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2 Wandering Gaps for
Weakly Hyperbolic

Polynomials
Alexander Blokh and Lex Oversteegen

1 Introduction

The topological properties of Julia sets play an important role in the study
of the dynamics of complex polynomials. For example, if the Julia set J
is locally connected, then it can be given a nice combinatorial interpre-
tation via relating points of J and angles at infinity [DH84]. Moreover,
even in the case when J is connected but not locally connected, it often
admits a nice locally connected model — the so-called topological Julia set
with an induced map on it — which is always locally connected, similar to
polynomial locally connected Julia sets, and has the same combinatorial
interpretation as they do (Kiwi [Ki04] proved this for all polynomials with
connected Julia sets but without Cremer or Siegel periodic points). This
connection makes the study of both locally connected polynomial Julia sets
and topological Julia sets important.

A striking result in this direction is the No Wandering Triangle Theorem
due to Thurston [Th]. To state it, let us call a point with infinite forward
orbit wandering. The theorem claims the non-existence of wandering non-
precritical branch points of induced maps on quadratic topological Julia
sets and extends a simple property of continuous maps of finite graphs,
according to which all branch points of graphs are either preperiodic or
precritical (which is quite surprising, since most quadratic topological Ju-
lia sets are complicated topologically and in general have infinitely many
branch points).

The No Wandering Triangle Theorem is a beautiful result by itself. In
addition, it is a central ingredient in the proofs of the main results of [Th]:
namely, a locally connected model Mc of the Mandelbrot set M was sug-
gested. It turns out that all branch points of Mc correspond to topological
Julia sets whose critical points are (pre)periodic, and an important ingre-
dient in proving this is the No Wandering Triangle Theorem. This moti-
vates the study of the dynamics of branch points in topological Julia sets.
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122 2. Wandering Gaps for Weakly Hyperbolic Polynomials

Thurston [Th] already posed the problem of extending the No Wandering
Triangle Theorem to the higher degree case and emphasized its importance.

The aim of this paper is to show that the No Wandering Triangle The-
orem does not extend onto higher degrees. To state our main result, we re-
call that polynomials with the Topological Collet-Eckmann property (TCE-
polynomials) are usually considered as having weak hyperbolicity.

Theorem 1.1. There is an uncountable family {Pα}α∈A of cubic TCE-poly-
nomials Pα such that for every α the Julia set JPα is a dendrite containing
a wandering branch point x of JPα

of order 3, and the maps Pα|JPα
are

pairwise non-conjugate.

Thus, the weak hyperbolicity of cubic polynomials does not prevent
their Julia sets from exhibiting the “pathology” of having wandering branch
points. Theorem 1.1 may be considered as a step towards the completion
of the description of the combinatorial portrait of topological Julia sets.
The main tool we use are laminations, introduced in [Th].

Let us describe how we organize the paper. In Section 2, we introduce
laminations and discuss some known facts about them. In Section 3, we
study (discontinuous) self-mappings of sets A ⊂ S1 and give sufficient
conditions under which such sets can be seen as invariant subsets of the
circle under the map σ3 : S1 → S1. In Section 4, a preliminary version of
the main theorem is proven; in this version, we establish the existence of an
uncountable family of cubic laminations containing a wandering triangle.
The proof was inspired by [BL02] and [OR80]; the result was announced
in [BO04b]. The main idea is as follows: we construct a countable set
A ⊂ S1 and a function g : A → A so that (1) A is the g-orbit of a triple T
such that all g-images of T have disjoint convex hulls in the unit disk, and
(2) the set A can be embedded into S1 by means of a one-to-one and order
preserving function ϕ : A → S1 so that the map induced by g on ϕ(A) is
σ3. Flexibility in our construction allows us to fine tune it in Section 5 to
prove our main theorem (see [BO04b] for a detailed sketch of the proof).

Acknowledgements. The results of this paper were discussed with par-
ticipants of the Lamination Seminar at UAB, whom we thank for their
interest in our work. The first author was partially supported by NSF
grant DMS-0456748; the second author was partially supported by NSF
grant DMS-0405774.

2 Laminations

As explained above, we use laminations for our construction. In this sec-
tion, we give an overview of related results on laminations and describe
properties of wandering gaps.
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2.2 Laminations 123

Laminations were introduced by Thurston [Th] as a tool for studying
both individual complex polynomials and the space of all of them, especially
in the degree 2 case. The former is achieved as follows. Let P : C∗ → C∗
be a degree d polynomial with a connected Julia set JP acting on the
complex sphere C∗. Denote by KP the corresponding filled-in Julia set.
Let θ = zd : D → D (D ⊂ C is the open unit disk). There exists a
conformal isomorphism Ψ : D→ C∗ \KP such that Ψ ◦ θ = P ◦Ψ [DH84].
If JP is locally connected, then Ψ extends to a continuous function Ψ : D→
C∗ \KP , and Ψ◦ θ = P ◦Ψ. Let S1 = ∂D, σd = θ|S1 , and ψ = Ψ|S1 . Define
an equivalence relation ∼P on S1 by x ∼P y if and only if ψ(x) = ψ(y).
The equivalence ∼P is called the (d-invariant) lamination (generated by
P ). The quotient space S1/ ∼P = J∼P

is homeomorphic to JP , and the
map f∼P

: J∼P
→ J∼P

induced by σd is topologically conjugate to P .
Kiwi [Ki04] extended this construction to all polynomials P with con-

nected Julia sets and no irrational neutral cycles. For such polynomials,
he obtained a d-invariant lamination ∼P on S1. Then J∼P

= S1/ ∼P is
a locally connected continuum and the induced map f∼P

: J∼P
→ J∼P

is semi-conjugate to P |JP
under a monotone map m : JP → J∼P

(by
monotone we mean a map whose point preimages are connected). The
lamination ∼P generated by P provides a combinatorial description of the
dynamics of P |JP

.
One can introduce laminations abstractly as equivalence relations on

S1 having certain properties similar to those of laminations generated by
polynomials as above (we give detailed definitions below); in the case of
such an abstract lamination ∼, we call S1/ ∼= J∼ a topological Julia set
and denote the map induced by σd on J∼ by f∼. By the positive direction
on S1, we mean the counterclockwise direction and by the arc (p, q) ⊂ S1

we mean the positively oriented arc from p to q. Consider an equivalence
relation ∼ on the unit circle S1 such that:
(E1) ∼ is closed : the graph of ∼ is a closed set in S1 × S1,
(E2) ∼ defines a lamination, i.e., it is unlinked : if g1 and g2 are distinct
equivalence classes, then the convex hulls of these equivalence classes in the
unit disk D are disjoint,
(E3) each equivalence class of ∼ is totally disconnected.

We always assume that ∼ has a class of at least two points. Equivalence
classes of ∼ are called (∼-)classes. A class consisting of two points is called
a leaf ; a class consisting of at least three points is called a gap (this is more
restrictive than Thurston’s definition in [Th]). Fix an integer d > 1. The
equivalence relation ∼ is called (d-)invariant if:
(D1) ∼ is forward invariant : for a class g, the set σd(g) is a class too,
(D2) ∼ is backward invariant : for a class g, its preimage σ−1

d (g) = {x ∈
S1 : σd(x) ∈ g} is a union of classes,
(D3) for any gap g, the map σd|g : g → σd(g) is a covering map with
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124 2. Wandering Gaps for Weakly Hyperbolic Polynomials

positive orientation, i.e., for every connected component (s, t) of S1 \g, the
arc (σd(s), σd(t)) is a connected component of S1 \ σd(g).

Call a class g critical if σd|g : g → σ(g) is not one-to-one and precritical
if σj

d(g) is critical for some j ≥ 0. Call g preperiodic if σi
d(g) = σj

d(g)
for some 0 ≤ i < j. A gap g is wandering if g is neither preperiodic nor
precritical. Let p : S1 → J∼ = S1/ ∼ be the standard projection of S1

onto its quotient space J∼, and let f∼ : J∼ → J∼ be the map induced by
σd.

Let us describe some properties of wandering gaps. J. Kiwi [Ki02]
extended Thurston’s theorem by showing that a wandering gap in a d-
invariant lamination is at most a d-gon. In [Le98], G. Levin showed that
laminations with one critical class have no wandering gaps. Let k∼ be the
maximal number of critical ∼-classes g with pairwise disjoint infinite σd-
orbits and |σd(g)| = 1. In [BL02], Theorem B, it was shown that if ∼ is a
d-invariant lamination and Γ is a non-empty collection of wandering dj-gons
(j = 1, 2, . . . ) with distinct grand orbits, then

∑
j(dj−2) ≤ k∼−1 ≤ d−2.

Call laminations with wandering k-gons WT-laminations. The above
and results of [BL02, Bl05, Ch07] show that cubic WT-laminations must
satisfy a few necessary conditions. First, by [BL02], Theorem B, if ∼ is
a cubic WT-lamination, then k∼ = 2. The two critical classes of ∼ are
leaves, and J∼ is a dendrite, i.e., a locally connected continuum without
subsets homeomorphic to the circle. The two critical leaves in ∼ correspond
to two critical points in J∼; by [Bl05] (see also [Ch07] for laminations of
any degree), these critical points must be recurrent with the same limit set
under the induced map f∼.

3 Circular Maps Which Are σ-Extendable

In this section, we introduce the notion of a topologically exact dynamical
system f : A → A,A ⊂ S1 of degree n. A dynamical system that can be
embedded into σn : S1 → S1 is said to be σ-extendable (of degree n). We
show that a topologically exact countable dynamical system of degree 3
without fixed points is σ-extendable of degree 3.

A subset of S1 is said to be a circular set. An ordered circular triple
{x, y, z} is positive if y ∈ (x, z). Given X ⊂ S1, a function f : X →
S1 is order preserving if for any positive triple {x, y, z} ⊂ X the triple
{f(x), f(y), f(z)} is positive too. Given sets A,B ⊂ S1, a (possibly dis-
continuous) function f : A → B is of degree d if d is the minimal number
for which there exists a partition x0 < x1 < · · · < xd = x0 of S1 such that
for each i, f |[xi,xi+1)∩A is order preserving. If A is finite, one can extend
f to a map on S1 that maps each arc complementary to A forward as an
increasing map and is one-to-one inside the arc — the degree of the exten-
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2.3 Circular Maps Which Are σ-Extendable 125

sion is equal to that of f . Thus, if A is finite, then d < ∞, but d may be
finite even if A is infinite. If d < ∞, we denote it by deg(f).

