
NUMERICAL LINEAR ALGEBRA

Lecture notes for MA 660A/B

Rudi Weikard





Contents

Chapter 1. Numerical Linear Algebra 1
1.1. Fundamentals 1
1.2. Error Analysis 6
1.3. QR Factorization 13
1.4. LU Factorization 18
1.5. Least Squares Problems 22
1.6. Eigenvalues 23
1.7. Iterative Methods 33
1.8. Problems 37
1.9. Programming Assignments 40

Index 41

iii





CHAPTER 1

Numerical Linear Algebra

These notes follow closely the book Numerical Linear Algebra by L.N. Trefethen and D.
Bau, III (SIAM, Philadelphia, 1997).

1.1. Fundamentals

1.1.1. Matrix multiplication. The set of m× n matrices (m rows, n columns) with
entries in a field K is denoted by Km×n. For any matrix M we denote its entry in row j
and column k by Mj,k. However, if M ∈ Km×1 = Km we will mostly use Mj instead of
Mj,1. We denote the identity matrix by I, its entries, however, are denoted by δk,j , which
is called the Kronecker symbol. We will use the notation Mj:k,j′:k′ for the submatrix of M
whose upper left corner is the element Mj,j′ and whose lower right corner is the element
Mk,k′ . If j = k or j′ = k′ we will also use Mj,j′:k′ and Mj:k,j′ , respectively to refer to the
resulting row or column.

The set Km×n is equipped in the usual way with an addition and a scalar multiplication
by elements of K and hence it can be viewed as a vector space over K. If A ∈ K`×m and
B ∈ Km×n then a “product” C = AB ∈ K`×n can be defined by letting

Cj,k =
m∑

r=1

Aj,rBr,k.

The set Km×m of m×m square matrices is an associative algebra over K.
m × n matrices are used to represent linear transformations from Kn to Km. In this

respect it is important to point out that it is customary to view the elements of Km or Kn

as columns rather than as rows.
In an equation Ax = b where A ∈ Km×n, x ∈ Kn, and b ∈ Km the vector b may be

seen as the image of x under the transformation A. Another, equally important, point of
view is to recognize that b is expressed as a linear combination of the columns of A whose
coefficients are the entries (or components) of x. In particular, if A is invertible, the vector
x = A−1b gives the coefficients of b when expanded with respect to the basis which is given
by the columns of A.

1.1.2. Triangular and diagonal matrices. A matrix U is called upper triangular
if Uj,k = 0 whenever j > k. Similarly a matrix L is called lower triangular if Lj,k = 0
whenever j < k. A matrix which is both upper and lower triangular is called diagonal.
Equivalently, A is diagonal if and only if Aj,k = 0 whenever j 6= k.

1.1.3. Adjoint matrices. From now on we will agree that K is the field of complex
numbers or one of its subfields. The adjoint or hermitian conjugate of a matrix A ∈ Cm×n,
denoted by A∗, is the matrix whose entries satisfy A∗j,k = Ak,j . In particular, if the entries
of A are real then A∗ = At, the transpose of A. If A is an m × n matrix, then A∗ is an
n×m matrix. The following rules hold:

1



2 1. NUMERICAL LINEAR ALGEBRA

(A + B)∗ = A∗ + B∗,
(αA)∗ = αA∗,
(AB)∗ = B∗A∗,
A∗∗ = A.

The space Cm is an inner product space, the inner product is given by (x, y) = x∗y
whenever x, y ∈ Cm. Note that it is convenient to have linearity in the second argument
and antilinearity in the first argument1. The mapping x 7→ ‖x‖ =

√
x∗x is a norm in Cm.

With the help of the inner product the adjoint A∗ of A ∈ Cm×n can be characterized as the
unique matrix in Cn×m satisfying

(Ax, y) = (x,A∗y) whenever x ∈ Cn and y ∈ Cm.

A square matrix A is called normal if AA∗ = A∗A. A is called self-adjoint or hermitian
if A = A∗. If A is real and A = At, it is called symmetric. A square matrix A is called
unitary if it is invertible and A∗ = A−1 (if, in this case, A is real it is also called orthogonal).

1.1.4. Orthogonal vectors and sets. Two vectors x, y in Cm are called orthogonal
if x∗y = 0. Two sets R,S ⊂ Cm are called orthogonal if for all x ∈ R and all y ∈ S we have
that x∗y = 0. A set is called orthonormal if its elements are pairwise orthogonal and each
have norm 1. An orthonormal set is linearly independent. Let {q1, ..., qk} be an orthonormal
set in Cm and Q the matrix whose columns are the vectors q1, ..., qk. Let b be any vector in
Cm. Then there exists a unique r, which is orthogonal to each of the qj , and which satisfies

b = r + (q∗1b)q1 + ... + (q∗kb)qk = r + Q(Q∗b).

In particular, if k = m then QQ∗ = I. Hence r = 0 and

b = (q∗1b)q1 + ... + (q∗mb)qm = Q(Q∗b),

i.e., the components of the vector Q∗b are the coefficients of b when expanded with respect
to the basis given by the columns of Q. The numbers q∗j b, j = 1, ...,m are often called the
Fourier coefficients of b. Note that

k∑
j=1

|q∗j b|2 ≤ b∗b = ‖b‖2.

This inequality is called Bessel’s inequality. If k = m we have in fact equality.
Theorem. The columns (also the rows) of a unitary matrix form an orthonormal set.

Also (Qx)∗(Qy) = x∗y and ‖Qx‖ = ‖x‖, i.e., a unitary matrix preserves angles between
vectors and lengths of vectors.

Sketch of proof: Since Q∗Q = I we have δj,k = q∗j qk. This proves the first claim. For
the second claim note that (Qx)∗ = x∗Q∗. �

1.1.5. Norms. For every x ∈ Cm define

‖x‖p =

 m∑
j=1

|xj |p
1/p

, 1 ≤ p < ∞

and
‖x‖∞ = max{|xj | : 1 ≤ j ≤ m}.

1The opposite convention was made in the Algebra notes.



1.1. FUNDAMENTALS 3

Theorem. If 1 ≤ p, q ≤ ∞ satisfy 1/p + 1/q = 1 and if x, y ∈ Cm then

|x∗y| ≤ ‖x‖p‖y‖q (1)

and
‖x + y‖p ≤ ‖x‖p + ‖y‖p. (2)

Inequality (1) is called Hölder’s inequality. When p = q = 2 it becomes Schwarz’s
inequality. Inequality (2) is called Minkowski’s inequality.

Sketch of proof: We first prove Hölder’s inequality. If either p or q is infinity or if either
x or y is zero the statement becomes trivial. Hence assume that 1 < p, q < ∞ and that x
and y are different from zero. It is then enough to consider the case when ‖x‖p = ‖y‖q = 1.
If xjyj 6= 0 let sj = p ln(|xj |) and tj = q ln(|yj |). Since the exponential is convex we obtain

|xj ||yj | = exp(
sj

p
+

tj
q

) ≤ exp(sj)
p

+
exp(tj)

q
.

Now sum over j and observe that∑
1≤j≤m
xjyj 6=0

exp(sj) ≤
m∑

j=1

|xj |p = 1 and
∑

1≤j≤m
xjyj 6=0

exp(tj) ≤
m∑

j=1

|yj |q = 1.

Next we consider Minkowski’s inequality. We assume that 1 < p < ∞ since the cases
p = 1 and p = ∞ are trivial. From Hölder’s inequality we obtain

m∑
j=1

|xj ||xj + yj |p−1 ≤ ‖x‖p ‖x + y‖p/q
p

where q = p/(p− 1). Similarly
m∑

j=1

|yj ||xj + yj |p−1 ≤ ‖y‖p ‖x + y‖p/q
p

Adding these two inequalities and using the triangle inequality we get

‖x + y‖p
p ≤ (‖x‖p + ‖y‖p) ‖x + y‖p−1

p .

which is the desired result. �
Minkowski’s inequality is the hard part in showing that x 7→ ‖x‖p are norms when

1 ≤ p ≤ ∞. These norms are called p-norms. If p = ∞ one calls it the sup-norm. Note that
the 2-norm is the norm induced by the inner product. One may also introduce weighted
p-norms: let W be an invertible m×m matrix. Then

‖x‖W,p = ‖Wx‖p

is a norm.
As a vector space Cm×n is isomorphic to Cmn and as such it can be normed as described

above. For square matrices the most important of these is the 2-norm, usually called the
Hilbert-Schmidt or Frobenius norm

‖A‖2 =

 m∑
k=1

m∑
j=1

|Aj,k|2
1/2

.

Note that

‖A‖22 =
m∑

k=1

(A∗)k,1:mA1:m,k = tr(A∗A) = tr(AA∗). (3)



4 1. NUMERICAL LINEAR ALGEBRA

1.1.6. Operator norms. Also important are induced norms for matrices which are
called operator norms. Let A be an m×n matrix and assume that Cm and Cn are equipped
with arbitrary norms. Then define

‖A‖ = sup{‖Ax‖
‖x‖

: 0 6= x ∈ Cn}.

A 7→ ‖A‖ is a norm. Note that

‖A‖ = sup{‖Ax‖ : x ∈ Cn, ‖x‖ = 1} = max{‖Ax‖ : x ∈ Cn, ‖x‖ = 1}
and

‖A‖ = inf{C : ∀x ∈ Cn : ‖Ax‖ ≤ C‖x‖}.
Theorem. ‖AB‖ ≤ ‖A‖‖B‖ when the norms indicate induced norms.
Sketch of proof: ‖ABx‖ ≤ ‖A‖ ‖Bx‖ ≤ ‖A‖ ‖B‖ ‖x‖. �
We will denote the operator norm of A : Cn → Cm by ‖A‖r,s when Cn is equipped with

the r-norm and Cm is equipped with the s-norm.
The operator norms are not easily calculated except when r = s = 1 or r = s = ∞. In

these cases we have

‖A‖1,1 = max{
m∑

j=1

|Aj,k| : 1 ≤ k ≤ m} and ‖A‖∞,∞ = max{
m∑

k=1

|Aj,k| : 1 ≤ j ≤ m}.

1.1.7. The singular value decomposition. A singular value decomposition (SVD)
of a matrix A ∈ Cm×n is a factorization

A = UΣV ∗

where U ∈ Cm×m and V ∈ Cn×n are unitary, Σ is diagonal, and, letting p = min{m,n},
Σ1,1 ≥ Σ2,2 ≥ ... ≥ Σp,p ≥ 0.

The nonnegative real numbers σj = Σj,j are called the singular values of A. The columns
of U are called the left singular vectors and the columns of V (not those of V ∗) are called
right singular vectors.

Note that ΣΣ∗ = U−1AA∗U and Σ∗Σ = V −1A∗AV . Hence, if m ≤ n, the eigenvalues
of AA∗ are precisely the squares of the singular values of A, counting multiplicities, and the
left singular vectors of A are the eigenvectors of AA∗. Similarly, if n ≤ m, the eigenvalues
of A∗A are precisely the squares of the singular values of A and the right singular vectors
of A are the eigenvectors of A∗A.

Theorem. Every matrix A ∈ Cm×n has a singular value decomposition. The singular
values are uniquely determined. Furthermore, if the singular values are pairwise distinct,
then the following statements hold: if m ≤ n the left singular vectors are uniquely deter-
mined up to unimodular factors (complex numbers of modulus one) while, if n ≤ m, the
right singular vectors are uniquely determined up to unimodular factors.

Sketch of proof: Let ‖·‖ denote the matrix norm induced by equipping both Cn and Cm

with the 2-norm. Obviously A∗ has a singular value decomposition if and only if A does. It
is therefore sufficient to let ` = n−m be fixed (but arbitrary in N0) and prove the theorem
by induction over m. Let

M = {m ∈ N : ∀A ∈ Cm×(`+m) : A has an SVD}.
Let m = 1 and σ1 = ‖A‖. There exists a vector v1 ∈ C`+1 and a number u1 such that
‖v1‖ = 1 = |u1|, and Av1 = σ1u1. Extend {v1} to an orthonormal basis {v1, ..., v`+1} of
C`+1, let V denote the matrix whose k-th column is vk, and let U be the 1× 1 matrix with



1.1. FUNDAMENTALS 5

entry u1. Then we have U∗AV = (σ1, w
∗) for some vector w ∈ C`. We will show w = 0 so

that Σ = (σ1, 0, ..., 0) and hence 1 ∈ M . To prove w = 0 note that√
σ2

1 + w∗w

∥∥∥∥(
σ1

w

)∥∥∥∥ = |(U∗AV )
(

σ1

w

)
| ≤ ‖U‖ ‖A‖ ‖V ‖

∥∥∥∥(
σ1

w

)∥∥∥∥ = σ1

∥∥∥∥(
σ1

w

)∥∥∥∥ .

Next suppose that m−1 ∈ M and that A ∈ Cm×(`+m). Again let σ1 = ‖A‖. Now there
is a v1 ∈ C`+m and u1 ∈ Cm such that ‖v1‖ = 1 = ‖u1‖ and Av1 = σ1u1. Again extend
{v1} to an orthonormal basis {v1, ..., v`+m} of C`+m and also {u1} to an orthonormal basis
{u1, ..., um} of Cm. Collect these vectors in matrices V1 and U1 with v1 and u1 as first
columns, respectively. Then we have

U∗1 AV1 =
(

σ1 w∗

0 B

)
where B is some matrix in C(m−1)×(`+m−1) and w is some vector in C`+m−1. As before√

σ2
1 + w∗w

∥∥∥∥(
σ1

w

)∥∥∥∥ ≤ ∥∥∥∥U∗1 AV1

(
σ1

w

)∥∥∥∥ ≤ ‖U1‖ ‖A‖ ‖V1‖
∥∥∥∥(

σ1

w

)∥∥∥∥ ≤ σ1

∥∥∥∥(
σ1

w

)∥∥∥∥
shows that w = 0. Since m− 1 ∈ M the matrix B has a singular value decomposition given
by B = U2Σ2V

∗
2 , where the largest element in Σ2 is ‖B‖ ≤ σ1. Now let

U = U1

(
1 0
0 U2

)
, Σ =

(
σ1 0
0 Σ2

)
and V = V1

(
1 0
0 V2

)
.

Then UΣV ∗ is a singular value decomposition of A.
The uniqueness statement follows from the relationship of the singular values and sin-

gular vectors of A with the eigenvalues and eigenvectors of AA∗ and A∗A. �

1.1.8. Further properties of the SVD. The importance of the SVD becomes ap-
parent from the following properties. Let A be an m× n-matrix of rank r.

(1) The rank of A equals the number of nonzero singular values of A.
(2) im(A) = 〈u1, ..., ur〉 and ker(A) = 〈vr+1, ..., vn〉.
(3) ‖A‖2,2 = σ1 and ‖A‖2 =

√
σ2

1 + ... + σ2
r .

