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Abstract. For a rational f : Ĉ → Ĉ with a conformal measure µ we show that if there is a
subset of the Julia set J(f) of positive µ-measure whose points are not eventual preimages
of critical or parabolic points and have limit sets not contained in the union of the limit sets
of recurrent critical points, then µ is non-atomic, µ(J(f)) = 1, ω(x) = J(f) for µ-a.e. point
x ∈ J(f) and f is conservative, ergodic and exact. The proof uses a version of the Lebesgue
Density Theorem valid for Borel measures and conformal balls.

1. Introduction

Everywhere below f : Ĉ → Ĉ is a rational map, all measures considered are probability
Borel and ω-limit sets of points are called limit sets. A measure µ is conformal if for an
exponent α > 0 we have

(1) µ(f(A)) =

∫
A

|f ′(z)|αdµ,

whenever f |A is 1-to-1 (e.g., Lebesgue measure m on Ĉ is conformal with exponent 2). It
is shown in [Sul83] that f has at least one conformal measure supported on J(f) (see also
[DU91]).

We study limit sets of points. By [Sul85] the limit set of a point in the Fatou set is a
non-repelling cycle or the union of simple closed curves on which the appropriate power of
the map is conjugate to an irrational rotation. If m(J(f)) = 0, then this is the full list of

limit sets of m-a.e. point in Ĉ, which justifies studying the behavior of points in J(f) with
respect to a conformal measure µ living on J(f).

Theorem 1.1. Suppose that f is a rational map and µ is a conformal measure with exponent
α. Then the following possibilities hold; more precisely, if case 1 does not hold then case 2
holds.

(1) The set of eventual preimages of critical and parabolic points in J(f) together with
the set of points z ∈ J(f) such that ω(z) is a subset of the union of limit sets of
recurrent critical points has full µ-measure in J(f).
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(2) Otherwise f is exact, ergodic, conservative, µ is unique, non-atomic, supp(µ) = J(f),
ω(z) = J(f) for µ-almost every point z and α is the minimal exponent for which a
conformal measure with support on J(f) exists.

We were inspired by [Lyu83] where it is proven that for rational maps f with J(f) 6= Ĉ the
limit set of m-a.e. point in J(f) is contained in the union of limit sets of all critical points.
Let us briefly overview some other results in this direction. In case m(J(f)) > 0 it is shown
in [McM94] that if the limit set of m-a.e. point in J(f) is not contained in the union of

limit sets of all critical points then J(f) = Ĉ and f is ergodic with respect to m. In [Bar99]
it is shown that in the second case the map is also exact and conservative. Similar results
were obtained in [GPS90]. It was pointed out to us that the results in the latter paper can
be generalized to conformal measures using standard arguments. Related stronger results
with assumptions on measure are known: if J(f) is expanding [Bow75, Sul83, Wal78] or if
f is from a certain class of unimodal polynomials [Pra96] then f is ergodic with respect to
µ. In these papers, as in many others, the specifics are quite important (see [Prz96] and
[DMNUrb] for recent results and references).

We would like to emphasize that in the cited papers (e.g., in [GPS90]) the results about
the limit behavior concern the union of limit sets of all critical points while we replace it by
the union of limit sets of only recurrent critical points. Namely, making no assumptions on
maps we show that either the limit set of µ-a.e. point in J(f) which is not a preimage of a
critical or parabolic point is contained in the union of the limit sets of the recurrent critical
points, or µ is a so-called lim sup full measure which implies a lot of properties. So for the
limit sets the following possibilities hold: 1) µ-a.e. point z has limit set in the union of limit
sets of recurrent critical points or is an eventual preimage of a critical or parabolic point; 2)
ω(z) = J(f) for µ-a.e. z.

Our approach involves a version of the Lebesgue Density Theorem for a Borel probability
measure and a class of conformal images of round balls. The proof mostly uses topological
and geometrical methods on the plane and relies upon some results of [Mor47]; we also use
analytical results from [Pom92]. Note that by different methods the Main Theorem is proven
in [BMO] for Lebesgue measure.

Acknowledgments The first author would like to thank G. Keller for inviting him and
for useful discussions. He would also like to thank Erlangen University for its hospitality.

