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SETS THAT FORCE RECURRENCE

ALEXANDER BLOKH AND ADAM FIELDSTEEL

(Communicated by Michael Handel)

Abstract. We characterize those subsets S of the positive integers with the
property that, whenever a point x in a dynamical system enters a compact
set K along S, K contains a recurrent point. We do the same for uniform
recurrence.

Let X denote a (compact) metric space and f : X → X a continuous map. We
will use the term (compact) dynamical system to refer to such a pair (X, f) . As
usual, we write fn for the n-fold composition of f with itself and N for the set of
all positive integers. Let R (f) denote the set of recurrent points of f. That is,

R (f) = {x ∈ X | for some sequence of integers nk →∞, fnk (x)→ x} .
A well-known theorem (whose origin we have been unable to determine) states the
following:

Theorem 1. If (X, f) is a compact dynamical system and U an open set containing
R (f) , then for all x ∈ X,

lim
N→∞

1
N

N∑
n=1

χ
X\U (fn (x)) = 0.

We reformulate this theorem as follows. Say that a set S ⊂ N has positive upper
density if lim supN→∞

1
N card (S ∩ {1, 2, ..., N}) > 0.

Theorem 2. If (X, f) is a compact dynamical system and K ⊂ X is compact,
S ⊂ N has positive upper density, and for some x ∈ X and all n ∈ S, fn (x) ∈ K,
then K ∩R (f) 6= ∅.

This result suggests the following definition.

Definition 1. Say that a set S ⊂ N forces recurrence if whenever (X, f) is a (not
necessarily compact) dynamical system and K ⊂ X is compact, and for some x ∈ X
and all n ∈ S, fn (x) ∈ K, we have K ∩R (f) 6= ∅.

Thus Theorem 2 asserts that (for compact dynamical systems) every set of posi-
tive upper density forces recurrence. The usual proof of the theorem is accomplished
by introducing an invariant probability measure for f and invoking the Poincaré
recurrence theorem. A closer examination of that proof, however, leads to a some-
what stronger result, and a characterization of all sets that force recurrence. We
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begin with a general theorem that allows us to conclude that each member of a
suitable class of sets forces recurrence.

If S ⊂ N and m ∈ N, we write S −m to denote {s−m | s ∈ S, s−m ≥ 1} .

Theorem 3. Let P be a non-empty family of non-empty subsets of N such that :
1. (∀S ∈ P) (∃m ∈ N) such that (S −m) ∩ S ∈ P , and
2. P has the Ramsey property: if S ∈ P and S =

⋃r
i=1 Ci, then for some

i ∈ {1, 2, ..., r} , Ci ∈ P.
Then (∀S ∈ P) S forces recurrence.

We note in passing that for such a set P , and all S ∈ P , S must be infinite.
Indeed, if S were finite, say S = {s1, ..., sk}, then for some i, {si} ∈ P , by the
Ramsey property. But a singleton cannot satisfy the first property, since ∅ /∈ P .

Proof. Let P be a family of subsets of N as above, and suppose (X, f) is a dynamical
system, K1 ⊂ X is compact, S1 ∈ P , and x ∈ X is a point such that for all
n ∈ S1, f

n (x) ∈ K1.
We will show that K1 ∩R (f) 6= ∅.
This will follow when we construct a decreasing sequence of non-empty compact

sets K1 ⊃ K2 ⊃ ... and a sequence {mi}∞i=1 of positive integers such that for each i,
diam(Ki) < 1

i , and fmi (Ki+1) ⊂ Ki. Indeed, these conditions imply that
⋂∞
i=1Ki

contains a single point y, and that for all j < k ∈ N,
fmj+mj+1+...+mk (y) ∈ Kj .

Therefore y is recurrent.
Choose m1 ∈ N so that (S1 −m1) ∩ S1 ∈ P . For every n ∈ (S1 −m1) ∩ S1 the

point fn(x) and the point fn+m1(x) belong to K1. It follows that K1 ∩ f−m1K1 is
a non-empty compact subset of K1. Write

K1 ∩ f−m1K1 =
r1⋃
i=1

K1,i,

where each K1,i is compact and has diameter less than 1
2 . Let

C1,i = {n ∈ (S1 −m1) ∩ S1 | fn (x) ∈ K1,i} ,
so that (S1 −m1) ∩ S1 =

⋃ri
i=1 C1,i. Choose i1 so that C1,i1 ∈ P , and set

S2 = C1,i1 and K2 = K1,i1.

