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Abstract. We obtain upper estimates on the entropy of interval
maps of given modality and Sharkovskii type. Following our results
we formulate a conjecture on asymptotic behavior of the entropy
of interval maps.

1. Introduction

The topological entropy is a well-known and widely used character-
istic of a dynamical system. It is often considered as a measure of
chaos exhibited by the system. The fact that it is a topological invari-
ant makes it even more important. Therefore obtaining estimates of
the topological entropy of a map is a useful task. In one-dimensional
dynamics an important (but by no means unique) setup here is as
follows. One considers a map with certain restrictions on dynamics
of its individual points (for example, one may consider interval maps
with periodic points of given periods). Then the question is whether
anything can be said about the topological entropy of such a map. It
turns out that the majority of estimates obtained in such situations
for the topological entropy are those from below (the list of references
here is prohibitively long, so we refer the reader to [1] and references
therein). This is quite understandable as to obtain such an estimate
for an interval map from a certain class it is enough to show that each
map from this class exhibits a certain type of behavior (pattern) which
can be described combinatorially. Since such combinatorial description
usually yields a guaranteed lower estimate of the entropy, the problem
then is solved.

The story with upper estimates on the entropy is quite different. The
problem is that the approach described above fails - the fact that the
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map exhibits a certain type of behavior does not imply upper estimates
of the entropy.

In fact, we know of only one paper where upper estimates of the
entropy of a class of interval maps are done. In [4] (see also [3]) the
second author investigated the topological entropy of green maps with
prescribed (combinatorial) complexity - a characteristic not restrict-
ing modality but covering properties of laps of a piecewise-monotone
map. He proved that there is a close coherence between the best upper
bounds of the entropy of such maps and bifurcation values of the pa-
rameters determining strictly monotone solutions to special difference
equations.

In the majority of cases upper estimates of the entropy are not even
possible because if the maps are not assumed polymodal, or if they are
polymodal but the modality is not bounded, then usually one can give
examples of maps from a given class whose entropy is arbitrarily large.

Therefore, a good approach to the problem of upper estimates of the
entropy is to assume that maps which exhibit certain type of dynamics
are polymodal with bounded modality and use this modality as one
of the parameters involved in the estimates. This paper is devoted to
obtaining upper estimates on the entropy of maps with two types of
restrictions on the dynamics of their points; to describe the restrictions
we need to introduce a few known notions in one-dimensional dynamics.

A useful characteristic of dynamics of interval maps is the so-called
Sharkovskii type Sh(f) of the map f , that is the strongest - in the
sense of the Sharkovskii ordering - period [10] of a periodic point of the
map. The Sharkovskii ordering is the following ordering among natural
numbers:

3 ≺ 5 ≺ 7 ≺ · · · ≺ 2 · 3 ≺ 2 · 5 ≺ 2 · 7 ≺ · · · ≺ 8 ≺ 4 ≺ 2 ≺ 1

In the case when n ≺ m we will say that n is stronger than m (in the
sense of the Sharkovskii ordering). Denote by P (f) the set of periods
of cycles of an interval map f . Also, denote by S(k) the set of all such
integers m that k ≺ m or k = m and by S(2∞) the set {1, 2, 4, 8, . . . }.
The importance of the Sharkovskii ordering is explained by the famous
Sharkovskii Theorem on co-existence of periods of cycles of interval
maps, a major result in one-dimensional dynamics stated below.

Theorem 1.1. Let g : [0, 1] → [0, 1] be a continuous map. Then there
exists such k ∈ N ∪ 2∞ that P (g) = S(k). Moreover for any such k
there exists a map g : [0, 1] → [0, 1] with P (g) = S(k).

In the original proof of the Sharkovskii Theorem [10] another fact
about interval maps is used as a technical tool. Following Sharkovskii,
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we say that an interval map f has an L-scheme if there exists a fixed
point a and a point b such that either f 2(b) ≤ a < b < f(b), or f 2(b) ≥
a > b > f(b) (because of the symmetry of the notion we will assume
below that if f has an L-scheme then in fact f 2(b) ≤ a < b < f(b)). In
this case we will also say that the points a, b form an L-scheme. One
of the results of [10] is that a map which has an L-scheme has periodic
points of all periods.