If A = B and deg(f) < ∞, we call f a circular map. An order preserving
bijection h : X → Y (with X,Y ⊂ S1) is called an isomorphism. Two
circular maps f : A → A and g : A′ → A′ are conjugate if they are conjugate
in the set-theoretic sense by an isomorphism h : A → A′. The degree of
a circular map is invariant under conjugacy. A circular map f : A → A
is σ-extendable if for some σdeg(f)-invariant set A′ ⊂ S1, the map f |A is
conjugate to the function σdeg(f)|A′ : A′ → A′. We prove that a version
of topological exactness (i.e., the property that all arcs eventually expand
and “cover” the entire circle) implies that a circular map is σ-extendable.

We need a few other definitions. An arc in a circular set X (or X-arc)
is the intersection of an arc in S1 and X. Every arc I in X (or in S1) has
the positive order <I determined by the positive orientation on S1 (if it is
clear from the context what I is, we omit the subscript I). Given sets A
and B contained in an arc J ⊂ S1, we write A < B if a < b for each a ∈ A
and each b ∈ B. Arcs in the circle may be open, closed, or include only one
of the two endpoints and will be denoted (a, b), [a, b], etc. Corresponding
arcs in a circular set X will be denoted by (a, b)X , [a, b]X etc. If X, Y ⊂ S1

are two disjoint closed arcs, then by (X,Y ) we mean the open arc enclosed
between X and Y so that the movement from X to Y within this arc is in
the positive direction. We always assume that a circular set A contains at
least two points.

Definition 3.1. Let f : A → A be a circular map. Then f is said to be
topologically exact if for each x 6= y in A there exists an n ≥ 1 such that
either fn(x) = fn(y) or f([fn(x), fn(y)]A) 6⊂ [fn+1(x), fn+1(y)]A.

A circular map f : A → A may not admit a continuous extension over
A. However we define a class of set-valued functions which help in dealing
with f anyway. Namely, a set-valued function F : S1 → S1 is called an
arc-valued map if for each x ∈ S1, F (x) = [ax, bx] (with ax ≤ bx ∈ S1 in the
positive order) and for each sequence zi → z in S1, lim sup F (zi) ⊂ F (z);
clearly, this is equivalent to the fact that the graph of F is closed as a
subset of the 2-torus T2 = S1 × S1.

Definition 3.2. We say that an arc-valued map F : S1 → S1 is locally
increasing if for any z ∈ S1 there exists an arc I = [xz, yz], xz <I z <I yz

with (1) F (xz) ∩ F (yz) = ∅, and (2) for each u <I w ∈ (xz, yz), the arcs
F (u), F (w) are contained in the open arc (F (xz), F (yz)) and F (u) < F (w).
The degree of a locally increasing arc-valued map F , denoted by deg(F ),
is the number of components of F−1(z) (by F−1(z) we mean the set of all
y ∈ S1 such that z ∈ F (y)). It is easy to see (by choosing a finite cover of
S1 by intervals (xz, yz)) that deg(F ) is well-defined and finite.
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126 2. Wandering Gaps for Weakly Hyperbolic Polynomials

Let F be a locally increasing arc-valued map and f : A → A, A ⊂ S1, be
a circular map; we say that F is an arc-valued extension of f if f(a) ∈ F (a)
for each a ∈ A. Now we prove the main result of this subsection; the
statement is far from the most general one, but sufficient for our purpose.

Theorem 3.3. Suppose that f : A → A is a topologically exact circular map
of degree 3 such that A is countable and does not contain a fixed point. Then
f is σ-extendable.

Proof: We may assume that points of A are isolated (otherwise, replace
each point of A with a small enough interval and put the point of A in the
middle of it) and, hence, that points of A \ A do not belong to A. Define
an arc-valued extension F of f as follows. First, for each z ∈ A define

L(z) =





f(z), if z ∈ A

lim f(ai), if there exists ai ∈ A such that ai ↗ z

lim f(bi), for a sequence bi ∈ A such that bi ↘ z, otherwise.

The map L(z) is well-defined, and it is easy to see that L(z) maps A
into A and that L(z) is still of degree 3. Given a map g : S1 → S1 defined
at points a, b, let the linear extension of g on (a, b) be the map that maps
the interval (a, b) linearly onto the interval (g(a), g(b)). Extend L(z) on
each component of S1 \ A linearly. For each point x ∈ S1, define F (x) to
be the interval [limt↗x L(t), limt↘x L(t)]. Then F is a locally increasing
arc-valued map with f(z) ∈ F (z) for each z ∈ A and deg(f) = deg(F ) = 3.
Note that for each a ∈ A, F (a) = {f(a)}, and the set of points with
non-degenerate image is countable.

Let p : R → S1 = R/Z be a standard projection of the real line onto
the circle. We may assume that F (0) is a point. Choose a lifting G of
F such that G(0) is a point between 0 and 1. Then the graph of G|[0,1]

stretches from the point (0, G(0)) to (1, G(1)) and G(1) = G(0)+3. Hence
the graph of G|[0,1] intersects the graph of y = x + 1, and we can change
the projection p so that 0 ∈ G(0). Then 0 /∈ A′ (A′ is the lifting of A)
because otherwise a = p(0) would be a fixed point in A.

Since the graph of G intersects each horizontal line at exactly one point,
there are two points 0 < b′ < c′ < 1 with 1 ∈ G(b′), 2 ∈ G(c′). Let
b = p(b′) ∈ A, c = p(c′) ∈ A. Note that b′, c′ /∈ A′, since otherwise b ∈ A
or c ∈ A and so a ∈ A, a contradiction. Hence a ∈ F (a) ∩ F (b) ∩ F (c).
Consider the arcs [a, b] = I0, [b, c] = I1 and [c, a] = I2 and associate to
every point x ∈ A its itinerary itin(x) in the sense of this partition. In
fact, to each point x ∈ A we may associate a well-defined itinerary, since
then F k(x), k ≥ 0, is a point, and F k(x) 6= a, b, c, k ≥ 0, because f |A has
no fixed points.
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2.4 Cubic Laminations with Wandering Triangles 127

Let us show that any two points of A have distinct itineraries. Define
pullbacks of the arcs I0, I1, I2 by taking preimages of points a, b, c inside
I0, I1, and I2 appropriately and considering arcs between these preimages.
This can be done arbitrarily many times, and hence every point x ∈ A
belongs to the intersection I(itin(x)) of the appropriate pullbacks of I0, I1,
and I2. If points x, y ∈ A had the same itinerary r̄, then they would
both belong to the same interval I(r̄). Let J be the arc between x and
y contained in I(r̄). Then (1) J and all its F -images have well-defined
endpoints (i.e., the endpoints of every F -image of J are such that their F -
images are points, not intervals), and (2) every F -image of J is contained
in I0, or I1, or I2. This contradicts the topological exactness of f |A and
shows that itin(x) 6= itin(y). Hence no point z ∈ A can have itinerary
itin(z) = (iii . . . ) for some i = 0, 1, 2 (otherwise, z and f(z) 6= z would
have the same itinerary).

The same construction applies to σ3. Set K0 = [0, 1/3],K1 = [1/3, 2/3],
and K2 = [2/3, 1] (here 0 and 1 are identified and the full angle is assumed
to be 1) and use the notation K(r̄) for the point x with σ3-itinerary r̄.
Given x ∈ A, define h(x) as K(itin(x)). Then h is a one-to-one map from
A onto a σ-invariant set B ⊂ S1. Since on each finite step the circular order
among the F -pullbacks of I0, I1, and I2 is the same as the circular order
among the σ-pullbacks of K0,K1, and K2, the map h is an isomorphism
between the circular sets A and B, and hence h conjugates f |A and σ|B .¤

4 Cubic Laminations with Wandering Triangles

In this section, we prove a preliminary version of Theorem 1.1. Set σ3 = σ.
The circle S1 is identified with the quotient space R/Z; points of S1 are
denoted by real numbers x ∈ [0, 1). Let B = {0 < c′ < s0 < u0 < 1

2 < d′ <
v0 < t0 < 1} with v0 − u0 = 1/3 and t0 − s0 = 2/3, c̄0 be the chord with
endpoints u0, v0, and d̄0 be the chord with endpoints s0, t0. The intuition
here is that the chords c̄0 and d̄0 will correspond to the critical points.
Define the function g first on the endpoints of c̄0, d̄0 as g(u0) = g(v0) = c′,
g(s0) = g(t0) = d′. Thus the points c′ and d′ will correspond to critical
values. Also, set g(0) = 0, g( 1

2 ) = 1
2 .

Our approach is explained in Section 1 and is based upon results of
Section 3. The idea of the construction is as follows. First, we choose the
location of the first seven triples T1, . . . , T7 on the circle. Naturally, we
make the choice so that the corresponding triangles are pairwise disjoint.
We also define the map g on these triples so that g(T1) = T2, . . . , g(T6) =
T7. According to our approach, we should only be interested in the relative
location of the triples and the chords c̄0, d̄0. We then add more triples
and define the map g on them in a step-by-step fashion. In so doing, we
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128 2. Wandering Gaps for Weakly Hyperbolic Polynomials

postulate from the very beginning of the construction that g restricted on
each of the arcs complementary to B is monotonically increasing in the
sense of the positive order on the circle; e.g., consider the arc [0, s0] in
Figure 1. Then g restricted onto the set “under construction” should be
monotonically increasing in the sense of the positive order on [0, s0] and
[0, d′] (recall that g is already defined at 0 and s0).

