(m− 1) = 1}+ 5ε.

By the reversibility of νc the left-hand side must be 0, but this contradicts ν{B} =

1.

Suppose L− satisfies condition (ii). Choosing νc with 0 < c < ∞ gives us a

contradiction to Lemma 3.4.1.

If L− satisfies condition (iii) then we will handle the two cases (a) L+ = {1}

and (b) L+ 6= {1}. Considering case (a) if we switch the coupling so that µe

corresponds to ηt then we have that the left-hand side of the following inequality

goes to 0:

∑
|x|=n,|y|=n+1

(p(x, y) + p(y, x))

∫
fydν ≥ (3.19)

∑
|x|=n,|y|=n+1

p(x, y)

∫
(gxy − hyx)dν +

∑
|x|=n,|y|=n+1

p(y, x)

∫
(hxy − gyx)dν

By (3.11) and by irreducibility we get
∫
fxydν = 0 for all x, y. The measure µe

must lie stochastically above all νc for all finite c and must therefore be equal to

ν∞.

If (b) holds then we refer the reader to the argument given above in the case

where L− satisfies (i) and limk→∞ π(xnk) = 0.

Finally suppose that (iv) holds so that L− = {0}. If L+ satisfies (i) or (ii) then

by Lemma 3.4.1, µe ≤ νc for all c > 0 so that µe = ν0, a contradiction. If L+
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satisfies (iv) then similarly µe = ν0. Let L+ satisfy (iii) so that L+ = {1}. For

a given z choose c small enough so that νc{η(z) = 1} < µe{ξ(z) = 1}. We thus

have that ν{(η, ξ) : (ξ, η) ∈ B} = 1 as given in Lemma 3.4.1. But by (3.11) and

(3.19), for a given ε > 0 we can find −m and n large enough so that∑
m≤x≤n,y∈Z

(p(x, y) + p(y, x))

∫
fyxdν < ε

which of course contradicts ν{(η, ξ) : (ξ, η) ∈ B} = 1.

Proof of Theorem 3.1.2. Note first that since inf |x−y|=1 p(x, y) > 0 then it cannot

be that L− or L+ is equal to {0,∞}. In light of this fact, if either L− or L+

contains a finite, nonzero point then Proposition 3.4.2 and analogs of Proposition

3.4.3 imply there are no nonreversible measures. If L+ = L− = {0} or L+ = L− =

{∞} then Proposition 3.3.1 implies there are no nonreversible measures.

3.5 A result concerning domains of attraction

In this section we will prove the following theorem used to prove Corollary 3.5.2

which in turn gives us information about the Cesaro domain of attraction of νc

when
∑

x π(x)/[1 + π(x)]2 =∞.

Recall that P is the set of all measures on X.

Theorem 3.5.1. Let
∑

x π(x)/[1+π(x)]2 =∞ and let θ be a probability measure

on [0,∞]. Also, assume that νc is a family of extremal invariant measures indexed

by c ∈ [0,∞]. Suppose {µc}, µc ∈ P is such that for each c ∈ [0,∞], µc is

absolutely continuous with respect to νc. If

µ =

∫ ∞
0

µc θ(dc) and ν =

∫ ∞
0

νc θ(dc) (3.20)

then limT→∞
1
T

∫ T
0
µS(t)dt exists and is equal to ν.
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The fact that Theorem 3.5.1 concerns Cesaro convergence rather than the usual

weak convergence, while undesirable, is not so bad since many results in particle

systems concern Cesaro convergence (see Section I.1 in IPS). One notable example

of this is the main result of Andjel(1986) which concerns the Cesaro convergence

of certain initial product measures when the transition kernel of the exclusion

process is an asymmetric, nearest-neighbor random walk. In fact, these results

were later shown to be true for weak convergence (this was the goal of Andjel,

Bramson, Liggett(1988)).

Proof of Theorem 3.5.1. For a fixed c we first prove that

lim
T→∞

1

T

∫ T

0

µcS(t)dt = νc. (3.21)

By the compactness of P we can choose a sequence of times such that

lim
n→∞

1

tn

∫ tn

0

µcS(t)dt (3.22)

converges in distribution to some measure λ. Pick a continuous (and therefore

bounded) function f on X with ‖f‖ ≤ 1 and let g be the Radon-Nikodym deriva-

tive of µc with respect to νc. Given ε > 0 we have that for n large enough

| 1
tn

∫ tn

0

∫
(S(t)f)g dνcdt−

∫
f dλ| < ε/3.

We can choose a simple function

ĝ =
N∑
k=1

ck1Ek

approximating g such that ∪kEk = X, ĝ ≥ 0,
∫
ĝ dνc = 1, and

∫
|g− ĝ| dνc < ε/3.

Since ‖S(t)f‖ ≤ ‖f‖ ≤ 1 this gives us

| 1
tn

∫ tn

0

∫
(S(t)f)g dνcdt−

1

tn

∫ tn

0

∫
(S(t)f)ĝ dνcdt| ≤

∫
|g − ĝ| dνc < ε/3.
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Without loss of generality we can henceforth assume that νc(Ek) > 0 for each

k. Define the measure µk concentrating on Ek by letting

µk(A) =
νc(A)

νc(Ek)

for all A ⊂ Ek and µk = 0 otherwise. If we think of ĝ as the Radon-Nikodym

derivative of some measure λε with respect to νc then we can write

N∑
k=1

νc(Ek)µk = νc and
N∑
k=1

ckνc(Ek)µk = λε.

We can now find a subsequence {tnl} such that for each k the following limit

exists:

lim
l→∞

1

tnl

∫ tnl

0

µkS(t)dt = νk.

Moreover, the argument used in (2.3) tells us νk ∈ I. Since νc is extremal

invariant and since
∑

k≥1 νc(Ek)νk = νc, it must be that νk = νc for each k. This

then yields
N∑
k=1

ckνc(Ek)νk = lim
l→∞

1

tnl

∫ tnl

0

λεS(t)dt = νc

which gives us

| 1

tnl

∫ tnl

0

∫
(S(t)f)ĝ dνcdt−

∫
f dνc| < ε/3

for l large enough.

Combining the three inequalities we have

|
∫
f dλ−

∫
f dνc| < ε.

But ε > 0 is arbitrary so it must be that
∫
f dλ =

∫
f dνc for each continuous f

with ‖f‖ ≤ 1 which implies that (3.22) is equal to νc. Now let Mn be the closure

of the set of measures

{ 1

T

∫ T

0

µcS(t)dt : T ≥ n}.
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Using the compactness of P along with the fact that {tn} is an arbitrary sequence

of times causing convergence in (3.22), we have that
⋂
n∈NMn = νc proving (3.21).

To finish the proof note that since ‖S(t)f‖ ≤ ‖f‖, we can use the Dominated

Convergence Theorem together with Fubini’s Theorem to show that

lim
T→∞

1

T

∫ T

0

∫ ∞
0

∫
S(t)f dµc θ(dc) dt =

∫
f dν.

For the following corollary let να be the product measure with marginals 0 <

να{η(x) = 1} = α(x) < 1 for α(x) a function on S.

Corollary 3.5.2. Suppose
∑

x π(x)/[1+π(x)]2 =∞. If
∑

x |α(x)− cπ(x)
1+cπ(x)

| <∞

then

lim
T→∞

1

T

∫ T

0

ναS(t)dt = νc. (3.23)

Proof. Let β(x) = cπ(x)
1+cπ(x)

, mx = min[α(x), β(x)], and Mx = max[α(x), β(x)]. We

then have

1− |α(x)− β(x)| = 1−Mx +mx

= [(1−Mx)(1−Mx)]
1/2 + (mxmx)

1/2

≤ [(1−Mx)(1−mx)]
1/2 + (mxMx)

1/2

= [(1− α(x))(1− β(x))]1/2 + (α(x)β(x))1/2.

Since
∑

x |α(x)− β(x)| <∞ then

∏
x

{(α(x)β(x))1/2 + [(1− α(x))(1− β(x))]1/2} ≥
∏
x

{1− |α(x)− β(x)|} > 0.

An application of Kakutani’s Dichotomy tells us that να is absolutely continuous

with respect to νc which completes the proof.
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We remark here that if α(x) and β(x) are both bounded away from 0 and 1

then Kakutani’s Dichotomy tells us that
∑

x[α(x) − β(x)]2 < ∞ is a necessary

and sufficient condition for να to be absolutely continuous with respect to νc (e.g.

page 245 of Durrett(1996)).
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CHAPTER 4

The Noisy Voter-Exclusion Process

Since Proposition 1.3.1 is the main tool used in analyzing the symmetric exclusion

process, a natural question to ask is: what is the most general setting for which

an analog of Proposition 1.3.1 can be proved for some sort of dual process? The

answer to this question is the process that will be studied in this chapter. In

order to describe this process, we must first introduce the voter model which

happens to have a dual process which is very similar to the that of the symmetric

exclusion process.

The voter model is an interacting particle system introduced independently by

Clifford and Sudbury(1973) and Holley and Liggett(1975). In particular it is a

spin system with rates given by

c(x, η) =


∑

y qv(x, y)η(y) if η(x) = 0,∑
y qv(x, y)[1− η(y)] if η(x) = 1,

where qv(x, y) ≥ 0 and supx
∑

y qv(x, y) <∞ for x, y ∈ S.

