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Abstract. We call a rational map f dendrite-critical if all its recurrent critical
points either belong to an invariant dendrite D or have minimal limit sets. We prove
that if f is a dendrite-critical polynomial then for any conformal measure µ either for
almost every point its limit set coincides with the Julia set of f , or for almost every
point its limit set coincides with the limit set of a critical point c of f . Moreover,
if µ is non-atomic then c can be chosen to be recurrent. A corollary is that for a
dendrite-critical polynomial and a non-atomic conformal measure the limit set of
almost every point contains a critical point.

1. Introduction

The central question in the Dynamical Systems Theory is that of the long term
behavior of orbits. To address this question, one often studies ω-limit sets for orbits
typical in some sense. In this paper we do it for a class of complex polynomials,
understanding “typical” in terms of conformal measures. The paper continues our
previous paper on a similar topic ([BM2]) and aims at describing ω-limit sets of
points which are realized on sets of positive conformal measure µ. However, in
addition to this question, which essentially dates back to Milnor [Mi], we are also
interested in the following related problem: is it true that for µ-a.e. point x the
ω-limit set ω(x) contains a critical point?

To fix terminology and notation, recall that for a continuous map T of a compact
Hausdorff space X to itself and a point x ∈ X the orbit of x is the sequence
(fn(x))∞n=0 (we denote it orb(x) and sometimes consider it to be a set rather than
a sequence), and the ω-limit set of x is the set of all accumulation points of orb(x).
We denote the latter ω(x) and usually call it simply the limit set of x.

Let us describe ideas motivating our research. Milnor in [Mi] introduced the
notion of an attractor, and, in particular, primitive attractor (for a given measure
µ a primitive attractor is a set A such that µ({x : A = ω(x)}) > 0). Milnor [Mi]
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conjectured that in “good” cases (i.e. for “good” maps and measures) there are
finitely many primitive attractors and an a.e. point in the sense of the measure has
the limit set coinciding with one of the primitive attractors.

In some cases Milnor’s conjecture was verified. In all such cases the following is
shown. Given a “good” map f there is a finite set of points Cf such that for any
“good” measure µ at least one of the following holds: 1) the map f is ergodic with
respect to µ, the support of µ coincides with a special set A(f) (usually A(f) is the
non-wandering set of f or a version of it - e.g., in the complex case it is the Julia
set of f), and for µ-a.e. x the set ω(x) coincides with the support of µ; 2) for µ-a.e.
x there exists c(x) ∈ Cf such that ω(x) = ω(c(x)). In the future if this takes place
we say that the Milnor decomposition (of A(f)) holds. Moreover, if Cf is the set
of all critical points of f we say that the critical Milnor decomposition (of A(f))
holds. The main results in this field establish the (critical) Milnor decomposition
for various classes of maps and measures. Observe that while in the case of smooth
interval maps the Lebesgue measure on the interval seems to be a natural choice for
µ, in the case of rational maps the natural choice for µ is any conformal measure.

The most thoroughly studied case here is that of smooth interval maps with
Lebesgue measure for which the Milnor decomposition is essentially established in
[BL1-BL4, Lu] (see also [BM1]). In the case of the Julia set of a rational complex
map with a conformal measure much less has been done. Indeed, working with
these maps is more complicated, because the space then is two dimensional. This
allows a map to have much more flexibility in terms of its dynamics, which is not
always compensated by nice analytic properties of the map. Still, some results in
this direction have been obtained; to state them we need the following definitions.
Given a rational map f a measure µ on J(f) is conformal (for f) if for an exponent
α > 0 we have µ(f(A)) =

∫

A |f
′(z)|αdµ whenever f |A is 1-to-1 (by [S] f has at least

one conformal measure). Also, a point x is said to be precritical if it eventually
maps into a critical point; x is said to be preparabolic if it eventually maps into a
parabolic periodic point (whose orbit by the Fatou Theorem is the limit set of some
critical point).

The following theorem has been proven in [BMO]. Denote by Pr(f) the union of
the limit sets of recurrent critical points of f .

Theorem 1.1. At least one of the following holds for a conformal measure µ of a
rational map f .

(1) For µ-a.e. point x we have ω(x) = J(f) .
(2) For µ-a.e. point x at least one the following holds: a) ω(x) ⊂ Pr(f), or b)

x is a precritical, or c) x is preparabolic.

The aim of Theorem 1.1 is to deal with conformal measures with no assumptions
on rational maps f . Observe, that even though the conclusions of Theorem 1.1(1)
are quite strong and give the description of primitive attractors for the measure µ
(in that case the only primitive attractor is J(f)), the conclusions of Theorem 1.1(2)
are weaker and do not provide such description. Thus in general it is not known if
Milnor decomposition of J(f) holds in general for rational maps f ; to establish it
one needs appropriate assumptions on the map.

There are two types of assumptions considered in the literature in this context.
First of all, these are conditions of analytic nature which single out maps with
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so-called non-uniform hyperbolicity (e.g., Collet-Eckmann conditions or topological
Collet-Eckmann conditions). A lot of deep results concerning non-uniformly hyper-
bolic rational maps can be found in literature (see, e.g. [GS], [P1] or [PRS]). These
results easily imply the critical Milnor decomposition of J(f) for non-uniformly
hyperbolic rational maps.

However, it turns out that rather strong assumptions which define non-uniformly
hyperbolic rational maps are not necessary for the existence of the Milnor decom-
position of the Julia set. There are other principally different types of assumptions
on the maps which imply the same conclusion. To begin with, these are topolog-
ical assumptions on the Julia set of a map, and indeed the corresponding results
were obtained in [BO] (see also [BLe1, BLe3]). Since we study conformal measures
which are all supported on the Julia sets, it is no wonder that the topology of the
Julia sets is crucial here. However, it has been recently discovered in [BM2] that
in some cases it is the topological structure of the orbits and limit sets of critical
points which determines if the critical Milnor decomposition of J(f) holds.

In the present paper we improve the results of [BM2] and suggest another and in
a sense more general set of assumptions on a map which still allow us to conclude
that the critical Milnor decomposition of the Julia set holds. In addition to that,
we deduce several important extra properties of the limit behavior of typical points
in the sense of a conformal measure. Our aim is to discover true topological causes
of the critical Milnor decomposition for complex maps, and we are motivated by
our belief that these must be related to the limit behavior of critical points.

The tools employed here combine both analytical and topological approaches.
For example, an important technical result of this paper is an analytic in its nature
Theorem 3.5 which uses the notion of recurrent criticality introduced in Section 3
and extends results of Mañé ([Ma2], see also [P2]). Together with the topological
analysis of dynamics on dendrites made in Section 4 Theorem 3.5 allows us to
obtain the main results of the paper.

We would like now to state the results of [BM2, BO] (see also [BLe1, BLe3]). To
do so we need the following definitions. A set A is said to be minimal if the map
restricted to this set is minimal (i.e., the orbit of every point of A is dense in A). A
graph is a one-dimensional branched manifold. Now, we consider in [BM2] rational
maps for which each critical point either belongs to an invariant graph G, or has
minimal limit set, or is non-recurrent and has the limit set disjoint from G. We call
such maps graph-critical. Let us point out that G above is just a topological graph,
and hence it is unknown whether graph-critical polynomials have locally connected
Julia sets.

The following theorem combines the results of [BM2] and [BO] (see also [BLe1,
BLe3]).

Theorem 1.2. Suppose that f is a polynomial with locally connected Julia set or
f is a graph-critical rational map. Then the critical Milnor decomposition of J(f)
holds for any conformal measure.