In some cases, the above assumptions force the location of images of
certain points, and hence the location of the “next” triples. Indeed, suppose
that T1 = {x1, y1, z1} is a triple such that t0 < z1 < 0 < x1 < y1 < s0 and
that g(T1) = T2 is already defined and is such that u0 < g(x1) = x2 < 1

2 <
g(y1) = y2 < d′ < g(z1) = z2 < v0 (see Figure 1). Suppose that there is
also a triple T7 = {x7, y7, z7} such that t0 < z7 < z1 and y1 < x7 < y7 < s0

(again, see Figure 1). Then it follows from the monotonicity of g on the
arcs complementary to B that g(T7) = T8 must be located so that y2 <
g(x7) = x8 < g(y7) = y8 < d′ < g(z7) = z8 < z2.

This example shows that in the process of constructing the g-orbit of a
triple some steps (in fact a lot of them) are forced and the relative location
of the next triple is well-defined. However it also shows the notational chal-
lenge which one faces in trying to describe the location of all of the triples
on the circle. Below, we develop a specific “language” for the purpose of
such a description.

First, we extend our definition of the function g onto a countable subset
of the circle, which we construct. To do so, let u−k be the point such that
u−k ∈ (u0, v0), σ(u−k) ∈ (u0, v0), . . . , σk(u−k) = u0 and set g(u−k) =
σ(u−k). Similarly, we define points v−k, s−k, t−k and the map g on them.
Then lim u−n = 1

2 and σ(u−i) = u−i+1; analogous facts hold for v−n, s−n,
and t−n. All these points together with the set B form the set B′. This
is obvious if (a, b) ⊃ [s0, u0], or (a, b) ⊃ [u0, v0], or (a, b) ⊃ [v0, t0], or
(a, b) ⊃ [t0, s0].

The chord connecting u−k, v−k is denoted by c̄−k, and the chord con-
necting s−k, t−k is denoted by d̄−k. These chords will correspond to the
appropriate preimages of critical points. Also, let d′ ∈ (v−1, t−1). This
gives a function g : B′ \ {c′, d′} → B′. It acts on this set just like σ, map-
ping chords to the right except that at the endpoints of c̄0 and d̄0 the map
g differs from σ. This, together with the above postulated properties of g,
introduces certain restrictions on the behavior of the triple whose orbit we
want to construct.

Below, we define a triple T1 = {x1,y1, z1} and the set X1 = B′∪T1. At
each step a new triple Tn = {xn,yn, zn} is added and the set Xn = Xn−1∪
{xn,yn, zn} is defined. In describing the next step of the construction,
denote only new points by boldface letters, while using standard font for the
already defined points. This explains the following notation: the function
g on points xn−1, yn−1, zn−1 is defined as g(xn−1) = xn, g(yn−1) = yn,
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2.4 Cubic Laminations with Wandering Triangles 129

g(zn−1) = zn. Below, a “triple” means one of the sets Ti, and a “triangle”
means the convex hull of a triple. By “the triangle (of the triple) Ti”
we mean “the convex hull of the triple Ti”. Define A as

⋃
i Ti and A′ as

A ∪B′ \ {c′, d′}.
In making the next step of our construction, we need to describe the

location of the new triple Ti. We do this by describing the location of its
points relative to the points of Xi−1 (essentially, Xi−1 is the set which has
been constructed so far). The location of the ith triple Ti is determined
by points p, q, r ∈ Xi−1 with p < xi < q < yi < r < zi and [(p,xi) ∪
(q,yi) ∪ (r, zi)] ∩Xi−1 = ∅; then we write Ti = T (p,xi, q,yi, r, zi). If 2 or
3 points of a triple lie between two adjacent points of Xi−1, we need fewer
than 6 points to denote Ti – e.g., T (p,xi,yi, q, zi)(p, q ∈ Xi−1) means that
p < xi < yi < q < zi, and [(p,yi) ∪ (q, zi)] ∩Xi−1 = ∅. The function g is
constructed step by step to satisfy Rule A below.

Rule A. All triples Ti are pairwise unlinked and disjoint from the set B′.
The map g is order preserving on [s0, u0]A′ , [u0, v0)A′ , [v0, t0]A′ , [t0, s0)A′

(which implies that the degree of g|A′ is 3).

Now we introduce locations of the initial triples:
T1 = T (0,x1, c

′,y1, t0, z1), T2 = T (s−1,x2, v−1,y2, d
′, z2),

T3 = T (s0,x3, v0,y3, z3), T4 = T (x1,x4, c
′,y4, z4),

T5 = T (u−1,x5,y5, t−2, z5), T6 = T (u0,x6,y6, t−1, z6),
T7 = T (y1,x7,y7, t0, z7).

Rule A forces the location of some triples. For two disjoint chords p̄, q̄,
denote by S(p̄, q̄) the strip enclosed by p̄, q̄ and arcs of the circle. Then the
boundary A′-arcs of the strip S(d̄−1, c̄0) must map one-to-one into the arcs
(t0, c′)A′ and (c′, s0)A′ . Also, the boundary A′-arcs of the strip S(c̄−i, d̄−i)
map into the boundary arcs of the strip S(c̄−i+1, d̄−i+1) one-to-one, and
the boundary A′-arcs of the strip S(d̄−i−1, c̄−i) map into the boundary arcs
of the strip S(d̄−i, c̄−i+1) one-to-one. Observe that T2 ⊂ S(c̄−1, d̄−1), and
so by Rule A, T3 ⊂ S(c̄0, d̄0) (the point x3 must belong to (s0, u0), whereas
the points y3, z3 must belong to (v0, t0)). The segment of triples T1, . . . , T7

is the basis of induction (see Figure 1).
Clearly, T7 separates the chord d̄0 from T1. Our rules then force the

location of forthcoming triples T8, T9, . . . with respect to X7, X8, . . . for
some time. More precisely, T8 = T (y2,x8,y8, d

′, z8), T9 = T (y3,x9,y9, z9),
and T10 = T (y4,x10,y10, z10). The first time the location of a triple with
respect to the previously constructed triples and points of B′\{c′, d′} is not
forced is when T10 is mapped onto T11. At this moment, Rule A guarantees
that T11 is located in the arc (y5, z5), but otherwise the location of T11 is
not forced. In particular, the location of the triangle T11 with respect to 1

2
is not forced. The freedom of choice of the location of T11 at this moment,
and the similar variety of options available later on at similar moments, is



i

i

i

i

i

i

i

i

130 2. Wandering Gaps for Weakly Hyperbolic Polynomials

u s

c

d

1/2

v
t

.
d'

. c'

.

s
-1

t

u
-1

v
-1

-1

0
0

0
0

0

0d
-1

c

.
0

-1
_

_

_

_

3

4

5

6
7

2
1

s 
-2

t
-2

x
1

y
1

z
1

x

y

z
2

2

2

x

y z
3 3

3

x
4

y
4

z
4

x
5

y
5

z
5

x

y
6

6

z
6

z

x

y
7

7

7

d
_

-2

Figure 1. The first seven triangles

the reason why the construction yields not just one, but uncountably many
types of behavior of a wandering triangle.

Next, we introduce another general rule which will be enforced through-
out the construction and will help us determine the location of the triples.

Rule B. Points of any triple Ti are ordered in the arc (0, 0) as follows:
xi < yi < zi. All triangles are disjoint from the chords c̄0, d̄0.

Since Rule B deals with the order of points on the arc (0, 0), it estab-
lishes more than the mere fact that the cyclic order among points xi,yi, zi

is kept. Denote by UP the upper semicircle (0, 1
2 ) and by LO the lower

semicircle ( 1
2 , 0). By Rule B, there are three types of triples:

1. up triples, or triples of 4-type: triples with xi ∈ UP,yi < zi ∈ LO,
denoted by 4(·) (the standard notation is T with a subscript),

2. down triples, or triples of5-type: triples with xi < yi ∈ UP, zi ∈ LO,
denoted by 5(·),

3. horizontal triples, or triples of C-type: triples with xi < yi < zi

contained entirely either in UP or in LO, denoted by C(·).
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Up triples and down triples are called vertical triples. Convex hulls of
up, down, vertical, and horizontal triples are said to be up, down, ver-
tical, and horizontal triangles. Chords with endpoints in UP and LO
are vertical (e.g., c̄0 and d̄0 are vertical); otherwise, they are horizontal
(all sides of a horizontal triangle are horizontal). Let us discuss prop-
erties of vertical triples. A proper arc is an arc that contains none of
the points 0, 1

2 , s0, t0, u0, v0. Given a triple Ti = {xi, yi, zi}, call the arcs
(xi, yi), (yi, zi), and (zi, xi) xy-arc, yz-arc, and zx-arc; all such arcs are
said to be generated by the corresponding triples (or simply arcs of that
triple). An up triple generates only one proper arc contained in LO, and a
down triple generates only one proper arc contained in UP . Also, if verti-
cal triples T ′, T ′′ are unlinked, then none of them contains the other in its
proper arc (this is not true for horizontal triples).

In our construction, there will be crucial moments at which the rules
leave open the choice for the location of a new triple Tn+1 with respect to
Xn; the dynamics of a triangle at a crucial moment is called a crucial event.
Crucial events are of 4 types: an h5-event (the next closest approach of
the triple to 1

2 while the triple is of 5-type), a d-event (the next closest
approach to the entire chord d̄0 from the right), an h4-event (the next
closest approach to 1

2 while the triple is of 4-type), and a c-event (the next
closest approach to the c̄0-chord from the right). The crucial moments of
these types are denoted h5(i), d(i), h4(i), and c(i); the number i indicates
that the crucial event takes place at the corresponding crucial moment
during the ith inductive step of the construction. We are now ready to
state Rule C.

Rule C. Vertical triples have the following properties:

1. up triples can only be contained in the strips S(c̄0, d̄0), S(c̄−1, d̄−1),
. . . , S(c̄−i, d̄−i), . . . .

2. down triples can only be located to the right of the chord d̄0 as well
as in the strips S(d̄−1, c̄0), S(d̄−2, c̄−1), . . . , S(d̄−i−1, c̄−i), . . . .

The rules allow us to explain how we choose the location of a triple;
giving the order of the points without mentioning the rules would signif-
icantly lengthen the verification. Crucial moments always happen in the
order d(i) < h4(i) < c(i) < h5(i) < d(i + 1) < . . . . A triple Tk is minimal
if it contains no triples Ti, i < k, in its proper arcs.