To describe the voter model in a more intuitive manner let S be a countable

set for which a voter resides at each site in the set. The voter at site x waits

an exponential time with mean [
∑

y qv(x, y)]−1 at which point it chooses one of

its neighbors with probability qv(x, y)/
∑

z qv(x, z) and subsequently takes the

opinion (either 1 or 0) of y.

The generalization of symmetric exclusion that we will consider not only com-
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bines the voter model and symmetric exclusion, but it also adds births and deaths

at various sites. In Schwartz(1976) the β-δ process is introduced, a particle sys-

tem which is exactly the symmetric exclusion process combined with births and

deaths. The transition rates of the exclusion process are given by qe(x, y) while

births (η(x) goes from 0 to 1) occur at site x with exponential rate β(x) and

deaths (η(x) goes from 1 to 0) occur with rate δ(x).

If we define the transition rates q(x, y) = qe(x, y) + qv(x, y) and let qx =∑
y q(x, y), then we can combine the voter model and the β-δ process to obtain

a new process which must satisfy the following: (a) S is irreducible with re-

spect to q(x, y), (b) qe(x, y) = qe(y, x), (c) max{supx qx, supy
∑

x qe(x, y)} < ∞,

and (d) infx qx > 0. Also, the transition rates β(x) and δ(x) must satisfy (e)

supx(β(x) + δ(x)) < ∞. Condition (d) is not necessary, but it is convenient for

the purposes of our discussion. We will call such a process a noisy voter-exclusion

process (NVE process).

In the setting of the NVE process, the voter at x waits an exponential time with

mean qx at which point it again chooses a neighbor with probability q(x, y)/qx, but

now the voter decides to either switch places with y with probability qe(x, y)/[qe(x, y)+

qv(x, y)] or, as before, take the opinion of y with probability qv(x, y)/[qe(x, y) +

qv(x, y)]. In addition to this, a voter at x with opinion 0 decides to spontaneously

change its opinion to 1 with exponential rate β(x), and a voter at x with opinion

1 spontaneously changes its opinion to 0 with rate δ(x).

Recall from the discussion on spin systems in the introduction that

ηx(u) =

 η(u) if u 6= x

1− η(u) if u = x.

Using the results of Chapter I in IPS (Liggett(1985)), the generator for an NVE
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process is given by the closure of the following operator on D(X):

Ωf(η) =
∑

η(x)=1,η(y)=0

qe(x, y)[f(ηxy)− f(η)] +
∑
x

c(x, η)[f(ηx)− f(η)]

where

c(x, η) =

 β(x) +
∑

y qv(x, y)η(y) if η(x) = 0,

δ(x) +
∑

y qv(x, y)[1− η(y)] if η(x) = 1.

As usual, we will call the corresponding semigroup S(t).

If β(x) = δ(x) ≡ 0 then we will say that we have a voter-exclusion process. A

previous study (Belitsky, Ferrari, Menshikov, and Popov(2001)) has been done

concerning the ergodic theory of the voter-exclusion process in the case where

S = Z and qe(x, y) is not necessarily symmetric, but there is no overlap with the

results of this chapter.

If qe(x, y) ≡ 0 then we just get the noisy voter model. Granovsky and Madras(1995)

study some important equilibrium functionals and critical values of the noisy

voter model, but only for the case where β and δ are constant. We, on the other

hand, will study the invariant measures of the NVE process where β(x) and δ(x)

are in general not constant.

In Chapter V of IPS, one can find a complete characterization of the extremal

invariant measures and their domains of attraction for the voter model (Holley

and Liggett(1975)). Schwartz(1976) does the same for the β-δ process. Just as

in the symmetric exclusion process, these results are all based upon an analog of

Proposition 1.3.1. Using such an analog, one can prove that

ναS(t){η(x) = 1 for all x ∈ A} (4.1)

is increasing in t for the voter model (similarly, it can be shown that (4.1) is

nonincreasing in t for symmetric exclusion, however, we did not prove this in

Chapter 1). For the NVE process, a dual exists, but there is no monotonicity
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concerning the dual so we will have to use other techniques in order to classify

the invariant measures under various conditions. Assume throughout this chapter

that qv(x, y) > 0 for some x, y ∈ S. For the case where qv(x, y) ≡ 0 we refer the

reader to Schwartz(1976).

4.1 The results

Recall that P is the set of probability measures on X,

H =

{
α : S → [0, 1] such that

∑
y

q(x, y)α(y) = qxα(x) for all x

}
,

and that Sn = Sn\{~x : xi = xj for some i < j}. Also, let µα = limt→∞ ναS(t).

Theorem 4.1.4 below will show that these limits exist.

If Et = (xt, yt) ∈ S2 is the finite, two particle exclusion process with transition

rates q(x, y) then define the functions qv and qe on S2 by qv(Et) = qv(xt, yt) +

qv(yt, xt) and qe(Et) = qe(xt, yt) + qe(yt, xt).

Suppose X(t) and Y (t) are independent continuous time Markov chains on

S with transition rates q(x, y) and denote pt(x, y) = P x(X(t) = y). Let Λ =

{ω|
∫∞

0
β(X(t)) + δ(X(t)) dt <∞}. For α ∈ H, α(X(t)) is a bounded martingale

so limt→∞ exists with probability one. We can define an equivalence relation R

on H by

α1Rα2 if lim
t→∞

[α1(X(t))− α2(X(t))] = 0 almost surely on Λ.

HR is any set of representatives of the equivalence classes determined by R.

Let E be the following event:

{there exists tn →∞ such that X(tn) = Y (tn)}.
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Then we will say that H∗ is the set of all α ∈ H such that

P {x,y}( lim
t→∞

α(X(t)) = 0 or 1 on E) = 1 for all x, y ∈ S,

and H∗R is again the set of equivalence classes on H∗.

Define the following function on S2,

g(x, y) = P (x,y)[X(t) = Y (t) for some t > 0].

Note that if g(x, y) = 1 for some (x, y) ∈ S2 then by irreducibility g(x, y) ≡ 1

(For more detail concerning this see Lemma VIII.1.18 in IPS).

We are now in a position to state the theorems:

Theorem 4.1.1. An NVE process is ergodic if and only if

P x[

∫ ∞
0

β(X(t)) + δ(X(t)) dt =∞] = 1 for all x ∈ S. (4.2)

Theorem 4.1.2. Suppose µ ∈ P and δ0, δ1 are the point masses on all 0’s and

all 1’s. Assume that (4.2) does not hold and that

PE[

∫ ∞
0

qv(Et) dt =∞] = 1 for all E ∈ S2. (4.3)

Then

(a) limt→∞ δ0S(t) = µ0 and limt→∞ δ1S(t) = µ1 exist,

(b) Ie = {µ0, µ1}, and

(c) limt→∞ µS(t) = λµ1 + (1− λ)µ0 if and only if

lim
t→∞

∑
y

pt(x, y)µ{η(y) = 1} = λ for all x ∈ S. (4.4)

We will say that the transition rates q(x, y) on Zd have finite rangeN if q(x, y) =

0 when |x− y| > N . In order to show that (4.3) is not an unreasonable condition

the following corollary gives circumstances under which (4.3) holds.
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Corollary 4.1.3. Let S = Zd, qe(x, y) = qe(0, y−x), and qv(x, y) = qv(0, y−x).

Suppose X(t) − Y (t) is recurrent and qe(x, y) has finite range N . Then Ie =

{µ0, µ1} and for µ ∈ P, limt→∞ µS(t) = λµ1 + (1 − λ)µ0 if and only if (4.4)

holds.

Theorem 4.1.4. (a) µα exists for all α ∈ H, and µα1 = µα2 if and only if α1Rα2.

(b) If g(x, y) < 1 for some x, y ∈ S and

PE[

∫ ∞
0

qe(Et) dt =∞] = 0 for some E ∈ S2 (4.5)

then Ie = {µα : α ∈ H∗R}.

(c) If q(x, y) = q(y, x) for all x, y ∈ S and

PE[

∫ ∞
0

qv(Et) dt =∞] = 0 for some E ∈ S2 (4.6)

then Ie = {µα : α ∈ HR}.

The condition that g(x, y) < 1 for some x, y ∈ S is not needed in part (a), but

we put it there because if g ≡ 1 then we are left with the situation in Theorem

4.1.2. It should also be remarked that if q(x, y) = q(y, x) and g(x, y) < 1 for

some (x, y) ∈ S2 then Lemma VIII.1.23 in IPS implies that (4.5) and (4.6) are

satisfied. On the other hand when q(x, y) = q(y, x), we claim that g ≡ 1 implies

that X(t) is recurrent so that β(x) + δ(x) > 0 for some x gives us (4.2). To prove

the claim use the Chapman-Kolmogorov equation to get

p2t(x, x) =
∑
y

pt(x, y)pt(y, x)

=
∑
y

[pt(x, y)]2 = P (x,x)[X(t) = Y (t)].