In this paper we aim at finding assumptions of topological nature which are
weaker than graph criticality but would still yield critical Milnor decomposition of
J(f). It turns out that this can be done for polynomials. Let us introduce necessary
terminology. A continuum is said to be a dendrite if it is locally connected and tree-
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like (contains no simple closed curves). A rational map f is dendrite-critical if there
exists a (perhaps empty) forward invariant dendrite D such that every recurrent
critical point of f either belongs to D, or has minimal limit set. In particular, if all
recurrent critical points have minimal limit sets then such rational map is dendrite
critical. We do not make any assumptions as to whether D is contained in J(f) or
not. We consider dendrite-critical polynomials; thus, we study narrower class than
all rational maps, but we make weaker topological assumptions and also restrict
only the behavior of their recurrent critical points.

The following theorem shows that the critical Milnor decomposition holds for
dendrite critical polynomials and their conformal measures.

Theorem 5.4. For a dendrite-critical polynomial f and a conformal measure µ at
least one of the following holds.

(1) For µ-almost every x ∈ J(f), ω(x) = J(f).
(2) For µ-almost every x ∈ J(f), ω(x) = ω(c(x)) for some critical point c(x)

depending on x, and at least one of the following holds: a) x is an eventual
preimage of c(x), or b) x is preparabolic, or c) c(x) can be chosen to be
recurrent.

The following is the main corollary of Theorem 5.4.

Corollary 5.5. If f is a dendrite-critical polynomial and µ is a non-atomic con-
formal measure, then for µ-a.e. point x the set ω(x) contains a critical point.

We would like to point out that a result similar to Corollary 5.5 for smooth
interval maps is the main result of [Ma1]. It serves as a basic ingredient of the
results of [Lu], in particular for the construction of ergodic decomposition there.
We hope that in the context of dendrite-critical polynomials Corollary 5.5 may
serve the same purpose.

The paper is arranged as follows. In Section 2 we go over a dynamical construc-
tion from [BM2] which allows one to make conclusions like the ones of Theorem 1.2
in the general setting of continuous maps on a compact metric space. In Section 3
we introduce the notion of recurrent criticality and extend some results of Mañé for
this notion. The main result of Section 3 is Theorem 3.5 which could prove to be
important for applications. Section 4 is devoted to a detailed study of dynamics on
dendrites under rational and polynomial maps. Finally, we prove the main results
of the paper in Section 5.

2. Basic facts about followed points

In this section we list those results of Section 3 of [BM2] needed in what follows.
Throughout the rest of this section T : X → X is a continuous map of a metric
compact space X with metric d and C ⊂ X is a finite set. In this not necessarily
smooth situation one can still call a periodic point a of period m repelling (topo-
logically) if in some metric d1 equivalent to d, for some ε > 0 and any point x 6= a
which is at most ε away from a, we have d1(Tm(x), a) > d1(x, a). If we use the fact
that some point is repelling, we will assume that our metric is already modified as
above.
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Now we introduce our Basic Setup. It consists of definitions and notation, and
depends on a choice of a point x ∈ X and a set C. We give it a special name since
we will have to refer to it several times.

Basic Setup. Suppose that x ∈ X and for every integer i ≥ 0 an integer mi ∈ [0, i]
and a point ci ∈ C are chosen. Then we use the following definitions and notation.

(1) For a given c ∈ C with infinite sequence of numbers mi with ci = c, if
the sequence does not tend to ∞ then we call this case bounded (for c),
otherwise we call the case unbounded (for c).

(2) A pair of points (T r(x), T r−mi(ci)), mi ≤ r ≤ i, is called an i-pair.
(3) For a given c ∈ C with infinite sequence of numbers mi such that ci = c,

the set of all accumulation points of the sequence (Tmi(x)) will be denoted
by Lc. Clearly, Lc ⊂ orb(x). Moreover, in the unbounded case for c we
have Lc ⊂ ω(x).

(4) A pair of points (x′, c′) which is the limit for some sequence of i-pairs with
i →∞ and ci = c ∈ C with ω(c) not minimal, is called a limiting pair.

�

The following condition was called basic in [BM2].

Basic Condition. We have d(T i(x), T i−mi(ci)) → 0 as i →∞. �

With the Basic Setup, we will say that x is C-followed if Basic Condition holds
and for any limiting pair (x′, c′) we have ω(x′) = ω(c′). The simplest Basic Setup
is Standard Basic Setup described in Introduction for a persistent point x of a
rational map f . Then for any i we have a generating pair (ci,mi) for ri and by the
definition of a persistent point Basic Condition is satisfied.

The main general result of [BM2] is that if a point is C-followed then its limit
set coincides with the limit set of one of the points of C. Here we provide a bit
more detailed statement than the one literally given in [BM2]; the main technical
addition is that we emphasize that the point c whose limit set coincides with that
of x can be chosen so that it appears infinitely many times in Basic Setup.

Theorem 2.1. If x is C-followed then ω(x) = ω(c) for some c ∈ C. Moreover,
this c can be chosen in such a way that c appears in Basic Setup infinitely many
times and if the bounded case holds for it then Tm(x) ∈ Lc for some m ∈ N, while
in the unbounded case Lc ⊂ ω(x), each point of Lc is recurrent and has limit set
coinciding with ω(x).

There is a certain standard way to construct Basic Setup for rational maps (we
discuss it in Section 5). This approach is quite fruitful in some cases, e.g. it leads
to the proof of Theorem 1.2 in the case when the Julia set is locally connected,
see [BO] and also [BLe1, BLe3]. However, in the case of a general rational map f
this Standard Basic Setup does not satisfy conditions necessary for the point to be
C-followed (here C is the set of critical points of f), because in general for limiting
pairs (x′, y′) we do not know if ω(x′) = ω(y′). The idea of [BM2] was to suggest
a different Basic Setup which uses topological and dynamical properties of graph
maps and thus shows that persistent points are C-followed. However, the Basic
Setup from [BM2] does not imply that c in Theorem 2.1 can be chosen so that
c ∈ ω(x); to some extent the aim of this paper is to develop tools which would
allow to make such conclusion in some cases.
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3. A version of the results of Mañé relative to pull-backs

In this section a version of the results from [Ma2] is obtained. The main ideas are
from [Ma2], the difference being that instead of considering points not belonging
to the limit sets of recurrent critical points we consider all points, but at the same
time work only with the pull-backs of their neighborhoods which do not contain
recurrent critical points. The proofs are close to those by Mañé, but for the sake
of completeness and also because the conditions are different we include full proofs
in this section (except Lemma 3.1). To state the results we need to introduce
the notation which mimics that of Mañé. Let us point out that even though the
main results of the paper deal with polynomials, in this section we work with a
rational map f . Also, we would like to point out that we use the same geometrical
construction as Mañé in his classical paper, thus we use squares rather than disks.

We need some terminology. If ̂C is the closed complex plane and f : ̂C → ̂C is
a rational map, we denote by C(f) = C the set of its critical points. For a point
x let B(x, r) be the open disk of radius r centered at x. A Jordan disk is a set U ,
homeomorphic to an open disk with U homeomorphic to a closed disk such that U
is the interior of U ; closed Jordan disks are closures of the open ones.

Suppose that A is a connected set. Then a component V of f−n(A) is said to be
an (n)-pull-back of A, and sets f(V ), f2(V ), . . . , fn−1(V ) are called pull-backs of A
corresponding to V . If f is univalent on all Vi = f i(V ), i < n, then we say that this
pull-back is univalent. Suppose that a connected set B ⊂ A (or B ⊃ A) is given.
Then any k-pull-back of B contained in a k-pull-back of A corresponding to V (or
containing a k-pull-back of A corresponding to V ) is also said to be corresponding
to V . We will mostly deal with these notions when A or B are Jordan disks, but
the definitions can be given in general.

By a square we understand a square whose boundary segments are vertical and
horizontal. The half-length of its side is called the radius of the square, and the
point of intersection of its diagonals is said to be its center. Given a square of radius
δ centered at p, denote by Sk the square of radius kδ centered at p. Also, suppose
that U is a Jordan disk and V is a pull-back of U , i.e. V is a component of f−n(U)
for some n. Then the number of critical points hit by the sets V, f(V ), . . . , fn−1(V )
is said to be the criticality of fn|V (or the criticality of V if n is fixed). On the other
hand, the number of recurrent critical points hit by the sets V, f(V ), . . . , fn−1(V )
is said to be the recurrent criticality of fn|V (or the recurrent criticality of V if n is
fixed). Finally, V is said to be a non-recurrent pull-back of U if f(V ), . . . , fn(V ) =
U do not contain recurrent critical points.