Let us pass on to the induction. It depends on a sequence of natu-
ral numbers n1 < m1 < n2 < m2 < . . . (each pair of numbers ni, mi

corresponds to the ith step of induction) which can be chosen arbitrarily.
The above defined collection of triples Ti, i = 1, . . . , 7, with the choice of
crucial moments d(0) = 1, h4(0) = 2, c(0) = 3, h5(0) = 5, and d(1) = 7
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serves as the basis of induction. The inductive assumptions are of a dy-
namical nature and deal with the locations of triples on the circle. They
are listed below as properties (a) through (h), where we describe the ith
segment of the triples in the set A from the moment d(i) through the mo-
ment d(i+1)−1. It is easy to see that the basis of induction has properties
(a)–(h). Now we can make our main claim concerning the construction.

Main Claim. Suppose that T1, . . . , T7 are the above given triples and d(0) =
1, h4(0) = 2, c(0) = 3, h5(0) = 5, d(1) = 7 are the above given crucial
moments. Suppose also that an arbitrary sequence of positive integers n1 <
m1 < n2 < m2 < . . . is given. Then these finite sequences of triples and
crucial moments can be extended to infinity so that the infinite sequences
of triples {Ti}, i = 1, 2, . . . and crucial moments d(i) < h4(i) < c(i) <
h5(i) < d(i + 1) < . . . satisfy the conditions listed below in (a) - (h).

Inductive Assumptions for Step i.
(a) The i-th segment begins at the crucial moment d(i), when the triple
Td(i) is a down triple closest from the right to the chord d̄0:

Td(i) = 5(yd(i−1),xd(i),yd(i), t0, zd(i)).

(b) Between the moments d(i) + 1 and h4(i)− 1, all triples are horizontal
and minimal. Their location is determined by our rules and existing triples.
(c) At the crucial moment h4(i), the triple Th4(i) is an up triple closest to
1
2 and contained in the strip S(c̄−ni , d̄−ni):

Th4(i) = 4(s−ni ,xh4(i), v−ni ,yh4(i), zh4(i)).

(d) We set c(i) = h4(i) + ni. (1)
For each 1 ≤ j ≤ ni − 1, we have

Th4(i)+j = 4(s−ni+j ,xh4(i)+j , v−ni+j ,yh4(i)+j , zh4(i)+j)

if the triple Th4(i)+j is the first triple entering the strip S(c̄−ni+j , d̄−ni+j).
If this triple enters a strip of type S(c̄−r, d̄−r) already containing other
triples, then we place it so that it becomes an up triple closest to c̄−r.
(e) At the crucial moment c(i), the triple Tc(i) is an up triple closest from
the right to the chord c̄0:

Tc(i) = 4(xc(i−1),xc(i), v0,yc(i), zc(i)).

(f) Between the moments c(i) + 1 and h5(i)− 1, all triples are horizontal
and minimal. Their location is determined by our rules and existing triples.
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(g) At the crucial moment h5(i), the triple Th5(i) is a down triple closest
to 1

2 and contained in the strip S(d̄−mi , c̄−mi+1):

Th5(i) = 5(u−mi+1,xh5(i),yh5(i), t−mi
, zh5(i)).

(h) We set d(i + 1) = h5(i) + mi. (2)

For each 1 ≤ j ≤ mi − 1, we have

Th5(i)+j = 5(u−mi+j+1,xh5(i)+j ,yh5(i)+j , t−mi+j , zh5(i)+j)

if the triple Th5(i)+j is the first triple entering the strip S(d̄−mi+j , c̄−mi+j+1).
If this triple enters a strip of type S(d̄−r, c̄−r+1) already containing other
triples, then we place it so that it becomes a down triple closest to d̄−r.

The properties (a)–(h) are exhibited at the basic step from d(0) to d(1).
The inductive step can be made to satisfy the same properties. This can
be easily verified, so except for part (a) of the inductive step, we leave the
verification to the reader.

The Inductive Step.
(a) The (i + 1)st segment begins at the crucial moment d(i + 1) when the
triple Td(i+1) is a down triple closest from the right to the chord d̄0:

Td(i+1) = 5(yd(i),xd(i+1),yd(i+1), t0, zd(i+1)).

It is easy to verify that this choice of Td(i+1) satisfies our rules. Indeed,
by the inductive assumption (h), the triple Th5(i)+mi−1 = Td(i+1)−1 pre-
cedes Td(i+1) and is a down triple located between d̄−1 and a down triple
Td(i)−1. Hence placing its image as described above, we satisfy all of our
rules. Thus, Td(i+1) lies between Td(i) and d̄0. The rules and inductive
assumptions determine the next few locations of the triple. We call Td(i)

the forcing triple and Td(i+1) the current triple (this terminology applies
to their images too).

(b) By our rules, on the next step the current triple Td(i+1)+1 is contained
in the arc (yd(i)+1, zd(i)+1), and for some time the triples Td(i+1)+j are
contained inside yz-arcs of the images of the forcing triple. The contain-
ment holds at least until, at the crucial moment h4(i), the crucial event
of h4-type takes place for the forcing triple. However since the yz-arc of
the forcing triple is then not exposed to 1

2 , we see that, for a while yet,
the current triple stays inside the yz-arcs of the forcing triple and remains
minimal. In fact, it remains minimal until, at the crucial moment h5(i),
the ith crucial event of type h5 takes place for the forcing triple. Then the
location of the current triple with respect to B′ and existing triples is not
fully determined because the yz-arc of the forcing triple is “exposed” to 1

2
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for the first time. Choose this to be the crucial moment h4(i + 1) for our
current triple. Then

h4(i + 1) = d(i + 1) + h5(i)− d(i). (3)

(c) We explained in (a) that the choice which we make there can be made
to comply with our rules. Similarly, one can easily check that the choice
which we make below, in (c), can also be made to comply with our rules.

At the crucial moment h4(i + 1), the triple Th4(i+1) is an up triple
closest to 1

2 and contained in the strip S(c̄−ni+1 , d̄−ni+1):

Th4(i+1) = 4(s−ni+1 ,xh4(i+1), v−ni+1 ,yh4(i+1), zh4(i+1)).

(d) We set c(i + 1) = h4(i + 1) + ni+1 (see (1)). Between the crucial
moments h4(i + 1) and c(i + 1), the locations of the triples are almost
completely determined by the rules. For each 1 ≤ j ≤ ni+1 − 1, we have

Th4(i+1)+j = 4(s−ni+1+j ,xh4(i+1)+j , v−ni+1+j ,yh4(i+1)+j , zh4(i+1)+j)

if the triple Th4(i+1)+j is the first triple entering the corresponding strip.
If this triple enters a strip of type S(c̄−r, d̄−r) already containing other
triples, then we locate it to be an up triple closest to c̄−r.

(e) At the crucial moment c(i + 1), the triple Tc(i+1) is an up triple closest
from the right to the chord c̄0:

Tc(i+1) = 4(xc(i),xc(i+1), v0,yc(i+1), zc(i+1)).

Then Tc(i+1) lies between Tc(i) and c̄0. The rules and inductive assumptions
determine the next few locations of the triple. We call Tc(i) the forcing
triple and Tc(i+1) the current triple (this applies to their images too).

(f) By our rules, on the next step the current triple Tc(i+1)+1 is contained
in the arc (xc(i)+1, yc(i)+1), and for some time the triples Tc(i+1)+j are
contained inside the xy-arcs of the images of the forcing triple. The con-
tainment holds at least until, at the crucial moment h5(i), the crucial event
of h5-type takes place for the forcing triple. However since the xy-arc of
the forcing triple is then not exposed to 1

2 , we see that yet for a while the
current triple stays inside the the xy-arcs of the forcing triple and remains
minimal. In fact, it remains minimal until, at the crucial moment h4(i),
the ith crucial event of type h4 takes place for the forcing triple. Then the
location of the current triple with respect to B′ and existing triples is not
fully determined because the xy-arc of the forcing triple is “exposed” to 1

2
for the first time. Choose this to be the crucial moment h5(i + 1) for our
current triple. Then

h5(i + 1) = c(i + 1) + h4(i + 1)− c(i). (4)
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(g) At the crucial moment h5(i + 1), the triple Th5(i+1) is a down triple
closest to 1

2 and contained in the strip S(d̄−mi+1 , c̄−mi+1+1):

Th5(i+1) = 5(u−mi+1+1,xh5(i+1),yh5(i+1), t−mi+1 , zh5(i+1)).

(h) We set d(i + 2) = h5(i + 1) + mi+1 (see (2)). Between the crucial
moments h5(i + 1) and d(i + 2), the locations of the triples are almost
completely determined by the rules. For each 1 ≤ j ≤ mi+1 − 1, we have

Th5(i+1)+j = 5(u−mi+1+j+1,xh5(i+1)+j ,yh5(i+1)+j , t−mi+1+j , zh5(i+1)+j)

if the triple Th5(i+1)+j is the first triple entering the corresponding strip.
If this triple enters a strip of type S(d̄−r, c̄−r+1) already containing other
triples, then we locate it to be a down triple closest to d̄−r.

This concludes the induction. It is easy to check that the time between
two consecutive crucial events grows to infinity. Let us check whether
these examples generate an uncountable family of cubic WT-laminations
with pairwise non-conjugate induced maps.

Lemma 4.1. The function g|A is σ-extendable of degree 3 (here A =
⋃∞

i=1 Ti).

Proof: It is easy to see that the degree of g is 3. By Theorem 3.3, we need to
check that for a 6= b ∈ A there exists an n ≥ 0 such that g([gn(a), gn(b)]A) 6⊂
[gn+1(a), gn+1(b)]. This is obvious if (a, b) ⊃ [s0, u0], or (a, b) ⊃ [u0, v0], or
(a, b) ⊃ [v0, t0], or (a, b) ⊃ [t0, s0]. Suppose first that a and b are in the
same triangle Ti. If a = xi, b = yi, and the next crucial moment of c-type
is c(j), then the arc (f c(j)−i(xi), f c(j)−i(yi)) contains (u0, v0) as desired.
If a = yi, b = zi, and the next crucial moment of d-type is d(l), then the
arc (gd(l)−i(yi), gd(l)−i(zi)) contains (u0, v0) as desired. Now, let a = zi

and b = xi. Then it is enough to choose Tj , j ≥ i, located to the left of
d̄0 and observe that then [zj , xj ] ⊃ [t0, s0]. Now assume that a ∈ Tp and
b ∈ Tq with p < q. Since q − p is finite and mi → ∞, we may assume
that there exist k and i with h5(i) ≤ p + k < q + k < d(i + 1) and both
Tp+k and Tq+k are down triples located in the arc (u0, v0). Then the set
[s0, u0] ∪ [v0, t0] separates the points gd(i+1)−q(b) and gd(i+1)−q(a) in S1,
and the result follows. ¤

By Lemma 4.1, from now on we assume that T1, T2, . . . is the σ-orbit of
a triple T1 with the order among points of A =

⋃∞
i=1 Ti, exactly as before.