(4) If m = n then |det(A)| =
∏r

j=1 σj .
(5) For any k ∈ {1, ..., r} define Ak = σ1u1v

∗
1 + ... + σkukv∗k. Then A = Ar and

‖A−Ak‖2,2 = inf{‖A−B‖2,2 : B ∈ Cm×n, rank(B) ≤ k} = σk+1

where we define σk = 0, if k > min{m,n}.
Sketch of proof: Only the second statement in (3) and statement (5) need closer exami-

nation. The former follows from ‖A‖2 = ‖U∗AV ‖2 which, in turn, follows from equation (3)
in 1.1.5. For the latter, note firstly that ‖A − Ak‖2,2 = σk+1 by Bessel’s inequality. Then
assume that there is a B with rank(B) ≤ k such that ‖A−B‖2,2 < ‖A−Ak‖2,2. Note that
W = ker(B) has dimension at least n− k. Hence, if 0 6= w ∈ W , then

‖Aw‖2 = ‖(A−B)w‖2 ≤ ‖A−B‖2,2‖w‖2 < σk+1‖w‖2.

On the other hand the first k + 1 right singular vectors of A span a space X such that
‖Ax‖2 ≥ σk+1‖x‖2. This gives that W ∩X is nontrivial, which is impossible. �



6 1. NUMERICAL LINEAR ALGEBRA

1.1.9. Flops and operation count.
Definition. A flop is any of the operations of an addition, subtraction, multiplication,

division, or extraction of a square root.
For example, to compute an inner product in Cm one has to perform m multiplications

and m − 1 sums. Hence this computation requires 2m − 1 flops. The computation of the
norm of a vector in Cm requires 2m flops.

This definition of flop gives only a very simplified model of the actual computation
cost on a real computer. For example we ignore the difference between real and complex
arithmetic, the moving of data between the CPU and the memory. Taking these and other
aspects into account is far beyond the scope of this course. Instead we are just trying to
sensitize ourselves to the importance of considerations of this kind.

1.2. Error Analysis

1.2.1. Axioms of idealized computer arithmetic. In a number system with base
β (where β is an integer not smaller than two) a positive integer may be represented as a
sequence of digits, i.e.,

d1d2...dk = d1β
k−1 + ... + dkβ0.

Similarly a positive real number is represented as (a possible semi-infinite) sequence of digits.
By introducing an exponential notation we can represent every positive real number as

d0.d1d2...× βe =
∞∑

k=0

dkβe−k

where e is chosen such that d0 6= 0. This digital representation is called the normalized
or floating point representation of the number. The fractional part d0.d1d2... is called the
mantissa, and the integer e is called the exponent of the number. When β = 10 we obtain
our familiar decimal system. Because of their digital structure computers use β = 2. In our
considerations below we will always use β = 2.

To represent real numbers in computer languages like Fortran one faces the difficulty
of having only finite storage space. This implies firstly, that the exponent can assume
only finitely many values preventing the representation of numbers which are too large or
too small in absolute value (leading to overflow and underflow problems). Secondly the
mantissa may have only finitely many digits preventing that numbers can be arbitrarily
closely approximated. Therefore computer arithmetic is somewhat different from our fa-
miliar arithmetic. In this lecture, following Trefethen and Bau, we will use a model for
computer arithmetic which still does not capture reality but with which the basic issues can
be studied. In doing so we disregard the fact that on a computer the exponent can only
come from a finite interval of integers and hence we disregard the possibility of overflow and
underflow.

Fix a positive integer p and define

F = {±
(
1 +

m

2p

)
2e : m ∈ {0, 1, 2, ..., 2p − 1}, e ∈ Z} ∪ {0}.

F is called the set of floating point numbers. Note that 1 + m2−p ∈ [1, 2). The number p
represents the (relative) precision with which real numbers can be approximated.

Sometimes, when we discuss algorithms, we will use the following axiom which charac-
terizes idealized computer arithmetic:

Axiom. There exists a positive real number εM < 1/2 and a function fl : R → F such
that



1.2. ERROR ANALYSIS 7

(1) for all x ∈ R we have that |fl(x)− x| ≤ εM |x| and
(2) for all x, y ∈ F and every ∗ ∈ {+,−,×,÷} we have that |fl(x∗y)−x∗y| ≤ εM |x∗y|.

The number εM is typically a small multiple of the machine precision 2−p.

1.2.2. Implementation on actual computers. We will now describe how numbers
are stored according to the widely used IEEE2 standard 754-1985. A bit (binary digit) is a
unit of storage which may have either value one or value zero. A number is stored in 1+q+p
bits. The first bit contains the sign of a number (0 for positive and 1 for negative). Next
come q bits to encode the exponent, which represent an integer e such that 0 ≤ e ≤ 2q − 1.
In order to get negative exponents one subtracts always a fixed number b from e called the
bias. The last p bits are used to encode the mantissa. They represent an integer m such
that 0 ≤ m ≤ 2p − 1. If e 6= 0 the mantissa is given by 1 + m2−p. If e = 0 and m = 0 one
has the number zero. If e = 0 and m 6= 0 the number represented is smaller than 2−b and
cannot be represented as a normalized number without choosing the exponent to be out of
bounds (i.e., smaller than −b). These numbers are called denormal and will be disregarded
in what follows. In summary, the number represented by e 6= 0 and m is

x = ±(1 +
m

2p
)2e−b.

For the IEEE single-precision standard we have q = 8 and p = 23 so that a number uses
32 bits. We also have b = 127. For the IEEE double-precision standard we have q = 11 and
p = 52 so that a number uses 64 bits. In this case b = 1023. If all exponent bits are equal
to 1 the number represents infinity. The largest exponents are therefore 28 − 2 and 211 − 2,
respectively. The largest numbers represented are close to 2128 ≈ 3.4 × 1038 and 21024 ≈
1.8× 10308, respectively. The smallest positive normalized numbers are 2−126 ≈ 1.2× 10−38

and 2−1022 ≈ 2.2× 10−308, respectively. The smallest number bigger than 1 is 1 + 2−p and
2−p equals 1.2× 10−7 or 2.2× 10−16 in single- and double-precision, respectively.

The function fl is typically implemented by either chopping off or rounding off unrepre-
sentable digits. If overflow or underflow occurs programs usually stop with an appropriate
error message.

1.2.3. Relative errors. There are typically two sources of errors when one tries to
compute quantities in applications: one is that data are often not precisely known (for
instance measured data) and the others are errors introduced by the algorithms used. An
example of the latter are, most notably, the round-off errors one has to deal with in numeric
computations. Needless to say, it is the goal to keep errors small and, in any case, to keep
track of the size of errors.

Let f be a continuous (but not necessarily linear) function from a normed vector space
X to a normed vector space Y . The function f̃ : X → Y is called an algorithm for f if f̃
approximates in some sense the function f at least in some subset S of X. For instance, if
f is the identity on R the f̃ could be the function fl. Or, in order to describe inaccurate
data we could have f̃(x) = x(1 + ε(x)) where it is known that ‖ε(x)‖ is bounded by some
fixed small number. Not surprisingly, this shows that inaccurate data and round-off errors
are treated in the same way.

We are interested in the relative errors (rather than absolute errors) introduced by using
f̃ instead of f . The relative error at x ∈ X is defined by

‖f̃(x)− f(x)‖
‖f(x)‖

2IEEE stands for Institute of Electrical and Electronics Engineers, Inc.



8 1. NUMERICAL LINEAR ALGEBRA

and it is our goal to study this quantity.
The key idea of estimating the relative error is due to Wilkinson: one tries to prove the

existence of a point x̃ close to x such that ‖f(x̃) − f̃(x)‖ can be easily controlled. If then
the function f is insensitive to small perturbations, i.e., if ‖f(x̃) − f(x)‖ can be shown to
be relatively small one can establish an error bound. In other words one tries to make use
of the inequality

‖f̃(x)− f(x)‖
‖f(x)‖

≤ ‖f̃(x)− f(x̃)‖
‖f(x)‖

+
‖f(x̃)− f(x)‖

‖f(x)‖
.

The first term on the right describes then the properties of the algorithm (and can often
be shown to be zero). It will be discussed in 1.2.4. The second term on the right describes
then the sensitivity (or condition) of the problem. It will be discussed in 1.2.8. In 1.2.13 we
shall come back to combine these two ingredients to obtain a bound for the relative error.

1.2.4. Stability. Let f be a continuous (but not necessarily linear) function from a
normed vector space X to a normed vector space Y . Let S be a subset of X. The function
f̃ : X → Y is called a stable algorithm for f on S if for all x ∈ S there exist nonnegative
real numbers C1 and C2 and an x̃ ∈ X with the following properties:

‖x− x̃‖ ≤ C1εM‖x‖ and ‖f̃(x)− f(x̃)‖ ≤ C2εM‖f(x̃)‖.

The numbers C1 and C2 characterize the algorithm. Too large values for either of these
numbers render an algorithm useless.

If C2 = 0 then f̃ is called a backward stable algorithm.

1.2.5. Backward stability of idealized computer arithmetic. Let A∗ : R2 → R
represent one of the four basic arithmetic operations, i.e., A∗(x, y) = x ∗ y where ∗ ∈
{+,−,×,÷}. A computer can not directly apply A∗. Instead it has to use the function

Ã∗ : R2 → F : (x, y) 7→ fl(fl(x) ∗ fl(y)).

Theorem. Each of the operations Ã∗ is backward stable. Using the sup-norm in R2

we have that C1 ≤ 3.
Sketch of proof: We will perform only the proof for addition. From Axiom 1.2.1 we

have that fl(x) = x(1+ε1), fl(y) = y(1+ε2), and that fl(fl(x)+fl(y)) = (fl(x)+fl(y))(1+ε3)
where |ε1|, |ε2|, |ε3| ≤ εM . Hence

Ã+(x, y) = fl(fl(x)+fl(y)) = x(1+ ε1 + ε3 + ε1ε3)+ y(1+ ε2 + ε3 + ε2ε3) = x̃+ ỹ = A+(x̃, ỹ)

defining x̃ = x(1 + ε1 + ε3 + ε1ε3) and ỹ = y(1 + ε2 + ε3 + ε2ε3). Finally note that

‖(x̃, ỹ)− (x, y)‖∞ ≤ 3εM‖(x, y)‖∞.

�
For simplicity we introduce the following notation: a1 ⊕ a2 = Ã+(a1, a2) and a1 ⊗ a2 =

Ã×(a1, a2). (It should be remarked that in Trefethen and Bau ⊕ and ⊗ are only defined for
elements of F .)

1.2.6. Backward stability of adding many terms. In computer arithmetic addi-
tion and multiplication are not associative anymore, which prompts us to define

n⊕
j=1

aj = ((a1 ⊕ a2)⊕ a3)⊕ ...⊕ an.



1.2. ERROR ANALYSIS 9

Let fl(aj) = aj(1 + δj) and hence |δj | ≤ εM . A repeated application Axiom 1.2.1 gives
then

n⊕
j=1

aj = a1(1 + δ1)
n−1∏
k=1

(1 + εj) +
n∑

j=2

aj(1 + δj)
n−1∏

k=j−1

(1 + εj)

where the εj are suitable numbers satisfying |εj | ≤ εM .
One may prove by induction that∣∣∣∣∣∣

n∏
j=1

(1 + εj)− 1

∣∣∣∣∣∣ ≤ nεM + n2ε2
M (4)

if |εj | ≤ εM ≤ 1/n.
Hence we proved the following theorem.
Theorem. If a ∈ Rn then there exists ã ∈ Rn such that

n⊕
j=1

aj =
n∑

j=1

ãj

and
‖ã− a‖∞ ≤ (nεM + n2ε2

M )‖a‖∞.

This shows that round-off errors may accumulate.

1.2.7. Backward stability of back substitution. One of the easiest and most im-
portant problems in linear algebra is the solution of Rx = b, where R is upper triangular and
nonsingular. Beginning with the last variable on can successively compute all the unknowns,
a process called back substitution. Consider the system

R1,1 R1,2 · · · R1,m

R2,2 R2,m

. . .
...

Rm,m




x1

x2

...
xm

 =


b1

b2

...
bm

 .

To solve this system we will employ the following algorithm:
Algorithm.

for j = 1 tom
for k = m + 2− j tom

bm+1−j = bm+1−j −Rm+1−j,kxk

xm+1−j = bm+1−j/Rm+1−j,m+1−j

end
To work through this algorithm takes

∑m
j=1(2(j − 1) + 1) = m2 flops.

Theorem. Let R ∈ Cm×m be upper triangular and non-singular and let b ∈ CM .
Assuming the validity of Axiom 1.2.1 Algorithm 1.2.7 is backward stable with a value of
C1 = (m + 3) + (m + 3)2εM . Specifically, let f(R, b) = R−1b and f̃(R, b) the corresponding
value computed by the algorithm. Then, for every pair (R, b), there exists a pair (R̃, b̃) such
that

f̃(R, b) = f(R̃, b̃),

|b̃k − bk| ≤ ((m + 2)εM + (m + 2)2εM )|bk|,
and

|R̃j,k −Rj,k| ≤ ((m + 3)εM + (m + 3)2εM )|Rj,k|.



10 1. NUMERICAL LINEAR ALGEBRA

Sketch of proof: We will prove the theorem by induction. Let S be the set of all s ≤ m
which satisfy the following three requirements:

(1) There are numbers R̃m+1−j,k such that

|R̃m+1−j,k −Rm+1−j,k| ≤ ((m + 4− k)εM + (m + 4− k)2ε2
M )|Rm+1−j,k|

for k = 1, ...,m and j = 1, ..., s.
(2) There are numbers b̃m+1−j such that

|b̃m+1−j − bm+1−j | ≤ ((j + 1)εM + (j + 1)2ε2
M )|bm+1−j |

for j = 1, ..., s.
(3) The numbers x̃k computed by Algorithm 1.2.7 satisfy

m∑
k=1

R̃m−j+1,kx̃k = b̃m−j+1

for j = 1, ..., s.
We first prove that 1 ∈ S. Define R̃m,k = 0 for k = 1, ...,m − 1. Note that, by Axiom

1.2.1 there are numbers ρm, σm,m, and εm not larger than εM in absolute value such that

x̃m =
fl(bm)(1 + εm)

fl(Rm,m)
=

bm(1 + ρm)(1 + εm)
Rm,m(1 + σm,m)

.

Hence we define
R̃m,m = Rm,m(1 + σm,m)

and
b̃m = bm(1 + ρm)(1 + εm).

Recalling inequality 4 this shows that 1 ∈ S.
Next assume that 1, ..., s ∈ S and consider s + 1. Recall that

xm−s =
bm−s −

∑m
k=m−s+1 Rm−s,kxk

Rm−s,m−s
.