2. Preliminaries

In Section 2, T is an endomorphism of a measure space (X,µ). We call T non-singular
provided for any µ-measurable set A, µ(A) = 0 implies µ(T (A)) = 0. A useful property of
non-singular maps is that if An ⊂ B and µ(An) → µ(B) then limµ(T (An)) = µ(T (B)). A
map T is called conservative if for all sets A with µ(A) > 0, there exists a k > 0 such that
µ(T k(A) ∩ A) > 0; T is called ergodic if µ(A) ∈ {0, 1} whenever T−1(A) = A; T is called
exact if µ(A) ∈ {0, 1} whenever T−n ◦ T n(A) = A for all n > 0 (it follows from [Roh64]
that for rational maps and non-singular measures this definition of exact is equivalent to the
traditional one). Every exact map is ergodic. If X is compact then supp(µ) is the set of all
points whose all neighborhoods have positive µ-measure; then µ(supp(µ)) = 1.



LIMIT SETS 3

A set A is (µ-)lim sup full [Bar99] if lim supµ(T n(A)) = 1; T is (µ-)lim sup full if every
set of positive measure is lim sup full.

Theorem 2.1. [Bar99] Let T be a non-singular d-to-1 lim sup full endomorphism. Then T
is conservative and exact.

Theorem 2.1 applies to rational maps and their conformal measures. We rely upon it in
order to simplify some of the proofs. Other properties of lim sup full maps are obtained in
Lemma 2.2.

Lemma 2.2. Let T be a non-singular endomorphism.

(1) If L ⊂ X with µ(L) > 0 is invariant and a positive measure subset of L is lim sup
full then µ(L) = 1 and f is lim sup full; in particular, a lim sup full map is exact.

(2) If T is lim sup full and atomic then µ is concentrated on a single fixed point (in
particular, if X is a topological space and supp(µ) is not a single point, then µ is
non-atomic).

(3) If T is a lim sup full continuous map of a metric compactum X, then supp(µ) is
T -invariant and ω(z) = supp(µ) for µ-a.e. z.

Proof. We prove only statement 3 and do this by way of contradiction. Notice that if µ(G) >
0 then µ(T (G)) > 0 for any set G. Indeed, otherwise by non-singularity µ(T k(G)) = 0 for
all k ≥ 1, a contradiction to T being lim sup full. This and continuity of T immediately
implies that supp(µ) is invariant.

We may assume that µ is non-atomic and consider the restriction T |supp(µ) (WLOG from
now on we assume supp(µ) = X and so µ(U) > 0 for all open subsets U of X). Suppose
that the set B of points whose limit set is not X has positive µ-measure. Choose a countable
basis for X and for any element U of the basis let AU = {x : ω(x)∩U = ∅}. Then the union
of all such sets AU is B, so there exists U such that µ(AU) > 0. By ergodicity this implies
that µ(AU) = 1, a contradiction with µ(U) > 0 (the latter follows from supp(µ) = X). �

In Lemma 2.3 we first state some well known properties of rational maps and then apply
Lemma 2.2 to conformal measures. Observe, that some maps f have an exceptional set E(f)
which is a fully invariant set of one (two) attractive fixed points or an attracting two-periodic
orbit [Bea91], so µ(E(f)) = 0 for a conformal measure µ.

Lemma 2.3. Let f be a rational map non-singular with respect to a measure µ such that

µ(Ĉ \ E(f)) > 0.

(1) If V is open and V ∩ J(f) 6= ∅, then for any compact K ⊂ Ĉ \ E(f) there exists n

with K ⊂ fn(V ) (so, Ĉ \ E(f) ⊂ ∪fn(V )).
(2) J(f) ⊂ supp(µ).
(3) Let µ(E(f)) = 0. If V is open, V ∩ J(f) 6= ∅ and lim supµ(fn(R) ∩ V ) = µ(V ) for

a set R, then R is µ-lim sup full.
(4) Let µ(E(f)) = 0. If f is µ-lim sup full, then supp(µ) = J(f), µ is non-atomic and

ω(x) = J(f) for µ-a.e. x.

Proof. 1. See [Bea91].
2. If V is open, V ∩ J(f) 6= ∅ and µ(V ) = 0, then by non-singularity and statement 1 we

have µ(Ĉ \ E(f)) = 0, a contradiction.
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3. Follows from 1. and properties of non-singular maps.
4. By Lemma 2.2(3), ω(z) = supp(µ) for µ-a.e. z. By 2., J(f) ⊂ supp(µ). Since there are

no points z with J(f) $ ω(z) we conclude that supp(µ) = J(f). Non-atomicity follows from
statement 2 of Lemma 2.2. �

3. Density Theorems

In this section by a cover we always mean a cover of the plane by Borel sets and by a
bounded set a bounded Borel subset of the plane. Our aim is to prove a version of the
Lebesgue Density Theorem for a Borel measure which is finite on bounded sets (the family
of all such measures is denoted by FOB) and a suitable family of conformal balls. We begin
with definitions and results not related to conformal maps.