Clearly K2 ⊂ K1, diam(K2) < 1
2 and fm1 (K2) ⊂ K1.

We continue inductively: after constructing Si,Ki and mi we apply the above
argument to Si and Ki, the only difference being that we cover the corresponding
set Ki ∩ f−miKi by compact sets of diameter less than 1

i+1 .
Theorem 3 now follows.

Observe that we prove a bit more than claimed. Namely, for the point y from
the proof of Theorem 3, there exists a sequence of iterates fni(y) ∈ K1 such that
fni(y) → y (the first condition is not required in the definition of forcing recur-
rence).

Corollary 1. If S ⊂ N has positive upper density, then S forces recurrence.

Proof. Verify that the class P+ = {S ⊂ N |S has positive upper density} satisfies
the two hypotheses of the above theorem.
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Indeed, the same argument yields a slightly stronger result. A set S ⊂ N is said
to have positive upper Banach density if

lim
N−M→∞

sup
1

N −M card {S ∩ {M + 1,M + 2, ..., N}} > 0.

The class Pb+ of sets of positive upper Banach density also satisfies the hypotheses
of the theorem, and therefore its elements also force recurrence.

We remark that in verifying the first of the hypotheses, one sees the trace of the
Poincaré recurrence theorem which is used in the usual proof.

Now we can characterize those subsets of N which force recurrence.

Definition 2. Let {bn}∞n=1 be a sequence in N. We let

IP {bn}∞n=1 =

{
r∑

k=1

bik | r ∈ N, i1 < i2 < ... < ir

}
.

Any such set is called an IP set (in N). For each L ∈ N, the initial L-segment of
IP {bn}∞n=1 is the set

IP {bn}Ln=1 =

{
r∑

k=1

bik | r ∈ N, i1 < i2 < ... < ir ≤ L
}
.

We say that S ⊂ N contains a broken IP set if there is a sequence {bn}∞n=1 in N
such that for each L ∈ N, there exists aL ∈ N with

aL + IP {bn}Ln=1 ⊂ S.

We also say in this case that S contains a broken IP {bn}∞n=1 .

The terminology here is, of course, derived from Furstenberg and Weiss [2]. Note
that we have not formulated a notion of a broken IP set, only that of a set containing
a broken IP set. These sets have appeared implicitly in connection with the lemma
of Hilbert discussed in [1], p. 26. The proof in [1] shows that for every partition
of N, some cell of the partition contains a broken IP set (though the statement of
that lemma is slightly weaker).

We will make use of the following theorem of Hindman.

Theorem 4 (Hindman [5]). If S ⊂ N is an IP set, n ∈ N, and C : S → {1, ..., n} ,
then for some i ∈ {1, ..., n} , C−1 {i} contains an IP set.

Theorem 5. A set S ⊂ N forces recurrence if and only if S contains a broken IP
set.

Proof. Let PbIP = {S ⊂ N |S contains a broken IP set} . We show that PbIP sat-
isfies hypotheses 1 and 2 of Theorem 3.

Let S ∈ PbIP and suppose that S contains a broken IP {bn}∞n=1 . First we
establish property 1 for S. Indeed, we show that for all integersM > 0, (S − bM )∩S
contains a broken IP {bn}∞n=1,n6=M .

Fix M ∈ N, and for each L ∈ N, (L > M), choose aL so that

aL + IP {bn}Ln=1 ⊂ S.
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Then

(S − bM ) ∩ S ⊃
(
aL + IP {bn}Ln=1 − bM

)
∩
(
aL + IP {bn}Ln=1

)
= aL +

[(
IP {bn}Ln=1 − bM

)
∩
(
IP {bn}Ln=1

)]
⊃ aL + IP {bn}Ln=1,n6=M .