Note that in this section when a pair of squares with the same center appears,
sometimes they are denoted by S and Sk with 0 < k < 1, and sometimes by Sl

and S with l > 1, depending on whether the larger or the smaller square was the
original one.

We arrange the section as follows: first we establish a sequence of technical but
useful lemmas and then prove the main result. First we include (without proof)
Lemma 3.1 proven in [Ma2] (see also [P2]).

Lemma 3.1. Suppose that numbers ε > 0, 0 < k < 1, γ > 0 and N are given.
Then there exists δ = δ(ε, k, γ, N) such that the following holds. Let S be a square
of radius less than δ such that d(S, p) > γ for any parabolic or attracting periodic
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point p. Suppose that V is an n-pull-back of S such that fn|V has criticality at
most N . Then any n-pull-back of Sk corresponding to V has diameter at most ε.

Essentially, the aim of this section is to prove that in Lemma 3.1 one can replace
the assumption about the criticality of V by the corresponding assumption about
the recurrent criticality of V . To do so we establish some other technical lemmas
and introduce certain constants. First of all, let us denote by ξ a positive number
such that any non-recurrent critical point c of f never comes closer than ξ to itself.
This implies the following lemma.

Lemma 3.2. Let A be a set such that A, f(A), . . . , fn−1(A) are sets of diameter
less than ξ. Then every non-recurrent critical point of f is covered by at most one
set f i(A), 0 ≤ i ≤ n− 1. Also, if A is a pull-back of a Jordan disk fn(A) such that
recurrent criticality of fn|A is r then the criticality of fn|A is at most d + r.

Proof. Assume that c is a non-recurrent critical point such that c ∈ f i(A) ∩ f j(A)
and i < j. Then f j−i(c) ∈ f j(A) and so we have d(f j−i(c), c) < ξ which contradicts
the choice of ξ. The second part of the lemma follows immediately.

The next lemma is similar to Lemma 3.1, but is sometimes more convenient for
our purposes.

Lemma 3.3. Suppose that numbers ε > 0, 0 < k < 1, γ > 0 and r are given. Let
δ = δ(ε, k, γ, r + d) be the number found in Lemma 3.1. Let S be a square of radius
less than δ such that d(S, p) > γ for any parabolic or attracting periodic point p,
let V be an n-pull-back of S and V ′ be a corresponding to V n-pull-back of Sk.
Suppose that diam(V ′) ≥ ε and the recurrent criticality of fn|V is at most r. Then
there exists i, 0 ≤ i ≤ n− 1 such that diam(f i(V )) ≥ ξ.

Proof. Let us assume that the number i with required properties does not exist.
Then for any i, 0 ≤ i ≤ n − 1 we have diam(f i(V )) < ξ. This implies by Lemma
3.2 that the criticality of fn|V is at most d + r. Then by Lemma 3.1 and by the
choice of δ it follows that we must have diam(V ′) < ε, a contradiction with the
assumption. Hence there exists i, 0 ≤ i ≤ n− 1 such that diam(f i(V )) ≥ ξ.

Given a square S and a square Sl with l > 1 call any square S′ contained in Sl\S
and having a side intersecting with S and a side intersecting with Sl a collar square
of S, Sl (references to one or even both squares S, Sl may be omitted if this does not

cause any confusion). There is a well defined function η(l) =
4l

l − 1
> 1 such that

the entire “collar” Sl \ S is covered by η(l) collar squares. Lemma 3.4 shows that
under the assumptions of bounded recurrent criticality the fact that a pull-back
of a square S is big implies that a certain collar square to S has a relatively big
pull-back too. As we shall see later, together with Lemma 3.3 this implies that
yet another square, though smaller than S, has a uniformly bounded away from 0
diameter of one of its pull backs which eventually leads to a contradiction. Of the
lemmas proven so far Lemma 3.4 seems to be the most important.

Lemma 3.4. Let numbers l > 1, ε <
ξ
2
, γ, r be given. Then there exists δ′ =

δ′(ε, l, γ, r) such that the following holds. Let S be a square of radius less than δ′

such that d(Sl, p) > γ for any parabolic or attracting periodic point p and let V be
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a n-pull-back of Sl with recurrent criticality r. Suppose that there exists an n-pull-
back of S corresponding to V and such that its diameter is greater than ε. Then
there exists a collar square of S, Sl with a pull-back corresponding to V of diameter
at least

ε
2d2d+r(η(l) + 1)

= ε′.

Proof. As δ′ we choose the number δ′ = δ(ε′,
1
l
, γ, 2d + r) defined in Lemma 3.1.

Thus, if the distance of a square S̃ from parabolic and attracting points is at least
γ and its k-pull-back Ṽ is such that the criticality of fk|Ṽ is at most 2d+ r then all
pull-backs of S̃

1
l corresponding to V have diameters less than ε′ (all that follows

from Lemma 3.1).
Suppose that all collar squares of S, Sl are such that all their pull-backs cor-

responding to V have diameters less than ε′. Choose η(l) collar squares of S, Sl.
Consider for every i ≥ 0 the set f−n+i(S) ∩ f i(V ), that is the full preimage of S
inside the appropriate pull-back of Sl. By the assumption V contains a pull-back of
S with diameter greater than ε, so f−n(S) ∩ V has diameter greater than ε. Thus
we can find the greatest i for which diam(f−n+i(S) ∩ f i(V )) ≥ ε. Then for all j
such that n ≥ j > i we have diam(f−n+j(S) ∩ f j(V )) < ε.

Let us show that then diam(f j(V )) < ε + 2ε′ for each j such that i < j ≤ n.
For any point x ∈ f j(V ) choose a point x′ ∈ f−n+j(S)∩ f j(V ) so that x, x′ belong
to the same pull-back of a collar square of S, Sl (x′ will have to be chosen on the
boundary of such pull-back). Let us explain how we choose x′ in more detail. If
x ∈ f−n+j(S) ∩ f j(V ), then we choose x′ = x. If not, then x is the fn−j-preimage
of a point from a collar square. Choose the corresponding pull-back of this collar
square and a point on the intersection of the boundary of this collar square with S
which we also pull back to some point x′.

Since by the construction x, x′ belong to the same pull-back of a collar square, the
distance between x, x′ is less than ε′. In other words, any point x ∈ f j(V ) can be
approximated by a point x′ ∈ f−n+j(S)∩f j(V ) such that the distance between x, x′

is less than ε′. On the other hand, the diameter of f−n+j(S)∩ f j(V ) is less than ε
by the assumption. The triangle inequality implies that then diam(f j(V )) < ε+2ε′

for each j such that i < j ≤ n. Since ε+2ε′ < 2ε < ξ, we see that diam(f j(V )) < ξ
for any j = i + 1, . . . , n− 1.

Hence by Lemma 3.2 the criticality of fn−i−1|fi+1(V ) is at most d+r, and so the

criticality of fn−i|fi(V ) is at most 2d + r. Since diam(Sl) < δ′ = δ(ε′,
1
l
, γ, 2d + r)

we conclude that every (n− i)-pull-back of S corresponding to f i(V ) has diameter
less than ε′. Now, since the criticality of fn−i|fi(V ) is at most 2d + r, we see that
a collar square of S, Sl has at most M = d2d+r (n− i)-pull-backs corresponding to
f i(V ). On the other hand, we can cover Sl\S with η(l) collar squares. Hence, there
are no more than Mη(l) of (n−i)-pull-backs of collar squares of S, Sl corresponding
to f i(V ) (and hence contained in f i(V )).