Observe, that if f has an L-scheme then the intervals I = [a, b], J =
[b, f(b)] have disjoint interiors and are such that their images cover
their union. In other words, they form the so-called 2-horseshoe (the
importance of horseshoes for interval maps became clear after papers
[6, 7, 8, 9], see also [1] and references therein), and in fact it is easy to
see that if a map has a 2-horseshoe then it must have an L-scheme.

Our aim is to estimate the entropy of an interval map from above
assuming that it does not have any L-scheme and that its modality
(see below) is known. We need some definitions. A continuous map
is said to be monotone if pointwise preimages are connected (this is
actually a general definition which applies to maps of any topological
spaces). Thus, in the interval case we understand monotonicity in the
non-strict sense. An interval map f : I → I is said to be piecewise-
monotone if there are finitely many points dividing I into subintervals
on each of which f is monotone. The least number q of such (inner)
points is called the modality of f and denoted by mod(f), the map f
then is said to be q-modal, and q + 1 closed intervals into which I gets
partitioned are then called laps of f .

Theorem 1.2. Let f be a q-modal map without L-scheme (e.g., this is

true if Sh(f) 6= 3). Then h(f) ≤ ln(
√

.75q2 + 1.5q + 1.25 + .5)

Denote the supremum of the entropy of a map f with Sh(f) = s
and modality q by h(s, q). Concerning the numbers h(s, q) one can
ask various questions on their (asymptotic) behavior with respect to
Sharkovskii type and modality. The simplest observation can be done
with the help of Figure 1. Using a suitable extension of a unimodal map
of type s one can construct a map of type s and modality q. It implies
that the number h(s, q) exists for any pair s, q. Similar argument shows
that the sequence {h(s, q)}q is non-decreasing for any type s. On the
other hand, proofs of some properties require more subtle technics and
detailed analysis (for instance, the fact that h(s, q) need not be a max-
imum (as it is for s = 3), answering the question if h(s, q) < h(s, q +1)
for each modality q, resp. h(s, q) > h(s′, q) whenever s ≺ s′ and s
is not a power of two). In this paper we prefer rather (new) differ-
ent approach - to get some information on the asymptotic behavior of
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h(s, q) with fixed s as q → ∞. In this direction Theorem 1.2 enables
us to estimate the asymptotical difference lim infq→∞ h(3, q) − h(5, q).
Indeed, by the result of Misiurewicz and Szlenk [9], h(3, q) = ln(q + 1)
and from Theorem 1.2 we get

ln(
√

.75q2 + 1.5q + 1.25 + .5) ≥ h(5, q)

for each q hence we see that lim infq→∞ h(3, q) − h(5, q) > 0 - see the
last theorem of this section. This can be interpreted as an indication of
the fact that the dynamical restriction upon a map which is introduced
as we fix its Sharkovskii type is significant - after all, it can be detected
through the entropy as we let the modality to tend to infinity.

0 1a b

Figure 1. For 0 < a < b < 1 and q′ > q, any q-modal map
f : [a, b] → [a, b] of type s can be extended to a q′-modal map
f̃ : [0, 1] → [0, 1] of the same Sharkovskii type and the entropy.

We conjecture that in fact the same should hold for all other fixed
Sharkovskii types of interval maps except for the case when both types
are powers of 2 (including 2∞, and hence the entropy is zero, see [6,
7, 8, 9]). More precisely, we would like to formulate here the following
conjecture.

Conjecture 1.3. Given two Sharkovskii types s′ ≺ s′′ which are not
both equal to powers of 2 we have that lim infq→∞ h(s′, q)−h(s′′, q) > 0.