Definition 3.1. We say that a cover Q is a Vitali cover with multiplier M > 1 provided
that for every element Q ∈ Q there exists a special point xQ (called a center of Q) and a
number r(Q) > 0 (called an inner radius) such that:

(1) For two closed Euclidean balls centered at xQ, B(xQ, r(Q)) and B(xQ,Mr(Q)), we
have

B(xQ, r(Q)) ⊂ Q ⊂ B(xQ,Mr(Q)),

(2) for every z ∈ Q, Q contains the convex hull of the set

{z} ∪B(xQ, r(Q)).

A cover is closed if all its elements are closed.

It follows that any closed element of a Vitali cover is the closure of its interior. Indeed,
suppose that Q is a closed element of a Vitali cover and z ∈ ∂Q. Then since the entire convex
hull of the set {z} ∪ B(xQ, r(Q)) is contained in Q we see that z ∈ Int(Q). Hence indeed

Q = Int(Q). We choose closed covers for the sake of definiteness. By Q(x) we denote an
element of a Vitali cover centered at x = xQ. Notice, that a cover with multiplier M is also
a cover with multiplier M ′ > M and the choice of center and inner radius in the definition
is not fixed. In particular if Q ∈ Q is an element of a Vitali cover with multiplier M , inner
radius r(Q) and center xQ, then there exists a (sufficiently small) open set O containing xQ

such that for each y ∈ O, the set Q can be considered as an element of a Vitali cover Q′
with multiplier M ′ = 3M , center x′Q = y and inner radius r′(Q) = r(Q)/2. We need this
observation later.

Lemma 3.2. If Q = {Qα} is a Vitali cover then Q = {Qα} is also a Vitali cover.

Proof. We only need to verify condition 2 for points z ∈ Q \Q. Since z ∈ Q, there exists a
sequence zi ∈ Q such that lim zi = z. For each w ∈ B(xQ, r(Q)) the straight line segment
[w, zi] is contained in Q. Hence, [w, z] = lim[w, zi] ⊂ Q as desired. �

The following theorem proved by Morse [Mor47] shows that one can choose subcovers of
Vitali covers with nice properties on bounded sets.

Theorem 3.3. [Mor47] There exists a constant C (depending on M) such that for every
closed Vitali cover Q with multiplier M , every bounded set A and a family of elements
{Q(x) ∈ Q}x∈A one can select a countable subfamily Qk such that:
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(1) ∪kQk covers A,
(2) no point of the plane is contained in more than C elements of the sequence Qk,
(3) the sequence Qk can be partitioned into at most C families of pairwise disjoint sets.

Theorem 3.3 can be used to obtain versions of the Lebesgue Density Theorem (see [dG75]).

Definition 3.4. If {Qk(x)} is a sequence of elements of a Vitali cover with diam(Qk(x)) → 0
as k →∞ then we say that it is centrally nested at x and denote it by Qk(x) → x.

Definition 3.5. We call a Vitali cover Q infinitesimal at x if there exists sequence {Qk(x)}
of elements of Q centrally nested at x. We call Q infinitesimal on a set A if it is infinitesimal
at every point of A. Finally, we call Q infinitesimal if it is infinitesimal on the plane.

Theorem 3.6. Let µ ∈ FOB, Q be a closed Vitali cover, W be an open set and B ⊂ W
be a bounded set on which Q is infinitesimal. Then there exists a sequence {Tk} of pairwise
disjoint sets from Q contained in W such that

(2) µ(B \ ∪Tk) = 0.

Proof. Let us first prove that for some number b < 1 depending only on M , any open set U
and any bounded set A ⊂ U such that Q is infinitesimal on A there exists a finite collection
{Sk} of pairwise disjoint sets from Q which are subsets of U with µ(A \ ∪Sk) ≤ bµ(A).

Indeed, since A ⊂ U and Q is infinitesimal on A then for any x ∈ A there exists an
element Q(x) of Q such that Q(x) ⊂ U . Choose such sets Q(x) for all points of A and
apply Theorem 3.3 to this cover of A. It follows that there are at most C families of pairwise
disjoint elements from this cover of A such that the union of the elements of all these families
covers A. Choose the sequence Q1, Q2, . . . the union of whose elements intersected with A
has the greatest µ-measure. Then µ(A ∩ (∪Qk)) ≥ 1

C
µ(A). Therefore we can choose a

finite collection S1, . . . , Sm of sets from this family so that µ(A ∩ (∪m
i=1Si)) ≥ 1

2C
µ(A). Set

b = 1− 1
2C

and notice that

µ(A \ ∪m
i=1Sk) ≤ (1− 1

2C
)µ(A) = bµ(A).