Thus, the set f i(V ) is the union of no more than M pull-backs of S, each of which
has diameter less than ε′ by the choice of δ′, and Mη(l) pull-backs of the originally
chosen η(l) collar squares with each pull-back being of diameter less than ε′ by the
assumption. Then the diameter of their connected union V is less than or equal to
the sum of all these diameters which is at most Mε′+η(l)Mε′ = M(η(l)+1)ε′ < ε.
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However the assumption is that the full preimage of S inside f i(V ) - and therefore
f i(V ) as a whole - have diameter at least ε, a contradiction.

We are ready now to prove the main result of this section. As one can see,
Theorem 3.5 almost literally repeats Lemma 3.1 with one main exception: criticality
is replaced by recurrent criticality.

Theorem 3.5. Suppose that ε > 0, 0 < k < 1, γ > 0, r are given. Then there exists
β = β(ε, k, γ, r) such that the following holds. Let S be a square of radius less than
β such that d(S, p) > γ for any parabolic or attracting periodic point p. Suppose
that V is an n-pull-back of S such that fn|V has recurrent criticality at most r.
Then any n-pull-back W of Sk corresponding to V has diameter at most ε and is
such that the criticality of fn|W is at most d + r.

Proof. Clearly we may assume that ε < ξ/10. Suppose that for some square S,
whose distance from parabolic and attracting periodic points is at least γ, there
exists an n0-pull-back U0 of Sk of diameter less than ε, while the recurrent criticality
of the corresponding to U0 n0-pull-back of S is at most r. Denote by V the n0-
pull-back of S corresponding to U0. Our aim is to construct a sequence of squares
S0, S1, . . . which will have bounded away from 0 diameters of their appropriately
chosen pull-backs under bounded from above by n0 iterates of f . On the other hand
the squares S0, S1, . . . will have specific sizes converging to 0 and simultaneously
guaranteeing that the squares will stay inside a fixed square Ŝ concentric with S
and such that Sk ⊂ Ŝ ⊂ S. The latter tells us that the squares S0, S1, . . . will
all be no closer than γ to parabolic/attracting points and also that these squares
will be contained well inside S on which the n0-pull-back corresponding to U0 has
recurrent criticality at most r. Therefore, technical lemmas proven above will be
applicable provided the original square S is chosen to be small enough. Clearly,
this picture eventually leads to a contradiction.

The actual construction relies upon the choice of a convenient parameter l > 1

such that 1 < l <
2k + 2
3k + 1

(observe that 0 < k < 1 implies that 1 <
2k + 2
3k + 1

< 2 and

so such number l exists and is always less than 2). For the sake of computations
made in this paragraph only we assume that the radius of S is 1 and set S0 = Sk,
so the radius of S0 is k. Then the construction will be such that on each step
the square Si+1 will be non-disjoint from Si and will have the radius equal l − 1
times the radius of Si. Hence the radius of Sj is k(l − 1)j and the radii of squares
Sj form a decreasing geometric progression (recall that l < 2). To estimate how
far from the center of S these squares can reach we need to sum up the series

k(1 + 2
∑∞

j=1(l− 1)j) =
lk

2− l
. It is easy to see that our choice of l guarantees that

lk
2− l

<
k + 1

2
= t < 1. Therefore, any sequence of squares described above will

stay inside the square Ŝ = St and so for any j the distance between Sj and any
parabolic or attracting point is less than γ, which makes previously proven lemmas
applicable to squares Sj provided the size of the original square S is appropriately
small. Observe that if Sj , j ≥ 1, is one of our squares, then the square S2

j is
contained in S.

Now that the number l has been chosen we can choose β. To do so set l′ =
l + 1

2



10 ALEXANDER BLOKH AND MICHA L MISIUREWICZ

and then apply Lemma 3.4 and choose the number δ′ = δ′(ε, l′, γ, r). Thus, if
there is a square R such that diam(R) ≤ δ′, Rl′ ⊂ S and there is a pull-back of
R corresponding to V and of diameter greater than ε then there is a collar square
of R, Rl′ whose appropriate pull-back is of diameter at least

ε
2d2d+r(η(l′) + 1)

=

ε′. Then we apply Lemma 3.1 and find the number δ = δ(ε′, 1/2, γ, r + d). By
Lemma 3.3, δ has the following property: if a square R ⊂ S is such that R2 ⊂ S
and also R has a pull-back corresponding to V and such that the diameter of this
pull-back is at least ε′ then there exists a pull-back of R2 corresponding to V and of
diameter greater than ξ. Now, as our number β we choose the smaller of δ, δ′; this
ensures that both Lemmas 3.3 and 3.4 will be applicable throughout the argument.

Let us now prove that β has the properties from the lemma. Assume that this
fails. Then for some square S of radius less than β, whose distance from parabolic
and attracting periodic points is at least γ, there exists an n0-pull-back U0 of Sk

of diameter at least ε while the recurrent criticality of the corresponding to U0

n0-pull-back of S is at most r. Denote by V the n0-pull-back of S corresponding to
U0. To show that this leads to a contradiction we construct a sequence of squares
following the ideas described above.

The first square in the sequence is Sk = S0. To choose S1 we proceed as follows.
Our assumption is that U0 is an n0-pull-back of S0 of diameter at least ε corre-
sponding to an n0-pull-back V of S such that the recurrent criticality of fn0 |V is at
most r. Then by Lemma 3.4 and by the choice of β we can choose a collar square
S′ of S0, Sl′

0 such that there exists a pull-back V ′ of S′ corresponding to V with
diam(V ′) ≥ ε

2d2d+r(η(l′) + 1)
= ε′. Because of the choice of β we then can apply

Lemma 3.3 to the square S′2 = S1 ⊂ S and conclude that it has a pull-back U1

corresponding to V which has diameter at least ξ > ε. Observe that the radius
of the square S1 is l − 1 times the radius of the square S0 (this is exactly why we
needed one more constant l′). We can assume that U1 is an n1-pull-back of S1 cor-
responding to V and then n1 ≤ n0. By the arguments from the second paragraph
of this proof, S1 ⊂ St ⊂ S and so the distance between S1 and any parabolic or
attracting point of f is at least γ and we can repeat the argument.

Literally the same arguments apply to the square Si which will be constructed
after i steps in the process described above. That is, by the construction we will
know that Si has an ni-pull-back of diameter at least ε; moreover, all squares Sj

are consecutively non-disjoint and of radii k(l − 1)j respectively, and n0 ≥ n1 ≥
· · · ≥ ni. Then we will apply Lemma 3.4 and find a collar square R of Si, Sl′

i whose
appropriate ni-pull-back is of diameter greater than ε′. Then we will apply Lemma
3.3 and show that the square R2 has an appropriate ni+1-pull-back of diameter a
least ξ, and hence of diameter greater than ε. Moreover, we will have ni+1 ≤ ni.
Hence the construction can be repeated infinitely many times. However, then the
radius of Sj converges to 0 and the iterates nj of f for the pull-backs Uj of diameter
greater than ε stay less than n0, which is clearly impossible. This contradiction
proves the first part of the claim of the theorem; the second part dealing with
criticality follows immediately from the first one and Lemma 3.2.

As an application of Theorem 3.5 consider a point x which does not belong to the
union Pr of the limit sets of recurrent critical points of f and to the set of parabolic
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and attracting periodic points of f . Then if δ is small enough, the square S of
radius δ centered at x is disjoint from Pr and its distance from the set of parabolic
and attracting periodic points of f is at least γ. Hence recurrent criticality of any
pull-back of S is zero and moreover Theorem 3.5 applies. By this theorem, for a
given 0 < k < 1 we can find β such that any square Sk has only pull-backs of
diameter at most ε, and so at the point x the map f is backward stable. Thus, we
obtain another proof of one of the results of [Ma2].

