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SETS OF CONSTANT DISTANCE FROM A COMPACT SET
IN 2-MANIFOLDS WITH A GEODESIC METRIC

ALEXANDER BLOKH, MICHA�L MISIUREWICZ, AND LEX OVERSTEEGEN

(Communicated by Alexander N. Dranishnikov)

Abstract. Let (M, d) be a complete topological 2-manifold, possibly with
boundary, with a geodesic metric d. Let X ⊂ M be a compact set. We show
then that for all but countably many ε each component of the set S(X, ε) of
points ε-distant from X is either a point, a simple closed curve disjoint from
∂M or an arc A such that A∩∂M consists of both endpoints of A and that arcs
and simple closed curves are dense in S(X, ε). In particular, if the boundary
∂M of M is empty, then each component of the set S(X, ε) is either a point
or a simple closed curve and the simple closed curves are dense in S(X, ε).

1. Introduction

The boundary of a Euclidean ball on the plane (or, equivalently, the set S(x, ε)
of points ε-distant from a given point x) is a simple closed curve. If instead of a
point x we consider a compact set X ⊂ R

2, then the same claim about the set
S(X, ε) of all points ε-distant from X is not true. Thus, it is natural to ask what
are the topological types of the sets S(X, ε) and whether, apart from a small set of
distances ε, the set S(X, ε) can be guaranteed to be a “topologically simple” set.

A strong result in this direction is due to M. Brown, who showed in [4] that given
a compact subset X of the plane, for all but countably many ε > 0 the set S(X, ε)
is the union of pairwise disjoint points, arcs, and simple closed curves (see also [3]
for related results). In this paper we generalize the results of [4] in two directions.
Instead of the plane with Euclidean metric, we consider 2-manifolds (not necessarily
compact, with or without boundary) with metrics that make them proper geodesic
metric spaces (see definitions below). Also, we improve the conclusions of the main
theorem of [4]. Our main result is Theorem 1.1.

In what follows we slightly abuse terminology and call singletons (sets with one
element) points. We will also speak of point-components and arc-components of a
set, meaning components that are points and arcs respectively. By “countable” we
mean “of cardinality ℵ0 or less”, so finite sets are also countable.
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Theorem 1.1. Let a 2-manifold M with metric d be a proper geodesic metric space.
Let X ⊂ M be compact. Then for all but countably many ε > 0 each component of
S(X, ε) is either a point, a simple closed curve disjoint from the boundary ∂M of
M or an arc A such that A∩ ∂M consists of both endpoints of A, and the union of
arcs and simple closed curves is dense in S(X, ε).

Observe that if M has no boundary (e.g., if M = R
2), then there are no arcs

with endpoints in ∂M . Thus, we obtain the following corollary.

Corollary 1.2. Let a 2-manifold M without boundary with metric d be a proper
geodesic metric space. Let X ⊂ M be compact. Then for all but countably many
ε > 0 each component of S(X, ε) is either a point or a simple closed curve, and the
union of simple closed curves is dense in S(X, ε).

Additional properties of the set S(X, ε) can be found in Section 5. We also prove
in Theorem 2.2 that S(ε) is finitely Suslinian for any ε (planar finitely Suslinian
sets are studied, e.g., in [1]). An example in Section 6 shows that the assumption
that the metric is geodesic cannot be dropped.

Let us fix the terminology. We use some standard notions, e.g., arc, (2-)manifold
(with or without boundary) and the boundary of a (2-)manifold. Note that if M
is a 2-manifold with boundary, then ∂M is a 1-manifold without boundary. Let
(Y, d) be a metric space such that for every pair of points x, y there exists an arc
I[x, y] with endpoints x, y which is an isometric image of the interval [0, d(x, y)]
under a map ψ : [0, d(x, y)] → Y with ψ(0) = x and ψ(d(x, y)) = y. Then the
metric d is called a geodesic metric, (Y, d) is called a geodesic space, and each arc
I[x, y] is called a geodesic segment between x and y. There are many examples
of geodesic 2-manifolds: smooth 2-manifolds without boundary with Riemannian
metrics (if one adds a boundary, the distance between two points can be defined
as the length of the shortest curve joining them), the plane with any norm and
its convex closed subsets with nonempty interior, etc. (see [2]). A metric space is
said to be proper if every closed ball is compact. Clearly, if M is proper and X is
compact, then S(X, ε) (and all components of S(X, ε)) are compact too. By the
Hopf-Rinow Theorem (see, e.g., [2]), a locally compact geodesic space is proper if
and only if it is complete. From now on we assume that Y = M is a 2-manifold
and fix a metric d on M which is compatible with the standard topology on M and
makes (M, d) a proper geodesic space.