Now set W0 = W and B0 = B, and apply the above claim to B0 ⊂ W0. This gives a
finite collection {Ti}h1

i=1 of pairwise disjoint elements of Q such that, denoting B \ ∪h1
1 Tk

by B1, we have µ(B1) ≤ bµ(B). Set W1 = W0 \ ∪h1
1 Tk and apply the same claim, but

now to B1 ⊂ W1. This leads to a new finite collection {Ti}h2
i=h1+1 of Q, the set B2 with

µ(B2) ≤ bµ(B1) ≤ b2µ(B) and the corresponding open set W2. Induction completes the
proof. �

Theorem 3.8 is similar to the classical Lebesgue Density Theorem. To state it we need
the following definition.

Definition 3.7. Let Q be a closed infinitesimal Vitali cover. A point x is said to be a point
of Q-density of a set R with respect to a measure µ if, for any centrally nested sequence
{Qk(x)} of elements of Q, the following holds:

(3) lim
Qk(x)→x

µ(Qk(x) ∩R)

µ(Qk(x))
= 1
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Theorem 3.8. Let µ ∈ FOB, R be a bounded set with µ(R) > 0 and Q be a closed
infinitesimal Vitali cover. Then µ-a.e. x ∈ R is a point of Q-density of R with respect to µ.

Proof. Consider the set

A = {x ∈ R|∃Qk(x) → x, lim
Qk(x)→x

µ(Qk(x) ∩R)

µ(Qk(x))
6= 1}

The statement of the theorem is that µ(A) = 0. To show this we represent the set A as the
union of a countable family of subsets and show that they all are of zero µ-measure. We
adapt standard arguments from the proof of the classical Lebesgue Density Theorem.

Suppose that a < 1 and define the set Aa as follows:

Aa = {x ∈ R|∃Qk(x) → x,
µ(Qk(x) ∩R)

µ(Qk(x))
< a}

Since A = ∪∞n=1A1−1/n it suffices to show that µ(Aa) = 0 for a < 1.
Fix δ > 0 and consider the set Aδ

a of all points x ∈ R such that there exist Q(x) ∈ Q of

diameter less than δ with µ(Qk(x)∩R)
µ(Qk(x))

< a. Then Aa = ∩δA
δ
a. Now we use the observation

made after the definition of a Vitali cover and work with elements of Q with a new inner
radius r′(Q) = r(Q)/2 and a new multiplier M ′ = 3M ; considered like that they form a
Vitali cover Q′. Every center x ∈ Aδ

a of the appropriate Q(x) has a small neighborhood Ox

of points that are centers of the same set as an element of Q′. For every x ∈ Aδ
a we pick such

a neighborhood and denote the union of all these neighborhoods by Ãδ
a. The set Ãδ

a is open,

contains the set Aδ
a and every point of this set is a center of some Q ∈ Q′ with µ(Q∩R)

µ(Q)
< a.

Let Ãa = R ∩
(
∩nÃ

1/n
a

)
; Ãa is a measurable set, containing Aa, and for any x ∈ Ãa there

is a sequence of sets {Qk(x)}, Qk(x) ∈ Q′, Qk(x) → x with µ(Qk(x)∩R)
µ(Qk(x))

< a for any k. These

sets form the cover Q′′ of Ãa.
Now, the fact that µ is a Borel measure implies that there are open sets containing Ãa

whose µ-measure is arbitrarily close to µ(Ãa). Choose an open set U ⊃ Ãa. Consider
the cover Q′′ of Ãa and apply Theorem 3.6. By this theorem there is a sequence {Sk} of
pairwise disjoint sets from Q′′ such that µ(Ãa \ ∪Sk) = 0 and ∪Sk ⊂ U . On the other hand,
µ(Sk∩R)

µ(Sk)
< a < 1 by the choice of Q′′. This implies that

µ(Ãa) ≤ µ(∪(Sk ∩R)) ≤ aµ(∪Sk) ≤ aµ(U)

and pushing µ(U) to µ(Ãa) we have µ(Ãa) ≤ aµ(Ãa) and thus µ(Ãa) = 0. Since Aa ⊂ Ãa

this implies that µ(Aa) = 0. �

Definition 3.9. Let U, V be open sets in C and ϕ : U → V be a conformal isomorphism.

Then d = supx,y∈U |
ϕ′(x)
ϕ′(y)

| is called the distortion of ϕ and ϕ is called a K-conformal isomor-

phism if d ≤ K.

Let us now define conformal balls.