4. Dendrites

This section is devoted to studying pull-backs of dendrites under rational and
polynomial maps. The main problem with using dynamical properties of maps of
dendrites in our circumstances is that because we consider all points on the plane we
need to consider their orbits and pull-backs under the plane map in question and not
just under the restriction of this map onto the dendrite. Therefore, if U is an open
connected set such that U ∩D is connected (here D is a dendrite), then a decent
pull-back of U in the sense of a rational map may have a disconnected intersection
with the dendrite and thus may well correspond to two or more pull-backs of U ∩D
taken in the 1-dimensional sense. Clearly, studying of possible cases when this
phenomenon takes place is rather important for us, and if we can exclude it one
way or another this would allow us to proceed with the tools developed in [BM2].
In this investigation we will need some easy topological properties of dendrites; in
particular, it is well-known (see, e.g., [BO]) that dendrites are uniquely arcwise
connected, which will be used later on.

Some tools which allow us to fight this problem were suggested in [BM2]. More
precisely, what was done in this direction in [BM2] is that in the case of a forward
invariant graph G one can extend it and construct a larger forward invariant graph
G′ such that for G′ the breakdown of connectivity described in the preceding para-
graph can only happen after at least one critical point was hit by the pull-backs of
U . This was enough in [BM2] because we only needed to pull back neighborhoods
until a critical point is hit for the first time. However this is not enough in the
present paper, so another set of tools is needed.

Lemma 4.1. The image of a Jordan curve contained in C under a polynomial
cannot be simply connected.

Proof. Let f be a polynomial, let H be a Jordan curve bounding a set G, and
suppose that f(H) is simply connected. Then the boundary of f(G) is contained
in f(H), but f(G) is bounded and has a nonempty interior, a contradiction.

Lemma 4.2. Let f be a polynomial. Suppose that U ⊂ C is a closed Jordan disk
and D is a dendrite such that D ∩ U is connected. If the boundary of U contains
no critical values of f and V is a 1-pull-back of U such that D∩U contains images
of all critical points of f |V , then V is a closed Jordan disk and f−1(D) ∩ V is a
dendrite.

Proof. We can cover the intersection of D and the boundary of U by finitely many
small Jordan disks U1, . . . , Uk and find a subdendrite D′ ⊂ D, contained in the
interior of U , and intersecting each Ui ∩D. Since the boundary of U contains no
critical values of f , if Ui’s are sufficiently small, then each component of f−1(Ui) is
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mapped by f homeomorphically onto Ui. Therefore, if we prove that f−1(D′) ∩ V
is connected, it will follow that f−1(D) ∩ V is also connected. Then, since f is a
polynomial (so it has nice local structure), the only reason why f−1(D)∩ V would
not be a dendrite could be that it contained a loop. However, this is impossible by
Lemma 4.1.

Thus, it remains to prove that f−1(D′) ∩ V is connected and V is a closed
Jordan disk. Clearly, we may assume that D′ ∩ U contains images of all critical
points of f |V . Therefore U \D′ is topologically an annulus and f maps V \f−1(D′)
onto it as a local homeomorphisms. By the Riemann-Hurwitz formula, the set
V \ f−1(D′) has Euler characteristic zero, so it is also topologically an annulus.
Therefore f−1(D′) ∩ V is connected and V is a closed Jordan disk.

Lemmas 4.1 and 4.2 are useful tools in studying pull-backs of dendrites under
rational maps. In the next lemma speaking of distances between points we use the
standard spherical metric on S2. By Pr(f) we denote the union of limit sets of
recurrent critical points of f , and by N the north pole of the sphere.

Lemma 4.3. Let f be a dendrite-critical polynomial and D be the dendrite from
its definition. Then there exists a forward invariant dendrite D′ ⊂ D with respect
to which f is dendrite-critical, and a number ε > 0, for which the following holds:
whenever W is a closed Jordan disk W such that diam(W ) < ε, the boundary of W
is disjoint from the critical orbits of f , W intersects Pr(f) and W ∩D′ is connected,
then for every pull-back V of W the set V ∩D′ is also connected.

Proof. Recall that we consider f as a map on the sphere, and so the case when D
contains N will have to be considered. In fact, this case is a bit harder to tackle,
so to begin with we assume that D does not contain N . We show that then we can
set D′ = D.

Suppose that U is a closed Jordan disk such that U does not contain N , the
boundary of U is disjoint from critical orbits of f , and U ∩D is connected. Let us
prove that then for any 1-pull-back V of U the set V ∩ D is connected and V is
a closed Jordan disk. Choosing as ε the distance between D and N and applying
this claim inductively to a closed Jordan disk W with properties from the lemma,
we will complete the proof.

Suppose that V ∩D is not connected. Construct a new dendrite T in such a way
that T ⊃ D, T contains all critical values of f and T ∩ U is connected. Then by
Lemma 4.2 f−1(T ∩ U) ∩ V is a dendrite and V is a closed Jordan disk. Since by
the assumption f−1(D) ∩ V is not connected then there exist at least two distinct
components of f−1(D)∩V . We can find an arc I ⊂ f−1(T ∩U)∩V connecting them
so that all points of I (except for the endpoints a, b) do not belong to D. Connect
a and b with the arc J inside D. Then I ∪ J = H is a Jordan curve. Observe that
by the construction and the assumptions H does not contain N while the image
of H is contained in T and is therefore simply connected. This contradicts Lemma
4.1 and shows that f−1(D)∩ V is connected. Observe that here the size of U does
not matter.

It remains to consider the case when N ∈ D. Then N is a cut point of D.
The components of D \ N are mapped one onto another in a well-defined fashion
because N is fully invariant. Choose a closed Jordan disk U containing N in its
interior and show that then there are only finitely many components of D \N not
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contained in U . Indeed, otherwise we can choose a sequence of such components
B1, B2, . . . so that there are points xi ∈ Bi ∩ ∂U with xi → x ∈ ∂U . Then small
neighborhoods W of x are such that W ∩D is disconnected (because it has points
of all Bi with big i and Bi are distinct components of D \ N), a contradiction to
the local connectivity of D. Hence for every U there are only finitely many Bi’s
not contained in U .

Hence there are finitely many components of D \N intersecting Pr(f). Denote
these components of D \N by A1, . . . , An. Let us show that the map f permutes
them. Indeed, given Al there exists a point x ∈ ω(c)∩Al where c ∈ D is a recurrent
critical point. Then there exists a point y ∈ ω(c) such that f(y) = x. Choose r
so that y ∈ Ar. Then clearly f(Ar) ⊂ Al. In other words, f maps Ai’s so that
the corresponding map ϕ of the finite set {1, . . . , n} is surjective. Hence ϕ is a
permutation as desired. Set D′ = N ∪

⋃n
i=1 Ai. Clearly, f is dendrite-critical with

respect to D′. Choose δ > 0 smaller than the distance between N and the filled-in
Julia set K(f). Then for every pair of subscripts i, j the distance between the
sets Ai \ B(N, δ) and Aj is positive. Choose ε < δ which is less than the minimal
distance between any two such sets.

Assume that W is a closed Jordan disk of diameter less than ε, intersecting a
set Ai (e.g., this is so if W intersects Pr(f)). Observe that then i is unique and W
does not contain N . Suppose that R is a k-pull-back of W intersecting D′. Then
R ∩D′ = R ∩ Aj where the set Aj is a unique set from the collection A1, . . . , An

with fk(Aj) ⊂ Ai. Suppose that for a 1-pull-back V of W the intersection V ∩Aj is
not connected. Create a new dendrite T ⊃ (D′ ∩W ) so that T contains all critical
values of f in W and T ∩W is connected. By Lemma 4.2 the set f−1(T ) ∩ V is a
dendrite. Since by the assumption V ∩D′ = V ∩Aj is not connected, we can find an
arc I with the endpoints a ∈ Aj , b ∈ Aj such that the image of I is contained in T
and I is disjoint from D′ except at a, b. Also, connect a, b with the arc J inside Aj .
Then J is contained in Aj and avoids N . The arc I avoids N by the construction.
Thus, the Jordan curve I ∪ J avoids N while its image is contained in the dendrite
T , a contradiction with Lemma 4.2. This completes the proof of the lemma.