Lemma 4.2. Let ŝ0 = limi→∞ yd(i), t̂0 = limi→∞ zd(i), û0 = limi→∞ xc(i),
and t̂0 = limi→∞ yc(i). Then the points ŝ0, û0, v̂0, t̂0 are all distinct, σ(ŝ0) =
σ(t̂0), and σ(û0) = σ(v̂0).
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Proof: The limits in the lemma are well defined, and for every i there are
points of A in the arcs (yd(i), xc(i)), (xc(i), yc(i)), (yc(i), zd(i)), (zd(i), yd(i)).
Hence the points ŝ0, û0, v̂0, t̂0 are all distinct. To see that σ(ŝ0) = σ(t̂0),
we show that α = limi→∞ yd(i)+1 and β = limi→∞ zd(i)+1 are the same.
Indeed, if not, the arc [α, β] is non-degenerate, and there exists a least
l ≥ 0 such that σl[α, β] = [σl(α), σl(β)] = I is an arc of length at least 1/3.
The chord connecting the endpoints of I is the limit of chords connecting
yd(i)+1+l, zd(i)+1+l ∈ Td(i)+1+l, and the endpoints of Td(i)+1+l are outside
I. Let us show that A ∩ I = ∅. Suppose otherwise. Then there is a triple
Tk ⊂ I, because if a point of Tk is in I, then Tk ⊂ I (if Tk 6⊂ I, then a
chord connecting points of Tk intersects chords connecting yd(i)+1+l and
zd(i)+1+l with large i, a contradiction). Now we choose a big i so that
d(i) + l + 1 > k is between the crucial moments d(i) and h4(i). Then
the triple Td(i)+l+1 must be minimal among the already existing triples,
contradicting the fact that Tk ⊂ I. Thus, I contains no points of A, which
contradicts the fact that g|A is of degree 3 and implies that σ(ŝ0) = σ(t̂0).
Similarly, σ(û0) = σ(v̂0). ¤

Let c̄0 be the chord connecting ŝ0 with t̂0 and d̄0 be the chord connecting
v̂0 with û0. To associate a lamination with Ξ = {c̄0, d̄0} we rely on Kiwi
[Ki05]. A collection Θ = {X1, . . . , Xd−1} of pairwise disjoint σd-critical
chords (whose endpoints form a set R = RΘ) is called a critical portrait
(e.g., Ξ is a critical portrait). The chords X1, . . . , Xd−1 divide D into
components B1, . . . , Bd whose intersections with S1 are finite unions of
open arcs with endpoints in R. Given t ∈ S1, its itinerary i(t) is the
sequence I0, I1, . . . of sets B1, . . . , Bd, R with σn

d (t) ∈ In(n ≥ 0). A
critical portrait Θ such that i(t), t ∈ RΘ, is not preperiodic is said to
have a non-periodic kneading. Denote the family of all critical portraits
with non-periodic kneadings by Yd. A lamination ∼ is Θ-compatible if
the endpoints of every chord from Θ are ∼-equivalent. Theorem 4.3 is a
particular case of Proposition 4.7 [Ki04].

Theorem 4.3. To each Θ ∈ Yd one can associate a Θ-compatible lamina-
tion ∼ such that all ∼-classes are finite, J∼ is a dendrite, and the following
holds: (1) any two points with the same itinerary, which does not contain
R, are ∼-equivalent; (2) any two points whose itineraries are different at
infinitely many places are not ∼-equivalent.

Denote the family of laminations from Theorem 4.3 by Kd.

Lemma 4.4. We have Ξ ∈ Y3. There is a lamination ∼ from K3 compatible
with Ξ such that T1 forms a ∼-class, and c̄0, d̄0 are the ∼-critical leaves.

Proof: We prove that ŝ0, û0, v̂0, t̂0 have non-preperiodic itineraries and never
map into one another. We have σl(ŝ0) ∈ (û0, v̂0), h4(i) ≤ l ≤ ci − 1. Since
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ci − h4(i) → ∞, the only way i(ŝ0) can be preperiodic is if ŝ0 eventually
stays in (û0, v̂0) forever, a contradiction to the construction. Assume that
ŝ0 maps into v̂0 by σr. Choose j with h4(j)− d(j) > r. Then the triangle
Td(j)+r intersects c̄0, contradicting the construction. The claim for ŝ0 is
proven; the claims for other points of RΞ can be proven similarly.

By Theorem 4.3, there exists a lamination ∼ in K3 compatible with Ξ;
since points in any Ti have the same itinerary, which avoids RΞ, they are
∼-equivalent. Let us show that {û0, v̂0} is a ∼-class. Were it not, the ∼-
class of σ(û0) would be non-degenerate. Since, by construction, the point
σ(û0) belongs to all arcs (xc(j)+1, yc(j)+1) that converge to it, the unlinked
property (E2) of laminations implies that the ∼-class of σ(û0) includes all
triples Tc(j)+1 with big enough j and is infinite, contradicting Theorem 4.3.
Similarly, {ŝ0, t̂0} is a ∼-class, and these are the only two critical ∼-classes.
It follows that T1 is a ∼-class. If not, T1 is a proper subset of a ∼-class
Q. Then Q contains more than 3 points, and by [Ki02], Q is preperiodic
or precritical. If for some i ≥ 0 the class f i(Q) is periodic, then, since the
triple T1 is wandering, f i(Q) must be infinite, contradicting Theorem 4.3.
If for some minimal i ≥ 0 the class f i(Q) is critical, then it has to consist
of |Q| > 3 elements, contradicting the above. ¤

By Lemma 4.4, for a sequence T = n1 < m1 < . . . , we construct a WT-
lamination ∼ in K3; the family W of all such laminations is uncountable.

Theorem 4.5. Laminations ∼ in W have pairwise non-conjugate induced
maps f∼|J∼ .

Proof: Let the sequences T = n1 < m1 < . . . , T ′ = n′1 < m′
1 < . . . be

distinct, ∼ and ∼′ be the corresponding laminations from Lemma 4.4, p
and p′ be the corresponding quotient maps, and let the topological Julia
sets with induced maps be f : J → J and f ′ : J ′ → J ′, respectively. All
the points and leaves from our construction are denoted as before for f
(e.g., û0, v̂0, . . . , c̄0, d̄0, . . . ), whereas in the case of f ′ we add an apostrophe
to the notation (e.g., û′0, v̂

′
0, . . . ).

Assume that the homeomorphism ϕ : J → J ′ conjugates f and f ′. The
critical points p(û0) = C, p(ŝ0) = D ∈ J of f are cutpoints, each of which
cuts J into 2 pieces. Moreover the set J \(C∪D) consists of 3 components:
L = p((û0, v̂0)),M = p((ŝ0, û0) ∪ (v̂0, t̂0)), and R = p((t̂0, ŝ0)). Similarly,
the critical points p′(û′0) = C ′, p′(ŝ′0) = D′ ∈ J ′ of f ′ are cutpoints each
of which cuts J ′ into 2 pieces. Moreover, the set J ′ \ (C ′ ∪ D′) consists
of 3 components: L′ = p′((û′0, v̂

′
0)),M

′ = p′((ŝ′0, û
′
0) ∪ (v̂′0, t̂

′
0)) and R′ =

p′((t̂′0, ŝ
′
0)). Clearly, ϕ maps points C, D onto points C ′, D′.

For a ∼-class g, the point p(g) ∈ J divides J into |g| components (the
same holds for ∼′). Let us show that the ∼-class of 0 is {0}. If not, by
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properties (D1) - (D3) of laminations, the ∼-class of 0 is {0, 1
2} contradict-

ing the fact that the leaf d̄0 separates the points 0 and 1
2 . Similarly, {0} is

a ∼′-class, and { 1
2} is a ∼-class and a ∼′-class. Hence a = p(1

2 ), b = p(0)
are non-dividing f -fixed points, and a′ = p′( 1

2 ), b′ = p′(0) are non-dividing
f ′-fixed points. These are all the non-dividing fixed points, so ϕ maps
the points a, b onto the points a′, b′. By construction, a is the only non-
dividing f -fixed point belonging to the limit sets of f -critical points. To
show this, let us show that all triples from the original construction are
contained in [x1, z1]. Indeed, the first seven triples T1, . . . , T7 are located
inside the arc [x1, z1]. After that, all the triples are either vertical (and
then contained in [x1, z1] by Rule C), or horizontal (and then contained in
the appropriate arcs of vertical triples and again in [x1, z1]). This proves
the claim and shows that a is indeed the only non-dividing f -fixed point
belonging to the limit sets of f -critical points. Similarly, a′ is the unique
non-dividing f ′-fixed point belonging to the limit sets of the f ′-critical
points. Hence ϕ(a) = a′, which implies that ϕ(b) = b′, and therefore
ϕ(C) = C ′, ϕ(D) = D′. Thus, ϕ(L) = L,ϕ(M) = M ′, ϕ(R) = R′.