In what follows all standard notions (a circle, a ball, etc.) are understood in the
sense of the metric d. Denote by B(x, ε) the ball of radius ε centered at x. Then
∂B(x, ε) coincides with the set S(x, ε) = {z ∈ M : d(z, x) = ε}. Let X be a compact
subset of M ; from now on we fix the set X and often omit referring to X (thus, we
use the notation S(ε) rather than S(X, ε), etc.). Let d(x) = inf{d(x, y) : y ∈ X};
i.e., d(x) is the distance from a point x to the set X. Since X is compact, there
exists a point z ∈ X with d(x) = d(x, z) and hence there exists a geodesic segment
I[x, z]. Any such segment will be called an x-twig and will be denoted I[x]. A twig
I[x] is disjoint from S(d(x)) except for its endpoint x; this is widely used in the
following.

Suppose that I ⊂ M is an arc in M such that no point of I, except perhaps
endpoints, belong to ∂M . Then if none of the endpoints of I is in ∂M (that is, the
whole arc is disjoint from ∂M), we will call I loose. If one endpoint is in ∂M and
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the other is not there, we will call I semi-loose. If both endpoints are in ∂M , we
will call I fastened. Thus, the arcs mentioned in Theorem 1.1 are fastened arcs.

The authors would like to thank the referee for useful remarks.

2. Only points, arcs and simple closed curves

In this section we extend Brown’s results [4] to the situation described above.
For given two disjoint closed sets A, B ⊂ M , a continuum C is said to be irreducible
between A and B if C intersects both A and B and does not contain a subcontinuum
with the same property. Given a continuum D intersecting A and B, one can use
Zorn’s Lemma to find a subcontinuum C ⊂ D irreducible between A and B.

Lemma 2.1. Let K be an irreducible continuum between ∂U and ∂V where U, V
are open sets with disjoint closures. Then K is disjoint from both U and V .

Proof. Set K ′ = K \ V . Take a component Y of K ′ containing a point from ∂U .
By the Boundary Bumping Theorem (Theorem 5.4 from [7, Chapter V, p. 73])
Y intersects ∂V . Since K is irreducible, Y = K and hence K is disjoint from V .
Similarly, K is disjoint from U . �

Below convergence of continua is understood in the Hausdorff sense. A com-
pactum Z is said to be finitely Suslinian if for each ε > 0, each collection of
pairwise disjoint subcontinua of diameter larger than ε is finite. It is known that
each finitely Suslinian continuum is locally connected and arcwise connected [7].

Theorem 2.2. The set S(ε) is finitely Suslinian.

Proof. By the assumptions, S(ε) is compact. Suppose it is not finitely Suslinian.
Then there exists a sequence of pairwise disjoint continua Ki ⊂ S(ε) with diameters
bounded away from zero. We may assume that they converge to a continuum
K ⊂ S(ε). Then K is disjoint from X. By taking a smaller subcontinuum, we may
assume that there exists a neighborhood W of K such that W ∩ X = ∅ and W
is homeomorphic to a closed disk. Choose points x �= y ∈ K and set ρ = d(x, y).
Choose small connected neighborhoods U ⊂ W of x and V ⊂ W of y so that U and
V are both homeomorphic to a closed disk, and U ⊂ B(x, ρ/8) and V ⊂ B(y, ρ/8)
(see Figure 1). Any continuum Ki with big enough i intersects both ∂U and ∂V .
For every i choose a continuum K ′

i ⊂ Ki irreducible between ∂U and ∂V . We may
assume that K ′

i’s converge to a continuum K ′′ ⊂ K. By Lemma 2.1 all sets K ′
i

x y

W
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zl K′l
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K′ n
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z

Figure 1. Construction from the proof of Theorem 2.2
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and hence the set K ′′ are disjoint from U ∪ V , and we may assume that they are
all contained in W .