To establish property 2 for S, we make a diagonal argument reducing the problem
to Hindman’s Theorem [5]. Suppose that S =

⋃r
i=1 Ci. We may suppose that the

sets Ci are pairwise disjoint, so that we have a function C : S → {1, 2, ..., r} given
by C (n) = i if and only if n ∈ Ci. For each L ∈ N let aL ∈ N be chosen so that

aL + IP {bn}Ln=1 ⊂ S.

Define CL : IP {bn}∞n=1 → {1, 2, ..., r} by setting

CL (k) =

{
C (aL + k) , when k ∈ IP {bn}Ln=1 ,

1, otherwise.

Let C : IP {bn}∞n=1 → {1, 2, ..., r} be a limit point of the sequence
{
CL
}∞
L=1

in

{1, 2, ..., r}IP{bn}
∞
n=1 . By Hindman’s theorem, for some i ∈ {1, 2, ..., r} , C−1

(i) con-
tains an IP set, say IP {dn}∞n=1 . Therefore, C−1 (i) contains a broken IP {dn}∞n=1 .

We conclude that every set in PbIP forces recurrence.
Conversely, suppose that a set S ⊂ N forces recurrence. View S as an element of

{0, 1}N by identifying S with its characteristic function χ
S
. Let f : {0, 1}N → {0, 1}N

be the shift map, and let X = {fnχ
S
}n∈N be the orbit closure of χ

S
under f. These

are the points y ∈ {0, 1}N all of whose finite blocks appear in χ
S

after translation.
That is,

X =
{

y ∈ {0, 1}N | (∀m ∈ N) (∃am ∈ N) such that
(∀n ∈ {1, 2, ...,m})χ

S
(am + n) = y (n)

}
.

We consider the dynamical system (X, f) . Let K = {y ∈ X | y (1) = 1}, which is
a (non-empty) compact set. Then fn (χ

S
) ∈ K whenever n ∈ S, so there exists

a point y ∈ K∩R (f) . But since K is open in X and y ∈ R (f) , we know (cf.
Theorem 2.17 of [1]) there is an IP set, say IP {bn}∞n=1, along which y returns to
K. That is, for all n ∈ IP {bn}∞n=1 , y (n) = 1. It follows that (∀L ∈ N) (∃aL ∈ N)

such that
(
∀n ∈ IP {bn}Ln=1

)
χ
S

(aL + n) = y (n) = 1. So, S contains a broken

IP {bn}∞n=1 .

Remark 1. We have shown that a sequence forces recurrence if and only if it is a
member of a class satisfying the hypotheses of Theorem 3. We see that the class
PbIP is the largest subset of 2N satisfying the hypotheses of Theorem 3 (largest in
the sense of containment).

Remark 2. From Corollary 1 and Theorem 5 we see that every sequence of positive
upper density in N contains a broken IP set. Nevertheless, not every set of positive
upper density, or even of positive density, contains a translate of an IP set. This is
a result of E. Straus, which can be found in [6].
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Remark 3. The class PbIP is an example of a divisible class of subsets of N in
the sense of Glasner [3]. Glasner calls a non-empty set P ⊂ 2N divisible if (i)
∅ /∈ P , (ii)P is hereditary upward: A ∈ P and B ⊃ A implies B ∈ P , and (iii)P
has the Ramsey property. In fact, given any divisible class P ⊂ 2N, if we set

bP =
{
S̃ ⊂ N | (∃S ∈ P) (∀L ∈ N) (∃aL ∈ N) aL + (S ∩ [1, L]) ⊂ S̃

}
,

then bP is again divisible. (Only property (iii) requires proof, and this is done by
the diagonal argument used in the proof of Theorem 5.) In particular PbIP = bPIP ,
where PIP is the class of supersets of IP sets. Another example of this construction
is seen in Pb+ = bP+.

We can extend the above result by considering more general forms of recurrence.
Let P be a non-empty family of subsets of N. It will be natural to assume that
P is hereditary upward: S ∈ P and S ⊂ S1 imply S1 ∈ P . Suppose (X, f) is a
dynamical system. A point x ∈ X is called P-recurrent if for every neighborhood
U of x, {n | fn (x) ∈ U} ∈ P . We denote the set of P-recurrent points of (X, f)
by RP (f) . Such notions of recurrence can be found in the literature as early as
[4]. Analogously to the foregoing, we say that a set S ⊂ N forces P-recurrence
if, whenever (X, f) is a dynamical system and K ⊂ X is compact, and for some
x ∈ X and all n ∈ S, fn (x) ∈ K, we have K ∩RP (f) 6= ∅. If S ∈ bP we say that S
contains a broken P-set. We have the following general result, proved exactly like
the corresponding fact for ordinary recurrence:

Theorem 6. Let ∅ 6= P ⊂ 2N. If a set S ⊂ N forces P-recurrence, then S contains
a broken P-set.