We let R̃m−s,k = 0 for k = 1, ...,m− s− 1. We further define for k = m− s + 1, ...,m

Tm−s,k = x̃k ⊗ fl(Rm−s,k) = x̃k ⊗Rm−s,k(1 + σm−s,k) = x̃kRm−s,k(1 + σm−s,k)(1 + δm−s,k)

and
Tm−s,m−s = −fl(bm−s) = −bm−s(1 + ρm−s).

Note that σm−s,k, δm−s,k, and ρm−s are not larger than εM in absolute value.
Once we have computed

⊕m
k=m−s Tm−s,k we get

x̃m−s = −
⊕m

k=m−s Tm−s,k

fl(Rm−s,m−s)
(1 + εm−s) = −

(1 + εm−s)
⊕m

k=m−s Tm−s,k

R̃m−s,m−s

where R̃m−s,m−s = fl(Rm−s,m−s). As in 1.2.6 we have

(1 + εm−s)
m⊕

k=m−s

Tm−s,k = −b̃m−s +
m∑

k=m−s+1

x̃kR̃m−s,k

where

b̃m−s = bm−s(1 + ρm−s,k)(1 + εm−s)
s−1∏
r=0

(1 + ζm−s,r)



1.2. ERROR ANALYSIS 11

and, for k = m− s + 1, ...,m,

R̃m−s,k = Rm−s,k(1 + σm−s,k)(1 + δm−s,k)(1 + εm−s)
s−1∏

r=k+s−m−1

(1 + ζm−s,r)

for suitable values of ζm−s,r which, in absolute value, do not exceed εM . Employing now
inequality 4 shows that s + 1 ∈ S. �

1.2.8. Condition numbers. Let f be a continuous (but not necessarily linear) func-
tion from a normed vector space X to a normed vector space Y and let x be an element of
X. If x 6= 0 define

κ̂(f, x, ε) = inf{k ≥ 0 : ∀h ∈ X : ‖h‖ > ε‖x‖ ∨ ‖f(x + h)− f(x)‖ ≤ k‖h‖}.
Note that the infimum is actually a minimum. The number κ̂(f, x, ε) is called the absolute
condition number associated with f , x, and ε.

Theorem. The function κ̂(f, x, ·) is monotonically increasing and, if f is differentiable
at x, then

lim
ε→0

κ̂(f, x, ε) = ‖f ′(x)‖.

Sketch of proof: If ε becomes larger we have to check the inequality ‖f(x+h)−f(x)‖ ≤
k‖h‖ for a larger set of vectors h and hence fewer values of k may be suitable. The second
statement follows from this and the definition of the derivative. �

If x 6= 0 and f(x) 6= 0 we call

κ(f, x, ε) =
‖x‖

‖f(x)‖
κ̂(f, x, ε)

= inf{k ≥ 0 : ∀h ∈ X : ‖h‖ > ε‖x‖ ∨ ‖f(x + h)− f(x)‖
‖f(x)‖

≤ k
‖h‖
‖x‖

}

the relative condition number associated with f , x, and ε. Relative condition numbers are
scale-invariant and are therefore the objects we are really interested in.

If Ω is a subset of X − {0} and if f does not assume the value zero on Ω define the
relative condition number associated with f , x, and Ω by

κ(f,Ω, ε) = sup{κ(f, x, ε) : x ∈ Ω}.
The equality κ(f, x, ε) = κ(f, {x}, ε) justifies this abuse of notation. The number κ(f,Ω, ε)
is the relative condition number of f and ε uniformly over Ω.

1.2.9. The condition number of a linear function. Let f(x) = Ax where A ∈
Cm×n. Since f(x + h)− f(x) = Ah and since ‖Ah‖ ≤ ‖A‖‖h‖ we obtain for all x 6= 0 and
all positive ε

κ̂(f, x, ε) = inf{k ≥ 0 : ∀h ∈ X : ‖Ah‖ ≤ k‖h‖} = ‖A‖.
Now suppose that m ≥ n and that A has full rank n. Then A∗A is invertible. To see

this suppose A∗Ax = 0. Then 0 = x∗(A∗Ax) = ‖Ax‖2, i.e., Ax = 0. Since A has full rank
it has trivial kernel and hence x = 0. The matrix

A+ = (A∗A)−1A∗

is called the pseudo-inverse of A, since A+A = I. (Note that A+ = A−1 if A itself is
invertible.) Now

‖x‖ = ‖A+Ax‖ ≤ ‖A+‖ ‖Ax‖.
Hence

κ(f, x, ε) ≤ ‖A‖ ‖A+‖



12 1. NUMERICAL LINEAR ALGEBRA

and, since ker(A) = {0},

κ(f, Cn − {0}, ε) = sup{‖A‖‖A
+Ax‖
‖Ax‖

: Ax 6= 0} = ‖A‖ ‖A+‖

regardless of ε. Hence ‖A‖ ‖A+‖ is the uniform relative condition number of f : x 7→ Ax
regardless of ε. It is simply denoted by κ(A).

1.2.10. The condition number of addition and catastrophic cancellations.
The operation of adding two complex numbers is a linear transformation from C2 to C. The
associated matrix is A = (1, 1). The relative condition number is therefore

κp = 2(p−1)/p (|x1|p + |x2|p)1/p

|x1 + x2|
.

If x1 + x2 is nearly zero then the condition number becomes very large. This phenomenon
is called catastrophic cancellation.

1.2.11. The condition of solving a system of equations. For invertible A ∈
Cm×m and b ∈ Cm define f : (A, b) 7→ x = A−1b. Suppose h = (δA, δb) where ‖δA‖ ‖A−1‖ ≤
1/2. Then δx = f((A, b) + h)− f(A, b) satisfies

(A + δA)(x + δx) = b + δb

and this implies
1
2
‖δx‖ ≤ (1− ‖δA‖ ‖A−1‖)‖δx‖ ≤ ‖A−1‖(‖δb‖+ ‖δA‖ ‖x‖)

≤ ‖A−1‖ ‖A‖
(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
‖x‖.

Hence
‖δx‖
‖x‖

≤ 2κ(A)
(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
. (5)

From this inequality one can easily compute an estimate on the condition number κ such
that

‖δx‖
‖x‖

≤ κ(f, (A, b), εM )
‖(δA, δb)‖
‖(A, b)‖

but it is even more useful in the form (5).

1.2.12. The condition number of root extraction. We will show here that the
problem of finding roots of polynomials may have a large condition number. Let

pa(z) =
20∏

j=1

(z − j) =
20∑

j=0

ajz
j .

Assume that the coefficients aj are perturbed by (small) quantities hj . Let a = (a0, ..., a20),
h = (h0, ..., h20), and f(a + h) the fifteenth root of pa+h (where the roots are ordered by
magnitude). We then have f(a) = 15. By the inverse function theorem we have

f ′(a) = −
(∂pa+h

∂h0
(15), ..., ∂pa+h

∂h20
(15))

p′a(15)

and hence

lim
ε→0

κ(f, a, ε) = ‖f ′(a)‖‖a‖
15

.



1.3. QR FACTORIZATION 13

Assuming for simplicity that only the coefficient of z13 changes, i.e., that f depends only
on h13 we obtain

lim
ε→0

κ(f, a, ε) =
1513

5!14!
756111184500

15
≈ 9.38× 1012.

Please recall that the value of κ for a positive ε can not be smaller than this.

1.2.13. Backward Error Analysis. We are now ready to estimate relative errors
suppose that f̃ : X → Y is a stable algorithm for f : X → Y , that f̃ is characterized by the
constants C1 and C2, and that f has condition number κ with respect to x and εM . Then
we have that there is a point x̃ such that ‖x̃− x‖ ≤ C1εM‖x‖ and

‖f̃(x)− f(x)‖
‖f(x)‖

≤ ‖f̃(x)− f(x̃)‖
‖f(x)‖

+
‖f(x̃)− f(x)‖

‖f(x)‖

≤ C2εM
‖f(x̃)‖
‖f(x)‖

+
κ̂(f, x, C1εM )‖x̃− x‖

‖f(x)‖

≤ C2εM

(
1 + κ(f, x, C1εM )

‖x̃− x‖
‖x‖

)
+ κ(f, x, C1εM )

‖x̃− x‖
‖x‖

≤ (C2(1 + κ(f, x, C1εM )C1εM ) + κ(f, x, C1εM )C1) εM .

In particular, in the case of backward stability (C2 = 0) we have

‖f̃(x)− f(x)‖
‖f(x)‖

≤ κ(f, x, C1εM )C1εM .

The main result of these considerations is that large values of κ, C1, and C2 may very
well destroy the accuracy for numeric computations. For instance, to compute eigenvalues
as roots of a characteristic polynomial may not a good idea from the numerical point of
view, since the condition number of root extraction can be very large as we demonstrated
earlier.

1.2.14. Error analysis for back substitution. In 1.2.11 we investigated the condi-
tion of solving a system of equation and obtained the following result:

‖δx‖
‖x‖

≤ 2κ(A)
(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
.

In Theorem 1.2.7 we showed that back substitution is a backward stable algorithm and in
particular that, using sup-norms,

‖δb‖
‖b‖

≤ (m + 2)εM + (m + 2)2ε2
M and

‖δA‖
‖A‖

≤ (m + 3)εM + (m + 3)2ε2
M .

Hence
‖δx‖
‖x‖

≤ 4κ(A)((m + 3)εM + (m + 3)2ε2
M ).

1.3. QR Factorization

1.3.1. Projections. A m×m matrix P is called idempotent or a projection if P 2 = P .
Given a projection P the matrix I−P is also a projection, called the projection complemen-
tary to P . Note that ker(P ) = im(I − P ), ker(I − P ) = im(P ), ker(P ) ∩ ker(I − P ) = {0},
and im(P )⊕ im(I−P ) = Cm. Conversely, if M ⊕N = Cm then there is a unique projection
P with im(P ) = M and ker(P ) = N . This projection is the called the projection onto M
along N . If M and N are orthogonal then P is called the orthogonal projection onto M .



14 1. NUMERICAL LINEAR ALGEBRA

If P is a projection then its eigenvalues are in {0, 1}.
Theorem. Let P be a projection. Then the following statements are equivalent:

(1) P is an orthogonal projection.
(2) P is self-adjoint, i.e., P = P ∗.
(3) P is normal.
(4) I − P is an orthogonal projection.
(5) ‖P‖ ≤ 1.

Sketch of proof: Suppose P is an orthogonal projection and x = x1 +x2 and y = y1 +y2

where x1, y1 ∈ im(P ) and x2, y2 ∈ ker(P ). Then x∗(P ∗y) = (Px)∗y = x∗1(y1 + y2) =
(x1 + x2)∗y1 = x∗(Py). Hence (1) implies (2). That (2) implies (3) is trivial. Next
assume that P is normal. First note that P ∗ is a projection, since (P ∗)2 = (PP )∗ = P ∗.
The normality of P implies ‖Px‖ = ‖P ∗x‖ for all x and hence ker(P ) = ker(P ∗). If
x ∈ ker(P ) = ker(P ∗) then 0 = (P ∗x)∗y = x∗(Py) which implies that im(P ) ⊥ ker(P ),
i.e., P is an orthogonal projection. So (3) implies (1). The equivalence of (1) and (4) is
immediate. Next assume P = P ∗. The squares of the singular values of P are the eigenvalues
of PP ∗ and hence the largest singular value, which equals ‖P‖, is not more than one, i.e.,
(2) implies (5). Finally, assume that ker(P ) and im(P ) are not orthogonal. Then there is
an x ∈ im(P ) and a y ∈ ker(P ) such that x∗y 6= 0 and hence there is a number α such that
‖y‖2 +αy∗x+αx∗y < 0. But this implies that ‖P (y +αx)‖/‖y +αx‖ > 1. Thus (5) implies
(1). �

The orthogonal projection onto the subspace spanned by a vector a 6= 0 is given by

Pa =
aa∗

a∗a
.

More generally, the orthogonal projection onto the subspace spanned by the linearly inde-
pendent vectors a1, ..., an is given by

PA = A(A∗A)−1A∗ = AA+

where A is the matrix consisting of the columns a1, ..., an.

1.3.2. Matrices with orthonormal columns. Suppose that n ≤ m and that the
columns of Q ∈ Cm×n are orthonormal. Then Q∗Q is the n× n identity matrix and hence
PQ = QQ∗ ∈ Cm×m is the orthogonal projection onto the image of Q.

The following theorem is a generalization of the corresponding part of Theorem 1.1.4.

Theorem. Suppose the columns of Q ∈ Cm×n are orthonormal. If x, y ∈ Cn then
(Qx)∗(Qy) = x∗y and ‖Qx‖ = ‖x‖. If x, y ∈ im(Q) ⊂ Cm then (Q∗x)∗(Q∗y) = x∗y and
‖Q∗x‖ = ‖x‖.

1.3.3. QR factorization. Suppose A = Q̂R̂ where Q̂ is an m × n matrix with or-
thonormal columns and R̂ is an n×n upper triangular matrix. Then Q̂R̂ is called a reduced
QR factorization of A. Note that necessarily m ≥ n in this case.

If A = QR where Q is an m×m matrix with orthonormal columns (i.e., a unitary matrix)
and R is an m × n upper triangular matrix, then QR is called a full QR factorization or
just a QR factorization of A.

If m ≥ n and if QR is a full QR factorization of a matrix A let Q̂ be the matrix consisting
of the first n columns of Q and R̂ the matrix consisting of the first m rows of R. Then
Q̂R̂ is a reduced QR factorization of A. Conversely, if Q̂R̂ is a reduced QR factorization
of a matrix A, choose m − n orthonormal vectors in im(Q̂)⊥. Append these vectors (as



1.3. QR FACTORIZATION 15

columns to Q̂ to obtain a m×m unitary matrix Q. Let R be the matrix obtained from R̂
by appending m− n zero rows. Then QR is a full QR factorization of A.

1.3.4. Gram-Schmidt orthogonalization. Let m ≥ n and suppose that A ∈ Cm×n

has full rank. Then the image of A has an orthonormal basis which can be constructed by the
Gram-Schmidt algorithm. This algorithm can be described as follows: suppose orthonormal
vectors q1, ..., qk−1 spanning 〈a1, ..., ak−1〉 have been constructed. Let Q̂k−1 be the matrix
consisting of the columns q1, ..., qk−1. Then Q̂k−1Q̂

∗
k−1 =

∑k−1
`=1 q`q

∗
` is the orthogonal

projection onto 〈a1, ..., ak−1〉. Define vk = (I − Q̂k−1Q̂
∗
k−1)ak and qk = vk/‖vk‖. Then q1,

..., qk are orthonormal vectors spanning 〈a1, ..., ak〉. Induction proves then that there are
orthonormal vectors q1, ..., qn spanning 〈a1, ..., an〉. Note that ak =

∑n
`=1 R`,kq` where

R`,k =


q∗` ak if ` < k

‖vk‖ if ` = k

0 if ` > k.