In fact, in a simple case when s′ = 3 · 2k ≺ s′′ = 3 · 2` have different
powers of 2 involved in their prime decompositions, Conjecture 1.3
follows easily from the lemma below which can be obtained using the
same tools as the ones used in the proof of Theorem 1.2.
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Lemma 1.4. Let f be a q-modal map with Sh(f) = (2s + 1)2k, s ≥ 0,
k ≥ 0. Then h(f) ≤ ln(1 + 2−kq).

We finish this section by theorem that summarizes the cases when
we are able to estimate the asymptotical differences of entropies from
our conjecture.

Theorem 1.5. Let the numbers h(s, q) be as above. Then

(1) lim infq→∞ h(3, q)− h(5, q) ≥ ln(2/
√

3).
(2) If 0 ≤ k ≤ ` then lim infq→∞ h(3 · 2k, q)− h(3 · 2`, q) ≥ ln 2`−k.

In conclusion we want to say, that even though in general the verifi-
cation of Conjecture 1.3 may require a set of tools finer than the ones
employed in the present paper, we hope that developing our tools will
be helpful in fulfilling this task.

2. Preliminaries

First of all, we would like to make some simplifications concerning
the notion of L-scheme. Suppose that points x, y form an L-scheme
and f 2(y) ≤ x = f(x) < y < f(y). Choose the closest to y from the
left fixed point x′. Since f 2(y) < y < f(y) then there is a fixed point
between y and f(y); let u be the closest from the right to y fixed point.
Then f 2(y) ≤ x ≤ x′ < y < u < f(y) and f(z) > z for all z ∈ (x′, u).
Choose a preimage q of x′ among points of the interval [u, f(y)], then
choose a preimage p of q among points of [x′, u]. We conclude that
f 2(p) = x′ = f(x′) < p < f(p) and f(z) > z for any z ∈ (x′, p). From
now on when saying that points p, q form an L-scheme we will mean
only this behavior - or its exact symmetric copy. Also, it is clear that to
estimate the topological entropy from above it is sufficient to consider
only interval maps with positive entropy.

We need a result of [2]; to state it we need to introduce a few notions.
An interval I is said to be periodic (of period n) if I, f(I), . . . , fn−1(I)
are pairwise disjoint while fn(I) = I. Set orb(I) = ∪n−1

j=0 f j(I). A map
restricted on the orbit of a periodic interval (of period n) is said to be
non-strictly periodic (of period n); such a map is said to be transitive
if there exists a point x whose orbit is dense. Finally, according to how
we define monotonicity, a map from a union of disjoint closed intervals
onto a union of disjoint closed intervals is monotone if and only if for
each point in the range its preimage is a closed interval.

Theorem 2.1. [2] Suppose that f is a piecewise-monotone interval map
of positive entropy. Then there exists a periodic interval I of period n
such that the following holds:
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(1) f |orb(I) is semiconjugate by a monotone map ϕ to a transitive
non-strictly periodic map g of period n;

(2) h(f) = h(f |orb(I)) = h(g).

Observe that since the semiconjugacy above is monotone, preimages
of points are closed intervals and so if g has a point of some period then
so does f . In what follows given a piecewise-monotone interval map f
of positive entropy we fix some choice of the objects whose existence
is proven in Theorem 2.1 and denote them as follows: the periodic
interval I is denoted by If , the semiconjugacy ϕ is denoted by ϕf , the
period of I is denoted by nf , the transitive non-strictly periodic map g
is denoted gf and the periodic interval on the orbit of which the map
gf is defined is denoted Mf (we assume that ϕf (If ) = Mf ).

We will also need another result which deals with transitive interval
maps. To do so we need another definition: a non-strictly periodic map
is said to be (topologically) mixing if for any open U, V there exists
n ≥ 0 such that for any i ≥ n the sets f i(U) and V are non-disjoint.

Lemma 2.2. [2] Suppose that f : [0, 1] → [0, 1] is a transitive interval
map. Then exactly one of the two cases holds:

(1) the map f is mixing and Sh(f) = 2n + 1, n ≥ 1;
(2) there exists a point a ∈ (0, 1) such that f [0, a] = [a, 1], f [a, 1] =

[0, a], restrictions f 2|[0,a], f
2|[a,1] are mixing, and Sh(f) = 6.