So if X(t) is transient then g(x, y) < 1 for some x, y ∈ S since∫ ∞
0

P (x,x)[X(t) = Y (t)] dt <∞

(This argument will be made more explicit by Lemma 4.3.1).
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Theorem 4.1.5. Suppose µ ∈ P and that E(x,y)g(X(t), Y (t)) → 0 for some

x, y ∈ S. If

lim
t→∞

∑
y

pt(x, y)µ{η(y) = 1} = α(x) and (4.7)

lim
t→∞

∑
u,v

pt(x, u)pt(x, v)µ{η(u) = η(v) = 1} = α2(x) for all x ∈ S (4.8)

then limt→∞ µS(t) = µα. A necessary and sufficient condition for limt→∞ µS(t) =

µα is that

lim
s→∞

lim sup
t→∞

∫
X

{
∑
x

ps(w, x)P x[Λ]
∑
y

pt(x, y)[η(y)− α(y)]}2 dµ(η) = 0 (4.9)

We should mention two instances for which g(x, y) < 1 for some x, y ∈ S

implies

E(x,y)g(X(t), Y (t))→ 0 for some x, y ∈ S. (4.10)

Firstly, if q(x, y) is symmetric then as stated in the comments following Theorem

4.1.4, Lemma VIII.1.18 in IPS gives (4.10). Secondly, if the only bounded har-

monic functions are constants then Corollary II.7.3 in IPS together with Proposi-

tion 5.19 in Kemeny, Snell, and Knapp(1976) give (4.10). We also note here that

condition (4.9) is equivalent to (4.7) and (4.8) when P x[Λ] = 1 for all x ∈ S.

Corollary 4.1.6. If g(x, y) < 1 for some x, y ∈ S, H = {α : α ∈ [0, 1]}, and

β(x) = δ(x) ≡ 0 then Ie = {µα : α ∈ H}.

The proofs of the above theorems appear in Section 4.4. The above theorems

give partial results concerning the invariant measures and their respective do-

mains of attraction for certain NVE processes. Clearly there are NVE processes

which are not covered by these theorems. Examples of these situations include the

process on Z2 where qe(x, y) is translation invariant, β(x) = δ(x) ≡ 0, qv(x, y) = 0

outside of a finite set, and qv(x, y) is not symmetric. A more interesting example
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is provided in V.1.6 of IPS; in fact using Liggett’s example we can create similar

examples to show that there exist NVE processes which do not satisfy (4.5) yet

have g(x, y) < 1 for some x, y ∈ S. Section 4.5 discusses how one might go

about proving a general result that would include the exceptions we have just

mentioned.

We now turn to a discussion of a slightly more general process. In particular,

modify the NVE process by allowing for exclusion rates where qe(x, y) 6= qe(y, x).

Call such a process a generalized NVE process. It should be noted that not re-

quiring the symmetry of qe(x, y) really does change the nature of the process.

We will state two main reasons for this. Firstly, the properties of the dual finite

particle system that allow us to prove the above theorems no longer exist. Sec-

ondly, the results for the asymmetric case are completely different; in fact it is

known that Theorems 4.1.4 and 4.1.5 and Corollary 4.1.6 do not hold in general

when qe(x, y) is not symmetric. We can however prove certain things about the

generalized NVE process in specific cases using methods other than duality.

In Section 4.6 we prove an ergodic theorem for the case where qv(x, y) ≡ 0

using the coupling method. When qv(x, y) ≡ 0 we will call the process a noisy

exclusion process. We will also show in this final section that Theorem 4.1.1 does

not hold in general when qe(x, y) is not symmetric.

The main result of Section 4.6 is an extension, in the case where S = Zd and

the transition rates have finite range, of Schwartz’s(1976) ergodic theorem which

is exactly Theorem 4.1.1 when qv(x, y) ≡ 0. Before we state the theorem we need

the following definitions:

Tn = {x ∈ Zd : |xi| ≤ n for all i}.

TNn = Tn+N\Tn.

72



Theorem 4.1.7. Suppose ηt is a noisy exclusion process with transition rates

qe(x, y) irreducible with respect to Zd and having finite range N . Let {bl} be a

nonnegative sequence satisfying (a)
∑
bl = ∞ if d = 1 and (b) liml→∞ lbl = ∞

if d ≥ 2. If p(l) is a nonnegative function on N satisfying p(l + 1) ≥ p(l) + N

and is bounded by klk for some k > 0, and if β, δ satisfy β(x) + δ(x) ≥ bl for all

x ∈ TNp(l) and β(x) = δ(x) = 0 otherwise, then ηt is ergodic.

For some simple examples to see the applicability of Theorem 4.1.7 set N = 1

and let p(l) be an arithmetic sequence e.g. k, 2k, 3k, . . . Suppose β(x) = δ(x) = 1

for all ‖x‖ = nk, n ∈ N with ‖ · ‖ being the l∞ norm and β(x) = δ(x) = 0

otherwise. Then the theorem tells us that the noisy exclusion process is ergodic.

Note that if k = 1 then the M < ε Theorem in Section I.4 of IPS also gives

us ergodicity, but if k > 1 then the M < ε Theorem in general gives us no

information. Also, Theorem 4.1.7 allows us to let β(x) + δ(x) → 0 whereas the

M < ε Theorem again gives no information in such a circumstance. We should

however mention here that in the nearest neighbor case, a version of the M < ε

Theorem proven in Ferarri(1990) allows for β(x) + δ(x) → 0, but once again,

Ferarri’s theorem gives no information in the case where k > 1.

4.2 The dual of the NVE process

As stated before the proofs of the theorems are possible only because there exists

an analog of Proposition 1.3.1. Its proof follows that of Theorem VIII.1.1 in IPS.

Before stating and proving Proposition 4.2.1 we will need to describe the dual

and semi-dual of the NVE process.

The semi-dual process At is a continuous time Markov chain on Y such that

the particles in At move independently on S according to the motions of the
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independent Xi(t) processes except that transitions to sites that are already oc-

cupied are handled in the following way: If a particle at x attempts to move to

y which is already occupied then the transition is either suppressed with proba-

bility qe(x, y)/[qe(x, y) + qv(x, y)] or the two particles coalesce and move together

thereafter with probability qv(x, y)/[qe(x, y)+qv(x, y)]. In particular |At| ≤ |At+s|

for all s ≥ 0.

Now let Y∗ be defined by adding to Y a cemetery state, ∆, and the empty set,

∅. We define the process A∗t starting in a state A ∈ Y to move just as At does

except that in addition A∗t goes to A∗t\{x} at rate β(x) if x ∈ A∗t and A∗t goes

to the cemetery state ∆ at rate
∑

x∈A∗
t
δ(x). We will call A∗t the dual process.

Define D to be the event that A∗t is never in the state ∆.

If µ ∈ P and A ∈ Y, then define

µ̂(A) = µ{η(x) = 1 for all x ∈ A}.

Extend this function to Y∗ by letting µ̂(∆) = 0 and µ̂(∅) = 1.

Proposition 4.2.1. Extend the domain of η ∈ X by letting η(∆) = 0. If A ∈ Y

and ηt is an NVE process then for all t ≥ 0

P η[{ηt = 1 on A}] = PA[{η = 1 on A∗t} ∪ {A∗t = ∅}].

Proof. Let

uη(t, A
∗) = P η[{ηt = 1 on A∗} ∪ {A∗ = ∅}] = S(t)H(·, A∗)(η),

where for A∗ 6= ∅

H(η,A∗) =
∏
x∈A∗

η(x) =

 1 if η(x) = 1 for all x ∈ A∗

0 otherwise

and H(η, ∅) = 1.

74



For each A ∈ Y, H(·, A) ∈ D so we have

ΩH(·, A)(η) =
∑

η(x)=1,η(y)=0

qe(x, y)[H(ηxy, A)−H(η, A)]

+
∑

x,y:η(x)6=η(y)

qv(x, y)[H(ηx, A)−H(η, A)]

+
∑
x

[β(x)(1− η(x)) + δ(x)η(x)][H(ηx, A)−H(η, A)]

=
1

2

∑
x,y

qe(x, y)[H(ηxy, A)−H(η, A)]

+
∑

x∈A,y∈S

qv(x, y)H(η, A\{x})[1− 2η(x)]{η(x)[1− η(y)] + η(y)[1− η(x)]}

+
∑
x∈A

β(x)[H(η, A\{x})−H(η, A)] +
∑
x∈A

δ(x)[H(η,∆)−H(η, A)]

=
1

2

∑
x,y

qe(x, y)[H(η, Axy)−H(η, A)] +
∑

x∈A,y∈S

qv(x, y)H(η,A\{x})[η(y)− η(x)]

+
∑
x∈A

β(x)[H(η, A\{x})−H(η, A)] +
∑
x∈A

δ(x)[H(η,∆)−H(η, A)]

=
∑

x∈A,y/∈A

qe(x, y)[H(η, Axy)−H(η, A)]

+
∑

x∈A,y∈S

qv(x, y)[H(η, (A\{x}) ∪ {y})−H(η, A)]

+
∑
x∈A

β(x)[H(η, A\{x})−H(η, A)] +
∑
x∈A

δ(x)[H(η,∆)−H(η, A)].

Here Axy is obtained from A in the same way that ηxy is obtained from η. The

symmetry of qe(x, y) is used in second and fourth steps above.
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By Theorem I.2.9 in IPS

d

dt
uη(t, A) = ΩS(t)H(·, A)(η)

=
∑

x∈A,y/∈A

qe(x, y)[S(t)H(·, Axy)(η)− S(t)H(·, A)(η)]

+
∑

x∈A,y∈S

qv(x, y)[S(t)H(·, (A\{x}) ∪ {y})(η)− S(t)H(·, A)(η)]

+
∑
x∈A

β(x)[S(t)H(·, A\{x})(η)− S(t)H(·, A)(η)]

+
∑
x∈A

δ(x)[S(t)H(·,∆)(η)− S(t)H(·, A)(η)]

=
∑

x∈A,y/∈A

qe(x, y)[uη(t, Axy)− uη(t, A)]

+
∑

x∈A,y∈S

qv(x, y)[uη(t, (A\{x}) ∪ {y})− uη(t, A)]

+
∑
x∈A

β(x)[uη(t, A\{x})− uη(t, A)] +
∑
x∈A

δ(x)[uη(t,∆)− uη(t, A)].