Now let Q̂ = Q̂n and let R be the matrix formed by the numbers R`,k. Then A = Q̂R̂. The
following algorithm implements these steps:

Algorithm.
for k = 1 ton

vk = ak

for ` = 1 to k − 1
r`,k = q∗` ak

vk = vk − r`,kq`

rk,k = ‖vk‖
qk = vk/rk,k

end

The Gram-Schmidt algorithm requires no more than 2mn2 + 3mn flops to compute a
reduced QR factorization of an m× n matrix.

Theorem. Let m ≥ n and suppose that A ∈ Cm×n has full rank. Then A has a full
and a reduced QR factorization.

Sketch of proof: This follows immediately from the Gram-Schmidt algorithm. �

1.3.5. Modified Gram-Schmidt algorithm. Another way to obtain the orthonor-
mal basis is the so called modified Gram-Schmidt algorithm, which is numerically more
suitable. It is based on the following fact

I − Q̂k−1Q̂
∗
k−1 =

k−1∏
`=1

(I − q`q
∗
` ).

This leads to the following algorithm:
Algorithm.

for k = 1 ton
vk = ak

for k = 1 ton
rk,k = ‖vk‖
qk = vk/rk,k

for j = k + 1 ton
rk,j = q∗kvj



16 1. NUMERICAL LINEAR ALGEBRA

vj = vj − rk,jqk

end

The modified Gram-Schmidt algorithm requires no more than 2mn2 + 3mn flops to
compute a reduced QR factorization of an m× n matrix.

1.3.6. Householder triangularization. The Gram-Schmidt and the modified Gram-
Schmidt algorithms could be considered as methods of triangular orthogonalization. We now
discuss a method which could be called orthogonal triangularization since its emphasis is
on constructing the upper triangular matrix R.

R will be obtained by applying a sequence of unitary and self-adjoint matrices Qk to
A (from the left) so that R = Qn...Q1A and A = Q1...QnR. In step k zeros are produced
below the diagonal element in column k while the zeros below the diagonal in columns 1
through k − 1 are left untouched. To achieve this let

Qk =
(

Ik−1 0
0 F

)
where F is a certain (m−k+1)× (m−k+1) unitary and self-adjoint matrix which is called
a Householder reflector. Since Qk is acting on a matrix of the type

Ak =
(

Ak;1,1 Ak;1,2

0 Ak,2,2

)
,

where Ak;1,1 ∈ C(k−1)×(k−1) and Ak;2,2 ∈ C(m−k+1)×(n−k+1), we obtain

QkAk =
(

Ak;1,1 Ak;1,2

0 FAk,2,2

)
.

If x denotes the first column in Ak;2,2. If x = 0 let F = Im+1−k. Otherwise F should be such
that Fx = α‖x‖e1 where α is chosen such that |α| = 1 and αx1 ≤ 0. Define v = α‖x‖e1−x
and let P be the orthogonal projection onto the orthogonal complement of 〈v〉, i.e.,

P = I − vv∗

v∗v

so that Px = x + v/2 = Fx− v/2. This is satisfied when F = 2P − I, i.e.,

F = I − 2
vv∗

v∗v

which is indeed unitary and self-adjoint. The choice of α was made so that ‖v‖2 = 2‖x‖2 −
2 Re(αx1)‖x‖ is as large as possible. Thus we arrive at the following algorithm:

Algorithm.
for k = 1 ton

x = Ak:m,k

ifx 6= 0
vk = α‖x‖e1 − x
vk = vk/‖vk‖
Ak:m,k:n = Ak:m,k:n − 2vk(v∗kAk:m,k:n)

end

Householder triangularization requires ∼ 2mn2 − 2n3/3 flops to compute the upper
triangular factor R in the QR factorization of an m× n matrix.



1.3. QR FACTORIZATION 17

Theorem. Let the QR factorization of a matrix A ∈ Cm×n be computed by House-
holder triangularization on a computer satisfying Axiom 1.2.1 and let the computed factors
be Q̃ and R̃. Then we have Q̃R̃ = A+ δA where ‖δA‖/‖A‖ ≤ C1mεM for some number C1.
In other words QR factorization by Householder triangularization is backward stable3.

Note that the relative errors in Q̃ and R̃ can be huge when compared to C1mεM (see
Trefethen and Bau, Lecture 16).

1.3.7. Computation of Q in the Householder approach. To solve the system
Ax = b via a QR factorization we have to consider QRx = b or, equivalently, Rx = Q∗b.
If the matrix R is determined by the Householder algorithm one has to determine the
vector Q∗b = Qn...Q1b. This is achieved by the following algorithm utilizing the vectors vk

computed by algorithm 1.3.6:
Algorithm.

for k = 1 ton
bk:m = bk:m − 2vk(v∗kbk:m)

end
The work involved in this algorithm is no more than 4mn.
Incidentally, this algorithm can be used to compute Q∗ and hence Q itself, by applying

it to the canonical basis vectors e1, ..., em.

1.3.8. Backward stability of solving equations by Householder triangulariza-
tion. Let A be an invertible m×m matrix and QR its QR factorization. Let b ∈ Cm and
x = A−1b. We want to compute x by Householder triangularization and back substitution.
Even though the matrices Q̃ and R̃ computed by the Householder algorithm may not be
very close to the actual factors Q and R of A they may — miraculously — still be used to
solve the system Ax = b. To see this recall first from 1.3.6 that

Q̃R̃ = A + δA

where ‖δA‖/‖A‖ ≤ C1εM . Here C1 (as well as C ′1 and C ′′1 introduced below) depends on m.
Secondly recall from 1.2.7 that for given (R̃, β) there are δR and δβ such that ‖δR‖/‖R̃‖
and ‖δβ‖/‖β‖ are bounded by C ′1εM and

(R̃ + δR)−1(β + δβ) = x̃

where x̃ is the output produced by the algorithm of back substitution instead of R̃−1β.
Finally, note that Algorithm 1.3.7 is also a backward stable algorithm, i.e., if (Q̃, b) 7→ Q̃∗b

then there is a δQ and a δQ′ such that ‖δQ‖/‖Q̃‖ and ‖δQ′‖/‖Q̃‖ are bounded by C ′′1 εM

and
(Q̃ + δQ′)∗b = (Q̃ + δQ)−1b = β

where β is the output produced by Algorithm 1.3.7 instead of Q̃∗b.
Using these results we obtain

b = (Q̃ + δQ)β = (Q̃ + δQ)[(R̃ + δR)x̃− δβ] = (Q̃R̃ + Q̃δR + δQR̃ + δQδR)x̃− (Q̃ + δQ)δβ.

Hence
b + ∆b = (A + ∆A)x̃

where
∆b = (Q̃ + δQ)δβ

3Actually, this is to be taken with a grain of salt since, in general, Q̃ is not unitary and R̃ is not upper
triangular and hence Q̃R̃ is not a QR factorization of anything.



18 1. NUMERICAL LINEAR ALGEBRA

and
∆A = δA + Q̃δR + δQR̃ + δQδR.

One can then show that ‖∆A‖/‖A‖ and ‖∆b‖/‖b‖ are small.
This result has now to be combined with (5) which states

‖x̃− x‖
‖x‖

≤ 2κ(A)
(
‖∆b‖
‖b‖

+
‖∆A‖
‖A‖

)
provided ‖∆A‖‖A−1‖ ≤ 1/2.

1.4. LU Factorization

1.4.1. Gaussian elimination. Suppose A = LU where L is an invertible m×m lower
triangular matrix and U is an m × n upper triangular matrix. Then LU is called an LU
factorization of A.

The LU factorization of a matrix is computed via Gaussian elimination. As in the
Householder triangularization zeros will be produced below the diagonal of A. However
instead of applying a sequence of unitary matrices a sequence of lower triangular matrices
is applied. Let A0 = A and suppose that after step k−1 we have Ak−1 = Lk−1...L1A where
the Lj are invertible lower triangular matrices and where the entries Ak−1;j,` of Ak−1 are
zero if j > ` and ` ≤ k − 1. In step k we now want to produce zeros below the diagonal
element in column k while the zeros below the diagonal in columns 1 through k− 1 are left
untouched. To achieve this let Lk;r,1:m = e∗r − `k;re

∗
k for r = 1, ...,m where `k ∈ Cm and

`k;1 = ... = `k;k = 0. The r-s entry of Ak = LkAk−1 is

Ak;r,s = Lk;r,1:mAk−1;1:m,s =

{
Ak−1;r,s if 1 ≤ r ≤ k

Ak−1;r,s − `k;rAk−1;k,s if k + 1 ≤ r ≤ m.

Note that the elements below the diagonal in the first k − 1 columns of Ak are zero. The
condition is now that 0 = Ak;r,k = Ak−1;r,k − `k;rAk−1;k,k for r = k + 1, ...,m. Hence, if
Ak−1;k,k 6= 0, choosing `k;r = Ak−1;r,k/Ak−1;k,k for r = k+1, ...,m gives the required result.
If Ak−1;k,k = 0 and also Ak−1;k+1,k = ... = Ak−1;m,k = 0 we may choose `k;r = 0. However,
if Ak−1;k,k = 0 and Ak−1;j,k 6= 0 for some j ∈ {k +1, ...,m} Gaussian elimination fails. This
case is considered in 1.4.2. Assume now that this does not happen. After µ = min{m−1, n}
steps we have, letting Aµ = U , that

Lµ...L1A = U

is upper triangular. Now let L = (Lµ...L1)−1 = L−1
1 ...L−1

µ . Then

A = LU

but we still have to show that L is lower triangular. To this end we note firstly that each
Lk has only one as an eigenvalue and is therefore invertible. In fact, letting `k to be the
column consisting of the numbers `k;1, ..., `k;m (the first k of which are zero) we have that
Lk = I − `ke∗k and hence L−1

k = I + `ke∗k. Therefore L−1
k L−1

k+1 = (I + `ke∗k)(I + `k+1e
∗
k+1) =

I + `ke∗k + `k+1e
∗
k+1 and, employing an induction proof,

L =
µ∏

k=1

(I + `ke∗k) = I +
µ∑

k=1

`ke∗k.

The algorithm for LU factorization is



1.4. LU FACTORIZATION 19

Algorithm.
U = A
L = I
for k = 1 toµ

for j = k + 1 tom
`k;j = Lj,k = Uj,k/Uk,k

Uj,k:m = Uj,k:m − Lj,kUj,k:m

end
The work performed this algorithm is bounded by an expression which is asymptotically

given by 2m3/3.

1.4.2. Partial pivoting. Let Sx = b where S ∈ Cm×n and b ∈ Cm represent a system
of linear equations. One may then consider the m× (n+1) matrix obtained by pasting b as
an (n + 1)st column to S. The resulting matrix A = (S, b) is called an augmented matrix.
To solve the system Sx = b by an LU factorization one has actually to factor the augmented
matrix (S, b): if (S, b) = A = LU let U = (Ũ , b̃) where Ũ ∈ Cm×n and b̃ ∈ Cm so that
LŨ = S and Lb̃ = b. Hence Sx = b if and only if Ũx = b̃. Since Ũ is upper triangular this
latter system is easy to solve (cf. 1.2.7).

Suppose now that Gaussian elimination fails to produce the factorization. Hence for
some k the entry Ak−1;k,k is zero but Ak−1;j,k is not zero for some jk ∈ {k + 1, ...,m} (we
are using here the notation introduced in 1.4.1). Note that interchanging rows in A = (S, b)
corresponds to reordering the equations making up the system and is therefore entirely
irrelevant for obtaining the solution. Therefore one interchanges rows k and jk in Ak−1.
This is achieved by applying a unitary self-adjoint matrix Pk to Ak−1 (in fact the matrix
which achieves the exchange of rows j and k is the matrix one obtains from the identity
matrix by exchanging rows j and k). Hence PAk−1 has the property that (PAk−1)k,k 6= 0
and therefore one may proceed with Gaussian elimination. Doing this whenever necessary
one obtains

LµPµ....L1P1A = U.

Now define L′m = Lm and L′j = Pµ...Pj+1LjP
−1
j+1...P

−1
µ for j = 1, ..., µ− 1. Then we have

LµPµ....L1P1A = L′µ...L′1Pµ...P1A = U

or, denoting Pµ...P1 by P and (L′µ...L′1)
−1 by L,

PA = LU.

It turns out that L is still lower triangular. This follows from the following fact: Suppose P
is the transformation which interchanges rows j and j′. Then, if j, j′ > k we have Pek = ek

and hence
PLkP−1 = I − (P`k)(Pek)∗ = I − `′kek

so that Lk and PLkP−1 have the same structure and the arguments of 1.4.1 still apply.
The procedure just described is called partial pivoting. The nonzero numbers Uk,k are

called pivots.
Even if Gaussian elimination does not fail it may be necessary to pivot when one does

not use perfect arithmetic. Recall that one must perform division by the pivots and one
wants to avoid not only dividing by zero but also dividing by small numbers. For example
consider the matrix

A =
(

10−20 1
1 1

)
.



20 1. NUMERICAL LINEAR ALGEBRA

Gaussian elimination without pivoting gives

A =
(

1 0
1020 1

) (
10−20 1

0 1− 1020

)
.

In double precision arithmetic the number 1− 1020 would be replaced by 1020 which seems
like a small error. However computing the solution of Ax = b where b = (1, 0)∗ gives
something which is approximately equal to (1, 1)∗ while the solution computed from the
rounded factorization is (0, 1)∗ which gives an intolerable error.

The algorithm for Gaussian elimination with partial pivoting is
Algorithm.

U = A
L = I
P = I
for k = 1 toµ

Select j ∈ {k, ...,m} to maximize |Uj,k|
Exchange rows j and k in U
Exchange rows j and k in L
Exchange rows j and k in P
for j = k + 1 tom

Lj,k = Uj,k/Uk,k

Uj,k:m = Uj,k:m − Lj,kUj,k:m

end
To leading order Gaussian elimination with partial pivoting takes as many operations

as the one without pivoting (∼ 2m3/3).

1.4.3. Complete pivoting. Recall that an exchange of rows in S would correspond to
permuting (or relabeling) the independent variables and is therefore also rather unimportant
if appropriate care is taken. One could therefore also perform complete pivoting by finding
the element of the submatrix Sk:m,k:m which has the largest absolute value and move it by a
row exchange and a column exchange in to the k-k position. Doing this one obtains finally
a factorization of the form

PAQ = LU

where P and Q are matrices whose entries are zero except that the number one occurs
precisely once in each row and each column.

In practice the cost of finding the pivot in this way is too big and the method is therefore
rarely used even though it does improve stability.

1.4.4. Stability of LU factorization. The stability of LU factorization without piv-
oting is described by the following theorem.