Upper estimates of the entropy of interval maps are often times based
upon the following proposition whose proof we only sketch. We need
yet a few definitions. Given a piecewise-monotone q-modal map f with
laps K0, . . . , Kq define the dynamic matrix Dynf = (aij) of f by the
following rule: aij = 1 if f(Ki) ∩KJ 6= ∅ and aij = 0 if f(Ki) ∩Kj =
∅. Also, consider the dynamic oriented graph Gf of f with vertices
K0, . . . , Kq which corresponds to Dynf and is defined as follows: an
oriented edge (an arrow) in Gf from Ki to Kj exists if and only if
f(Ki) ∩Kj 6= ∅. Denote by r(A) the spectral radius of a matrix A.

Proposition 2.3. Suppose that f : [0, 1] → [0, 1] is piecewise-monotone
map. Then h(f) ≤ r(Dynf ).

Proof. By the results of Misiurewicz and Szlenk [9] (see also [6, 7, 8]),
the entropy of f can be computed as follows. Consider the modality
mod(fn) of fn; then the limit of the sequence n−1 ln(mod(fn) + 1)
exists and equals the topological entropy h(f) of f . In other words,
the entropy is defined by the asymptotic behavior of the number of
laps of fn as n tends to infinity. Consider the graph Gf . Clearly the
number of laps of fn is no more than the number of oriented paths of
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length n− 1 in Gf (i.e., paths consisting of n− 1 consecutive arrows).
On the other hand, according to our definition of the dynamic matrix
Dynf of f , the number of all such paths equals the sum of all entries in

Dynn−1
f . By the well-known properties of the spectral radius of matrices

it follows that the entropy of f is no more than the spectral radius of
Dynf as desired. ¤

We also need estimates on eigenvalues of matrices. Given an n × n
matrix A, denote by aij its entries and by r(A) its spectral radius.
Also, given i denote by mi the maximum of the absolute value of a
non-diagonal element of the i-th row in A (by the diagonal of a matrix
we always mean its main diagonal). With this notation, set

b(A) =
n∑

i=1

(m−1
i ·

n∑

j=1,j 6=i

|aij|).

The following lemma is proven in [5].

Lemma 2.4. Let A be an n× n matrix. Choose a number α > 0 such
that α(α + 1) ≥ b(A). Then all eigenvalues of A belong to the union of
disks |aii − z| ≤ αmi.

Corollary 2.5. Let A be a matrix whose entries are equal to either
0 or 1, in each row there is at least one non-zero non-diagonal entry,
and there are R non-zero entries outside the diagonal. Then r(A) ≤√

R + .25 + .5.

Proof. In the situation of the corollary, mi = 1, 1 ≤ i ≤ n. Hence
b(A) = R. The minimal α satisfying the inequality α(1 + α) ≥ R is
given by α̂ =

√
R + .25− .5. Since |aii| ≤ 1, 1 ≤ i ≤ n, we see that by

Lemma 2.4 r(A) ≤ √
R + .25 + .5 as desired. ¤

3. Main Theorem

In order to prove our main theorem as well as Lemma 1.4 we need
three more lemmas.

Lemma 3.1. Let f : [0, 1] → [0, 1] be a transitive map without L-
scheme. Then f has a unique fixed point a ∈ (0, 1) such that f(x) > x
for any x < a, and f(x) < x for any x > a.