For each A ∈ Y, the unique solution to this system of differential equations with

initial condition H(η, A) is

EAH(η, A∗t ) = PA[{η = 1 on A∗t} ∪ {A∗t = ∅}]

(See Theorem 1.3 of Dynkin(1965)).

4.3 Preliminary lemmas

The first five lemmas are adaptations of lemmas proved by Schwartz(1976). We

omit the proofs of Lemmas 4.3.1, 4.3.2, and 4.3.5 since they are the same as found

in Schwartz(1976) except for perhaps a change in notation.

Suppose Et is a continuous time nonexplosive jump process on a countable set

N and let Ek be the imbedded Markov chain. The transition rates of Et are given
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by Qxy. For L ⊂ N define

QL(x) =
∑

y∈L,y 6=x

Qxy.

Lemma 4.3.1. Assume there exist constants 0 < α1 < α2 < ∞ such that for

each x ∈ N , α1 ≤ QN (x) ≤ α2. Then almost surely

{ω|
∫ ∞

0

QL(Et) dt =∞} = {ω|Ek ∈ L infinitely often} ⊂ {ω|Et ∈ L for some t}.

Lemma 4.3.2. Assume 0 < supx(β(x) + δ(x)) < ∞. Then (4.2) holds if and

only if

PA[A∗t = ∅ or A∗t = ∆ eventually] = 1

for all A ∈ Y.

For the next lemma define the function

h(A) = PA(|At| < |A| for some t > 0) for A ∈ Y

which is in some sense a voter model analog of the function g(x, y).

Lemma 4.3.3. If (4.3) holds then PA(|At| = 1 eventually) = 1 for all A ∈ Y.

Proof. We first prove the case for which At starts in a two particle state |A| = 2.

Take Et in Lemma 4.3.1 to be At, and let L be the set of states such that

|At| = 1. We then interpret QL(At) as the rate at which At jumps to a one

particle state. If At = {x} then QL(At) is just qx. Now suppose that |At| = 2

for all t. Then At is exactly Et defined above to be the two particle exclusion

process with respect to q(x, y). Therefore∫ ∞
0

q(Et) dt =

∫ ∞
0

QL(At) dt =∞
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and by Lemma 4.3.1, |At| = 1 eventually, a contradiction. We have thus proved

the case where |A| = 2.

For the general case suppose |A| ≥ 2. Couple Bt, a semi-dual process starting

from a two particle state |B| = 2, with At so that Bt ⊂ At. In order to do this let

At and Bt move as usual except when a particle tries to move with rate qe(x, y)

to an occupied site, instead of the motion being “excluded”, let the two particles

switch places. Of course this is the same motion as before, just a different way

of thinking of it.

Using the coupling we have now that h(A) = 1 for all |A| ≥ 2. Thus with

probability one, |A| decreases for all |A| ≥ 2 which proves the lemma.

Recall that D is the event where A∗t is never in the state ∆.

Lemma 4.3.4. If β(x) ≡ 0 then

lim
t→∞

E{x}PAt [Dc,Λ] = 0 for all x ∈ S.

Proof. Let Et = (X(t), ζ(t)) be a Markov jump process on N = S × {0, 1, 2, . . .}

with jump rates Q(x,n),(y,0) = q(x, y) and Q(x,n),(x,n+1) = δ(x). Let L = S ×

{1, 2, . . .} so that QL((x, n)) = δ(x). We then have that

lim
t→∞

E{x}PAt [Dc,Λ] = lim
t→∞

P x[Es jumps to L after time t,Λ]

= P x[Ek ∈ L infinitely often,Λ].

But the right-hand side is equal to 0 by Lemma 4.3.1 completing the proof.

We will need three definitions in stating the next lemma and in proving Theorem

4.3.9. Before stating the definitions we ask the reader to think of µ{η : η(X(t)) =

0} as a family of random variables on the space of paths. We then have

P ′ = {µ ∈ P : lim
t→∞

µ{η(X(t)) = 0} = 1 almost surely on Λc}.
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H′ = {α ∈ H : lim
t→∞

α(X(t)) = 0 almost surely on Λc}.

If S(t) is the semigroup for an NVE process then let S ′(t) be the semigroup for

the same process except that β(x) = δ(x) ≡ 0.

For part (b) of the following lemma we couple At and A∗t so that they move

together until the first time that A∗t = δ or |A∗t | < |At|.

Lemma 4.3.5. (a) H′ is a set of class representatives for the equivalence relation

R on H.

(b) If we extend the state space of At to include ∆ and ∅ as absorbing states

then limt→∞ P
A∗
t [A∗s 6= As for some s ≥ 0] = 0 almost surely.

(c) Suppose that β(x) ≡ 0. If µ ∈ I or if µ = limt→∞ νS
′(t) exists for ν ∈ I,

then µ ∈ P ′.

Define En
t to be the finite exclusion process on n particles starting in the state

A where |A| = n. To be consistent with our previous definition of Et we will

leave the superscript off if n = 2 so that Et = E2
t and |E| = 2.

Lemma 4.3.6. If (4.6) holds and q(x, y) = q(y, x) then

PA[

∫ ∞
0

∑
E⊂Ent

qv(E) dt =∞] = 0 for all A ∈ Y.

Proof. Suppose A = {x1, . . . , xn}. Let E
{i,j}
t be the two particle exclusion process

starting from {xi, xj}. We will show there exists a multiple coupling of the

processes En
t and E

{i,j}
t for 0 ≤ i < j ≤ n such that

{En
t } ⊂

⋃
0≤i<j≤n

{E{i,j}t }. (4.11)

Let Xi(t) be a process equal in distribution to X(t). The key to seeing why

(4.11) is true is noticing that there exists a way to couple Xi(t) and Xj(t) so that
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whenever one tries to coalesce with the other, they simply switch places. This

can be done since q(x, y) = q(y, x). With that said, it is clear that we can couple

the Xi(t)’s with En
t so that

{En
t } = {X1(t), . . . , Xn(t)}.

Here the processes Xi(t) start at xi and are clearly not independent of each other.

For each E
{i,j}
t we can label one particle first class and the other particle second

class. We can now think of the evolution of E
{i,j}
t in the following way. If a second

class particle tries to go to a site occupied by a first class particle, it is not allowed

to do so. However, if a first class particle attempts to move to a site occupied by

a second class particle, the two particles switch places. With this evolution a first

class particle is equal in distribution to X(t). By choosing the first class particles

to have the paths of the Xi(t) processes above it is clear that (4.11) holds.

Suppose now that

PA[

∫ ∞
0

∑
E⊂Ent

qv(E) dt =∞] > 0 for some A ∈ Y.

In light of (4.11), it must be that

PE[

∫ ∞
0

qv(Et) dt =∞] > 0 for some E ∈ S2.

By irreducibility

PE[

∫ ∞
0

qv(Et) dt =∞] > 0 for all E ∈ S2.

Lemma 4.3.7. If q(x, y) = q(y, x) and (4.6) holds then h(En
t )→ 0 almost surely

for all initial states A ∈ Sn.
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Proof. By Lemma 4.3.6,

PA[

∫ ∞
0

∑
E⊂Ent

qv(E) dt =∞] = 0 for all A ∈ Y. (4.12)

Let En
k be the imbedded Markov chain for the process En

t starting with initial

state A. Let Ω be the path space for En
k and letM be the probability measure on

Ω for our process. Choose ε > 0. If there exists a set F ⊂ Ω such thatM(F ) > 0

and h(En
k ) > ε infinitely often on F then it must be that

∞∑
k=0

∑
E⊂Enk

qv(E) =∞

almost surely on F since whenever
∑∞

k=0

∑
E⊂Enk

qv(E) < ∞ it must be that

h(En
k ) > ε finitely many times.

We claim that

{ω|
∫ ∞

0

∑
E⊂Ent

qv(E) dt =∞} = {ω|
∞∑
k=0

∑
E⊂Enk

qv(E) =∞} (4.13)

almost surely. To see this define τk to be the kth jump time of En
t . Now note

that ∫ ∞
0

∑
E⊂Ent

qv(E) dt =
∞∑
k=0

∑
E⊂Enk

qv(E)[τk+1 − τk].

By our assumptions E[τk+1−τk] and Var[τk+1−τk] are bounded above and below

uniformly in k. Since [τk+1−τk|En
1 , E

n
2 , . . .] are independent, Kolmogorov’s Three

Series Theorem proves the claim.

Since (4.13) contradicts (4.12) we have shown that h(En
k ) → 0 almost surely.

This however implies that h(En
t )→ 0 almost surely.

Suppose Vt is the dual process for the voter model with rates q(x, y) starting

from the set A. If we couple At and Vt so that they move together as much as
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possible then we can define the function

f(A) = PA[At 6= Vt for some t > 0].

Again, f(A) plays much the same role as h(A) and g(x, y).

Lemma 4.3.8. If (4.5) holds then EAf(At)→ 0 for all A ∈ Y.