Theorem. Let the LU factorization of a nonsingular matrix A ∈ Cm×m be computed
on a computer satisfying Axiom 1.2.1 by Gaussian elimination without pivoting. If A has
an LU factorization then Algorithm 1.4.1 computes matrices L̃ and Ũ which satisfy

L̃Ũ = A + δA and
‖δA‖
‖A‖

≤ ‖L‖‖U‖
‖A‖

C1εM

for some m-dependent constant C1.
Hence if ‖L‖ or ‖U‖ is large compared to ‖A‖ then Gaussian elimination with pivoting

is not useful.



1.4. LU FACTORIZATION 21

Employing partial pivoting results in a matrix L of which one can show that each of
its entries has absolute value no larger than one and hence ‖L‖ ≤ C where the constant C
depends only on m but not A. One then has still to compare ‖U‖ with ‖A‖ and one obtains
the following corollary immediately from the previous theorem.

Corollary. Let the LU factorization of a nonsingular matrix A ∈ Cm×m be computed
on a computer satisfying Axiom 1.2.1 by Gaussian elimination with partial pivoting. Then
Algorithm 1.4.2 computes matrices L̃, Ũ , and P̃ which satisfy

L̃Ũ = P̃A + δA and
‖δA‖
‖A‖

≤ ‖U‖
‖A‖

C1εM

for some m-dependent constant C1.
While one can construct matrices for which the ratio ‖U‖/‖A‖ becomes arbitrarily

large the set of matrices where it actually happens seems to be extremely small so that in
practice Gaussian elimination with partial pivoting is successfully employed. See Lecture
22 of Trefethen and Bau for more details.

1.4.5. Cholesky Factorization. A self-adjoint matrix A is called positive definite if
x∗Ax is positive for all x 6= 0. This implies immediately that all eigenvalues of A are
positive.

Let n ≤ m and let B ∈ Cm×n be a matrix of full rank n. If A is positive definite then
so is B∗AB. In particular the diagonal entries of A are then positive.

If there exists an upper triangular square matrix R with positive diagonal elements such
that R∗R = A then this factorization of A is called the Cholesky factorization.

Theorem. Every positive definite matrix has a unique Cholesky factorization.
Sketch of proof: Call the matrix in question A and suppose it is an m ×m matrix. If

m = 1 then A is a positive number and R =
√

A. Assume that all positive definite matrices
in C(m−1)×(m−1) have a unique Cholesky factorization. Let α =

√
A1,1 and w = A2:m,1 ∈

Cm−1. Define R1 by

R1 =
(

α w∗/α
0 I

)
.

Then A = R∗1A1R1 where

A1 =
(

1 0
0 A2:m,2:m − ww∗/A1,1

)
.

Since A1 = R−1∗
1 AR−1

1 is positive definite so is A2:m,2:m−ww∗/A1,1 ∈ C(m−1)×(m−1). Hence
we obtain A2:m,2:m − ww∗/A1,1 = R̃∗2R̃2 where R̃2 is upper triangular and has positive
diagonal elements. Therefore

A1 =
(

1 0
0 R̃∗2R̃2

)
= R∗2R2

where

R2 =
(

1 0
0 R̃2

)
.

Since R2R1 is upper triangular this proves existence of the Cholesky factorization. If S∗S is
another Cholesky of A then we have that S1,1:m = R1,1:m and hence that S = S2R1 where
S2 has the same form as R2. An induction argument proves that, in fact, S2 = R2. �

The algorithm for the factorization is the following:



22 1. NUMERICAL LINEAR ALGEBRA

Algorithm.
R = A
for k = 1 tom

for j = k + 1 tom
Rj,j:m = Rj,j:m −Rk,j:mRj,k/Rk,k

Rk,k:m = Rk,k:m/
√

Rk,k

end
The algorithm takes asymptotically m3/3 flops to perform. The algorithm is backward

stable, i.e., the computed matrix R̃ satisfies

R̃∗R̃ = A + δA and
‖δA‖
‖A‖

≤ C1εM .

To solve a system Ax = b one solves successively to triangular systems: R∗y = b and
Rx = y which requires a total work of ∼ m3/3 flops.

1.5. Least Squares Problems

1.5.1. Overdetermined systems of equations. Consider a system Ax = b of m
equations in n unknowns where m > n. If the rank of A is smaller than the rank of the
augmented matrix (A, b) then the system has no solution since this means that b is not in the
image of A. Define the vector r(x) = b−Ax which is called the residual. If the system has
no solution then the residual becomes never zero. The next best thing is then to determine
x in such a way that the residual becomes as small as possible with respect to some norm.
Choosing the 2-norm the problem is to find x such that ‖b−Ax‖2 becomes minimal. Since
the 2-norm corresponds to Euclidean distance the geometric interpretation of this is to find
x such that Ax is the point in im(A) which is closest to b. From this geometric picture it is
clear that we have to choose x such that r is perpendicular to im(A). In fact, we have the
following theorem

Theorem. Let n ≤ m, A ∈ Cm×n, and b ∈ Cm. A vector x0 satisfies

‖r(x0)‖2 = ‖b−Ax0‖2 = min{‖b−Ax‖2 : x ∈ Cn}
if and only if r(x0) is perpendicular to im(A). The minimizer x0 is unique if and only
if A has full rank n. The condition r(x0) ⊥ im(A) is equivalent to any of the equations
A∗r(x0) = 0, A∗Ax0 = A∗b, or Pb = Ax0 where P is the orthogonal projection onto im(A).

Sketch of proof: Abbreviate r(x0) by r. Then we have 0 = r∗Px = (Pr)∗x = (Pb −
Ax0)∗x for all x ∈ Cn if and only if Pb = Ax0. Next denote the columns of A by a1, ..., an.
Then we have r ⊥ im(A) if and only if a∗jr = 0 for all j = 1, ..., n. But the latter condition
is equivalent to 0 = A∗r = A∗(b − Ax0) = A∗b − A∗Ax0. This proves the mentioned
equivalences.

Now let r be perpendicular to im(A) and let x be any element in Cn. Then r ⊥ A(x0−x)
and by the Pythagorean theorem

‖b−Ax‖2 = ‖r + A(x0 − x)‖2 = ‖r‖2 + ‖A(x0 − x)‖2 ≥ ‖r‖2.
Conversely if ‖r‖ = ‖b−Ax0‖ minimizes ‖b−Ax‖ let Pr = Ax1. Then

‖r −Ax1‖2 = ‖r‖2 − (r, Ax1)− (Ax1, r) + ‖Ax1‖2 = ‖r‖2 − ‖Ax1‖2 < ‖r‖2

unless Pr = 0.
To prove the uniqueness statement recall first that A has full rank if and only if A∗A

is invertible. Suppose A∗Ax0 = A∗b = A∗Ax1, i.e., that both x0 and x1 are minimizers of
‖b−Ax‖2. Then we have that x0 − x1 ∈ ker(A∗A). �



1.6. EIGENVALUES 23

If A has full rank then A∗A is a positive definite n×n matrix and hence has a Cholesky
factorization R∗R. To find the minimizer one has therefore to find the factorization and to
solve the equation R∗Rx = A∗b (by solving two triangular systems).

Alternatively one can use the reduced QR factorization of A. If A = Q̂R̂ then P = Q̂Q̂∗

and hence Pb = Ax0 is equivalent to the triangular system Rx0 = Q̂∗b.
Finally, the reduced SVD decomposition of A may also be employed: If A = Û Σ̂V ∗

then P = Û Û∗ and hence Pb = Ax0 is equivalent to Σ̂V ∗x0 = Û∗b. Hence solve Σ̂y = Û∗b
and set x = V y.

1.5.2. Least squares curve fitting. What is the best way to approximate three
points in the plane by a straight line. One may argue that one wants to find that line for
which the sum of the square of the distances of the points from the line is minimal. This
method (and its obvious generalizations) is called least squares data fitting and was invented
around 1800 by Gauss and Legendre.

Suppose m points (xj , yj) in the plane are given and we want to find a polynomial curve
passing through or approximating these points. If the polynomial has degree n − 1 and is
given by

p(x) =
n−1∑
k=0

akxk

the problem is represented by the following system of equations1 x1 ... xn−1
1

...
...

1 xm ... xn−1
m


 a0

...
an−1

 =

 y1

...
ym


which we abbreviate by V a = y. A matrix of the form appearing on the left is called a
Vandermonde matrix and one can show that it has rank n if n ≤ m.

If n = m this problem has a unique solution, i.e., the polynomial passes through all m
of the given points. In practice this may give however unsatisfactory answers and one really
desires a lower order curve (e.g., a straight line) passing nearby the points. To find it one
minimizes, according to the least squares concept, the quantity

m∑
j=0

|yj − p(xj)|2 = ‖y − V a‖22,

i.e., one finds that point in im(V ) ⊂ Cm closest to (y1, ..., ym)t.
Note that here polynomials are thought of as linear combination of power functions.

One can choose any other class of functions, consider their linear combinations, and obtain
a problem in linear algebra. One such class widely used in applications are the so called
splines, which are piecewise polynomials spliced at their endpoints so that they have a
certain amount of differentiability.

1.6. Eigenvalues

1.6.1. Eigenvalue revealing factorizations. We know from the Jordan decompo-
sition theorem that for every square matrix A there is an invertible matrix T such that
A = T−1JT where J is in Jordan normal form, i.e., all entries of J are zero except the
diagonal entries (which are the eigenvalues repeated according to their algebraic multiplic-
ity) and the entries in the superdiagonal (which can be zero or one). More precisely J is a
block diagonal matrix whose blocks B, which are called Jordan blocks, have the following



24 1. NUMERICAL LINEAR ALGEBRA

form: B = λI + S where the S are nilpotent matrices whose entries satisfy Sj,k = δj+1,k.
Recall that A and J have the same characteristic polynomial and that λ is an eigenvalue of
A of geometric multiplicity m if and only it is an eigenvalue of J with the same geometric
multiplicity.

Suppose J = diag(B1, ..., Br) where, for j = 1, ...r, the matrix Bj is an dj × dj Jordan
blocks with eigenvalue λj . The geometric multiplicity of an eigenvalue λ of A is given by the
number of blocks which have it as an eigenvalue. The algebraic multiplicity of λ is the sum
of the dimensions dj of all blocks which have λ as an eigenvalue. The index of an eigenvalue
is the dimension of the largest of these blocks. Recall that the characteristic polynomial of
A is given by ∏

j

(µ− λj)mj

where the mj are the algebraic multiplicities of the λj . The minimal polynomial of A is
given by ∏

j

(µ− λj)νj

where the νj are the indices of the λj . The algebraic and geometric multiplicities of λ
coincide precisely when the index of λ is equal to one.

An eigenvalue whose index is larger than one is called defective since there are not
enough eigenvectors to span its algebraic eigenspace. A matrix is called defective matrix
if it has a defective eigenvalue. A matrix is not defective if and only if all of its Jordan
blocks are one-dimensional, i.e., if it is a diagonal matrix. Matrices which are not defective
are therefore called diagonalizable. The columns of T are the eigenvectors of A (in general
the columns of T are the eigenvectors and generalized eigenvectors). If the eigenvectors
are pairwise orthogonal T can be chosen to be unitary. In this case A is called unitarily
diagonalizable.

Theorem. A matrix is unitarily diagonalizable if and only if it is normal.

1.6.2. Schur factorization. Let A ∈ Cm×m. If A = QTQ∗ where Q is unitary and
T is upper triangular is called a Schur factorization of A.

Theorem. Every square matrix has a Schur factorization.

Sketch of proof: Let A ∈ Cm×m. The theorem holds when m = 1. Suppose m > 1 and
that it holds for m − 1. Let q1 be any normalized eigenvector of A associated with some
eigenvalue λ and Q1 a unitary matrix whose first column is q1. Then

Q∗1AQ1 =
(

λ w∗

0 Q2T2Q
∗
2

)
for some w ∈ Cm−1, Q2, T2 ∈ C(m−1)×(m−1), Q2 unitary, and T2 upper triangular. Now let

Q = Q1

(
1 0
0 Q2

)
to obtain

T =
(

λ w∗Q2

0 T2

)
and A = QTQ∗.



1.6. EIGENVALUES 25

1.6.3. The Rayleigh quotient. Let A ∈ Cm×m and 0 6= x ∈ Cm. The quantity

x∗Ax

x∗x

is called a Rayleigh quotient. Since x∗Ax/(x∗x) = (αx)∗A(αx)/((αx)∗(αx)) for all scalars
α 6= 0, the Rayleigh quotient may be considered as a function on the unit vectors (on the
unit sphere).

Theorem. Let A ∈ Cm×m and x a unit vector in Cm. Then

‖Ax− x(x∗Ax)‖2 = min{‖Ax− µx‖2 : µ ∈ C}.

That is, the vector x(x∗Ax) is the orthogonal projection of the vector Ax on the line spanned
by x.

Sketch of proof: Consider the equation xµ = Ax has a least squares problem where x
is the given matrix, Ax the given vector, and µ the unknown variable. From Theorem 1.5.1
we know that the minimizer satisfies PAx = xµ where P is the orthogonal projection onto
〈x〉, i.e., P = xx∗. Hence µ = x∗PAx = x∗Ax. �

Now let x be an eigenvector of A of length one corresponding to an eigenvalue λ. Let y
be another vector of length one and define ρ = y∗Ay. Then λ−ρ = x∗A(x−y)+(x−y)∗Ay
and hence, using the triangle inequality and Schwarz’s inequality,

|λ− ρ| ≤ 2‖A‖2 ‖x− y‖2.

If A is self-adjoint one may even prove that

|λ− ρ| ≤ C(A)‖x− y‖22
for some positive constant C(A).

The set
Σ = {x∗Ax : ‖x‖ = 1}

is called the numerical range of A. If A is self-adjoint and if λ1 and λm are the smallest and
largest eigenvalue of A respectively, then

λ1 = min(Σ) and λm = max(Σ).

1.6.4. The minimax theorem. The minimax theorem gives a characterization of all
eigenvalues of self-adjoint matrix:

Theorem. Let A ∈ Cm×m be self-adjoint with eigenvalues λ1 ≤ ... ≤ λm. Then, for
every j = 1, ...,m,

λj = min{max{x∗Ax

x∗x
: 0 6= x ∈ L} : dim(L) = j}.

Sketch of proof: Let {u1, ..., um} be an orthonormal basis of eigenvectors of A cor-
responding respectively to the eigenvalues λ1, ..., λm. Suppose L is a subspace of Cm of
dimension j. Then there is a nonzero vector x ∈ L orthogonal to 〈u1, ..., uj−1〉 since oth-
erwise the dimension of L + 〈u1, ..., uj−1〉 ⊥ would be m + 1. Hence x =

∑m
k=j ckuk so

that
x∗Ax

x∗x
=

∑m
k=j |ck|2λk∑m

k=j |ck|2
≥ λj .

Therefore,

max{x∗Ax

x∗x
: 0 6= x ∈ L} ≥ λj .