Finally we prove the following lemmas in which the standard interval notation
is adopted.

Lemma 4.4. Suppose that f is a rational map with an invariant dendrite G. Let
I ⊂ G be a connected set such that I ∩ f(I) 6= ∅ and

lim inf
n→∞

diam(fn(I)) = 0.

Then the set K∞
0 =

⋃∞
j=0 f j(I) is connected and the following possibilities hold:

(1) the set K∞
0 contains a neutral fixed point;

(2) the orbit of I converges to an attracting fixed point;
(3) the orbit of I converges to a parabolic fixed point a so that for some point

d ∈ G the component U of G\{d, a} containing (d, a) is such that f(U) ⊂ U ,
all points of U are attracted to a and I is mapped inside U by some iterate
of f ; moreover, the point d can be chosen arbitrarily close to a.

Thus, if K∞
0 does not contain a neutral fixed point then limn→∞ diam(fn(I)) = 0.
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Proof. Since I intersects f(I), then also fn(I) intersects fn+1(I) for each n. There-
fore the sets Kn

m =
⋃n

j=m f j(I) (including the case n = ∞) are connected. Since
lim infn→∞ diam(fn(I)) = 0, there is a sequence kn →∞ with fkn(I) → a, a ∈ G.
Then fkn+1(I) → f(a), and since diam(fkn(I) ∪ fkn+1(I)) → 0 we get f(a) = a.

Let us show that a must be attracting or neutral. Indeed, suppose that a is
repelling. Then for any point x closer than some δ > 0 to a we have d(f(x), a) >
d(x, a). Now, consider two cases. First assume that a ∈ I. To see that

lim inf
n→∞

diam(fn(I)) = 0

is impossible, choose small ε > 0 so that ε < δ and I is not contained in the ε-ball
B centered at a. By connectivity there exists a point y ∈ I such that d(y, a) = ε.
Thus d(f(y), a) > ε and f(I) is not contained in B either. By induction it implies
that diam(fk(I)) > ε for every k, a contradiction. Now, consider the case when
a /∈ I. Choose ε < δ so small that the ε-ball B centered at a is disjoint from I.
Let us show by induction that no image of I is contained in B. Indeed, this is
true for I. If it fails, it has to fail for the first time for some n. Then fn−1(I)
is partially outside B while on the other hand it intersects fn(I) ⊂ B. Hence by
connectivity there is a point y ∈ fn−1(I) whose distance from a is ε. This implies
that d(f(y), a) > ε while on the other hand f(y) ∈ fn(I) ⊂ B, a contradiction.
So in any case there exists a ball B centered at a such that fn(I) 6⊂ B for any n.
Clearly, it contradicts the fact that fkn(I) → a.

If an image of I contains a neutral fixed point then (1) holds and there is nothing
to prove. If a is an attracting fixed point then the fact that fkn(I) → 0 implies that
the orbit of I converges to this fixed point as desired and (2) holds. So from now
on we may assume that neither (1) nor (2) takes place. That is, a is a neutral fixed
point and the set K∞

0 does not contain a. We may also assume that I is closed.
Since G is a dendrite, the set K∞

0 is contained in a unique component A of
G \ {a}. Consider the unique arc J = [x, a) ⊂ A such that J ∩ I = {x} (recall
that we use usual interval notation here). Then J ⊂ K∞

0 because of the properties
of dendrites. Each point z ∈ J defines an open connected set Uz ⊂ G which is a
component of G \ {z, a} containing (z, a). Since a is neutral we may assume that
the point z is chosen so that Uz contains no critical points of f and the only fixed
point of f in Uz is a. Since J is contained in K∞

0 , we have f(z) ∈ K∞
0 ⊂ A.

Consider two cases.
(i) f(z) /∈ Uz. Then the choice of z guarantees that f([z, a]) ⊃ [z, a] and that

points of J which are mapped by f back into J , are mapped farther away from
a. Then the argument mimicking the previous argument dealing with repelling
periodic points shows that in this case we have a contradiction. Indeed, take the
first m such that fm(I) ⊂ Uz. Since fm−1(I) intersects fm(I), we see that fm−1(I)
intersects Uz. By the choice of m we see that fm−1(I) is not contained in Uz.
Therefore by connectivity z ∈ fm−1(I) and so f(z) ∈ fm(I) ⊂ Uz, a contradiction.

(ii) f(z) ∈ Uz. By the choice of z we know that f(z) 6= z. Then f(z) ∈ Uz.
Consider f([z, a])∩ [z, a]; clearly, this is an interval of the form [b, a] where b ∈ [z, a]
(we rely upon the fact that a is an endpoint of A). Consider the point d ∈ [z, a]
such that f(d) = b. Then there are two possibilities. First, d may belong to (b, a).
In this case the situation is like the one in (i), which leads to the contradiction.
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Second, d may belong to [z, b). In this case points on the interval [d, a] are pushed
closer to a on the same interval. We will show that then f(Ud) ⊂ Ub. Indeed, the
map on Ud is injective. Therefore, the only point of Ud mapped by f to b is d.
Given any other point u ∈ Ud, connect it by the unique arc [u, v] to [d, a] (so that
v ∈ (d, a)). Then the image of [u, v] is the arc connecting f(v) ∈ (b, a) and f(u). If
f(u) /∈ Ub then there exists a point t ∈ [u, v] mapped to b or to a, a contradiction
with injectivity of f |Ud

. This actually implies that the orbits of all points of Ud

converge to a. Indeed, by the above argument f(Ud) ⊂ Ub, where b = f(d). This
can be repeated, which by induction implies that fn(Ud) ⊂ Ufn(d). Since there are
no other fixed points in [z, a), we conclude that Ub can serve as the set U from the
case (3) of the lemma.

Observe that if neither (1) or (2) holds then Snail Lemma easily implies that a
is parabolic.

An easy analysis of the result proven in Lemma 4.4 using information about
rational maps and their parabolic points leads to the following corollary given here
without proof. To state it denote by A the component of G \ {a} containing U .

Corollary 4.5. In the situation of Lemma 4.4(3) the point d can be chosen in such
a way that U ∩J(f) = {a}. Moreover, the distance between U and the set A∩J(f)
is then positive.

We are now ready to prove Lemma 4.6 which will be applied in the next section.

Lemma 4.6. Suppose that f is a rational map with an invariant dendrite D.
Suppose that [an, bn] = In, i = 1, 2, . . . , is a sequence of arcs in D converging
to an arc I ′ = [a, b] and such that an, bn ∈ J(f). Moreover, suppose that there
exists a sequence (mn)∞n=1 such that diam(fmn(In)) → 0 and fmn(In) does not
contain neutral periodic points for any n. Then I = (a, b) is wandering, and so
diam(fk(I ′)) → 0 and ω(a) = ω(b).

Proof. We may assume that a 6= b (therefore the images of I are never degenerate)
and mn →∞. Observe that a, b ∈ J(f). Assume that I = (a, b) is not wandering.
Then there exist two positive integers k, l such that fk(I) ∩ fk+l(I) 6= ∅, and so
there are points x, y ∈ I such that fk(x) = fk+l(y). For the sake of simplicity we
assume that k = 0 and l = 1; the same arguments can be repeated in general with
the appropriate changes (e.g., one will have to consider a certain iterate of f and
not f itself, etc.).

By the assumptions, every compact subinterval K of I is contained in all but
finitely many In’s and if K is big enough then it contains both x and y so that
K ∩ f(K) 6= ∅. Hence Lemma 4.4 and Corollary 4.5 apply to K. Observe that the
images of K cannot contain neutral periodic points because of the assumptions on
In. Thus we need to consider cases covered by Lemma 4.2 (2) and (3).