For points t ∈ ∂U ∩ K ′′ we have d(x, t) ≤ ρ/8, while for points t ∈ ∂V ∩ K ′′ by
the triangle inequality we have d(x, t) ≥ 7ρ/8. Hence, since K ′′ is connected, there
is a point z ∈ K ′′ with d(z, x) ≥ ρ/2, d(z, y) ≥ ρ/2. Since K ′

i converge to K ′′, there
exists a sequence of points zi ∈ K ′

i, zi → z. We may assume that d(zi, z) < ρ/8 for
all i. For each zi there exists a zi-twig Ii = I[zi, xi] with xi ∈ X and d(zi, xi) = ε.
Then Ii \ {zi} is disjoint from S(ε) and hence from all the sets K ′

r and the set
K ′′. We show that for metric reasons Ii \ {zi} is disjoint from U or V , while for
topological reasons it is trapped between various sets K ′

r. Since to reach out to X
the twig Ii has to exit W , this leads to a contradiction.

To implement this plan let us first show that Ii is disjoint from both U and V .
Suppose otherwise and choose, say, t ∈ Ii ∩ V . Since d(z, y) ≥ ρ/2, d(zi, z) < ρ/8
and d(t, y) ≤ ρ/8, by the triangle inequality d(zi, t) ≥ ρ/2 − ρ/8 − ρ/8 = ρ/4.
Thus, d(t, xi) ≤ ε − ρ/4. On the other hand, d(t, y) ≤ ρ/8 and hence d(y, xi) ≤
ε − ρ/4 + ρ/8 = ε − ρ/8, a contradiction with y ∈ S(ε).

To implement the second part choose three distinct continua K ′
l , K

′
m and K ′

n and
then consider twigs Il, Im and In. Clearly, d(Il ∪ K ′

l , K
′
m ∪ K ′

n) > 0, d(Im ∪ K ′
m,

K ′
l ∪ K ′

n) > 0 and d(In ∪ K ′
n, K ′

l ∪ K ′
m) > 0. Choose γ > 0 less than one-tenth of

the minimal of these three distances. Now, let Jl be an arc with endpoints on ∂U
and ∂V , otherwise disjoint from ∂U ∪ ∂V , which contains zl and is γ-close to K ′

l .
Define arcs Jm, Jn similarly. Collapse U and V to two points. Then by Kuratowski’s
“θ-curve theorem” (Theorem 2 from [5, vol. 2, Chapter 10, §61, II, p. 511]) we may
assume that the continuum Z = Jl ∪ Jn ∪ U ∪ V separates zm from ∂W . On the
other hand, by the choice of γ the twig Im connects zm and X and bypasses Jl∪Jn,
a contradiction because Im must intersect ∂W since W ∩ X = ∅. �

Since by [6] there are only countably many pairwise disjoint triods in the plane,
then for all but countably many values of ε the set S(ε) contains no triods (this
argument is similar to [4]). A component of a finitely Suslinian compactum is
a locally connected, and hence arcwise connected, continuum. Therefore every
component of S(ε) is either a point, an arc, or a simple closed curve.

Theorem 2.3. For all but countably many ε > 0 each component of S(ε) is a
point, an arc, or a simple closed curve.

Denote by T1 ⊂ R
+ = (0,∞) the set of all parameters ε which satisfy the

conditions of Theorem 2.3. By this theorem, the set R
+ \ T1 is countable.

3. How components intersect the boundary

In this short section we make the first improvement to Theorem 2.3. It applies
only to manifolds with boundary and has no effect if there is no boundary. By an
interior point of an arc A we mean a point x ∈ A which is not an endpoint of A.

Lemma 3.1. Any family of pairwise disjoint arcs in M , each of whom has an
interior point in ∂M , is countable.

Proof. Consider the space L in the product M×[0, 1), which is the union of M×{0}
and ∂M × [0, 1). It is a 2-manifold without boundary. If I is an arc in M whose
interior point x belongs to ∂M , then the union of I and {x} × [0, 1/2] is a triod in
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L, and for disjoint arcs I, J those triods are disjoint. Therefore there can be only
countably many such pairwise disjoint arcs. �

Since components of S(ε1) and S(ε2) for ε1 �= ε2 are disjoint, we get the following
theorem as a corollary to this lemma.