26 1. NUMERICAL LINEAR ALGEBRA

Now let L = 〈u1, ..., uj〉. Obviously dim(L) = j and

x∗Ax

x∗x
=

∑j
k=1 |ck|2λk∑j

k=1 |ck|2
≤ λj

for every nonzero vector x ∈ L. �

1.6.5. Left eigenvectors. A row vector y∗ is called a left eigenvector of A associated
with λ if y∗A = λy∗. Note that this is equivalent to the condition A∗y = λy. Since column
rank and row rank of a matrix are equal we have that A − λI is invertible if and only if
A∗−λI is invertible. In other words λ is an eigenvalue of A∗ if and only if λ is an eigenvalue
of A. Also their algebraic and geometric multiplicities are respectively the same. Therefore
it is not necessary to introduce the notion of left eigenvalue.

Theorem. Let A ∈ Cm×m. Then the following two statements hold:
(1) If Ax = λx, y∗A = µy∗, and λ 6= µ then y∗x = 0.
(2) If λ is a simple eigenvalue of A with eigenvector x and left eigenvector y∗ then y∗x 6= 0.

Sketch of proof: The equalities µy∗x = y∗Ax = λy∗x prove (1).
To prove (2), assume that A = QRQ∗ is a Schur factorization of A where q1, the first

column of Q is an eigenvector of A associated with λ so that

R =
(

λ h∗

0 R1

)
for some h ∈ Cm−1 and some upper triangular matrix R′. Define w = Q∗y = (w1, w2)t

where w1 ∈ C and w2 ∈ Cm−1. Then y∗A = λy∗ implies

(λ−R∗1)w2 = w1h. (6)

Since λ is a simple eigenvalue of R and since equation (6) has a nontrivial solution we must
have w1 6= 0. The proof is finished after noticing that y∗x = w∗Q∗Qe1 = w1. �

1.6.6. Perturbations of eigenvalues. Let Ω be a domain in the complex plane. A
function a : Ω → C is called an algebraic function if there exists a polynomial c0w

n + ...+ cn

with coefficients cj ∈ C[z] such that

c0(z)a(z)n + ... + cn(z) = 0

for every z ∈ Ω. It is always possible to give an explicit formula for the function a involving
root extractions if n ≤ 4. However, it is a famous theorem of Ruffini and Abel that this is
not always possible if n > 4.

Let A0, A1 ∈ Cm×m and consider the matrix A(µ) = A0 + µA1 where µ is a complex
parameter. It is then obvious that the eigenvalues of A are algebraic functions of µ. Also
the eigenvectors of A are algebraic functions of µ since these form a field. This implies that
the eigenvalues are and that the eigenvectors may be considered as continuous functions of
µ.

If λ0 is a simple eigenvalue of A0 with associated eigenvector x0 and if Ω = B(0, r)
is a disk centered a zero of sufficiently small radius r, then there are differentiable (i.e.,
analytic) functions λ : Ω → C and x : Ω → Cm such that A(µ)x(µ) = λ(µ)x(µ), x(0) = x0,
and λ(0) = λ0.

Theorem. Let λ0 be a simple eigenvalue of A0 and x0 and y∗0 the associated normalized
eigenvectors and normalized left eigenvector of A0, respectively. Let λ(µ) denote the (simple)



1.6. EIGENVALUES 27

eigenvalue of A0 + µA1 when λ is sufficiently small. Then

|λ′(0)| ≤ ‖A1‖
|y∗0x0|

.

Sketch of proof: Differentiate the equation

(A0 + µA1)x(µ) = λ(µ)x(µ)

with respect to µ and set µ = 0 to get

A0x
′(0) + A1x(0) = λ′(0)x(0) + λ(0)x′(0).

Multiplying this equation by y∗0 on the left and using that x(0) = x0 and that y∗x 6= 0
gives

λ′(0) =
y∗0A1x0

y∗0x0

which immediately implies the desired result. �
The proof of the previous theorem and the Taylor expansion theorem show actually that

λ(µ) = λ0 +
y∗0A1x0

y∗0x0
µ + O(µ2)

which is useful if A1 itself rather than just ‖A1‖ is explicitly known.

1.6.7. The condition number of an eigenvalue. Let λ 6= 0 be a simple eigenvalue
of the matrix A. Theorems 1.2.8 and 1.6.6 imply that

lim
ε→0

κ(λ, A, ε) =
‖A‖
|λ|

1
|y∗x|

where x is a normalized eigenvector and y∗ a normalized left eigenvector of A associated
with λ. This number is denoted by κ(λ, A) and is called the relative condition number of λ.

Note that |y∗x| is never larger than one. If A is normal and λ is simple then any
eigenvector is also a left eigenvector and hence |y∗x| = 1.

1.6.8. Power iteration. Eigenvalues are the roots of the characteristic polynomial.
However, we saw in 1.2.12 that in general the problem of computing roots is ill conditioned.
The problem is related to the fact that, for polynomials of degree higher than four, there is no
formula generalizing the quadratic formula. In practice eigenvalues are therefore computed
iteratively.

Let A be an m×m matrix with algebraically simple eigenvalues λ1, ..., λm. Let u1, ..., um

be the associated eigenvectors. Suppose that there is a number ρ such that |λj |/|λ1| ≤ ρ < 1
for j = 2, ...,m. Pick any vector x0 = c1u1 + ... + cmum and define

xk =
Akx0

σk

for certain numbers σk. Then

xk =
1
σk

m∑
j=1

cjλ
k
j uj =

λk
1

σk

c1u1 +
m∑

j=2

cj

(
λj

λ1

)k

uj

 .

The resulting sequence xk does perhaps not converge. However, if c1 6= 0, one finds that

‖x⊥k ‖p ≤
∣∣∣∣λk

1

σk

∣∣∣∣ ρk
m∑

j=2

|cj | ‖uj −
u∗1uj

u∗1u1
u1‖p



28 1. NUMERICAL LINEAR ALGEBRA

where x⊥k = xk−u1(u∗1xk)/‖u1‖2 is the component of xk which is orthogonal to u1. Choosing
σk such that ‖xk‖p = 1 gives∣∣∣∣λk

1

σk

∣∣∣∣ ≤ 1
‖c1u1‖p − ρk

∑m
j=2 ‖cjuj‖p

≤ 2
‖c1u1‖p

for sufficiently large k. In this case we have therefore that ‖x⊥k ‖p approaches zero as k tends
to infinity.

If we choose p = ∞, if exactly one component, say the first, of u1 has absolute value
one and if σk is chosen to be that component of Akx0 which has the largest absolute value
then eventually ‖xk‖∞ = xk;1 = 1.

lim
k→∞

σk

σk−1
= λ1

and

lim
k→∞

xk = αu1

where α = 1/u1;1.

1.6.9. The inverse power method. Suppose A is an m × m matrix and that µ is
not an eigenvalue of A. Note that x is an eigenvector of A associated with the eigenvalue
λ if and only if x is an eigenvector of (A− µI)−1 associated with the eigenvalue 1/(λ− µ).
Also, if λ is a simple eigenvalue and µ is properly chosen |1/(λ − µ)| is much larger than
|1/(λ′ − µ)| whenever λ′ is another eigenvalue of A. Combining this observation with the
power method gives then an algorithm which rapidly produces approximate eigenvectors.
The approximate eigenvalue can then be computed as a Rayleigh quotient.

Algorithm.
Choose a vector v with norm 1
for k = 1 to ...

Solve (A− µ)w = v
v = w/‖w‖
λ = v∗Av

end

1.6.10. Rayleigh quotient iteration. The drawback of the Algorithm 1.6.9 is that
in order to make a sensible choice for µ one has to have some a priori knowledge about
the eigenvalues. If that is not given one may interlace the computation of approximate
eigenvector and approximate eigenvalue (and use one for the computation of the other):

Algorithm.
Choose a vector v with norm 1
λ = v∗Av
for k = 1 to ...

Solve (A− λ)w = v
v = w/‖w‖
λ = v∗Av

end



1.6. EIGENVALUES 29

1.6.11. Simultaneous power iteration. Suppose A ∈ Cm×m has m linearly inde-
pendent eigenvectors u1, ..., um associated with the eigenvalues λ1, ... λm which satisfy

|λ1| ≥ |λ2| ≥ ... ≥ |λn| > |λn+1| ≥ |λn+2| ≥ ... ≥ |λm|
for some n ∈ {1, ...,m − 1}. Assume that Sn is an n-dimensional subspace of Cm such
that Sn ∩ Un = {0} where Un = 〈un+1, ..., um〉. Let Pn be the orthogonal projection onto
〈u1, ..., un〉⊥. Then one may show that the spaces AkSn = {Akx : x ∈ Sn} are n-dimensional
and that there is a constant Cn such that

max{‖PnAkx‖ : x ∈ Sn, ‖Akx‖ = 1} ≤ Cn

∣∣∣∣λn+1

λn

∣∣∣∣k . (7)

Moreover, if s1, ..., sn is a basis of Sn then Aks1, ..., Aksn is a basis of AkSn. But Aks1, ...,
Aksn is usually not an orthonormal basis even if s1, ..., sn are orthonormal. An orthonormal
basis for AkSn is therefore computed by the following recursive scheme: Let s

(0)
1 = s1, ...,

s
(0)
n = sn (assuming these are orthonormal), compute the basis As

(`)
1 , ..., As

(`)
n of A`+1, and

orthonormalize these vectors to obtain s
(`+1)
1 , ..., s

(`+1)
n .

When n = 1 we obtain the method of 1.6.9.
Algorithm.

Pick Ŝ ∈ Cm×n with orthonormal columns
for k = 1 to ...

Z = AŜ

Let Ŝ be the left factor of the reduced QR factorization of Z
end

1.6.12. The basic QR algorithm. The QR algorithm is the most widely used algo-
rithm to compute the complete set of eigenvalues and eigenvectors of a matrix. The QR
algorithm is defined as follows:

Algorithm.
A0 = A
for k = 1 to ...

Find the QR factorization of Ak−1, i.e., Ak−1 = QkRk

Let Ak = RkQk

end
One iteration of this algorithm is called a QR step or QR iteration.
Two observations are important.
(1) The matrices Ak produced in this way are unitarily equivalent since

Ak = Q∗kAk−1Qk = Q∗k...Q∗1AQ1...Qk = (Q1...Qk)∗AQ1...Qk.

(2) The k-th power of A is given by

Ak = Q1...QkRk...R1.

1.6.13. The QR algorithm and simultaneous iteration. The matrices Rk and
Qk produced by the QR algorithm for a matrix A can be found by simultaneous iteration
starting from S0 = I:

Algorithm.
S0 = I
for k = 1 to ...

Zk = ASk−1



30 1. NUMERICAL LINEAR ALGEBRA

SkR̃k = Zk (a full QR factorization of Zk)
Qk = S∗k−1Sk

Rk = R̃k

end
This is proved by induction on k. It is obvious for k = 1. Assume it is true for k > 1.

Then

SkQk+1Rk+1...R1 = Ak+1 = AAk = ASkRk...R1 = Zk+1Rk...R1 = Sk+1R̃k+1Rk...R1.

Upon choosing the factorization of Zk+1 appropriately we obtain that R̃k+1 = Rk+1 and
that SkQk+1 = Sk+1.

1.6.14. Invariant subspaces. Recall that a subspace S is called invariant under the
linear transformation A if AS ⊂ S.

Theorem. Let S ⊂ Cm be invariant under A ∈ Cm×m. Suppose x1, ..., xn is a basis of
S and x1, ..., xm is a basis of Cm. Let X1 denote the m×n matrix whose columns are x1, ...,
xn and let X denote the m×m matrix whose columns are x1, ..., xm. Then B = X−1AX
is block upper triangular, i.e.,

B =
(

B1,1 B1,2

0 B2,2

)
where B1,1 ∈ Cn×n, etc.

Sketch of proof: The equation B = X−1AX is equivalent to AX = XB. Hence Axj =∑m
r=1 xrBr,j . If j ≤ n then Axj is a linear combination of x1, ..., xn since S is invariant.

This implies that Br,j = 0 for all r ∈ {n + 1, ...,m}. �

1.6.15. Convergence of the QR algorithm.
Theorem. Let λ1, ..., λm be the eigenvalues of A satisfying

|λ1| > |λ2| > · · · > |λm|
and let u1, ..., um be the respectively associated linearly independent eigenvectors. Assume
that, for n = 1, ...,m − 1, 〈e1, ..., en〉 ∩ 〈un+1, ..., um〉 = {0}, i.e., the matrix U whose j-th
column is uj satisfies det(U1:n,1:n) 6= 0 for n = 1, ...,m − 1. Let Ak be the sequence of
matrices unitarily equivalent to A produced by the QR algorithm. Then the subdiagonal
entries of Ak converges to zero while the diagonal entries converge to the eigenvalues of A.

This theorem will not be proven here. Instead we give a heuristic concerning the conver-
gence of the subdiagonal entries of the Ak. Sketch of proof: Suppose that, for n = 1, ...,m−1,

〈Qk;1:m,1, ..., Qk;1:m,n〉 = 〈u1, ..., un〉
then Ak would be upper triangular by Theorem 1.6.14, since the lower left (m − n) × n
block of Ak would be zero for n = 1, ...,m− 1. In actuality this may not be true but in any
case the conditions of the theorem allow the application of the inequality (7) which in turn
shows that entries of Ak tend to zero as k tends to infinity.

1.6.16. Hessenberg form. A matrix A ∈ Cm×m is said to be in Hessenberg form if
Aj,k = 0 for all j > k + 1, i.e., if it is zero below the subdiagonal.

It was shown earlier that every matrix A ∈ Cm×m is unitarily equivalent to an upper
triangular matrix, i.e., A = QUQ∗ where Q is unitary and U is upper triangular. Of course,
U is also in Hessenberg form. However, to construct U one needs to know the eigenvectors
of A. We will show now that a matrix H in Hessenberg form can be constructed which
is unitarily equivalent to A without any knowledge of the eigenvectors of A. This will be
done by induction on the size of A. The statement is obviously true when m = 1 (or



1.6. EIGENVALUES 31

m = 2). Let now m > 1 and let x = A2:m,1, v = α‖x‖e1 − x for some α of modulus one,
F = I − 2vv∗/(v∗v) (a Householder reflector), and

Q1 =
(

1 0
0 F

)
.

Then Q1 is unitary and self-adjoint. Since, by the very definition of F , Fx = α‖x‖e1, we
find

Q1AQ1 =
(

A1,1 A1,2:mF
α‖x‖e1 A1

)
where A1 = FA2:m,2:mF ∈ C(m−1)×(m−1). To perform this step we need to know only the
entries of A. By the induction hypothesis we know that we can construct a Hessenberg
matrix H2 and a unitary matrix Q2 satisfying A1 = Q∗2H2Q2 just from knowing the entries
of A1. Now let

Q = Q1

(
1 0
0 Q2

)
.