Proof. Let us show that f cannot have two fixed points. Indeed, sup-
pose otherwise. Then we may assume that a and b are fixed points
and f(x) > x for any x ∈ (a, b). Then by transitivity b < 1. Let us
show that a ∈ f([b, 1]). Indeed, otherwise [b, 1] ∪ f([b, 1]) is an invari-
ant subinterval of [0, 1] not containing a which contradicts transitivity.
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Now, take the smallest c ∈ [b, 1] with f(c) = a. Then there exists
d ∈ (a, c) such that f(d) = c because otherwise [a, c] is invariant which
by transitivity implies a = 0, c = 1 and by surjectivity for some d we
must have f(d) = c with d 6= c because f(c) 6= c. We conclude that
a = f(a) = f 2(d) < d < f(d) = c which means that f has an L-scheme,
a contradiction. ¤

Before we state the next lemma observe that the notion of modal-
ity can be introduced for non-strictly periodic map similarly as it is
done for an interval map (the least number of points dividing its do-
main into subintervals on each of which a map is monotone). Say that
a closed interval J is weakly periodic ( for f of period l) if int(J),
int(f(J)), . . . , int(f l−1(J)) are pairwise disjoint while f l(J) = J . Ob-
serve that in the case of a weakly periodic interval J the union of all
iterates of J (the orbit orb(J)) is a finite forward invariant union of
closed intervals.

Lemma 3.2. Let f be a non-strictly periodic map of modality q and
J be a closed interval weakly periodic of period l. Then h(f |orb(J)) ≤
ln(1 + q/l).

Proof. By the quoted above result of Misiurewicz and Szlenk we can
estimate the entropy of f |orb(J) for J from above as follows. Let ni be
the modality of f |f i(J). Then by [6, 7, 8, 9] we have that

h(f |orb(J)) ≤ l−1 ln[Πl−1
i=0(ni + 1)].

Since f has modality q then
∑l−1

i=0(ni + 1) ≤ l + q. Together with the
above inequality this implies that

h(f |orb(J)) ≤ l−1 ln[(
l + q

l
)l] = ln(1 + q/l).

¤
The following lemma combines and specifies results of Theorem 2.1

and Lemma 2.2.

Lemma 3.3. Let f be a piecewise-monotone interval map of Sharkovskii
type Sh(f) = (2s + 1)2k, s ≥ 1. Then there exists a number l ≥ 2k,
a closed interval J ⊂ If and a subinterval K ⊂ Mf weakly periodic
for gfof period l such that h(f l|J) = h(f l), f l|J is monotonically semi-
conjugate to a mixing interval map H = gl

f |K of the same entropy.
Moreover, one of the following holds:

(1) l = nf , J = If , and f has a point of period (2r + 1)l, r ≥ 1;
(2) l = 2nf , H has an L-scheme, and f has a point of period 3l.
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Proof. Consider the two cases corresponding to the cases from Lemma 2.2.
Set G = g

nf

f |Mf
; by Theorem 2.1 G is transitive.

(1) Suppose that G is mixing. Set H = G, J = If , K = Mf and
l = nf . Since the semiconjugacy is monotone, preimages of points are
closed intervals and so if H has a point of some period then so does
fnf = f l. By Lemma 2.2 H has a point of an odd period 2r +1, r ≥ 1.
Since J = If is an f -periodic interval and all its iterates until f l(J) = J
are pairwise disjoint then f has a point of period (2r+1)l, r ≥ 1. Since
l < 2k implies (2r + 1)l ≺ (2s + 1)2k = Sh(f), we obtain l ≥ 2k as
desired.

(2) Suppose that G is not mixing. We may assume that Mf = [0, 1].
Then there exists a point a ∈ (0, 1) such that G[0, a] = [a, 1], G[a, 1] =
[0, a] and both restrictions G2|[0,a], G

2|[a,1] are mixing. Set H = G2|[0,a].
Since a is a fixed endpoint of H, Lemma 3.1 implies that H has an L-
scheme, hence also a point of period 3. Set J = ϕ−1

f ([0, a]), K = [0, a]

and l = 2nf . It follows that f l|J is monotonically semiconjugate by
ϕf to a mixing map H. The interval J maps back into itself by f l,
still it is not f -periodic of period l because f l/2(J) intersects J over
a subset of the interval R = ϕ−1

f (a). However all other iterates of J

until f l(J) = J are disjoint from J . Clearly, f has a point of period
3l. Since l < 2k implies 3l ≺ (2s + 1)2k = Sh(f), we obtain l ≥ 2k as
desired. ¤

In what follows, J , l, K, gf and H are as in Lemma 3.3. It is easy
to see that Lemma 3.3, Lemma 3.2 and Lemma 2.2 imply Lemma 1.4.