First consider a simpler case, covered in Lemma 4.4(2), when the orbit of K
converges to an attracting fixed point. Each In contains points of J(f), and so
does fmn(In). On the other hand, if n is big then fmn(In) ⊃ fmn(K) and the set
fmn(K) gets closer and closer to the attracting fixed point a as n grows to infinity.
Thus, if ε > 0 is less than one half of the distance between a and J(f) then from
some time on diam(fmn(In)) > ε, a contradiction.
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Suppose now that the parabolic case covered in Lemma 4.4(3) takes place. Fix
a number N such that fN (K) ⊂ U where U is chosen as in Lemma 4.4(3) and
Corollary 4.5. Clearly, for all big n we may assume that mn > N and In ⊃ K.
Hence fmn(In) is a set which on the one hand contains points of U and on the other
hand contains points of J(f). Moreover, the fact that fmn(In) does not contain
neutral periodic points implies that fmn(In) is contained in the same component
of D \ {a} as U . Therefore by Corollary 4.5 we see that diam(fmn(In)) > ε for
some ε > 0 and all sufficiently large n, a contradiction.

5. Main results

The main aim of this section is to prove Theorem 5.4 and its corollary. First let
us introduce some terminology assuming that a rational function f is given. For
x ∈ ̂C and n > 0 consider the supremum rn(x) of all r such that B(fn(x), r) can
be pulled back to x univalently. Then rn(x) > 0 if all points x, . . . , fn−1(x) are
not critical; otherwise define rn(x) as 0. Denote by V the pull-back of B(fn(x), rn)
corresponding to x; then there exists a critical point cn belonging to the boundary
of fmn(V ). We call (cn,mn) a generating pair for rn(x).

If x ∈ J(f) and rn(x) 6→ 0 then x is called (C-)reluctant (recall that C denotes
the set of critical points of f). The set of all such points is denoted by Rlc(f)
(reluctant points are also called conical, see, e.g. [DMNU] and the set Rlc(f) is also
called the radial Julia set of f , see [McM]; in Section 8.3 of [LM] reluctant points
are discussed in the context of Kleinian groups). If x ∈ J(f) and rn(x) → 0, the
point x is called (C-)persistent. There are trivial cases when a point x is persistent,
e.g., if it is precritical, or preparabolic. Given a persistent point x let us call the
sequence of generating pairs (cn,mn) with n = 1, 2, . . . the standard basic setup
for the point x. The set of all persistent points is denoted by Prs(f). By the
definition, Prs(f) ⊂ J(f) and Rlc(f) ⊂ J(f). Finally, denote by PA(f) the union
of all parabolic periodic points of f and call periodic orbits cycles.

The next lemma is useful in the proof of Theorem 5.3; it is used in the proof of
Theorem 1.1 and will be useful for us as well.

Lemma 5.1 [BMO]. If z ∈ Prs(f) is neither precritical nor preparabolic then
ω(z) ⊂ Pr(f).

We will also need the following well-known lemma from topological dynamics
(for the proof see, e.g. [BM2]).

Lemma 5.2. Let X be a compact metric space and T : X → X a continuous map.
Let x ∈ X, M > 0, and let K ⊂ ω(x) be a compact set such that TM (W∩ω(x)) ⊂ K
for some open set W ⊃ K. Then ω(x) =

⋃M−1
i=0 T i(K). In particular, if there are

pairwise disjoint non-empty compact invariant sets A1, . . . , Aj whose union is ω(x)
then j = 1 and A1 = ω(x). Moreover, finite limit sets are cycles.

Before passing on to Theorem 5.3, we would like to point out that even though
the restrictions included in the definition of a dendrite-critical rational map do
not seem to be too strong, still one can show that dendrite-critical rational maps
cannot have Cremer points. Indeed, suppose that this is false. Then without loss
of generality we may assume that there exists a fixed Cremer point a. It is known
that then a belongs to the limit set of a recurrent critical point c [Ma2]. By the
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assumptions on dendrite-critical maps this implies that c ∈ D, and hence a ∈ D.
Choose a small neighborhood U of a so that U ∩D is connected and c /∈ U . Local
connectedness of D implies that there are only finitely many components of D\{a}
which are not contained in U . Denote those of them which contain points of ω(c)
in their intersections with U by A1, A2, . . . , Al. Also, since D is invariant then the
following holds: for every component K of D \{a} there exists a unique component
L of D \ {a} such that f(K ∩ U) ⊂ L.

Now, let us apply f to A1 ∩ U . By the definition it either gets mapped into Ai
for some Ai, or it gets mapped into a small component K ⊂ U of D \ {a}. In the
latter case we can apply f over and over until the component in question maps into
some Ai for the first time. This must happen because c must eventually exit U
(after all, c /∈ U is recurrent). Hence in either case we will find the next Ai to which
the same arguments can be applied. Clearly this eventually leads to some j such
that a small arc I = [a, b] ⊂ Aj ∩ U eventually maps into Aj . Choosing an even
smaller arc I ′ inside Aj ∩ U with an endpoint at a we see that this arc will map
over itself or into itself under an appropriate finite iterate of f . By Snail Lemma
this is impossible for a Cremer point a, a contradiction.

We can now pass on to Theorem 5.3.

Theorem 5.3. Suppose that x is a persistent point of a dendrite-critical polynomial
f . Then at least one of the following holds: a) x is precritical, or b) x is preparabolic,
or c) there exists a recurrent critical point c(x) such that ω(x) = ω(c(x)).

Proof. Assume that x is neither preparabolic nor precritical. Then by Lemma 5.1
ω(x) ⊂ Pr(f). Now, just like in the definition of a dendrite-critical rational map
there are two main requirements on recurrent critical points of f , there are two cases
we need to deal with here. The first case is easier so we begin with it. Namely,
suppose that ω(x) 6⊂ D. Then the set ω(x)\D is contained in the union of all limit
sets of recurrent critical points contained in S2 \ D. Consider the union B of all
recurrent critical points c ∈ S2\D such that ω(c)∩(ω(x)\D) 6= ∅. By the definition
of a dendrite-critical map, any limit set ω(c), c ∈ B, is minimal, and since all these
sets ω(c) intersect ω(x), then B′ :=

⋃

c∈B ω(c) ⊂ ω(x). On the other hand, since
D is invariant and all sets ω(c) with c ∈ B are minimal, B ∩ D = ∅ implies that
B′ ∩D = ∅. Hence, ω(x) = B′ ∪ (D ∩ ω(x)), with both sets in the union invariant
and disjoint. Since B′ 6= ∅, it follows from Lemma 5.2 that ω(x) = B′, and by the
same lemma B′ = ω(c) for some recurrent critical point c ∈ B which completes the
case when ω(x) 6⊂ D.

Let us now assume that ω(x) ⊂ D. Denote by A the union of the set of all
critical points of f and the set of all its parabolic periodic points. We want to
choose Basic Setup so that x is A-followed. Then by Theorem 2.1 we will have that
ω(x) = ω(c(x)) where c(x) ∈ A. Moreover, some extra properties which we will
establish guarantee that c(x) ∈ ω(x).

Loosely, the idea is as follows. First, choose for every point fn(x) in the orbit of
x a certain neighborhood Wn of fn(x) and a certain kn-pull-back Vn of Wn. The
pull backs will be such that Vn 3 cn where cn ∈ A. Then we set mn = n− kn and
thus complete Basic Setup - that is, up to the choice of the crucial elements of the
construction which are Wn, Vn and kn and up to the proof that x is A-followed.
Now, certain sets on this list are not difficult to come up with. Indeed, we have
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total control over neighborhoods Wn, so they can be chosen in such a way that their
diameters converge to 0 (in addition we want them to have connected intersections
with D). However, we do not have control over Vn, and this is when the tools
developed in Sections 3 and 4 become helpful.

We may assume that D has the properties from Lemma 4.3 and for any suf-
ficiently small ε and any Jordan disk W such that W ∩ D is connected and W
contains points of the set Pr(f), all pull-backs V of W intersect D over a connected
set.