Proof. We prove first the case where |A| ≤ 2. Let Et = (At, ζ(t)) be a Markov

jump process on N = (S2∪S)×{0, 1, 2, . . .} with jump rates (i) Q(A,n),(B,0) equal

to the jump rate from A to B of the semi-dual process and (ii) Q(A,n),(A,n+1) =

qe(A) if |A| = 2. Let L = S2 × {1, 2, . . .} so when |A| = 2, QL((A, n)) = qe(A)

and when |A| = 1, QL((A, n)) = 0. We then have that

lim
t→∞

EAf(At) = lim
t→∞

PA[Es jumps to L after time t]

= PA[Ek ∈ L infinitely often].

Since (4.5) holds, Lemma 4.3.1 implies that the right-hand side is 0.

Now suppose |A| > 2. Change the coupling of the Xi(t) processes that we used

in Lemma 4.3.6 by letting Xi(t) and Xj(t) switch places at rate qe(Xi(t), Xj(t))

and coalesce and move together thereafter at rate qv(Xi(t), Xj(t)). Again, we are

allowed to do this since qe(x, y) = qe(y, x). With this new coupling we can couple

the Xi(t)’s with At so that

{At} = {X1(t), . . . , Xn(t)}.

As in Lemma 4.3.6, we use the idea of first class particles along with the fact

that Xi(t) can be coupled with E
{i,j}
t so that {Xi(t)} ⊂ {E{i,j}t }, we have that

the proof for |A| ≤ 2 implies the proof for all A ∈ Y.

The next theorem is actually a special case of Theorem 4.1.4. We prove this

special case right now in order make the proof of the general case easier to read.
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Theorem 4.3.9. Suppose qe(x, y) ≡ 0.

(a) µα exists for all α ∈ H, and µα1 = µα2 if and only if α1Rα2.

(b) Ie = {µα : α ∈ H∗R}.

Proof. The proof is virtually the same as that of Theorem 1.3 in Schwartz(1976),

but it is included here for completeness. We will however leave out some repetitive

details.

Let J represent the set of invariant measures for the case where β(x) = δ(x) ≡

0, in other words the voter model. In Chapter V of IPS, it is shown that Je =

{µα : α ∈ H∗}. Consider a certain subset of J , namely

J ′ = {µ ∈ J : lim
t→∞

µ{η(X(t)) = 0} = 1 almost surely on Λc}.

The main part of the proof is showing that there exists a bijective affine map

between J ′ and I. To avoid confusion, we will put a bar over the extremal

invariant measures of the pure voter model so that we have Je = {µ̄α : α ∈ H∗}.

In order to do this we will first consider the case where β(x) ≡ 0, but δ(x) ≥ 0.

We start by coupling the the semi-dual process At with n independent processes

X1(t), . . . , Xn(t) which start from A = {x1, . . . , xn} and are equal in distribution

to X(t). In particular, couple the processes so that At ⊂ {X1(t), . . . , Xn(t)}. Let

X∗i (t) be the dual process starting from {xi} and henceforth define T (t) to be

the semi-group for the voter model.

By coupling the processes A∗t and At so that they move together as much

as possible, it is clear that for any measure µ ∈ P and any A ∈ Y, S(t)µ̂(A) ≤

T (t)µ̂(A). Thus if µ ∈ I and ν ∈ J ′ then µ̂(A) ≤ T (t)µ̂(A) and S(t)ν̂(A) ≤ ν̂(A).

Applying the respective semigroups once more to both these inequalities gives

T (s)µ̂(A) ≤ T (t + s)µ̂(A) and S(t + s)ν̂(A) ≤ S(s)ν̂(A) so that limt→∞ µT (t)

and limt→∞ νS(t) exist by monotonicity and duality.
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Now take µ1 ∈ J ′. Let limt→∞ µ1S(t) = µ2 and define the map σ(µ1) = µ2.

We will show that σ is an affine bijection from J ′ to I.

Since µ1 ∈ P ′, it follows that

lim
t→∞
|T (t)µ̂1(A)− S(t)µ̂1(A)| ≤ PA[

⋃
1≤i≤n

{X∗i (t) = ∆ eventually,Λ}]

≤
n∑
i=1

P {xi}[Dc,Λ].

By the definition of µ2 and by the fact that µ1 ∈ J

|µ̂1(A)− µ̂2(A)| ≤
n∑
i=1

P {xi}[Dc,Λ].

Applying T (t) to both sides of this last inequality and passing to the limit gives

lim
t→∞
|µ̂1(A)− T (t)µ̂2(A)| ≤ lim

t→∞

n∑
i=1

E{xi}PAt [Dc,Λ].

Lemma 4.3.4 says that the right-hand side above is equal to 0 so that limt→∞ µ2T (t) =

µ1. This proves that σ is injective. If we think of X∗(t) = ∆ as an absorbing

state where X∗(t) continually jumps to ∆ at exponential rate one then a similar

argument using Lemma 4.3.5 (c) shows σ to be surjective. To see that σ is affine

note simply that if µ1, ν1 ∈ J ′ then

lim
t→∞

(λµ2 + (1− λ)ν2)S(t) = λµ1 + (1− λ)ν1.

We have thus far shown that there exists an affine bijection between J ′ and I

for the case β ≡ 0. For the general case we compare the process ηt with birth

rates β(x) and death rates δ(x) to a similar process η̃t having the same transition

rates except that the death rates are now δ̃(x) = β(x) + δ(x) and the birth rates

are identically 0. Let the associated dual process, semigroup, and set of invariant

measures for η̃t be Ã∗t , S̃(t), and Ĩ.
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Couple the two dual processes so that they make the same transitions except

when a particle in A∗t dies off due to a β(x) jump, then Ã∗t goes to the state ∆.

If we can show that

lim
t→∞

EAPA∗
t [A∗s 6= Ã∗s] = 0 for all A ∈ Y (4.14)

and similarly that

lim
t→∞

EAP Ã∗
t [A∗s 6= Ã∗s] = 0 for all A ∈ Y (4.15)

then we can make arguments similar to the ones above to show that for ν1 ∈ I

and ν2 ∈ Ĩ, the limits limt→∞ ν1S̃(t) = ν2 and limt→∞ ν2S(t) = ν1 exist. We can

also show that the map limt→∞ ν2S(t) = ν1 = σ̃(ν2) is an affine bijection between

Ĩ and I. If we extend the state space of At as in Lemma 4.3.5 (b) then the

following inequalities combined with Lemma 4.3.5 (b) prove (4.14) and (4.15):

P Ã∗
t [A∗s 6= Ã∗s] ≤ PA∗

t [A∗s 6= Ã∗s] ≤ PA∗
t [A∗s 6= As for some s ≥ 0].

Our desired affine bijection from J ′ to I is just σ̃ ◦ σ. We are now ready to

prove the two parts of the theorem. We start with part (a).

To prove µα exists we need only show

lim
t→∞

ναS(t) = lim
t→∞

lim
s→∞

lim
r→∞

ναT (r)S̃(s)S(t). (4.16)

Let µ̄α = limr→∞ ναT (r) and let ˜̄µ = lims→∞ µ̄S̃(s). We have already argued

that these limits exist. Applying S(t) and passing to the limit in the following

inequalities proves (4.16).

lim
t→∞
|S(t)ν̂α(A)− S(t)ˆ̄̃µα(A)|

≤ lim
t→∞
|S(t)ν̂α(A)− S̃(t)ˆ̄µα(A)|+ lim

t→∞
| ˆ̄̃µα(A)− S(t)ˆ̄̃µα(A)|

≤ lim
t→∞
|S(t)ν̂α(A)− T (t)ν̂α(A)|+ lim

t→∞
| ˆ̄µα(A)− S̃(t)ˆ̄µα(A)|+ lim

t→∞
| ˆ̄̃µα(A)− S(t)ˆ̄̃µα(A)|

≤ 3PA[A∗s 6= As for some s ≥ 0].

85



Suppose now that limt→∞ να1S(t) = limt→∞ να2S(t). We have

ν̂αi({X(s)}) = lim
t→∞

EX(s)ν̂αi({X∗(t)})

= PX(s)[X∗(t) = ∅ eventually] + EX(s)( lim
t→∞

ν̂αi({X(t)})1{X∗(t) 6=∅ ∀ t,D}).

But since PX(s)({X∗(t) 6= ∅ ∀ t,D}) → 1 on Λx by the arguments given for

Lemma 4.3.4 and since EX(s)(limt→∞ ν̂αi({X(t)})) = αi(X(s)), then it follows

that α1Rα2.

For the opposite direction if we assume that α1Rα2, then

lim
t→∞

(να1S(t)− να2S(t))(A) = lim
t→∞

EA(ν̂α1(A
∗
t ))− lim

t→∞
EA(ν̂α2(A

∗
t ))

= lim
t→∞

EA(
∏
x∈A∗

t

α1(x))− lim
t→∞

EA(
∏
x∈A∗

t

α2(x)) = 0.

For part (b) it is enough to show that the extreme points of J ′ are {µ̄α ∈ J :

α ∈ H∗ ∩ H′}. Then applying (4.16) along with Lemma 4.3.5 (a) completes the

proof. To prove J ′e = {µ̄α ∈ J : α ∈ H∗ ∩ H′} note that if λπ1 + (1 − λ)π2 =

µ ∈ J ′e for π1, π2 ∈ J then π1, π2 ∈ J ′ and hence π1 = π2 = µ. Therefore

µ ∈ Je ∩ J ′ = {µ̄α : α ∈ H∗ ∩ H′}. On the other hand if α ∈ H∗ and µ̄α ∈ J ′,

then µ̄α is an extreme point of J ′.