Proof of Lemma 1.4. The conclusion holds when s = 0, since then
h(f) = 0 [1]. For s ≥ 1, we want to apply Lemma 3.2 to gf . The
modality of gf is at most q. On the other hand, ϕf (orb(If )) = orb(K),
and K is a weakly periodic interval for gf of period l ≥ 2k. Hence by
Lemma 3.2 h(f) = h(gf |orb(K)) ≤ ln(1 + q/l) ≤ ln(1 + 2−kq) as desired.

¤

We are ready now to prove Theorem 1.2.

Proof of Theorem 1.2. Set K = [0, 1]. By Lemma 1.4 and Lemma
3.3 h(f) ≤ ln(1+ q/l). If l > 1 then h(f) ≤ ln(1+ q/l) ≤ ln(1+ q/2) <

ln(
√

.75q2 + 1.5q + 1.25 + .5) (the last inequality is easy to check) as
desired. Thus it suffices to consider the case when l = 1. In this case
by Lemma 3.3 the map f on an invariant interval J is semiconjugate
by a monotone map ϕf to a mixing map H : [0, 1] → [0, 1]. Since ϕf

is monotone, H does not have an L-scheme. Indeed, suppose that it
does. Then we may assume that there are points x and y such that
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H2(y) = x = H(x) < y < H(y) and H(z) > z for any z ∈ (x, y).
The ϕf -preimage of x is an interval [a, b], and the ϕf -preimage of y is
an interval [c, d]. Since H(z) > z for any z ∈ (x, y) then because of
monotonicity of ϕf we see that f(z′) > z′ for z′ ∈ (b, c). By continuity
then f(b) ≥ b. Since f([a, b]) ⊂ [a, b] we conclude that f(b) = b. It
follows that b, c form an L-scheme of f , a contradiction. Also, it is
clear that the modality of H is at most q. Let us now use these facts
to estimate h(H).

Let J1 < J2 < · · · < Jr, r ≤ q + 1 be laps of H. Consider the
matrix AH = DynH . By Proposition 2.3 h(H) ≤ ln r(AH). Let us now
estimate r(AH). By Lemma 3.1 we may assume that d is a unique fixed
point of H; observe also that H has no flat spots since it is mixing.
Then d cannot be a turning point of H. Indeed, otherwise points
in a small semi-neighborhood of d stay on the same side of d while
being mapped towards d, a contradiction with mixing of H. Hence we
may assume that in a small neighborhood of d the map H is strictly
decreasing. Let Js be the interval containing d. If i < s then H(Ji) is
disjoint from Jt for each t < i, and if i > s then H(Ji) is disjoint from
Jt, t > i.

Let us construct a matrix B as follows.

(1) If i < s, set bit = 0 for t < i and bit = 1 for t ≥ i.
(2) If i = s, set bit = 1 for every t.
(3) If i > s, set bit = 1 for t ≤ i and bit = 0 for t > i.

Observe, that for every pair i, t we have aH
it ≤ bit. Hence r(AH) ≤

r(B). Let us estimate r(B) from above using Corollary 2.5 which
obviously applies to B. To this end let us estimate the number R
of non-diagonal non-zero entries in the matrix B. It follows from the
construction of B that

R = (
s−1∑
i=1

r − i) + r + (
r∑

i=s+1

i− 1) = .5[−2s2 + 2(r + 1)s + r2 − r].