Assume that the first time the sequences T , T ′ are different is at ni > n′i.
Then h4(i) = h′4(i) = h, and up until that moment all corresponding
crucial moments for the two laminations are equal: d(r) = d′(r), h4(r) =
h′4(r), c(r) = c′(r), h5(r) = h′5(r)(0 ≤ r ≤ i − 1), and d(i) = d′(i)).
Before the crucial moment h, the behavior of the triples relative to the
chords c̄0, d̄0 (respectively c̄′0, d̄

′
0) is the same. Consider the triple Td(i) (the

closest approach to d̄0 preceding h), and the corresponding triple T ′d′(i).
The dynamics of Td(i) (T ′d′(i)) forces the same dynamics on d̄0 (d̄′0) until Td(i)

(T ′d′(i)) maps onto Tc(i) (T ′c′(i)). Hence σh−d(i)+n′i(ŝ′0) already belongs to the
arc (v̂′0, t̂

′
0), while σh−d(i)+ni(ŝ0) still belongs to the arc ( 1

2 , v̂0). Therefore

fh−d(i)+n′i(D) ∈ L, whereas (f)′h−d(i)+n′i(D′) ∈ M . Since ϕ(D) = D′ and
ϕ(M) = M ′, we get a contradiction which shows that ϕ does not exist and
the maps f |J and f ′|J ′ are not conjugate.

5 TCE-polynomials with Wandering Branch Points

In this section, we show that there exists an uncountable family of TCE-
polynomials P whose induced laminations ∼P are WT-laminations (since,
by [Pr00], if the Julia set of a TCE-polynomial is locally connected, then the
polynomial on its Julia set and the induced map on the corresponding topo-
logical Julia set are conjugate). The Topological Collet-Eckmann (TCE)
condition is studied in a number of papers (e.g., [GS98,Pr00,PRLS03,PR98,
Sm00]; a list of references can be found in the nice recent paper [PRLS03]).
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It is considered a form of non-uniform (weak) hyperbolicity. By [PRLS03],
several standard conditions of non-uniform hyperbolicity of rational maps,
including the TCE condition, are equivalent. By Proposition 5.2 [Pr00]
(see also [GS98,PR98]), the Julia set of a TCE-polynomial is Hölder (i.e.,
the Riemann map extends over the boundary as Hölder), and hence locally
connected.

The plan is to construct WT-laminations ∼ from W corresponding to
specific sequences T whose induced maps f∼|J∼ satisfy the TCE condition
(the definitions are below). Since W ⊂ K3, by results of Kiwi [Ki04,Ki05],
to each such lamination ∼ a polynomial P∼ is associated, and P∼|JP∼ is
monotonically semiconjugate to the induced map f∼|J∼ . This implies that
P∼ satisfies the TCE condition; by [Pr00] its Julia set is locally connected
(actually Hölder), and P∼|JP∼ is in fact conjugate to f∼ : J∼ → J∼.

A continuum K ⊂ S2 is unshielded if it is the boundary of one of its
complementary domains (see, e.g., [BO04a]). Below K is either S2 or a
locally connected unshielded continuum in S2 (we then choose a metric in
K such that all balls are connected; the existence of such a metric is proven
in [Bi49], see also [MMOT92]). Given a set A ⊂ K and a point z ∈ A, we
denote by CompzA the component of A containing z. Consider a branched
covering map f : K → K. Then the set of critical points Crf is finite.

Take a point x ∈ K and the ball B(fn(x), r). For each i, 0 ≤ i ≤ n, con-
sider Compfi(x)f

−(n−i)(B(fn(x), r)) and call it a pull-back of B(fn(x), r)
(along the orbit of x). Denote by ∆f (x, r, n) the total number all moments
i such that Compfi(x)f

−(n−i)(B(fn(x), r)) ∩ Crf 6= ∅. A map f : K → K
is said to satisfy the TCE condition (or to be a TCE-map, or just TCE ) if
and only if there are M > 0, P > 1, and r > 0 such that for every x ∈ K,
there is an increasing sequence nj ≤ Pj of numbers with ∆f (x, r, nj) ≤ M .
Therefore, if a map is not TCE, then for any M > 0, P > 1, and r > 0,
there exist x ∈ K and N > 0 with

|{n ∈ [0, N ] | ∆f (x, r, n) > M}|
N + 1

> 1− 1
P

.

Observe that in the case when f is a rational function and K = S2, it is
sufficient to consider only points x ∈ Jf in the definition of TCE-maps.

A continuous map f : X → X of a metric space is backward stable at
x ∈ X if for any δ there is an ε such that for any connected set K ⊂
B(x, ε), any n ≥ 0, and any component M of f−n(K), diam(M) ≤ δ; f
is backward stable if it is backward stable at all points. If X is compact,
then f is backward stable if and only if, for any δ, there is an ε such that
for any continuum T with diam(T ) ≤ ε, any n ≥ 0, and any component
M of f−n(T ), diam(M) ≤ δ. The notion is essentially due to Fatou.
Classic results (see, e.g., Fatou, [CG93]) imply that R is backward stable
outside the critical limit sets and is not backward stable at parabolic or
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attracting periodic points. In an important paper [Le98], Levin showed
that polynomials with one critical point and locally connected Julia sets
are backward stable on their Julia sets. Later [BO04a], this result was
extended to all induced maps on their topological Julia sets.

Orbit segments {z, f(z), . . . , fn(z)} and {y, f(y), . . . , fn(y)} δ-shadow
(each other) if d(f i(z), f i(y)) ≤ δ for 0 ≤ i ≤ n. Denote the orbit of z
by orb(z); an ([i, j]-)segment of orb(z) is the set {f i(z), . . . , f j(z)}. Given
a point z, an integer n, and an ε > 0, we say that fn(z) is critically
ε-shadowed of order k if there are precisely k distinct pairs (each pair
consists of a critical point u and an iteration s) such that fs(z), . . . , fn(z)
is ε-shadowed by u, . . . , fn−s(u). If this is the case, we call n a critical
ε-shadowing time of order k (for z). Lemma 5.1 is inspired by Lemma 2.2
of the paper [Sm00] by Smirnov.

Lemma 5.1. Suppose that f : K → K is a branched covering, backward
stable map, and there exist ε′ > 0, s′, and τ ′ > 0 such that for any critical
point u and any integer N > 0, there are more than τ ′(N + 1) critically
ε′-shadowed times of order less than s′ in [0, N ] for u. Then f satisfies the
TCE condition.

Proof: We prove that if f does not satisfy the TCE condition, then for any
given ε > 0, s, and τ > 0, there is an N > 0 and a critical point u such that
there are less than τ(N +1) critically ε-shadowed times of order less than s
in [0, N ] for u. Since f is not TCE, for any P > 1, r > 0, and M > 0, there
exist x ∈ K and N > 0 such that for a set H of more than (P−1)(N+1)

P
integers l ∈ [0, N ], we have ∆f (x, r, l) > M . Let the distance between any
two critical points be more than R > 0, and choose M > sP

(P−1)τ . Since f

is backward stable, we can find a δ < min{ε/2, R/2} and r > 0 so that any
pull-back of an r-ball is of diameter less than δ. For x ∈ K, let c(x) be a
closest to x critical point.

We define a collection I of intervals of integers. For an integer j, 0 ≤
j ≤ N , define (if possible) the largest number k = kj , j ≤ k ≤ N , such that

Compfj(x)f
−(k−j)(B(fk(x), r)) ∩ Crf 6= ∅.

Let A be the set of all j for which kj exists, and let I be the family of
all intervals of integers {[j, kj ] : j ∈ A}. The [j, kj ]-segment of orb(x) is
δ-shadowed by the [0, kj − j]-segment of the critical point c(f j(x)). If a
critical point belongs to the pullback U = Compfi(x)f

−(l−i)(B(f l(x), r)) of
B(f l(x), r) along the orbit of x, then i ∈ A and l ∈ [i, ki]. Hence, if l ∈ H,
then more than M intervals from I contain l. Since |H| ≥ (P−1)(N+1)

P , we
have ∑

I∈I
|I| ≥ (P − 1)(N + 1)M

P
>

s(N + 1)
τ

.
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Let i, j ∈ A, u = c(f i(x)), v = c(f j(x)). If j ≥ i and [i, ki]∩[j, kj ] = [j, l]
(l = ki or l = kj), then the [j− i, l− i]-segment of orb(u) and the [0, l− j]-
segment of orb(v) 2δ-shadow each other. Since 2δ < ε, if t ∈ [i, ki] is
covered by at least s intervals of the form [j, kj ] ∈ I with i ≤ j, then
f t−i(u) is critically ε-shadowed of order at least s. Let us show that in
some interval I = [i, ki] ∈ I, there are h > (1 − τ)|I| integers t1, . . . , th
covered by at least s intervals of the form [j, kj ] ∈ I, with i ≤ j.

Let us show that such an interval [i, ki] ∈ I exists. If not, then in each
interval I = [i, ki] ∈ I, at most (1− τ)|I| points are covered by s intervals
of the form [j, kj ] ∈ I, with i ≤ j. Let us call a pair (I, l) admissible if
I ∈ I, l ∈ I, and there are at least s intervals [j, kj ] ∈ I with i ≤ j ≤ l ≤ kj .
Denote the number of all admissible pairs by L and count it in two ways:
over intervals I from I, and over points l. If we count L over intervals from
I, then, since by assumption each interval I ∈ I contains at most (1−τ)|I|
numbers l such that (I, l) is admissible, we see that L ≤ (1− τ)

∑
I∈I |I|.

For each l ∈ [0, N ], let m(l) be the number of intervals from I containing
l. Then

∑
I∈I |I| =

∑
m(l). Define two sets A ⊂ [0, N ], B ⊂ [0, N ] as

follows: A is the set of all integers l ∈ [0, N ] with m(l) ≤ s − 1, and B is
the set of all integers l ∈ [0, N ] with m(l) ≥ s. Then it is easy to see that
L =

∑
l∈B(m(l)− s + 1). Hence

∑

I∈I
|I| =

N∑

l=0

m(l) = (s− 1)|B|+
∑

l∈B

[m(l)− s + 1] +
∑

l∈A

m(l) =

= (s− 1)|B|+ L +
∑

l∈A

m(l).