Let us pass to the precise construction. It is done in steps, so let us describe
the m-th step assuming that 1/m < ε where ε is the constant found in Lemma
4.3. We can also assume that ε is less than the distance between the union of all
attracting periodic points of f and the Julia set J(f), and that ε is less that the
distance between any limit set of a recurrent critical point c not belonging to D
and D itself (recall that such limit sets are minimal and therefore disjoint from
D). Set εm = 1/m and cover D with a finite collection U of closed Jordan disks
U1, . . . , Uk whose intersections with D are connected (this is possible since D is
locally connected), whose boundaries are disjoint from the orbits of critical points,
and whose diameters are less than εm. Then we choose a Lebesgue number δ′ for
this cover. On the other hand we choose the number β = β(εm, 1/2, γ, 1) from
Theorem 3.5, where γ is the minimal distance between any Ui disjoint from PA(f),
and PA(f). By Theorem 3.5 if we have two squares T and T 2, the diameter of T 2

is less than β, d(T 2, PA(f)) > γ and there is a pull-back V of T 2 such that among
sets V, f(V ), . . . , T 2 the only one containing a recurrent critical point is V , then
any corresponding to V pull-back of T will have diameter at most εm. Finally, we
set δm = min(δ′/10, β).

The above implies that given a point y ∈ D, whose distance from PA(f) is at
least γ, we can first find j such that the ball of radius δ′ centered at y is contained in
Uj , and then a square S of radius δm centered at y. If we consider a pull-back of Uj
of recurrent criticality 1 then corresponding to it pull-back of S will be of diameter
at most εm. This fact which follows from of Theorem 3.5 plays an important role
in the construction below.

Choose Nm so big that rn(x) < δm for every n ≥ Nm. The m-th step in the
construction will be valid for the numbers n such that Nm ≤ n < Nm+1. Let us
explain how we choose Basic Setup. Given n ≥ Nm we first measure the distance
between fn(x) and the parabolic periodic points of f . If there exists a parabolic
periodic point a such that d(fn(x), a) ≤ εm then we set cn = a,mn = n. Suppose
that the distance between fn(x) and the parabolic periodic points of f is greater
than εm. Then any set Uj containing fn(x) has the closure disjoint from PA(f)
because the diameter of any Uj is less than εm. Choose a set Ui(n) 3 fn(x) in
such a way that the ball of radius δm centered at fn(x) is contained in Ui(n) (it is
possible because δ′ is a Lebesgue number of U).

The distance of the set Ui(n) from PA(f) is at least γ, so it is disjoint from
PA(f). Pull back Ui(n) until it hits a recurrent critical point c, or until it hits
the critical point c′ generating rn, whichever comes first. Set cn = c or cn = c′

respectively. This defines the number mn and ultimately our Basic Setup.
What needs to be proven now is that x is A-followed and c(x) ∈ ω(x). To prove

that x is A-followed we need to verify several properties listed in Section 2. First, ob-
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serve that Basic Condition is satisfied because εm → 0 and d(fn(x), fn−mn(cn)) <
εm if Nm ≤ n < Nm+1, so d(fn(x), fn−mn(cn)) → 0 as n → ∞. The main
part of the verification of the fact that x is A-followed is to check if for any lim-
iting pair (x′, c′) we have ω(x′) = ω(c′). Consider a sequence of n-pairs with
n →∞ which converge to a pair of points (x′, c′). That is, suppose that (x′, c′) =
lim(f ln(x), f ln−mn(cn)) along a sequence of numbers n and with mn ≤ ln ≤ n. To
prove that ω(x′) = ω(c′) we make use of the fact that D is a dendrite.

Suppose that there is a sequence of n-pairs (f ln(x), f ln−mn(cn)) converging to
(x′, c′) and such that in all of them cn is a critical point generating rn. This means
that in the construction the pull-backs of Ui(n) do not hit recurrent critical points
until they reach cn. Therefore by Theorem 3.5 we have d(f ln(x), f ln−mn(cn)) <
εk = 1/k where k is such that Nk ≤ n < Nk+1. On the other hand, k → ∞ as
n →∞. Therefore in this case d(f ln(x), f ln−mn(cn)) → 0 as n →∞ and so x′ = c′

and ω(c′) = ω(x′) as desired. Observe that in this case we essentially prove that if
there is a sequence of n-pairs (f ln(x), f ln−mn(cn)) converging to (x′, c′) and such
that cn is a critical point generating rn then x′ = c′.

Suppose that there is a sequence of n-pairs (f ln(x), f ln−mn(cn)) converging to
(x′, c′) and such that in all of them cn is a parabolic periodic point. Then by
the construction in this case n = mn and hence ln = mn = n which implies that
we have n-pairs (fn(x), cn) converging to (x′, c′). Clearly, this implies that c′ is a
parabolic periodic point and that x′ = c′.

¿From now on we may assume that in our sequence of n-pairs giving rise to the
limiting pair (x′, c′) all n-pairs (f ln(x), f ln−mn(cn)) arise from the pull-backs of
Ui(n) hitting a recurrent critical point cn for the first time. Unlike before, in this
case we rely upon topological and dynamical properties of dendrites established in
Section 4. Observe first that by the choice of ε the point cn must belong to D.
Also, by the choice of Ui(n) we know that it has diameter less than ε and contains
some points of limit sets of recurrent critical points of f . Therefore Lemma 4.3
applies to Ui(n) and all pull-backs of Ui(n) will have connected intersections with
D. In particular, if W is the (n−mn)-pull-back of Ui(n) corresponding to cn, then
W ∩D is connected. Therefore there exists a unique arc In connecting fmn(x) and
cn inside W ∩ D. Observe that In has the endpoints cn and fmn(x) which both
belong to J(f). Observe also that fmn(In) ⊂ Ui(n) which implies that fmn(In)
contains no attracting or parabolic periodic points (otherwise the choice of points
in the Basic Setup for fn(x) would have been different by the definition). Hence
Lemma 4.6 applies to the just constructed sequence of arcs In (recall that f has no
Cremer points). It implies that ω(x′) = ω(c′) as desired.

Observe that along the way we establish one extra property of our construction.
Namely, if c is a non-recurrent critical point which appears in the Basic Setup
infinitely many times, then it follows from Theorem 3.5 that d(fmn(x), c) → 0 for
mn’s corresponding to cn = c in Basic Setup. Therefore Lc = {c} for any such
critical point c.

Let us use this to complete the proof. Indeed, as we have just shown the point
x is followed by points of A. Hence by Theorem 2.1 there exists a point c ∈ A such
that ω(c) = ω(x) with all the properties listed in Theorem 2.1. We assume that x is
not preparabolic. Then c cannot be a parabolic periodic point because it is known
that ω(x) can be a parabolic cycle if and only if x is preparabolic. Hence c is either
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recurrent or non-recurrent critical point. Suppose that c is a non-recurrent critical
point. Since by Theorem 2.1 c appears in Basic Setup infinitely many times, we see
by the preceding paragraph that Lc = {c}. If the bounded case takes place, then
for some m we have fm(x) = c, which is impossible since x is not precritical. Hence
the unbounded case takes place. By Theorem 2.1 c is then recurrent, because it
belongs to Lc, a contradiction with the assumption that c is non-recurrent. Thus c
is recurrent and so ω(x) = ω(c) for some recurrent critical point c.

Together with Lemma 5.1 this theorem immediately implies our main Theorem
5.4.

Theorem 5.4. For a dendrite-critical polynomial f and a conformal measure µ at
least one of the following holds.

(1) For µ-almost every x ∈ J(f), ω(x) = J(f).
(2) For µ-almost every x ∈ J(f), ω(x) = ω(c(x)) for some critical point c(x)

depending on x, and at least one of the following holds: a) x is an eventual
preimage of c(x), or b) x is preparabolic, or c) c(x) can be chosen to be
recurrent.

An immediate corollary is the following.

Corollary 5.5. If f is a dendrite-critical polynomial and µ is a non-atomic con-
formal measure, then for µ-a.e. point x the set ω(x) contains a critical point.
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