4.4 Proofs of the theorems

Proof of Theorem 4.1.1. Suppose condition (4.2) holds. By Proposition 4.2.1 we

need only show that for any two measures µ1, µ2 ∈ P , the limits limt→∞ S(t)µ̂i(A)

exist and are equal for all A ∈ Y. But Lemma 4.3.2 implies that

lim
t→∞

S(t)µ̂i(A) = PA[A∗t = ∅ eventually]

which is independent of µi proving one direction of the theorem.
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For the opposite direction suppose that (4.2) does not hold. Lemma 4.3.2

implies that PA[A∗t = ∅ or A∗t = ∆ eventually] < 1 for some A ∈ Y. Therefore

lim
t→∞

S(t)δ̂1(A) = PA[A∗t = ∅ eventually] + PA[A∗t 6= ∅ ∀ t,D]

is not equal to

lim
t→∞

S(t)δ̂0(A) = PA[A∗t = ∅ eventually]

for some A ∈ Y showing that the process is not ergodic.

Proof of Theorem 4.1.2. By Proposition 4.2.1, limt→∞ δ1S(t) exists since

lim
t→∞

S(t)δ̂1(A) = 1− PA[Dc].

Similarly, limt→∞ δ0S(t) exists since

lim
t→∞

S(t)δ̂0(A) = PA[At = ∅ eventually]

completing the proof of part (a).

Turning to part (b) let µ ∈ I. By Lemma 4.3.3 and a coupling argument it

can be seen that if limt→∞E
xµ̂({X(t)}) exists, it is independent of our choice

of x. So now using Proposition 4.2.1 and Lemma 4.3.3 together with the Strong

Markov Property, we have

µ̂(A) = EAµ̂(A∗t ) (4.17)

= PA[A∗t = ∅ eventually] + PA[ lim
t→∞
|A∗t | = 1, D] lim

t→∞
Exµ̂({X(t)}).

Since we have assumed that (4.2) does not hold then PA[limt→∞ |A∗t | = 1, D] > 0

so that the last limit on the right-hand side exists.

Let λ = limt→∞E
xµ̂({X(t)}) and consider the invariant measure µλ = λµ1 +

(1− λ)µ0. We have that for all A ∈ Y,

µ̂λ(A) = EAµ̂λ(A∗t ) = PA[A∗t = ∅ eventually] + λPA[ lim
t→∞
|A∗t | = 1, D].
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Since PA[A∗t = ∅ eventually] and PA[limt→∞ |A∗t | = 1, D] do not depend on µ or

µλ, comparing the above equation with (4.17) gives us µ = µλ showing that every

invariant measure is a mixture of µ1 and µ0. This proves part (b).

We have already proved one direction of part (c) above. For the converse,

suppose that (4.4) holds. Let τ be the first time that |At| = 1. Lemma 4.3.3

implies that τ is finite with probability one. As before, by the Strong Markov

Property

lim
t→∞

EAµ̂(At) = EA[ lim
t→∞

EAτ µ̂(At)].

This limit exists and is equal to λ by (4.4).

This completes the proof of part (c) since the proof of part (b) implies that

limt→∞ µS(t) = λµ1 + (1− λ)µ0 is equivalent to

lim
t→∞

EAµ̂(At) = λ.

Proof of Corollary 4.1.3. We need only show that the recurrence of Z(t) = X(t)−

Y (t) implies (4.3).

Let R be the set of all y ∈ Zd such that |y| ≤ N . By our assumptions we can

choose z ∈ S so that qv(0, z) > 0. If Et = {xt, yt} is the two particle exclusion

process then we will say that Et = z if xt − yt = z and Et ∈ R if |xt − yt| ≤ N .

Since Z(t) is recurrent, Z(t) jumps to 0 infinitely often and therefore X(t) and

Y (t) meet infinitely often. If there are infinitely many jumps of Z(t) to 0 caused

by the qv(x, y) rates then (4.3) automatically holds by arguments similar to those

of Lemma 4.3.1. Thus we will henceforth assume that there are infinitely many

jumps of Z(t) to 0 caused by the qe(x, y) rates giving us

P {x,y}(Z(t) ∈ R for some t > 0) = 1 for all x, y ∈ S.
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By coupling Z(t) and Et together until the first time that X(t) and Y (t) meet,

we have in fact that

P {x,y}(Et ∈ R for some t > 0) = 1 for all {x, y} ∈ S2.

If Ek is the embedded Markov Chain for Et then the above equation implies that

P {x,y}(Ek ∈ R infinitely often) = 1 for all {x, y} ∈ S2.

For a fixed t̄ > 0 let m = minx∈R{P x(Et̄ = z)}. Since our process is irreducible

m > 0, therefore

P {x,y}(Ek = z infinitely often) = 1 for all {x, y} ∈ S2. (4.18)

Now by the same argument given to show (4.13) in the proof of Lemma 4.3.7,

{ω|
∫ ∞

0

qv(Et) dt =∞} = {ω|
∞∑
k=0

qv(Ek) =∞}

almost surely. By (4.18) we get that (4.3) holds as desired.

Proof of Theorem 4.1.4. Again let T (t) be the semigroup for the voter model

with rates q(x, y). Chapter V in IPS tells us limt→∞ ναT (t) = µ̄α exists for

all α ∈ H. By coupling the dual of our process together with the dual of the

voter model so that they move together as much as possible, it is clear that

S(t)ˆ̄µα(A) ≤ T (t)ˆ̄µα(A) = ˆ̄µα(A). Applying S(s) to both sides gives S(t +

s)ˆ̄µα(A) ≤ S(s)ˆ̄µα(A). Part (a) follows from this monotonicity along with the

arguments laid out in Theorem 4.3.9.

Concerning the rest of the proof we will only prove part (b) since the proof of

part (c) is basically the same as that of (b) except for replacing the use of Lemma

4.3.8 with Lemma 4.3.7. Just as in the proof of Theorem 4.3.9 the general idea

89



is to show that there exists a bijective, affine map σ between I and J where

Je = {limt→∞ ναT (t) : α ∈ H∗}.

For part (b) we will prove only the case where β(x) = δ(x) ≡ 0 so that A∗t = At.

The general result follows from the arguments laid out in the proof of Theorem

4.3.9 except for a slight change in the independent processes X1(t), . . . , Xn(t)

starting from A = {x1, . . . , xn}. For the proof here we must use the coupling of

the Xi(t) processes that we used in the proof of Lemma 4.3.8 instead of letting

them be independent. We now prove the case β(x) = δ(x) ≡ 0.

Take µ ∈ I and suppose that both At and Vt start with initial set A. By

coupling the two processes so that At contains Vt, we see that

|S(t)µ̂(A)− T (t)µ̂(A)| ≤ f(A) = PA[At 6= Vt for some t > 0].

By the invariance of µ

|µ̂(A)− T (t)µ̂(A)| ≤ f(A) (4.19)

so that

|T (s)µ̂(A)− T (t+ s)µ̂(A)| ≤ T (s)f(A).

By Lemma 4.3.8 and the fact that S(s)f(A) → 0 implies that T (s)f(A) → 0,

the right-hand side goes to 0. This in turn shows that limt→∞ T (t)µ̂(A) exists.

The duality of the voter model which is a special case of Proposition 4.2.1, implies

that limt→∞ µT (t) = ν exists and is invariant for the voter model with rates

q(x, y).

By passing to the limit in (4.19)

|µ̂(A)− ν̂(A)| ≤ f(A).

Hence Lemma 4.3.8 tells us limt→∞ νS(t) = µ.
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For µ ∈ I, if we define σ(µ) = limt→∞ µT (t) = ν, then the above arguments

have shown that σ is injective. A similar arguments proves σ maps onto J . To

see that it is affine note that

lim
t→∞

(λµ1 + (1− λ)µ2)T (t) = λν1 + (1− λ)ν2.

We now conclude the proof of the case β(x) = δ(x) ≡ 0 by showing that for

µ̄α = limt→∞ ναT (t),

lim
t→∞

ναS(t) = lim
t→∞

µ̄αS(t).

Applying S(s) to the following inequality and passing to the limit proves the

above equation.

lim
t→∞
|S(t)ν̂α(A)− S(t)ˆ̄µα(A)|

≤ lim
t→∞
|S(t)ν̂α(A)− T (t)ν̂α(A)|+ lim

t→∞
| ˆ̄µα(A)− S(t)ˆ̄µα(A)| ≤ 2f(A).

Proof of Theorem 4.1.5. Putting A = {x1, . . . , xn} let

Wn(t)µ̂(A) = EAµ̂({X1(t), . . . , Xn(t)})

be the semigroup for n independent processes. Then the assumptions of the

theorem tell us W2(t)g(x, y)→ 0 so that

P {x,y}[X(t) = Y (t) infinitely often] = 0. (4.20)

The proof that (4.9) is necessary and sufficient for limt→ µS(t) = µα is proven

in Theorem 8.7 in Schwartz(1976). The only thing to note is that the assumption

that X(t) is transient is needed only to show that when q(x, y) = q(y, x), (4.20)

holds.
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The rest of the proof is similar to the proof of Theorems V.1.9 in IPS. Assume

that µ satisfies (4.7) and (4.8). By Proposition 4.2.1 and the definition of µα, it

suffices to show that for each A ∈ Y,

lim
t→∞

EAµ̂(A∗t ) = lim
t→∞

EA
∏
x∈A∗

t

α(x). (4.21)

where we make the convention that α(∆) = 0 and
∏

x∈∅ α(x) = 1.