Since L ≤ (1− τ)
∑

I∈I |I| and m(l) ≤ s− 1 for l ∈ A,

∑

I∈I
|I| ≤ (s−1)(|B|+ |A|)+(1−τ)

∑

I∈I
|I| = (s−1)(N +1)+(1−τ)

∑

I∈I
|I|,

which implies that

∑

I∈I
|I| ≤ (s− 1)(N + 1)

τ
,

a contradiction. Hence there exists an interval I = [i, ki] ∈ I with h > (1−
τ)|I| integers t1, . . . , th covered by at least s intervals of the form [j, kj ] ∈ I
with i ≤ j. Set N = ki− i; then h integers t1− i ∈ [0, N ], . . . , th− i ∈ [0, N ]
are critically ε-shadowing times of order at least s for u. Hence there are less
than N +1−h < τ(N +1) integers in [0, N ] which are critically ε-shadowing
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times of order less than s for u. Doing this for ε = ε′, s = s′, τ = τ ′ from
the lemma, we get a contradiction to the assumptions of the lemma and
complete its proof. ¤

Let ∼ be a lamination, constructed as in Section 4, for a sequence
T = n1 < m1 < . . . , and let f |J be its induced map. Let us state some
facts about the construction in terms of the map f . Let p : S1 → J be the
corresponding quotient map, and let I ⊂ J be the arc connecting p(1/2) = b
and p(0) = a. A ∼-class g contains points of the upper semicircle UP and
the lower one LO if and only if p(g) ∈ I. Put p(Ti) = ti, p(û0) = C, p(d̂0) =
D, f i(C) = Ci, and f i(D) = Di.

We assume that J ⊂ C and that the orientation of J agrees with that of
the unit circle. Moreover, we visualize I as a subsegment of the x-axis such
that b is the “leftmost” point of J (its x-coordinate is the smallest), a is
the “rightmost” point of J (its x-coordinate is the greatest), the points of
J corresponding to angles from UP belong to the upper half-plane, and the
points of J corresponding to angles from LO belong to the lower half-plane.

By construction, d(0) = 1, h4(0) = 2, c(0) = 3, h5(0) = 5, d(1) = 7.
The crucial moments d(i), h4(i), c(i), h5(i) are the moments of closest ap-
proach of images of t1 (or just the closest approaches of t1) to D, b, C, b, . . . ,
in this order. To explain the term “closer,” we need the following notation:
if m,n ∈ J , then S(m,n) is the component of J \ {m, n} which contains
the unique arc in J connecting m and n.

Definition 5.2. A point x ∈ J is closer to a point w ∈ J than a point
y ∈ J if y 6∈ S(x,w).

This notion is specific to the closest approaches of t1 to C, D, b that
take place on I. We distinguish between two types of closest approach
to b depending on which critical point is approached next (equivalently,
depending on the type of the triangle which approaches 1/2). Thus, h4(i)
is a closest approach to b, after which t1 will have the next closest approach
to C (h4(i) is the ith such closest approach to b). Similarly, h5(i) is a
closest approach to b, after which t1 will have the next closest approach to
D (h5(i) is the ith such closest approach to b).

We apply Lemma 5.1 to f , choosing a collection of integers T appropri-
ately. The behavior of C,D is forced by that of t1. The three germs of J at
t1 corresponding to the arcs (x1, y1), (y1, z1), and (z1, x1) in S1 are denoted
X,Y, Z; call their images X-germs, Y -germs, or Z-germs, respectively (at
tk). Thus, X points up, Y points to the left, and Z points to the right.
Also, set σk(x1) = xk, σk(y1) = yk, σk(z1) = zk, k ≥ 1. Because of the
connection between the map f |J and the map σ at the circle at infinity,
the dynamics of the arcs is reflected by the behavior of the germs. This
helps one see where in J images of C,D are located.
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We use the expressions “the X-germ (at tk) points up”, “the Y -germ
(at tk) points to the left”, etc., which are self-explanatory if tk ∈ I. The
components CX(tk), CY (tk), CZ(tk) of J \ tk containing the corresponding
germs at tk correspond to the X-, Y -, and Z-germs at tk; the components
are called the X-, Y -, Z-components (of J at tk), respectively.

For tk ∈ I, the Z-germ at tk always points to the right, so we only talk
about X- and Y -germs at points tk ∈ I. At the moment d(i), the point
td(i) ∈ I is to the right of D in S(D, td(i−1)), its X-germ points up, and
its Y -germ points to the left. Then the point td(i) leaves I, and between
the moments d(i) + 1 and h4(i) − 1, all its images avoid I ∪ S(D, td(i)) ∪
S(C, tc(i−1))∪S(b, th5(i−1)) (its images are farther away from D, C, b than
the three previous closest approaches to these points).

The next crucial moment is h4(i), when t1 maps into I ∩S(b, th5(i−1))
(so it is the next closest approach to b), its X-germ points to the left, and its
Y -germ points down. The map locally “rotates” J : the X-germ, which was
pointing up, now points to the left, and the Y -germ, which was pointing
to the left, now points down. Moreover, it follows that, along the way, the
Y -components of images of Td(i) never contain a critical point, and hence
points that used to belong to the Y -component at td(i) still belong to the
Y -component at th4(i). Observe that D belongs to the Y -component at
td(i). Hence the following holds.

Claim ∆. D maps by fh4(i)−d(i) to the point Dh4(i)−d(i) inside the Y -
component at th4(i), which points down.

For the next ni steps, t1 stays in I while being repelled from b to the
right with no “rotation” (the X-germ points to the left, the Y -germ points
down). For these ni steps, the images of t1 and D stay close while being
repelled “together” from b. At the next crucial moment c(i) = h4(i) + ni,
the point tc(i) ∈ I is to the right of C in S(c, tc(i−1)), its X-germ points to
the left, and its Y -germ points down. As with the above, we conclude that
the following claim holds.

Claim Θ. D maps by fc(i)−d(i) to the point Dc(i)−d(i) inside the Y -compo-
nent at tc(i), which points down.

Now tc(i) leaves I, and between the moments c(i) + 1 and h5(i) − 1
all its images avoid I ∪ S(D, td(i)) ∪ S(C, tc(i)) ∪ S(b, th4(i)) (its images
are farther away from D, C, b than the three previous closest approaches to
these points). For a while after this moment, the behavior of t1 is mimicked
by both images of Dc(i)−d(i) and images of C. The next crucial moment is
h5(i), when t1 maps into I ∩S(b, th4(i)) (so it is the next closest approach
to b), its X-germ points up, and its Y -germ points to the left. The map
locally “rotates” J : the X-germ, which pointed to the left, now points up,
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and the Y -germ, which pointed down, now points to the left. Observe that
Dc(i)−d(i) belongs to the Y -component at tc(i) and on the next step maps
by fh5(i)−c(i) to the point Dh5(i)−d(i). Hence, as with the explanation
prior to Claim ∆, we conclude that the following holds.

Claim Γ. D maps by fh5(i)−d(i) to the point Dh5(i)−d(i) inside the Y -com-
ponent at th5(i).

By construction, so far all the points from the appropriate segments of
the orbits of td(i) and D are very close, because the appropriate images of
the arc [yd(i), zd(i)], which correspond to the images of the Y -component
at td(i), are very small. However now the behaviors of t1 and D differ. In
terms of t1, for the next mi steps th5(i), stays in I while being repelled
from b to the right with no rotation (the X-germ points up, and the Y -germ
points to the left). At the next crucial moment d(i + 1) = h5(i) + mi, the
point t1 maps inside S(D, td(i)) (this is the next closest approach to D), and
the process for t1 is repeated inductively (the segments of the constructed
orbit repeat the same structure as the one described above). However the
dynamics of D is more important.

At the moment when D maps by fh5(i)−d(i) to the point Dh5(i)−d(i),
the point Dh5(i)−d(i) is still associated with the fh5(i)−d(i)-image of td(i),
i.e., with the point th5(i). Since by formula (3) (see The inductive step,
part (b)) h5(i)−d(i) = h4(i+1)−d(i+1) = q, by Claim ∆ applied to i+1
rather than to i, the point Dq belongs to the Y -component at th4(i+1).

Now the next segment of the orbit of D begins, which, according to
Claim Θ and Claim Γ applied to i + 1, includes ni+1 steps when D is
repelled away from b (while the appropriate images of t1 are also repelled
from b on I), and then h5(i + 1) − c(i + 1) steps when D is shadowed by
the orbit of C. Thus, the orbit of D can be divided into countably many
pairs of segments, described below.

(d1) Segment D′
i, from the h4(i) − d(i) = h5(i − 1) − d(i − 1)th to the

c(i)− d(i)− 1th iteration of D of length ni when D is repelled from b with
the images th4(i), . . . , tc(i)−1 of t1, so that the images of D belong to the
Y -components of the appropriate images of t1, which belong to I and stay
to the left of C while the images of D are below the images of t1.

(d2) Segment D′′
i , from the c(i)− d(i)th to the h5(i)− d(i)− 1 = h4(i +

1)− d(i + 1)− 1th iteration of D of length h5(i)− c(i) = h4(i)− c(i− 1),
when D is closely shadowed by the orbit of C and has no closest approaches
to b, C, D; h5(i)− c(i) = h4(i)− c(i− 1) by (4).

Since the construction is symmetric with respect to D and C, the orbit
of C can be divided into countably many pairs of segments, described below.
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(c1) Segment C ′i, from the h5(i) − c(i) = h4(i) − c(i − 1)th to the d(i +
1)− c(i)− 1th iteration of C of length mi, when C is repelled from b with
the images th5(i), . . . , td(i+1)−1 of t1 so that the images of C belong to the
X-components of the appropriate images of t1, which belong to I and stay
to the left of C while the images of C are above the images of t1.

(c2) Segment C ′′i , from the d(i+1)−c(i)th to the h5(i+1)−c(i+1)−1 =
h4(i+1)−c(i)−1th iteration of C of length h4(i+1)−d(i+1) = h5(i)−d(i),
when C is closely shadowed by the orbit of D and has no closest approaches
to b, C, D.