Theorem 3.2. For all but countably many ε > 0 each arc-component of S(ε) has
no interior point in ∂M and each component of S(ε) which is a closed curve is
disjoint from ∂M .

Let T2 be the set of all ε ∈ T1 which satisfy the conditions of Theorem 3.2. In
the future consider only ε ∈ T2 (thus, all arc-components of S(ε) will be loose,
semi-loose or fastened). Then by Theorem 3.2 the set R

+ \ T2 is countable.

4. Two sides of a local arc

In this section we consider local properties of the function d near components of
S(ε) which are not point-components. Together with components of S(ε) we will
consider components of its complement and sometimes components of other sets.
To minimize confusion, we will think of M with S(ε) as a map (in a geographical
sense) that we try to color with two colors. Thus, we will refer to the components
of M \ S(ε) as countries. A country will be called white if its intersection with X
is non-empty and black otherwise.

Lemma 4.1. On each country the sign of the function d(·) − ε is constant. It is
positive on black countries and negative on white ones.

Proof. The function d(·) − ε on a country is a non-zero continuous function on a
connected set, and therefore its sign is constant. If this sign is negative, then each
point of the country has a twig contained in the country, so there are points of X
there. Therefore the country is white. If the sign is positive, then there cannot be
points of X there, because for them d is zero. Therefore the country is black. �

Now we prove an important technical lemma. By an open Jordan disk we mean
a set U homeomorphic to the open unit disk, whose boundary is homeomorphic to
the circle. Denote the diameter of a set E by diam(E). Also, let K(M) be the
space of all compact subsets of M with the Hausdorff metric. Then K(M) has a
countable base. Let A be the subspace of K(M) consisting of components of all
sets S(ξ), ξ > 0; then A has a countable base too. The function ψ : A → R

+, given
by ψ(Z) = ξ if Z is a component of S(ξ), is continuous.

Lemma 4.2. Let C ⊂ M be a simple closed curve, bounding an open Jordan disk
U disjoint from X. Let B be a component of S(ε) and let A be a component of
B ∩ U such that A is an arc.

(1) Suppose that at least one endpoint of A belongs to C and Q is a component
of U \ A.
(a) Assume that there is a country W and a sequence xn ∈ W ∩Q converg-

ing to x ∈ A. If yn ∈ Q \ S(ε), n = 1, 2, . . . , is a sequence converging
to y ∈ A (we do not exclude x = y), then for all sufficiently large n
the points yn belong either to W or to countries contained in Q and
bounded by simple closed curves.

(b) There is only one country W such that the closure of W ∩Q intersects
A.
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Figure 2. Construction from the proof of Lemma 4.2 (1)

(2) Suppose that both endpoints of A belong to C. Let Q, R be the components
of U \A, and let W, V be white countries such that W ∩ Q, V ∩ R intersect
A. Then ψ attains a strict local maximum at B.

Proof. (1) It follows from the assumptions that Q is homeomorphic to an open disk.
(a) If yn /∈ W , the set S(ε) ∩ Q separates xn from yn in Q. By a theorem of

Kuratowski ([5, Theorem 1, p. 438]), there is a component Zn of S(ε)∩Q separating
xn from yn in Q. If Zn is a simple closed curve, then it bounds an open disk V .
Since U ∩ X = ∅, there are no points of S(ε) in V (otherwise their twigs would
lead to points of X in V ), so V is a country. If Zn is not a simple closed curve,
then it is an arc with both endpoints in C (see Figure 2). Since Zn separates yn

(or xn) from A, for a large n the geodesic segment I[yn, y] (or I[xn, x]) intersects
Zn at a point zn, and d(zn, y) < d(yn, y) (or d(zn, x) < d(xn, x)). Since yn → y
(xn → x) and diam(Zn) ≥ d(zn, ∂U), diam(Zn) > min{d(x, ∂U), d(y, ∂U)}/2 for a
large n. Thus, if there are infinitely many n’s such that yn does not belong to W or
to a country contained in Q and bounded by a simple closed curve, then there are
infinitely many distinct (and therefore pairwise disjoint) sets Zn with diam(Zn) >
min{d(x, ∂U), d(y, ∂U)}/2, a contradiction, since S(ε) is finitely Suslinian. This
proves (a).