Conditions (4.7) and (4.8) are equivalent to the assertion that for each x ∈ S

∑
y

pt(x, y)η(y)

converges in probability to α(x) with respect to µ. This in turn is equivalent to

lim
t→∞

E{x1,...,xn}µ̂({X1(t), . . . , Xn(t)}) =
n∏
i=1

α(xi) (4.22)

where the Xi(t) are all independent.

Let τ1 be the first time that either Xi(t) = Xj(t) for some 1 ≤ i < j ≤ n,

A∗t = ∆, or |A∗t | decreases. Still putting A = {x1, . . . , xn}, let τ2 be the first

time starting from A∗τ1 that any of the three events described above occur unless

A∗τ = ∆ in which case we will let τ2 = ∞. Continuing in this way we can define

τk for all k ≥ 1.

By (4.22) and the Strong Markov Property, if the limits below exist then

lim
t→∞

EA[µ̂(A∗t ), τ1 =∞] = lim
t→∞

EA[µ̂({X1(t), . . . , Xn(t)}), τ1 =∞](4.23)

=
n∏
i=1

α(xi)− lim
t→∞

EA[µ̂({X1(t), . . . , Xn(t)}), τ1 <∞]

=
n∏
i=1

α(xi)− EA lim
t→∞

E(X1(τ1),...,Xn(τ1))[µ̂({X1(t), . . . , Xn(t)}), τ1 <∞]

= lim
t→∞

EA[
∏
x∈A∗

t

α(x), τ1 =∞] = lim
t→∞

EA[
∏
x∈At

α(x), τ1 =∞].
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By the convergence theorem for bounded submartingales limt→∞
∏

x∈At α(x) ex-

ists almost surely so by the Dominated Convergence Theorem the above limits

exist.

Using the Strong Markov Property once more we can get

lim
t→∞

EA[µ̂(A∗t ), τ1 <∞] = EA lim
t→∞

(
EA∗

τ1 [µ̂(A∗t ), τ1 <∞, τ2 =∞]
)

(4.24)

+ EA lim
t→∞

(
EA∗

τ1 [µ̂(A∗t ), τ2 <∞]
)
.

But by the argument given for (4.23) the first term on the right-hand side above

equals

EA lim
t→∞

EA∗
τ1 [
∏
x∈A∗

t

α(x), τ1 <∞, τ2 =∞]

= lim
t→∞

EA[
∏
x∈At

α(x), τ1 <∞, τ2 =∞]P [A∗τ1 6= ∅ 6= ∆] + P [A∗τ1 = ∅].

The second term on the right-hand side of (4.24) equals

EA lim
t→∞

(
EA∗

τ2 [µ̂(A∗t ), τ2 <∞, τ3 =∞]
)

+ EA lim
t→∞

(
EA∗

τ2 [µ̂(A∗t ), τ3 <∞]
)
.

Since (4.20) holds we have that P [τk = ∞ for some k] = 1. By repeated use of

the arguments above it follows that (4.21) holds.

Proof of Corollary 4.1.6. Take µ ∈ I and again let Wn(t) be the semigroup for

n independent random walks ~X(t) = (X1(t), . . . , Xn(t)). Couple At and ~X(t) so

that they move together until the first time that two coordinates of ~X(t) meet.

We then have that

|S(t)µ̂(A)−Wn(t)µ̂(A)| ≤ g(A). (4.25)

Since S(t)µ̂(A) = µ̂(A) then

|Wn(s)µ̂(A)−Wn(t+ s)µ̂(A)| ≤ Wn(s)g(A).
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Corollary II.7.3 of IPS tells us that ~X(t) has no nonconstant bounded harmonic

functions. By Proposition 5.19 of Kemeny, Snell, and Knapp(1976) Wn(t)g(A)→

0 so that limt→∞Wn(t)µ̂(A) exists and is harmonic for the random walk ~X(t) on

Sn. Such harmonic functions are constant so we can write

lim
t→∞

Wn(t)µ̂(A) = αn for |A| = n.

The proof of Theorem 2.6 in Liggett(2002) shows that there exists a random

variable G taking values in [0, 1] with moment sequence αn. Since αn ≤ 1 we

can use Carleman’s Condition to show that the random variables
∑

y pt(x, y)η(y)

with respect to the measure µ converge in distribution to G.

If γ is the probability measure on [0, 1] for G, let µγ =
∫ 1

0
µα γ(dα). Using the

arguments presented in Theorem 4.1.5 we can show that for each A ∈ Y,

lim
t→∞

EAµ̂(At) = lim
t→∞

EG|At| = lim
t→∞

EAµ̂γ(At).

Thus µ = µγ and is hence a mixture of the measures {µα : α ∈ [0, 1]}. By

Theorem 4.1.5, each measure µα has a different domain of attraction proving

that Ie = {µα : α ∈ [0, 1]}.

4.5 Further results

The brief discussion below shows how one might adapt Schwartz(1976) and Chap-

ter V in IPS in order to obtain a general result. Let

Ê = {ω :

∫ ∞
0

qv(Et) dt =∞}.

In the introduction we argued that limt→∞ α(X(t)) exists almost surely so we can

define Ĥ to be the set of all α ∈ H such that

lim
t→∞

α(X(t)) = 0 or 1 a.s. on Ê
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where X(t) starts from x if E0 = {x, y}. For those that are keeping track, Ê and

Ĥ are analogous to E and H∗.

Following Schwartz(1976) and Chapter V in IPS, we conjecture that Ie = {µα :

α ∈ ĤR}. In order to prove this one would have to generalize Theorem 4.1.5 and

show that for µ ∈ Ie

µ̂({X(t), Y (t)})→ µ̂({X(t)})µ̂({Y (t)}). (4.26)

As mentioned in the introduction, it is the monotonicity of S(t)ν̂α(A) that

allows us to do this for the pure voter model or the pure symmetric exclusion

process. If one were to prove (4.26) and Theorem 4.1.5 in general, new techniques

would be needed.

4.6 An ergodic theorem for a related process

The proof of Theorem 4.1.7 requires the following lemma:

Lemma 4.6.1. Suppose {an} is bounded above by k1n
k2−1 for some k1, k2 > 0

and that an > 0 for all n. Then there exists a sequence {wn} such that

(i) lim inf
n→∞

an
wn

= 1 and (ii) lim sup
n→∞

nwn∑n−1
l=0 wl

<∞.

Proof. If for some sequence {wn} we have that wl/l
k2 ≥ wn/n

k2 for l ≤ n then

n−1∑
l=0

wl ≥
n−1∑
l=0

wn
nk2

lk2 ≥ wn
nk2

(n− 1)k2+1

k2 + 1

so that condition (ii) holds. So it remains to find a sequence {wn} satisfying

condition (i) and the inequality wl/l
k2 ≥ wn/n

k2 for l ≤ n. Let w0 = a0 and let

wn = wn−1 unless an/n
k2 = minl≤n al/l

k2 in which case we let wn = an. Then

wl/l
k2 ≥ wn/n

k2 for l ≤ n. Now since {an} is bounded above by k1n
k2−1 it
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follows that an/n
k2 → 0 and hence an/n

k2 = minl≤n al/l
k2 infinitely often so that

wn = an infinitely often. Therefore (i) is also satisfied by this choice of {wn}.

Using the basic coupling for the exclusion process combined with the basic

coupling for spin systems, we have that the basic coupling for a noisy exclusion

process has generator

Ω̄f(η, ξ) =
∑

η(x) = ξ(x) = 1

η(y) = ξ(y) = 0

qe(x, y)[f(ηxy, ξxy)− f(η, ξ)]

+
∑

η(x) = 1, η(y) = 0 and

ξ(y) = 1 or ξ(x) = 0

qe(x, y)[f(ηxy, ξ)− f(η, ξ)]

+
∑

ξ(x) = 1, ξ(y) = 0 and

η(y) = 1 or η(x) = 0

qe(x, y)[f(η, ξxy)− f(η, ξ)]

+
∑

x:η(x)6=ξ(x)

c1(x, η)[f(ηx, ξ)− f(η, ξ)] +
∑

x:η(x)6=ξ(x)

c2(x, ξ)[f(η, ξx)− f(η, ξ)]

+
∑

x:η(x)=ξ(x)

c(x, η, ξ)[f(ηx, ξx)− f(η, ξ)]

where

c1(x, η) =

 β(x) when η(x) = 0

δ(x) when η(x) = 1
c2(x, ξ) =

 β(x) when ξ(x) = 0

δ(x) when ξ(x) = 1

and c(x, η, ξ) =

 β(x) when η(x) = ξ(x) = 0

δ(x) when η(x) = ξ(x) = 1.

Let Ī be the set of invariant measures for this coupling.

In order to simplify the notation we define the functions

fx(η, ξ) = [1− η(x)]ξ(x), hyx(η, ξ) = [1− η(y)][1− ξ(y)]fx(η, ξ),

gyx(η, ξ) = η(y)ξ(y)fx(η, ξ), and fyx(η, ξ) = η(y)[1− ξ(y)]fx(η, ξ).
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In particular, for T a finite subset of S we have

Ω̃

(∑
x∈T

fx(η, ξ)

)
= −

∑
x∈T,y∈S

(qe(x, y) + qe(y, x)) fyx(η, ξ) (4.27)

−
∑
x∈T

(β(x) + δ(x)) fx(η, ξ)

+
∑

x∈T,y /∈T

[qe(x, y)gxy − qe(y, x)gyx] +
∑

x∈T,y/∈T

[qe(y, x)hxy − qe(x, y)hyx].