We note that ordinary recurrence can be regarded as P-recurrence, where P is
taken variously to be the family of non-empty sets, the family of infinite sets or the
family of sets containing an IP set. Consequently, the above theorem implies the
corresponding portion of Theorem 5.

A converse of Theorem 6 is not in general available, since there may be com-
pact dynamical systems with no P-recurrent points, in which case no sequence can
force P-recurrence. However, in the following case, we obtain a characterization
analogous to Theorem 5.

Recall that a set S ⊂ N is called syndetic if it has bounded gaps:

(∃g ∈ N) (∀m ∈ N) [m,m+ g] ∩ S 6= ∅.

We refer to such a g as a bound on the gaps of S. Let Ps denote the family of
syndetic sets in N. Note that the condition of Ps-recurrence is what is commonly
referred to as uniform recurrence.

Recall also that a dynamical system (X, f) is said to be minimal if there are no
non-trivial closed f -invariant subsets. A (non-empty) closed invariant set Y ⊂ X
is called minimal if (Y, f |Y ) is minimal. We will make use of the following facts. If
x ∈ X is Ps-recurrent, then the orbit closure of x is minimal. If (X, f) is minimal
and X is compact, then every x ∈ X is Ps-recurrent. Every compact dynamical
system contains a minimal set.

Now we can prove the following theorem.

Theorem 7. A set S ⊂ N forces Ps-recurrence if and only if S contains a broken
Ps-set.
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Proof. We need only prove the first implication. Suppose that S contains a broken
Ps-set. That is, for some set S′ ∈ Ps, and for every L ∈ N, there exists aL ∈ N
such that

aL + (S′ ∩ [1, L]) ⊂ S.
Let (X, f) be a dynamical system, let K ⊂ X be compact, and let x ∈ X be a
point such that for all n ∈ S, fn (x) ∈ K. Let r be the smallest element of S′.
Consider the points zL = faL+r (x) ∈ K, choose a convergent subsequence zLi, and
let z = limi→∞ zLi ∈ K. It follows by continuity that for all s ∈ S′, fs−r (z) ∈ K.

We note that, if g is a bound on the gaps of S′, then

{fnz}n∈N ⊂
g⋃
i=1

f iK.

Indeed, it is immediate that each fnz ∈
⋃g
i=1 f

iK, and
⋃g
i=1 f

iK is closed.
Hence, {fnz}n∈N is a compact invariant set and contains a non-empty minimal

set Y. Since every y ∈ Y is then Ps-recurrent, it suffices to show that Y ∩K 6= ∅. Let
y ∈ Y. If y /∈ K, choose ni →∞ so that fniz → y. For each i there exists mi ∈ [1, g]
such that fni+miz ∈ K. Passing to a subsequence, we may assume mi is constantly
equal to m, and so fni+mz → fmy ∈ K. Since fmy ∈ Y is also Ps-recurrent, we
are done.

We can give another description of the property of forcing Ps-recurrence, by
relating it to minimality.

Definition 3. Say that a set S ⊂ N forces minimality if whenever (X, f) is a (not
necessarily compact) dynamical system and K ⊂ X is compact, and for some x ∈ X
and all n ∈ S, fn (x) ∈ K, there exists a minimal set non-disjoint from K.

Proposition 1. A set S ⊂ N forces Ps-recurrence if and only if S forces minimal-
ity.

Proof. Let S ⊂ N be a set that forces Ps-recurrence. Suppose that (X, f) is a
dynamical system, K ⊂ X is compact, and x ∈ X is a point such that for all n ∈ S,
fn(x) ∈ K. Then there exists a Ps-recurrent point z ∈ K which implies that the
orbit closure of z is minimal and intersects K over at least z.