(b) Clearly, there is a country W such that the closure of W ∩Q intersects A. If
there is another such country V , then by (a) it must be contained in Q and bounded
by a simple closed curve. However, then V cannot intersect A, a contradiction.

(2) Suppose that ψ does not attain a strict local maximum at B. Then there
is a sequence Yn, n = 1, 2 . . . , of components of S(ξn) respectively, convergent in
the Hausdorff metric to B and such that ξn ≥ ε for each n. Since S(ε) is finitely
Suslinian, only finitely many ξn can be equal to ε, so we can assume that ξn > ε
for all n. We can choose a sequence of points yn ∈ Yn convergent to some y ∈ A,
and we can assume that all yn belong to Q. Since W is white, by Lemma 4.1 those
points do not belong to W . Since W ∩ Q intersects A, there exists a sequence of
points xn ∈ W ∩Q convergent to some x ∈ A. Therefore, by (1)(a), for sufficiently
large n the point yn belongs to a country Wn contained in Q and bounded by a
simple closed curve. Then Yn ⊂ Wn, which contradicts the assumption that Yn

converge in the Hausdorff metric to B. This completes the proof. �

Remark 4.3. In the setup of Lemma 4.2 (2) W and V cannot both be black because
the twigs of the points of A cannot pass through a black country.



SETS OF CONSTANT DISTANCE FROM A COMPACT SET 739

Now we can eliminate loose ends.

Lemma 4.4. Let B be a loose or semi-loose arc-component of S(ε). Then ψ attains
a strict local maximum at B.

Proof. Let z be an endpoint of B not contained in ∂M . There exists a neighborhood
U ′ of z which is an open Jordan disk disjoint from X, bounded by a simple closed
curve C ′ and such that the closure of the component A of B ∩ U ′ containing z is
an arc with one of its endpoints in C ′. Then Q′ = U ′ \ A is connected. Therefore
by Lemma 4.2 (1)(b) there is a unique country W ′ such that the closure of W ′ ∩Q′

intersects A. Hence, the twigs of points of A (except their endpoints from A) are
contained in W ′, so W ′ is white.

Take a point t ∈ A different than z. Then we can find a neighborhood U of t as in
Lemma 4.2 (2) and contained in U ′. Then both countries W, V from Lemma 4.2 (2)
are equal to W ′ (so they are white), and hence by that lemma ψ attains a strict
local maximum at B. �

Since the space A is separable, the set of points at which ψ attains a strict local
maximum is countable. Therefore the set of values ε at such points is countable.
Denote by T3 the set of all parameters ε ∈ T2 which are not strict local maximum
values of ψ. Then the set R

+ \ T3 is countable. From now on, we will consider
only ε ∈ T3. Thus, all arc-components of S(ε) will be fastened. Moreover, in
the situation described in Lemma 4.2 (2), W, V cannot both be white. They also
cannot both be black by Remark 4.3. Now we make the last step towards the proof
of Theorem 1.1.

Lemma 4.5. Assume that a point-component x of S(ε) does not belong to the
closure of Sep(ε). Then d attains a local maximum at x.

Proof. Suppose that d does not attain a local maximum at x. Then there is a
sequence of points xn → x such that d(xn) > ε. By Lemma 4.1, each xn belongs
to a black component of M \S(ε). Therefore a geodesic segment joining x with xn

intersects the boundary of this component, so it intersects Sep(ε). The points of
intersection converge to x as n → ∞. �

Since the space M is separable, the set of values of ε at which d attains a local
maximum is countable. Denote by T4 the set of all parameters ε ∈ T3 which are
not local maximum values of d. Then the set R

+ \ T4 is countable, and the proof
of Theorem 1.1 is complete.

5. Map coloring

In this section we obtain additional information about the way that S(ε) (for
ε ∈ T4) divides M . We already know by Lemma 4.2 and Remark 4.3 that if two
countries share a piece of border, they are opposite colors. However, our map may
have infinitely many countries, which does not allow us to get a clear picture.