By (c1), the segment C ′i begins at h5(i) − c(i) = h4(i) − c(i − 1);
since c(i − 1) < d(i), h4(i) − d(i) < h4(i) − c(i − 1), and the segment
C ′i begins after the segment D′

i. By (d1), the segment D′
i+1 begins at

h4(i + 1) − d(i + 1) = h5(i) − d(i); since d(i) < c(i), h5(i) − c(i) <
h5(i)− d(i), and the segment D′

i+1 begins after the segment C ′i.
The length of the segment D′′

i does not depend on ni,mi. Indeed, the
length of D′′

i is h5(i)− c(i) = h4(i)− c(i− 1) by (4). However both h4(i)
and c(i − 1) are defined before ni,mi need to be defined. Likewise, the
length of C ′′i equals h4(i + 1) − d(i + 1) = h5(i) − d(i) (see (3)). Since
both h5(i), d(i) are defined before mi, ni+1 need to be defined, the length
of the segment C ′′i does not depend on mi and ni+1.

Lemma 5.3. Suppose that T = n1 < m1 < . . . is such that ni > 9h4(i)
and mi > 9h5(i). Then the corresponding map f is TCE.

Proof: By Lemma 5.1, we need to show that there exist ε > 0, s, and τ < 1
such that for any N and any critical point u there are more than τ(N + 1)
critically ε-shadowed times of order less than s in [0, N ] for u. Set τ = .4
and s = 2; ε will be chosen later.

The segment D′
i+1 begins at h5(i)−d(i), whereas the segment C ′i ends

at mi + (h5(i)− c(i))− 1; since mi > 9h5(i), C ′i ends after D′
i+1 begins.

The segment C ′i+1 begins at h4(i + 1) − c(i), whereas the segment D′
i+1

ends at ni+1 + (h5(i) − d(i)) − 1; since ni+1 > 9h4(i + 1), D′
i+1 ends

after C ′i+1 begins. Thus, C ′i ends inside D′
i+1. Likewise, D′

i ends inside
C ′i. All these segments form a “linked” sequence in which (1) each D′-
segment begins and ends inside the appropriate consecutive C ′ segments,
(2) each C ′-segment begins and ends inside the appropriate consecutive
D′-segments, (3) D′′

i ⊂ C ′i, and (4) C ′′i ⊂ D′
i+1

The segment D′
i is at least 9 times longer than any segment D′′

q , q ≤ i,
(the length of D′′

i is h4(i)− c(i− 1), and the length of D′
i is ni); D′

i is also
at least 9 times longer than any segment C ′′q , q < i, since all these segments
are shorter than h4(i) by construction. Similarly, the segment C ′i is at
least 9 times longer than any C ′′-segment before it and the segment C ′′i
(the length of C ′′i is h5(i)− d(i) and the length of C ′i is mi); C ′i is also at
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least 9 times longer than any segment D′′
q , q ≤ i, since all these segments

are shorter than h5(i) by construction.
It is easy to check that the construction and the choice of the constants

imply the following. Let u = C or u = D. Each D′′-segment begins when
the image of D is to the right of C, close to C, and ends when the image
of D is to the right of C, close to a preimage of b not equal to b. Each
C ′′-segment begins when the image of C is to the right of C, close to D,
and ends when the image of C is to the right of C, close to a preimage of
b not equal to b.

Within segments D′
i and C ′i, critical points are repelled from b while

staying to the left of C. In the beginning of a segment, the appropriate
image of a critical point is close to b, whereas at the first step after the end
of a segment, it maps very close to either C or D. Hence there exists an
ε > 0 such that within any segment D′

i, C
′
i the images of critical points are

more than 3ε-distant from the closure of the component of J \ {C} located
to the right of C, and in particular from both critical points. Assume
also that 3ε is less than the distance between any two points from the set
{C, D, f(C), f(D)}. This completes the choice of constants.

We consider the critical point D and show that all times in the subseg-
ment Ei = [h4(i)− d(i)+ni−1, c(i)− d(i)− 1] of D′

i = [h4(i)− d(i), c(i)−
d(i) − 1] are critically ε-shadowed of order at most 2. One such shadow-
ing is trivial - the point D shadows itself. Let us show that there is no
more than 1 non-trivial shadowing for the times described above. Choose
a t ∈ Ei. Suppose that for some q and a critical point u the [q, t]-segment
of orb(D) is shadowed by the [0, t− q]-segment of u. Then fq(D) is ε-close
to u. Hence 1 ≤ q < h4(i)− d(i) by our choice of ε.

Thus, u stays to the left of C for t−[h4(i)−d(i)]+1 > ni−1 consecutive
iterations of f as it shadows fh4(i)−d(i)(D), . . . , f t(D) within the [h4(i)−
d(i) − q, t − q]-segment Q of its orbit. The segment Q begins before the
segment D′

i, consists of images of u located to the left of C, and is at least
ni−1 + 1 long. Hence it must be contained in a segment of one of the
four types of length at least ni−1 + 1 listed above. There is only one such
segment, namely the C ′i−1-segment of the orbit of C, and so u = C and
Q ⊂ C ′i−1.

Let us show that q = c(i − 1) − d(i − 1) coincides with the beginning
of D′′

i−1. If q < c(i − 1) − d(i − 1), then as the orbit of C ε-shadows the
orbit of fq(D), an iteration of C from the C ′i−1-segment of the orbit of
C will correspond to the last iteration of D in the segment D′′

i−1, which
is impossible, since this image of D is to the right of C and is therefore
more than ε-distant from any image of C from C ′i−1. On the other hand, if
q > c(i− 1)−d(i− 1), then as the orbit of C ε-shadows the orbit of fq(D),
the last iteration of C in the segment C ′′i−2 of the orbit of C will correspond
to an iteration of D from D′

i, which is a contradiction, since this iteration
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of C is to the right of C and is therefore more than ε-distant from any
image of D from D′

i. Thus, the only non-trivial critical ε-shadowing which
may take place for a time t ∈ Ei is by the orbit of C, which ε-shadows the
[f c(i−1)−d(i−1), t]-segment of the orbit of D, and so any t ∈ Ei is critically
ε-shadowed of order at most 2.

Let us estimate which part of any segment [0, N ] is occupied by the
times that are critically ε-shadowed of order at most 2 for D. Assume that
N belongs to Fi = [h4(i)−d(i)+ni−1, h4(i+1)−d(i+1)+ni−1] for some
i. The segment Ei lies in the beginning of Fi and forms a significant portion
of Fi. Indeed, ni−1 < h4(i) < 9h4(i) < ni. Hence |Ei| > 8

9ni. After Ei,
the segment D′′

i ⊂ Fi follows, and by (d2), we have |D′′
i | < h4(i) < ni

9 .
Finally, the last part of Fi is occupied by ni − 1 initial times from D′

i+1.
Hence |Ei|

|Fi| > 4
9 , which implies that the times that are critically ε-shadowed

of order at most 2 for D form at least 4
9 of the entire number of times

in [0, N ]. Similar arguments show that the times that are critically ε-
shadowed of order at most 2 for C form at least 4

9 of the entire number of
times in [0, N ]. By Lemma 5.1, this implies that f is TCE, as desired. ¤

So far, we have dealt with the dynamics of induced maps f = f∼ of lam-
inations ∼. However our goal is to establish corresponding facts concern-
ing polynomials. To “translate” our results from the language of induced
maps of laminations into that of polynomials, we need an important result
of Kiwi [Ki04,Ki05]. In Section 3, we defined the family Yd of collections
of σd-critical chords whose endpoints have non-preperiodic itineraries and
the corresponding family Kd of laminations whose properties are described
in [Ki04,Ki05] (see Theorem 4.3 in Section 3). The following theorem is a
version of results of Kiwi [Ki04,Ki05] which is sufficient for our purpose.

Theorem 5.4. Let ∼ be a lamination from Kd. Then there exists a polyno-
mial P of degree d such that its Julia set JP is a non-separating continuum
on the plane and P |JP is monotonically semiconjugate to f∼|J∼ by a map
ψP . Moreover, J∼ is a dendrite, ψP -images of critical points of P are crit-
ical points of f∼, ψP -preimages of preperiodic points of f∼ are points, and
JP is locally connected at all its preperiodic points.

We combine Lemma 5.3 and Theorem 5.4 to prove Theorem 1.1.

Proof of Theorem 1.1: Let a sequence T satisfy the conditions of Lemma
5.3. By Lemma 5.3, the induced map f∼ = f of the corresponding lamina-
tion∼ is TCE. The lamination∼ belongs toW ⊂ K3; hence by Theorem 5.4
there is a polynomial P such that the Julia set JP is a non-separating con-
tinuum on the plane and P |JP is monotonically semiconjugate to f |J∼ by
a map ψP . Let M ≥ 0, L ≥ 1, r′ > 0 be constants for which f exhibits the
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TCE property, i.e., such that for every x ∈ J∼ and every positive integer
N we have

|{n ∈ [0, N ] | ∆f (x, r′, n) ≤ M}|
N + 1

≥ 1
L

.

Clearly, for some r > 0 and any point z ∈ JP , we have ψP (B(z, r)) ⊂
B(ψP (z), r′). Let z ∈ JP . To estimate the number of integers n ∈ [0, N ]
with ∆P (z, r, n) ≤ M , take x = ψP (z). The number of integers n ∈ [0, N ]
with ∆f (x, r′, n) ≤ M is at least (N + 1)/L. Let n be one such number,
and estimate ∆P (z, r, n). Observe that if Compfi(x)f

−(n−i)(B(fn(x), r′))∩
Crf = ∅, then CompP i(z)P

−(n−i)(B(fn(z), r)) ∩ CrP = ∅ because ψP

maps critical points of P to critical points of f . Hence ∆P (z, r, n) ≤
∆f (x, r′, n) ≤ M , and there are at least (N + 1)/L numbers n ∈ [0, N ]
with ∆P (z, r, n) ≤ M . Thus, P is TCE, and by Proposition 5.2 [Pr00]
(cf. [GS98, PR98]), it follows that the Julia set of P is Hölder and hence
locally connected.

By Carathéodory theory, this means that for any sequence T satisfying
the conditions of Lemma 5.3 and the corresponding lamination ∼, there
exists a TCE-polynomial P such that JP and J∼ are homeomorphic and
P |Jp and f∼|J∼ are topologically conjugate. It is easy to see that there
are uncountably many sequences T inductively constructed so that ni >
9h4(i),mi > 9h5(i), i.e., so that they satisfy the conditions of Lemma 5.3.
This completes the proof of Theorem 1.1. ¤
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