Conversely, let S ⊂ N be a set that forces minimality. To prove that S forces
Ps-recurrence, it is sufficient, by Theorem 7, to prove that S contains a broken Ps-
set. To this end we repeat the construction from the last paragraph of the proof of
Theorem 5. Using notation from there we have that fn(χ

S
) ∈ K whenever n ∈ S,

so since S forces minimality, there must exist a recurrent point y ∈ K whose orbit
closure is minimal. Therefore the point y enters K along a syndetic set S′, which, as
in the last paragraph of the proof of Theorem 7, implies that S contains translates
of all initial segments of S′, thus completing the proof.

A further simple variant of these ideas can be found by considering non-wandering
behavior. Given a family P ⊂ 2N, we say that a point x in a dynamical sys-
tem (X, f) is P-non-wandering if for every neighborhood U of x, we have that
{n | fn (U) ∩ U 6= ∅} ∈ P . We say that a set S ∈ 2N forces P-non-wandering if
whenever a point x in a dynamical system (X, f) enters a compact set K ⊂ X
along a set in P , there must be a P-non-wandering point in K. We then have the
following proposition.
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Proposition 2. If P ⊂ 2N is a family of non-empty sets which is :

1. shift-invariant: S ∈ P implies S −m ∈ P , for all m ∈ N,
2. hereditary upward and
3. has the Ramsey property,

then every set S ∈ P forces P-non-wandering.

Proof. Let x be a point in a dynamical system (X, f) that enters a compact set
K ⊂ X such that for some set S ∈ P and all n ∈ S, fn (x) ∈ K. Write K =

⋃r1
i=1 K

1
i

with compact Ki having diameter less than 1. Choose S1 ⊂ S, S1 ∈ P such that for
some i1 ∈ {1, ..., r1} , and for all n ∈ S1, f

n (x) ∈ K1
i1
. Continuing in this manner,

we get a decreasing sequence of compact sets
{
Kj
ij

}∞
j=1

with limj diam
(
Kj
ij

)
= 0,

and a (decreasing) sequence of sets Sj ∈ P such that for all n ∈ Sj , fn (x) ∈ Kj
ij
.

Let z be the unique point in
⋂∞
j=1 K

j
ij
. Then if U is a neighborhood of z, for some

j, Kj
ij
⊂ U. If m is the first element of Sj , then we have fm (x) ∈ Kj

ij
⊂ U and

fn (fm (x)) ∈ Kj
ij
⊂ U for all n ∈ Sj−m ∈ P . Hence {n | fn (U) ∩ U 6= ∅} ∈ P .

Note that we have proved more than required, namely, for any neighborhood U
of x, there is a set SU ∈ P such that⋂

n∈SU∪{0}
f−n (U) 6= ∅

and not merely that for each n ∈ SU ,

f−n (U) ∩ U 6= ∅.

Two examples of families that have the properties stated in this proposition but
whose elements do not force (even ordinary) recurrence are the following:

1. P1 = {S ⊂ N | (∀k ∈ N) S contains an arithmetic sequence of length k} and
2. P2 =

{
S ⊂ N |

∑
n∈S

1
n =∞

}
.

That P1 satisfies the Ramsey property follows from van der Waerden’s theorem
[7]. One can readily construct sets in P1 and in P2 which do not contain broken IP
sets. To do this, observe that if a set S = {mi}∞i=1 contains a broken IP {bn}∞n=1 ,
then there are infinitely many i such that mi+1 −mi = b2 − b1. However, we can

construct a set S which is a disjoint union S =
⋃{

mj
i

}rj
i=1

where:

1. mj
i1
< mk

i2 for all j < k and all i1 and i2,

2. each
{
mj
i

}rj
i=1

is an arithmetic sequence with difference dj ,

3. limj→∞ dj = limj→∞mj+1
1 −mj

rj =∞,
4. for all j,

∑rj
i=1

1
mji

> 1.

Such a set S is in both P1 and P2, but each difference arising from elements of
S arises only finitely many times, so that it cannot contain a broken IP set.

Remark 4. All the foregoing extends, mutatis mutandis, to continuous actions of
Nd, for d > 1.
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