Call a component Z of S(ε) which is not a point bounding or non-bounding,
according to whether (together with a piece of ∂M if Z is an arc) it bounds a
Jordan disk. If M is not homeomorphic to the 2-sphere or the closed unit disk, for
each bounding component Z of S(ε) there is a unique disk D(Z) bounded by it. If M
is homeomorphic to the 2-sphere, we fix such a homeomorphism. If Z is contained
is a hemisphere, we take as D(Z) the disk contained in this hemisphere. For the
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remaining finitely many bounding components Z, we choose a point p /∈ S(ε) and
denote by D(Z) the disk bounded by Z such that p /∈ D(Z). If M is homeomorphic
to the closed unit disk, the problem occurs only if Z is a fastened arc. Then we
make a similar construction as for the 2-sphere. In the disk model, we choose the
component that is contained in a half-disk, and for the remaining finitely many
fastened arcs we fix a point p /∈ S(ε) and choose as D(Z) the disk bounded by Z
and a part of the boundary of the disk that does not contain p. Call a bounding
component special if D(Z) ∩ X �= ∅ and general otherwise.

Lemma 5.1. There are only finitely many non-bounding and special bounding com-
ponents of S(ε).

Proof. Since the set S(ε) is compact, it can be covered by finitely many open
sets homeomorphic to a disk or a half-disk. This cover has a Lebesgue number.
Therefore there exists δ > 0 such that any component of S(ε) of diameter less than
δ is bounding. Since S(ε) is finitely Suslinian, it follows that there are only finitely
many non-bounding components of S(ε).

It is easy to see that if we take a sufficiently small η > 0, then for any bounding
component Z of diameter less than η the diameter of D(Z) is smaller than ε. If Z
is special, then diam(D(Z)) ≥ ε, so diam(Z) ≥ η. Therefore there are only finitely
many special bounding components. �

Consider non-bounding and special bounding components of S(ε); this gives us
a new map with finitely many countries. Since for a general bounding component
Z the set D(Z) contains no points of S(ε) (otherwise twigs of those points would
lead to points of X in D(Z)), such D(Z) is a black country. We will call such a
country a black dot.

Theorem 5.2. Consider the map M on M given by the non-bounding and special
bounding components of S(ε) as boundaries. It can be colored by two colors in such
a way that no two countries with the same color are neighbors.

Proof. By Lemma 4.2 and Remark 4.3, across the border of a black dot there is
a white country. Thus, if we repaint each black dot (together with its boundary)
white, we will diminish the number of countries, but each new country will have a
unique color, and the property that two countries with a common piece of border
have opposite colors will be preserved. The map we get in this way is M. �

It is clear that the countries that are non-compact are black. Therefore from
Theorem 5.2 we immediately get the following corollary.

Corollary 5.3. For every component of ∂M the number of endpoints of non-
bounding fastened arcs belonging to this component is even.

6. Example

In this section we show that our main theorem (and the corollary to it) may not
hold if we drop the assumption that the metric is geodesic.

We need a real function with some special properties. While any function with
a fractal graph should have those properties, we define one for which the proof is
especially simple.
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(0,-1) (1/2,-1)

(1,1)

Figure 3. The graph of f and the curve L

Lemma 6.1. There exist a continuous function f : [0, 1] → [0, 1] and an un-
countable set C ⊂ [0, 1] such that for every x ∈ C there is an uncountable set
E(x) ⊂ f−1(x) such that for every y ∈ E(x) and every δ > 0 there exist points
y−, y+ ∈ [0, 1] with y − δ < y− < y < y+ < y + δ and f(y−), f(y+) > f(y) = x.