It is easy to check, that the maximal value of R is .75r2 + .25 and
that it is reached if s = (r + 1)/2. Since r ≤ q + 1 we conclude that
R ≤ .75q2 + 1.5q + 1. By Corollary 2.5 and since r(AH) ≤ r(B) this
implies that

r(AH) ≤ r(B) ≤
√

R + .25 + .5 ≤
√

.75q2 + 1.5q + 1.25 + .5

Hence

h(f) = h(H) ≤ ln(
√

.75q2 + 1.5q + 1.25 + .5)

as desired. ¤
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Proof of Theorem 1.5. (1) Since h(3, q) = ln(q + 1) and by Theorem

1.2, h(5, q) ≤ ln(
√

.75q2 + 1.5q + 1.25 + .5), we get easily

lim inf
q→∞

h(3, q)− h(5, q) ≥ lim
q→∞

ln
q + 1√

.75q2 + 1.5q + 1.25 + .5
= ln

2√
3
.

(2) For ν ∈ N∪{0}, let π = (1 π(1) . . . π2ν−1(1)) be a cyclic permuta-
tion such that ’connect-the-dots’ map fπ has zero topological entropy
and for ν ≥ 2 is unimodal [1]. Consider intervals [a1, b1] < · · · <
[a2ν , b2ν ] and an interval map g = gν,r : [a1, b2ν ] → [a1, b2ν ], r ∈ N, such
that g([ai, bi]) = [aπ(i), bπ(i)] and for which (j = π−1(2ν))

(1) g is increasing on the set [a1, aj] \ ∪i<j[ai, bi],
(2) g is decreasing on the set [bj, b2ν ] \ ∪j<i[ai, bi],
(3) for i 6= j, g maps (ai, bi) in a 2r+1-to-1 fashion onto (aπ(i), bπ(i)),
(4) g maps (aj, bj) in a 2r-to-1 fashion onto (a2ν , b2ν ).

The map g3,2; π = (1 5 4 7 2 6 3 8) and j = π−1(8) = 3.

Let us show that Sh(gν,r) = 3 · 2ν . Indeed, the intervals [ai, bi]
form a cycle of intervals M of period 2ν , the map g2ν

restricted on
each such interval has points of all periods, hence Sh(gν,r) is 3 · 2ν

or Sh(gν,r) ≺ 3 · 2ν . If the latter holds, the corresponding periodic
points must be disjoint from M . However by the construction the
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only periodic points outside M are of periods which are powers of 2, a
contradiction.

Moreover, using (1)-(4) we get

mod(gν,r) = (2ν − 1)2r + (2r − 1) = 2ν+1r − 1,

hence by Lemma 1.4,

h(gν,r) ≤ ln(1 + 2−ν(2ν+1r − 1)) = ln(2r + 1− 2−ν) = V1(ν, r).

On the other hand by (1)-(4), each lap of g2ν |[aj ,bj ] maps by g2ν
onto

[aj, bj]. Since h(g) = h(g|orb([aj ,bj ])) = 1
2ν h(g2ν |[aj ,bj ]), we get from [9]

h(gν,r) =
1

2ν
ln((2r + 1)2ν−12r) = ln(2r + 1) +

1

2ν
ln

2r

2r + 1
= V2(ν, r).

By our definition, h(s, 1) ≤ h(s, 2) ≤ · · · ; since

mod(gν,[ q+1

2ν+1 ]) ≤ q ≤ mod(gν,1+[ q+1

2ν+1 ])

and for each 0 ≤ k ≤ `

V2(k, [
q + 1

2k+1
]) ≤ h(3 · 2k, q), h(3 · 2`, q) ≤ V1(`, 1 + [

q + 1

2`+1
])

we can write for each q,

V2(k, [
q + 1

2k+1
])− V1(`, 1 + [

q + 1

2`+1
]) ≤ h(3 · 2k, q)− h(3 · 2`, q).

Since limq→∞ V2(k, [ q+1
2k+1 ])− V1(`, 1 + [ q+1

2`+1 ]) = ln 2`−k, we have also

lim inf
q→∞

h(3 · 2k, q)− h(3 · 2`, q) ≥ ln 2`−k

as desired. ¤
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