Proof of Theorem 4.1.7. Recall that Tn = {x ∈ Zd : |xi| ≤ n}. Couple two noisy

exclusion processes, ηt and ξt, with ν ∈ Ī so that∫
Ω̄

(∑
x∈Tn

fx(ηt, ξt)

)
dν = 0.

If we let
∫
fx(ηt, ξt)dν = a(x) then since fyx(ηt, ξt) ≥ 0, equation (4.27) gives us∑

x∈Tn

(β(x) + δ(x)) a(x) (4.28)

≤
∑

x∈Tn,y /∈Tn

qe(x, y)

∫
(gxy − hyx)dν +

∑
x∈Tn,y /∈Tn

qe(y, x)

∫
(hxy − gyx)dν

≤
∑

x∈Tn,y /∈Tn

qe(x, y)a(y) +
∑

x∈Tn,y /∈Tn

qe(y, x)a(y)

≤ (2N + 1)d

2

∑
y∈TNn

a(y) +
∑
y∈TNn

a(y) ≤ C1

∑
y∈TNn

a(y)

for some constant C1. If we define

al =
∑
y∈TN

p(l)

a(y)

then by the inequality β(x) + δ(x) ≥ bl for x ∈ TNp(l) we can rewrite (4.28) as

n−1∑
l=0

blal ≤ C1an. (4.29)

Now suppose d = 1 and condition (a) in the theorem holds. Then since a(x) ≤

1, we have an ≤ 2N for all n. In light of equation (4.29) we then have that
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∑
l≥0 blal <∞. On the other hand, if we multiply both sides of (4.29) by bn and

then sum over n we get∑
n≥0

bn

n∑
l=0

blal ≤ C1

∑
n≥0

bnan <∞.

Rewriting the left hand side we get∑
n≥0

bn

n∑
l=0

blal =
∑
l≥0

blal
∑
n≥l

bn <∞.

This implies that blal = 0 for all l since condition (a) gives us
∑
bl =∞. So we

have a(x) =
∫
fxdν = 0 for all x so that the marginals of ν are exactly the same.

Suppose now that d ≥ 2 and that condition (b) of the theorem holds. Since

p(l) ≤ klk we have that an is bounded above by k1n
k2−1 for some k1, k2. If we

assume that for all n, an > 0 then by Lemma 4.6.1, there exists a sequence wn

such that lim inf an/wn = 1 and lim supnwn/
∑n−1

l=0 wl < ∞. By condition (b),

we have then that

lim inf nbnan/wn =∞ (4.30)

However, we also have that there exists a subsequence {nj} for which

nj−1∑
l=0

blal ≤ C1anj ≤ C2wnj ≤ C3

∑nj−1
l=1 wl
nj

≤ C3

nj−1∑
l=1

wl
l
. (4.31)

Notice now that if the limit of the right hand side is infinite, (4.30) and (4.31)

contradict each other so that we must have an = 0 for some n and consequently

a(x) =
∫
fxdν = 0 for all x by irreducibility. If the right hand side is bounded

then we can use the argument given above for the case d = 1 to show that

a(x) =
∫
fxdν = 0 for all x. In either case we have that the marginals of ν are

the same, and we thus have ergodicity of the process.

We now restrict ourselves to the case where d = 1 and the transition rates are

qe(x, x + 1) = p > 1/2 and qe(x, x − 1) = 1 − p = q < 1/2 for all x. In order
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to show the importance of the condition that there exist a sequence bl satisfying

bl ≤ β(x) + δ(x) for all x ∈ TNp(l), we will find examples of processes on Z that are

not ergodic but satisfy
∑

x β(x) =∞.

To start off, consider the case where we have β > 0 and δ > 0 for a single fixed z

and no births and deaths at any other site. Choose c so that cπ(z)/(1 + cπ(z)) =

β/(β + δ) for a reversible measure π(x) on Z. The product measure νc with

marginals νc{η(x) = 1} = cπ(z)/(1 + cπ(z)) is reversible with respect to the

exclusion process, and its marginal measure at the site z is reversible with respect

to the birth and death process so that νc is reversible with respect to the noisy

exclusion process. The product measure νρ where ρ = β
β+δ

is also invariant with

respect to the exclusion process, and again, its marginal measure at the site z

is reversible with respect to the birth and death process. So νρ is also invariant

with respect to the noisy exclusion process.

We have two more invariant measures by starting the process off with initial

states δ0 and δ1. This is because some subsequence of limn→∞
1
Tn

∫ Tn
0
δ1S(t)dt

for Tn → ∞ must lie above both of the invariant measures we have constructed

above. Similarly some subsequence of limn→∞
1
Tn

∫ Tn
0
δ0S(t)dt lies below the two

invariant measures. We note here that using extensions of these arguments we can

construct examples of nonergodic processes for which qe(x, y) is not translation

invariant. In particular, such an example is the process described above modified

to let qe(z − 1, z) = qe(z − 1, z − 2) = 1/2 so that qe(x, y) is translation invariant

except at x = z − 1.

In order to show that the noisy exclusion process with β(zi) > 0 if and only if

δ(zi) > 0 for a finite number of sites {z1, ..., zk} is not ergodic (this is a special

case of Proposition 4.6.2 below) we will need the following coupling for two noisy

exclusion processes with the same transition and death rates, but different birth
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rates. If β1(x) for the process ηt is greater than β2(x) for the process ξt for all x

then we can couple the two processes in such a way that ηt ≥ ξt. Formally, we

have the coupling given by

Ω̄f(η, ξ) =
∑

η(x) = ξ(x) = 1

η(y) = ξ(y) = 0

qe(x, y)[f(ηxy, ξxy)− f(η, ξ)]

+
∑

η(x) = 1, η(y) = 0 and

ξ(y) = 1 or ξ(x) = 0

qe(x, y)[f(ηxy, ξ)− f(η, ξ)]

+
∑

ξ(x) = 1, ξ(y) = 0 and

η(y) = 1 or η(x) = 0

qe(x, y)[f(η, ξxy)− f(η, ξ)]

+
∑

x:η(x)6=ξ(x)

c1(x, η)[f(ηx, ξ)− f(η, ξ)] +
∑

x:η(x)6=ξ(x)

c2(x, ξ)[f(η, ξx)− f(η, ξ)]

+
∑

x:η(x)=ξ(x)

c(x, η, ξ)[f(ηx, ξx)− f(η, ξ)]

+
∑

x:η(x)=ξ(x)=0

(β1(x)− β2(x))[f(ηx, ξ)− f(η, ξ)]

where

c1(x, η) =

 β1(x) when η(x) = 0

δ(x) when η(x) = 1
c2(x, ξ) =

 β2(x) when ξ(x) = 0

δ(x) when ξ(x) = 1

and c(x, η, ξ) =

 β2(x) when η(x) = ξ(x) = 0

δ(x) when η(x) = ξ(x) = 1.

Similarly, we can couple two processes together so that ηt ≤ ξt when ηt and ξt

have the same transition and birth rates, but death rates such that δ1(x) ≥ δ2(x)

for all x.

Proposition 4.6.2. Suppose that qe(x, x+1) = p > 1
2

and qe(x, x−1) = 1−p = q

for all x and that β(x) > 0 if and only if δ(x) > 0. If there exists a z such that
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β(x) = 0 for either all x ≤ z or for all x ≥ z and if there exist a1 and a2 such

that a1π(x)
1+a1π(x)

≤ β(x)
β(x)+δ(x)

≤ a2π(x)
1+a2π(x)

for all x where β(x) > 0, then the process is

not ergodic.

Proof. Without loss of generality suppose that β(x) = 0 for all positive x and

let {zi} denote the set of points where β(x) > 0. If ηt is the process described

in the hypothesis of the proposition, let the process ξt be the same as ηt except

that we change the death rates of ξt so that β(zi)
β(zi)+δ(zi)

= a1π(zi)
1+a1π(zi)

for all {zi}. Let

the process ζt be the same as ηt except that we change the birth rates of ζt so

that β(zi)
β(zi)+δ(zi)

= a2π(zi)
1+a2π(zi)

for all {zi}. We can triple couple ξt, ηt, and ζt so that

ξt ≤ ηt ≤ ζt. Since the measure νa1 is invariant for ξt and νa2 is invariant for ζt,

then ηt has an invariant measure µ1 with νa1 ≤ µ1 ≤ νa2 .

Let M = maxi

(
β(zi)

β(zi)+δ(zi)

)
. Note that this maximum is achieved since we

assumed earlier that β(x) = 0 for all positive x and consequently if there exist

an infinite number of zi’s then limi→∞
β(zi)

β(zi)+δ(zi)
= 0. Now let the process ζt be

the same as ηt except that we change the birth rates of ζt so that β(zi)
β(zi)+δ(zi)

= M

for all {zi}. Again, we can couple ηt and ζt so that ηt ≤ ζt. The measure νM is

invariant for ζt. So ηt has an invariant measure µ2 such that µ2 ≤ νM . Since µ2

is different from µ1, the process is not ergodic.

Note that using the above proposition, we can construct examples of nonergodic

processes that satisfy all of the hypotheses for Schwartz’s ergodic theorem except

for qe(x, y) = qe(y, x).
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