Proof. Let K be the standard middle-thirds Cantor set. In other words, K consists
of points that have ternary expansion 0.x1x2x3x4 . . . with xi ∈ {0, 2} for all i. For
such x define f(x) as the number with ternary expansion 0.x2x4x6x8 . . . . Clearly,
this function is continuous and therefore can be extended to a continuous function
f : [0, 1] → [0, 1], for instance linearly on each gap in K (see Figure 3). Let C be
the set of points of K which are not endpoints of the gaps in K, so in their ternary
expansions both 0 and 2 appear infinitely many times. The set C is uncountable.
Fix x ∈ C with the ternary expansion 0.x1x2x3x4 . . . . Let C(x) be the set of all
numbers with the ternary expansion 0.y1x1y2x2 . . . , where yi ∈ {0, 2} for all i and
both 0 and 2 appear infinitely many times among yi. Clearly, C(x) ⊂ f−1(x). For
a given y ∈ C(x) (with the ternary expansion 0.y1x1y2x2 . . . ) and δ > 0, in order
to get y− (respectively y+) with the properties described in the statement of the
lemma, find a sufficiently large n such that yn = 2 (respectively yn = 0) and m > n
such that xm = 0 and replace yn by 0 (respectively by 2) and xm by 2 in the ternary
expansion of y. �

Now set G = {(x, f(x)) : x ∈ [0, 1]} and define the curve L in R
2:

L = G ∪ {(x, 1) : x ∈ [1,∞)} ∪ {(0, y) : y ∈ [−1, 0]} ∪ {(x,−1) : x ∈ [0,∞)}
(see Figure 3). Then the set M = L × R ⊂ R

3 is homeomorphic to the plane R
2.

We use in R
3 the max norm and the metric d induced by it, so

d((x, y, z), (x′, y′, z′)) = max(|x − x′|, |y − y′|, |z − z′|).
With this metric restricted to M (we will denote it also by d), M is a complete
2-manifold without boundary. However, d is not a geodesic metric on M (although
it is on R

3).
Let us set X = {(1/2,−1, 0)} (the point (1/2,−1) is marked in Figure 3). Then

the set S(ε) will be the intersection of M with the sphere centered at (1/2,−1, 0)
of radius ε in (R3, d). This sphere is geometrically the cube centered at (1/2,−1, 0)
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with edges parallel to the coordinate axes and of length 2ε. To visualize the whole
picture, imagine the x-axis being horizontal and pointing to the right, the y-axis
vertical pointing up, and the z-axis horizontal pointing towards the visualizer.

Lemma 6.2. For every c ∈ C and b ∈ E(c) the segment

A(c, b) = {(x, y, z) : x = b, y = c, z ∈ [−1 − c, 1 + c]}

is a component of S(1 + c).

Proof. Fix c ∈ C and b ∈ E(c) and denote A = A(c, b). Clearly, A ⊂ S(1 + c). By
Lemma 6.1, for every δ > 0 there exist points b−, b+ ∈ [0, 1] with b − δ < b− < b <
b+ < b + δ and f(b−), f(b+) > f(b) = c. Let c′ = min(f(b−), f(b+)) and set

a− = sup{x < b : f(b) = c′}, a+ = inf{x > b : f(b) = c′}.

Then b − δ < a− < b < a+ < b + δ, f(a−) = f(a+) = c′ > f(b) and f(x) < c′ for
every x ∈ (a−, a+). The two segments

{(x, y, z) : x = a±, y = c′, z ∈ [−1 − c′, 1 + c′]}

are contained in S(1 + c′), and so are the two arcs

{(x, y, z) : x ∈ [a−, a+], y = f(x), z = ±(1 + c′)}.

Their union is a simple closed curve whose projection to the xz-plane (the horizontal
one) is the boundary of the rectangle R(δ) with the vertices at the points (a±,±(1+
c′)). The projection π(A) of A is the segment with the endpoints (b,±(1+c)). Thus,
π(A) is contained in R(δ), and since the sets S(1 + c) and S(1 + c′) are disjoint,
the projection of the component of S(1 + c) containing A is contained in R(δ).
Moreover, the intersection of the rectangles R(δ) over all δ > 0 is equal to π(A).
Taking into account that this projection on the set {(x, f(x)) : x ∈ [0, 1]} × R is a
homeomorphism onto the image, this proves that A is a component of S(1+ c). �

As an immediate consequence of Lemmas 6.1 and 6.2 we get the following theo-
rem, which is the main result of this section.

Theorem 6.3. There exists a 2-manifold M with a complete metric d, homeo-
morphic to R

2, such that for an uncountable set of values of ε the set S(ε) has
uncountably many arc-components.
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