Then Q is unitary and Q∗AQ is in Hessenberg form.
Recall that one chooses α so that αx1 ≤ 0 in order to improve stability when imple-

menting the algorithm below (in perfect arithmetic the value of α is irrelevant as long as
|α| = 1).

Algorithm.
for k = 1 tom− 2

x = Ak+1:m,k

Determine α
vk = α‖x‖e1 − x
vk = vk/‖vk‖
Ak+1:m,k:m = Ak+1:m,k:m − 2vk(v∗kAk+1:m,k:m)
A1:m,k+1:m = A1:m,k+1:m − 2(A1:m,k+1:mvk)v∗k

end

This algorithm requires ∼ 10m3/3 flops. When A is self adjoint Hj,k will be zero if
|j− k| ≥ 2. By taking this into account in the algorithm we can reduce the operation count
to ∼ 4m3/3 flops.

1.6.17. Applying the Hessenberg transformation. The most important property
of the Hessenberg transformation is that it is invariant under the QR algorithm if A0 is
invertible.

Theorem. If the matrix A0 is Hessenberg form and invertible, then all the matrices
Ak generated by the QR algorithm are also in Hessenberg form.

Sketch of proof: Suppose that Ak−1 is in Hessenberg form. Then Qk = Ak−1R
−1
k and

Ak = RkQk are also in Hessenberg form. �
Each step of the QR algorithm requires O(m3) flops when Ak is a full matrix. However,

when Ak is in Hessenberg form only O(m2) flops are needed. This explains the importance
of reducing A first to Hessenberg form.

1.6.18. The QR algorithm with shift. An improvement on the convergence of the
QR algorithm can be achieved by introducing so called shifts at each QR step. The QR
algorithm with shift works as follows:



32 1. NUMERICAL LINEAR ALGEBRA

Algorithm.
Let A0 be the Hessenberg transform of A
for k = 1 to ...

Ak−1 = Ak−1 − ρk−1I
Find the QR factorization of Ak−1, i.e., Ak−1 = QkRk

Let Ak = RkQk + ρk−1I
end

In this algorithm the numbers ρk have to be chosen appropriately. A standard choice
is the Rayleigh quotient of the vector em, i.e.,

ρk = e∗mAkem = Ak;m,m

(regarding em as the approximate eigenvector corresponding to λm). This is called the
Rayleigh quotient shift. Experience shows that this choice of the shift works quite well to
approximate the zero in row m and column m − 1 and the eigenvalue λm in row m and
column m.

However, the other subdiagonal entries, Ak,j+1,j , 1 ≤ j ≤ m− 2, approach zero slowly.
To speed things up, one uses the following trick. After making Ak;m,m−1 is practically equal
to zero and Ak;m,m is practically equal to λm, one partitions the matrix Ak as

Ak =
(

Âk bk

0 λm

)
where Âk is an (m− 1)× (m− 1) Hessenberg matrix, whose eigenvalues are (obviously) λ1,
..., λm−1. Then one can apply further steps of the QR algorithm with shift to the matrix
Âk instead of Ak. This quickly produces its smallest eigenvalue, λm−1, which can be split
off as above, etc. This procedure is called the deflation of the matrix A.

In practice, each eigenvalue of A requires 3-5 iterations (QR steps), on the average. The
algorithm is rather fast and very accurate.

1.6.19. Computing the SVD. The singular and singular vectors of a matrix A ∈
Cm×n (where m ≥ n) are given as the roots of the eigenvalues and the eigenvectors of the
n× n matrix A∗A.

However, it is not a good idea to use this procedure in the presence of imperfect arith-
metic. A backward stable algorithm for computation of eigenvalues would compute approx-
imations λ̃k satisfying

|λ̃k − λk| ≤ CεM‖A∗A‖ ≤ C ′εM‖A‖2.

Since λ̃k − λk = (σ̃k − σk)(σ̃k + σk) one obtains

|σ̃k − σk|
σk

≤ C ′′εM
‖A‖2

σ2
k

= C ′′εM
σ2

1

σ2
k

.

For singular values much smaller than σ1 this gives a very large error bound. For numerical
purposes one proceeds in a different way to compute singular values and singular vectors.

First one applies alternately a sequence of Householder reflectors to the left and right
of A so that in the end one arrives at a matrix B which is bidiagonal, i.e., all entries outside
its diagonal and its superdiagonal are zero. More precisely

B = Un...U1AV1...Vn−2

(recall that Householder reflectors are both unitary and self-adjoint). This process is called
Golub-Kahan bidiagonalization. Note that B∗B and A∗A are unitarily equivalent which



1.7. ITERATIVE METHODS 33

implies that the singular values of B are precisely those of A. Further note that

B =
(

B1

0

)
where B1 is an n× n matrix and where B∗1B1 = B∗B. Hence in order to find the singular
values of A we may look for the singular values of the square matrix B1.

Next one forms the self-adjoint matrix

H =
(

0 B∗1
B1 0

)
and note that the eigenvalue decomposition of H is(

0 B∗1
B1 0

)
=

1
2

(
V V
U −U

) (
Σ 0
0 −Σ

) (
V ∗ U∗

V ∗ −U∗

)
when B1 = UΣV ∗ is the SVD of B1. In other words, the singular of A (or of B1) are the
nonnegative eigenvalues of H. Since ‖H‖ = σ1 these can be computed with a relative error
proportional to σ1/σk (as compared to an error proportional to σ2

1/σ2
k).

1.7. Iterative Methods

In this section we study algorithms designed to deal with very large (or even infinite)
matrices where one has to be content with partial information on eigenvalues and eigenvec-
tors. If A is the matrix under consideration it is only required that Ax is relatively cheaply
computed for any vector x. This happens, for instance, when A is a so called sparse matrix,
i.e., a matrix where the vast majority of the entries in any row is zero (e.g., a 105 × 105

matrix for which about 10 entries per row are different from zero) so that computation of
Ax is much cheaper than m2 flops.

The basic idea of the methods to be discussed in this section is to study an m-dimensional
problem on an n-dimensional subspace.

1.7.1. Krylov subspaces. Let A ∈ Cm×m and b ∈ Cm. The sequence n 7→ An−1b is
called the Krylov sequence associated with A and b and the spaces Kn = 〈b, Ab, ..., An−1b〉
are called Krylov subspaces (of Cm).

1.7.2. Arnoldi iteration. A complete reduction of A ∈ Cm×m to Hessenberg form is
given by A = QHQ∗ where Q is unitary and H is Hessenberg. If m is so large that the
computation of the complete reduction is out of the question one might be interested in
partial reductions. Note that A = QHQ∗ is equivalent to AQ = QH. One now wants to
compute the first n columns of Q and H. This is done by the Arnoldi algorithm. Let H̃n

be the (n + 1) × n upper left block of H and let Qn denote the m × n matrix consisting
of the first n columns of Q. Then the first n columns of the equation AQ = QH read
AQn = Qn+1H̃n. The n-th column, in particular, is

Aqn = H1,nq1 + ... + Hn,nqn + Hn+1,nqn+1.

If q1 is given this allows to compute Qn+1 and H̃n recursively, as long as Aqn 6∈ Kn =
〈q1, ..., qn〉. This is seen by induction: If Aq1 is not a multiple of q1 then 〈q1, Aq1〉 has an
orthonormal basis q1, q2 and H1,1 and H1,2 are the coefficients of Aq1 with respect to that
basis. Now suppose that Qn and H̃n−1 have been computed and that Aqn is not in Kn.



34 1. NUMERICAL LINEAR ALGEBRA

Then 〈q1, ..., qn, Aqn〉 has an orthonormal basis q1, ..., qn+1 and the coefficients of Aqn in
terms of that basis form the entries of the last column of H̃n so that

Qn+1 = (Qn, qn+1) and H̃n =
(

H̃n−1 h
0 Hn+1,n

)
where h ∈ Cn satisfies hk = Hk,n. At step n of the process one has computed an orthonormal
basis q1, ..., qn of the Krylov subspace 〈q1, Aq1, ..., A

n−1q1〉.
If Aqn ∈ Kn then Kn is an invariant subspace under A and hence one can split off a

problem on an n-dimensional subspace.
Algorithm.

Choose an arbitrary normalized vector q1

forn = 1 to ...
v = Aqn

for k = 1 ton
Hk,n = q∗kv
v = v −Hk,nqk

Hn+1,n = ‖v‖
ifHn+1,n = 0

Terminate process
qn+1 = v/Hn+1,n

end

1.7.3. Projection onto Krylov subspaces. If the size of the matrix A is too large
to be tractable one is interested in a reduction of A onto the Krylov subspaces. Hence one
restricts the domain of A to Kn but the image A(Kn) is generally not in Kn so that A|Kn

cannot be represented by a square matrix. Since QnQ∗n is the orthogonal projection onto
Kn one considers therefore the matrix

Tn = QnQ∗nA|Kn

which maps Kn to itself. Note that Q∗nQn+1 is the n × (n + 1) matrix with ones on the
diagonal and zeros everywhere else. Hence the Hessenberg matrix Hn = Q∗nQn+1H̃n is the
upper left n× n block of H. Since AQn = Qn+1H̃n and Q∗nQn = I we have Hn = Q∗nAQn

and hence
Tn = QnQ∗nA|Kn = QnHnQ∗n|Kn

i.e., Hn is the matrix associated with Tn when choosing the basis q1, ..., qn in domain and
range.

The eigenvalues of Tn (or Hn) are called the Arnoldi eigenvalue estimates or Ritz values
(at step n). They can approximate some of the eigenvalues of A extraordinarily accurately
even if n is a lot smaller than m. They are computed using the QR algorithm.

1.7.4. Arnoldi iteration and polynomial approximation. The set of polynomials
of degree n (in one indeterminate) with complex coefficients is denote by C[z]n. Let Mn be
the subset of C[z]n whose elements are monic, i.e., whose elements have leading coefficient
one. Suppose a matrix A ∈ Cm×m and a vector b ∈ Cm are given. The associated Krylov
subspace Kn can then be written as

Kn = {p(A)b : p ∈ C[z]n−1}.
The Arnoldi approximation problem is to find a polynomial p0 in Mn such that

‖p0(A)b‖ = min{‖p(A)b‖ : p ∈ Mn}.



1.7. ITERATIVE METHODS 35

Theorem. If Kn has dimension n the Arnoldi approximation problem has a unique
solution, namely the characteristic polynomial of Hn.

Sketch of proof: First note that p(A)b − Anb ∈ Kn. Hence there is a y ∈ Cn such
that p(A)b = Anb−Qny and the Arnoldi approximation problem is equivalent to the least
squares problem of minimizing ‖Anb−Qny‖ over y ∈ Cn where Anb is the given right hand
side. By Theorem 1.5.1 we have to solve the equation Q∗nQny = Q∗nAnb which is equivalent
to Q∗np(A)b = 0. Since A = QHQ∗ we have p(A) = Qp(H)Q∗. Note that Q∗nQ is the
n ×m matrix whose first n columns form the n × n identity matrix and whose remaining
m − n columns are zero. Further note that Q∗b = e1 ∈ Cm. Hence 0 = Q∗np(A)b =
Q∗nQp(H)Q∗b = p(H)1:n,1. Because of the structure of a Hessenberg matrix one finds that
p(H)1:n,1 = p(Hn)1:n,1. In conclusion we find that p gives rise to a minimum if and only if
the first column of p(Hn) is zero. That is certainly the case for (an appropriate multiple of)
the characteristic polynomial of Hn by the Cayley-Hamilton theorem. To prove uniqueness
assume that the minimum is attained for either of the polynomials p1 and p2 in Mn. Then
0 = Q∗np1(A)b = Q∗np2(A)b which implies that Q∗n(p1 − p2)(A)b = 0. Since q = p1 − p2 has
degree at most n − 1 we have that q(A)b ∈ Kn. Thus q(A)b = QnQ∗nq(A)b = 0. If q is
not the zero polynomial the equation q(A)b = 0 implies that the vectors b, Ab, ..., An−1b are
linearly dependent, which is impossible. �

1.7.5. Computing eigenvalues by Arnoldi iteration. The following theorem is a
special case of the so called spectral theorem:

Theorem. Let A ∈ Cm×m be a matrix and f a polynomial. Then

f(A) =
∑

λ∈σ(A)

ν(λ)−1∑
j=0

(A− λI)j

j!
f (j)(λ)Eλ

where σ(A) is the set of eigenvalues of A, ν(λ) denotes the index of λ, and Eλ is the
eigenprojection associated with λ. In particular, if ν(λ) = 1 for every eigenvalue λ then

f(A) =
∑

λ∈σ(A)

f(λ)Eλ.

Hence if one picks f such that f(λ), ..., f (ν(λ)−1)(λ) are small for every eigenvalue λ
then ‖f(A)‖ and hence the norms of ‖f(A)x‖ when ‖x‖ = 1 become small. Conversely
after finding a polynomial such that ‖f(A)b‖ is small one may hope that f is small near
the eigenvalues of A or that the roots of f approximate (some of) the eigenvalues of A. For
instance if A is diagonalizable (i.e., all indices are equal to one), if the number of distinct
eigenvalues of A is equal to n, and if b has components in all eigenspaces, then after n steps
the Arnoldi iteration has computed the minimal polynomial of A and hence all eigenvalues
of A exactly.

1.7.6. Arnoldi lemniscates. Let p be a polynomial and C a positive constant. A
curve (or a collection of curves) given by

{z ∈ C : |p(z)| = C}

is called a lemniscate. If one chooses C = ‖p(A)b‖/‖b‖ one calls the resulting curve an
Arnoldi lemniscate. The Arnoldi lemniscates tend to split in components encircling or
nearly encircling (groups of) eigenvalues. When a component of an Arnoldi lemniscate has
captured a single eigenvalue experience shows that convergence to that eigenvalue is of the
form ρn for some ρ < 1.



36 1. NUMERICAL LINEAR ALGEBRA

1.7.7. Generalized minimal residuals (GMRES). We next describe how Arnoldi
iteration is used to compute solutions of the equation Ax = b where A ∈ Cm×m is nonsin-
gular. Let Kn = 〈b, Ab, ..., An−1b〉 be a Krylov subspace. The approximation of the true
solution x∗ = A−1b at step n is then taken to be the unique solution xn of the least squares
problem

‖rn‖ = ‖b−Axn‖ = min{‖b−Ax‖ : x ∈ Kn}.
Since x ∈ Kn there is a y ∈ Cn such that x = Qny. Therefore, and because AQn = Qn+1H̃n,
we have

‖rn‖ = ‖b−Axn‖ = min{‖b−Qn+1H̃ny‖ : y ∈ Cn}.
Next note that b − Qn+1H̃ny ∈ Kn+1. For any z ∈ Kn+1 = im(Qn+1) we have that
‖Q∗n+1z‖ = ‖z‖. This and the fact that Q∗n+1Qn+1 is the identity on Cn+1 shows that

‖b−Qn+1H̃ny‖ = ‖Q∗n+1b− H̃ny‖.
Finally since b = ‖b‖q1 we have that

‖rn‖ = ‖b−Axn‖ = min{‖H̃ny − ‖b‖e1‖ : y ∈ Cn}
providing the following algorithm:

Algorithm.
q1 = b/‖b‖
forn = 1 to ...

Perform step n of the Arnoldi algorithm to find Qn+1 and H̃n

Find the vector y0 ∈ Cn which minimizes ‖H̃ny − ‖b‖e1‖
xn = Qny0

end

Note that the value of ‖rn‖ = ‖H̃ny0 − ‖b‖e1‖ is a by-product of the algorithm.

1.7.8. Convergence of GMRES. Note that one computes the norms of the residuals
rn as the minima of the functional x 7→ ‖b − Ax‖ over a sequence of sets K1 ⊂ K2 ⊂ ....
Hence ‖rn‖ is a nonincreasing sequence. In the absence of rounding errors we will have
‖rn‖ = 0 at the latest when n = m and perhaps sooner. Thus the convergence of the
algorithm is guaranteed but in practice one looks for a sufficiently small residual for values
of n much smaller than m.

The relative error of the solution xn is estimated in the following way:

|xn − x∗|
|x∗|

=
A−1(b− rn)−A−1b

A−1b
≤ κ(A)

‖rn‖
‖b‖

.

Since, as mentioned above, ‖rn‖ is computed at each step of the iteration one has control
over the error if information on the condition number of A is available.

1.7.9. GMRES and polynomial approximation. Since the approximation xn to
the solution x∗ of the equation Ax = b is the unique solution of the least squares problem
associated with minimizing r = b−Ax over x ∈ Kn we can write xn as a linear combination
of b, Ab, ..., An−1b, i.e., there is a unique polynomial p̃ ∈ C[z]n−1 such that xn = p̃(A)b.
Hence rn = (I − Axn) = (I − Ap̃(A))b = p(A)b where p(z) = 1 − zp̃(z) is a polynomial
of degree n for which the coefficient of z0 is equal to one. Hence the following problem is
equivalent to the problem of finding xn:

‖rn‖ = min{‖p(A)b‖ : p ∈ Pn}
where Pn is the the subset of C[z]n for which the coefficient of z0 is equal to one.



1.8. PROBLEMS 37

1.8. Problems

Please find below the assigned homework. A bullet (•) indicates that the problem will
be graded, the first due date is listed in parentheses.

(1) JPE, Spring 2000, #1
(2) • (September 18) JPE, Fall 1999, #5
(3) • (September 20) Let ε ∈ R be positive and assume that A ∈ Cm×m satisfies

‖A‖ < 1/ε. Show that I + εA is invertible. Hint: a linear operator T : Cm → Cm

is invertible if and only if ker(T ) = {0}.
(4) Suppose that λ1, ..., λn are the distinct eigenvalues of a matrix A : Cm → Cm

with respective algebraic multiplicities k1, ..., kn. The quantity det(λI − A) is a
polynomial with respect to λ of degree m and leading coefficient one, i.e.,

det(λI −A) = λm − σ1λ
m−1 + ... + (−1)mσm.

The number σ1 = k1λ1 + ... + knλn is called the trace of A and denoted by tr(A).
Prove the following statements:
(a) tr(A) =

∑m
`=1 A`,`.

(b) tr(AB) = tr(BA) for all A,B ∈ Cm×m.
(c) If T ∈ Cm×m is invertible then tr(T−1AT ) = tr(A).
(d) ‖A‖22 = tr(A∗A) = tr(AA∗).

(5) • (September 25) Prove

‖A‖1,1 = max{
m∑

j=1

|Aj,k| : 1 ≤ k ≤ m} and ‖A‖∞,∞ = max{
m∑

k=1

|Aj,k| : 1 ≤ j ≤ m}.

(6) JPE, Spring 1999, #3
(7) Show that a matrix which is both triangular and unitary is diagonal.
(8) • (September 27) Let x ∈ Cm, A ∈ Cm×n, and p ∈ [1,∞]. Show

‖x‖∞ ≤ ‖x‖p ≤ p
√

m‖x‖∞,

‖A‖∞,∞ ≤ p
√

n‖A‖p,p ≤ p
√

mn‖A‖∞,∞.

Is equality ever achieved?
(9) Determine the SVDs of the following matrices

(a)
(

3 0
0 2

)
, (b)

(
2 0
0 3

)
, (c)

0 2
0 0
0 0

, (d)
(

1 1
0 0

)
, (e)

(
1 1
1 1

)
.

(10) • (October 2) Two matrices A,B ∈ Cm×m are called unitarily equivalent, if there
is a unitary matrix Q such that B = Q∗AQ. Prove or disprove: A and B are
unitarily equivalent if and only if they have the same singular values.

(11) How many IEEE double precision real numbers are between two adjacent nonzero
IEEE single precision numbers?

(12) • (October 4) The floating point number system F = Fp includes many integers
but not all of them. Give an exact formula for the smallest integer in N − Fp.
In particular, what are these numbers for the IEEE single and double precision
standards.

(13) For each of the following algorithms implemented on a computer satisfying Axiom
1.2.1 decide whether it is backward stable or stable but not backward stable.
Compute C1 and C2.
(a) f̃ : R → R : x 7→ x⊕ x.



38 1. NUMERICAL LINEAR ALGEBRA

(b) f̃ : R → R : x 7→ x⊗ x.
(14) • (October 9) Suppose you had an algorithm which determines for every m × n

matrix its SVD. Explain what it would mean for this algorithm to be stable and
backward stable. Is it possible that the algorithm is backward stable?

(15) Suppose A ∈ Cm×m is self-adjoint (hermitian) and has the (not necessarily dis-
tinct) eigenvalues λ1, ..., λm. What are the singular values of A.

(16) • (October 11) Give a sequence of 2×2 matrices An whose eigenvalues are λ1, λ2 ∈
R regardless of n but for which ‖An‖2,2 = σ1(An) tends to infinity.

(17) Show that κ(A) = σ1/σn if m ≥ n and A ∈ Cm×n has full rank and singular values
σ1 ≥ σ2 ≥ ... ≥ σn.

(18) • (October 16) Suppose A is a 202×202 matrix with ‖A‖2,2 = 100 and ‖A‖2 = 101.
Give the best possible lower bound on κ2,2(A).

(19) JPE, Fall 1999, #2.
(20) • (October 18) JPE, Spring 2000, #5.
(21) Let v ∈ Cm be nonzero and Pv the orthogonal projection onto 〈v〉. Show that

F = I − 2Pv is unitary and self-adjoint.
(22) • (October 23) JPE, Fall 1998, #1.
(23) JPE, Fall 1999, #4 (second try).
(24) • (October 25) Let A be an m × m matrix and let aj be the j-th column of A.

Prove Hadamard’s inequality which states that

|det(A)| ≤
m∏

k=1

‖ak‖2.

Give a geometric interpretation of this result making use of the relation ship be-
tween det(A) and the volume of the parallelepiped spanned by a1, ..., am.

(25) Show that multiplication of a vector by a matrix is backward stable. More precisely,
if A ∈ Rm×n and x ∈ Cn, give an algorithm which computes Ax and show that
there is a δA such that (A + δA)x equals the vector computed by that algorithm.
Assume that idealized computer arithmetic is utilized.

(26) • (October 30) Show that the matrices L′j defined in 1.4.2 are lower triangular and
that each of their diagonal entries is one.

(27) If a LU = PA is a LU factorization obtained from A by Gaussian elimination with
partial pivoting, prove that ‖L‖∞ ≤ 1.

(28) • (November 1) Let A ∈ Cm×m be nonsingular. Show that A has an LU factor-
ization if and only if A1:k,1:k is nonsingular for k = 1, ...,m.

(29) JPE, Spring 2000, #3.
(30) • (November 6) Suppose that the m× n matrix A has the form(

A1

A2

)
where A1 is a nonsingular n×n matrix and A2 is an arbitrary (m−n)×n matrix.
Prove that ‖A+‖2,2 ≤ ‖A−1

1 ‖2,2.
(31) JPE, Spring 2000, #4.
(32) • (November 8) JPE, Spring 2000, #6.
(33) Let A ∈ Cm×m have eigenvalues λ1, ..., λm. Define ρ = max{|λ1|, ..., |λm|} (this

quantity is called the spectral radius). Show that limn→∞ ‖An‖ = 0 if and only if
ρ < 1.

(34) • (November 13) Prove the following theorem:
Let A and B be selfadjoint matrices in Cm×m. Let a1 ≤ ... ≤ am, b1 ≤ ... ≤ bm,



1.8. PROBLEMS 39

and c1 ≤ ... ≤ cm denote respectively the eigenvalues of A, B, and A + B. Show
that

ak + b1 ≤ ck ≤ ak + bm

for k = 1, ...,m.
Remark: This theorem is particularly interesting if B is small in the sense that
|b1| and |bm| are small compared to the smallest of the |aj |.

(35) JPE, Fall 1999, #8.
(36) • (November 15) Let

A =
(

9 1
1 2

)
and x0 = (1, 1)∗. Compute yn = Axn−1,

σn =

{
yn;1 if |yn;1| ≥ |yn;2|
yn;2 if |yn;1| < |yn;2|

,

and xn = yn/σn for n = 1, ..., 5. Also compute the eigenvalues and eigenvectors of
A.

(37) Let A ∈ Cm×m be tridiagonal and self-adjoint with all its sub- and superdiagonal
entries nonzero. Prove that the eigenvalues of A are pairwise distinct. Hint: Show
that, for any λ ∈ C, the matrix A− λI has rank at least m− 1.

(38) • (January 10) Let A ∈ Cm×m have eigenvalues λ1, ..., λm and respectively asso-
ciated linearly independent eigenvectors u1, ..., um such that

|λ1| ≥ ... ≥ |λn| > |λn+1| ≥ ... ≥ |λm|

for some n ∈ {1, ...,m − 1}. Suppose that there are linearly independent vectors
s1, ..., sn such that

〈s1, ..., sn〉 ∩ 〈un+1, ..., um〉 = {0}.

Show that As1, ..., Asn are linearly independent and that

〈As1, ..., Asn〉 ∩ 〈un+1, ..., um〉 = {0}.

(39) Suppose that H ∈ Cm×m is in Hessenberg form and that R ∈ Cm×m is upper
triangular. Show that RH and HR are in Hessenberg form.

(40) • (January 15) JPE, Spring 2000, #7.
(41) JPE, Fall 1999, #7.
(42) • (January 17) Describe how to find eigenvectors with the QR algorithm (under

the assumptions of Theorem 1.6.15).
(43) Suppose the Arnoldi algorithm is executed for a given matrix A and vector b until

at some step n one encounters the case that the entry Hn+1,n is equal to zero.
Prove the following statements:
(a) Kn is invariant under A and Kn+j = Kn for every natural number j.
(b) Every eigenvalue of Hn is an eigenvalue of A.
(c) If A is nonsingular, then the solution of Ax = b lies in Kn.

(44) • (January 24) Assume that n ≤ m, that H ∈ Cm×m is Hessenberg and that Hn

is the upper left n× n block of H. Show that

(Hk)1:n,1:(n+1−k) = (Hk
n)1:n,1:(n+1−k)

when 1 ≤ k ≤ n.



40 1. NUMERICAL LINEAR ALGEBRA

(45) Suppose that the columns of Q ∈ Cm×n are orthonormal. Show the truth of
the following statement: If x and y are in im(Q) then (Q∗x, Q∗y) = (x, y) and
‖Q∗x‖ = ‖x‖.

(46) • (January 29) Suppose A ∈ Cm×m is nonsingular. Let b be a nonzero vector in
Cm and let Kj denote the associated Krylov spaces. Suppose that dimKn+1 = n.
Show that ‖rn‖ = min{‖b−Ax‖ : x ∈ Kn} = 0.

1.9. Programming Assignments

(1) (Due: October 18) Let F ′ be the set of IEEE double precision numbers. There is
a smallest integer N in N−F ′. It was computed in Problem 12. Write a program
which reads a value for the integer p, computes the values of 2p +k, and prints the
values of k and 2p + k for k = −10, ..., 10. The program must include the FORMAT
statement and a DO loop. Run the program at least for that value of p where you
expect a problem. Are your expectations right? Explain what happens.

(2) (Due: November 14) Write subroutines for each of the following algorithms: solu-
tion of an upper triangular system by back substitution, Gram-Schmidt orthogo-
nalization, modified Gram-Schmidt orthogonalization, Householder triangulariza-
tion (including the algorithm for the computation of Q∗b), and LU factorization
with partial pivoting. Use these algorithms to compute the solution of Ax = b
where

A =


1 2 3
4 5 6
7 8 7
4 2 3
4 2 2

 and


−3
−3
1
0
2

 .

Write the programs for single precision arithmetic. Check that (1, 1,−2) is the
true solution and compute the relative errors in each case.

(3) (Due February 7) Write a program which computes the eigenvalues of a matrix (of
size up to 10× 10) by transforming it first to Hessenberg form and applying then
the QR algorithm. Apply your program to the matrix

A =


190 356 522 92 150
−92 −172 −248 −40 −64
−11 −22 −29 −6 −11
−32 −64 −96 −8 −32
51 102 133 6 35

 .



Index

adjoint, 1

algorithm, 7

backward stable, 8

stable, 8

Arnoldi eigenvalue estimates, 34

Bessel’s inequality, 2

bias, 7

bit, 7

Cholesky factorization, 21

condition number

absolute, 11

relative, 11

defective, 24

defective eigenvalue, 24

diagonal, 1

diagonalizable, 24

exponent, 6

flop, 6

Fourier coefficients, 2

Golub-Kahan bidiagonalization, 32

hermitian, 2

hermitian conjugate, 1

Hessenberg form, 30

idempotent, 13

invariant, 30

Jordan blocks, 23

Krylov sequence, 33

Krylov subspaces, 33

least squares data fitting, 23

left eigenvector, 26

lemniscate, 35

LU factorization, 18

mantissa, 6

normal, 2

numerical range, 25

pivot, 19

pivoting

partial, 19
positive definite, 21

projection, 13
complementary, 13

pseudo-inverse, 11

QR algorithm, 29
QR factorization, 14

full, 14
reduced, 14

Rayleigh quotient, 25
Rayleigh quotient shift, 32
residual, 22

Ritz values, 34

Schur factorization, 24
self-adjoint, 2
singular value decomposition, 4
singular vectors, 4
sparse, 33

spectral radius, 38
symmetric, 2

triangular

lower, 1
upper, 1

41


	Chapter 1. Numerical Linear Algebra
	1.1. Fundamentals
	1.2. Error Analysis
	1.3. QR Factorization
	1.4. LU Factorization
	1.5. Least Squares Problems
	1.6. Eigenvalues
	1.7. Iterative Methods
	1.8. Problems
	1.9. Programming Assignments

	Index