Definition 3.10. By a conformal ball, or cball, we mean a conformal image of the round
ball B(0, 1) in the complex plane, where 0 = (0, 0). A cball Q is called a KN -ball centered
at x provided there exist r > 0, N > 1 and a K-conformal isomorphism ϕ : B(0, r) → C
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such that ϕ(B(0, r/N)) = Q, ϕ(0) = x and ϕ′(0) = 1. We say that ϕ is a generating map
for Q and that r/N is the conformal radius of Q.

We apply Theorem 3.8 to conformal balls. More precisely, we show that the collection of
KN -balls , for any N > 1 and K sufficiently close to 1, forms a Vitali cover. It will follow
that the Lebesgue Density Theorem holds for this collection with respect to any measure
from FOB. Recall that a set T is said to be convex if, for every w, b ∈ T , every straight line
segment [b, w] is contained in T . Now we can state the following:

Theorem 3.11. [Pom92, page 65] A KN-ball Q generated by ϕ with conformal radius r/N
is convex iff

Re[1 + zϕ′′(z)/ϕ′(z)] > 0 for all z ∈ B(0, r/N).

Lemma 3.12 follows from Theorem 3.11.

Lemma 3.12. For each N > 1 there is δ > 0 such that if ϕ : B(0, r) → C is a conformal
isomorphism with ϕ′(0) = 1 and

(4) 1/(1 + δ) <

∣∣∣∣ϕ′(x)ϕ′(y)

∣∣∣∣ < 1 + δ for all x, y ∈ B(0, r),

then ϕ(B(0, r/N)) is convex.

Proof. We will first establish the following:
Claim. For each N > 1 and 0 < ε < 1/4 there exists δ > 0 such that for each conformal
isomorphism ψ : B(0, 1) → C with ψ′(0) = 1 and

(5) 1/(1 + δ) <

∣∣∣∣ψ′(x)ψ′(y)

∣∣∣∣ < 1 + δ for all x, y ∈ B(0, 1),

we have for all z ∈ B(0, 1/N)

|ψ′(z)− 1| < ε, |ψ′′(z)| < ε and Re[1 + zψ′′(z)/ψ′(z)] > 0.(6)

Suppose the claim is not true. Then there exists a sequence ψn : B(0, 1) → C such that
inequality (5) holds for each ψn with δ = 1/n, ψ′n(0) = 1, ψn(0) = 0 and for each n there is
a point xn ∈ B(0, 1/N) with either |ψ′n(xn)− 1| ≥ ε, or |ψ′′n(xn)| ≥ ε. Since the family {ψn}
is normal, we may assume that ψn → ψ∞. Then ψ′∞(0) = 1 and so, |ψ′∞(z)| = 1. Hence,
ψ∞(z) = z, ψ′∞(z) = 1 and ψ′′∞(z) = 0 for all z ∈ B(0, 1). Since ψn(z), ψ′n(z) and ψ′′n(z)
converge uniformly on B(0, 1/N) to z, 1 and 0 respectively we get a contradiction. This
completes the proof of the claim. By Theorem 3.11, ψ(B(0, 1/N)) is convex.

Let δ > 0 be given by the above Claim and let ϕ : B(0, r) → C be a conformal isomorphism
such that ϕ′(0) = 1 and satisfying (4). Let g(z) = rz; then ψ = g−1 ◦ ϕ ◦ g : B(0, 1) → C is
a conformal isomorphism with ψ′(z) = ϕ′(g(z)) for all z. Hence ψ satisfies the conditions of
the Claim and ψ(B(0, 1/N)) is convex. Since ϕ(B(0, r/N)) = g ◦ψ(B(0, 1/N)) the required
result is established. �

The following theorem allows us to apply our version of the Density Theorem toKN -balls .

Theorem 3.13. For any N > 1, there is δ > 0 such that for any 1 < K < 1+ δ the closures
of KN-balls form a Vitali cover.
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Proof. Fix N > 1. By Lemma 3.12 we can choose 0 < δ < 1/4 such that for each (1 + δ)-
conformal isomorphism ϕ : B(0, r) → C, the setQ = ϕ(B(0, r/N)) is convex. Let 1+δ = K0.
By Lemma 3.2, it suffices to show that a K0N -ball Q centered at 0 satisfies the conditions
of Definition 3.1. Let ϕ : B(0, r) → C be the generating map for Q. Hence, ϕ(0) = 0 and
ϕ′(0) = 1.

Since Q is convex, condition 2 of Definition 3.1 of a Vitali cover is automatically satisfied.
Condition 1 follows immediately from the Koebe Theorem and the inequality |ϕ′| < 5/4
which together imply that B(0, r/(4N)) ⊂ Q ⊂ B(0, 5r/(4N)). Hence the collection of
K0N -balls is an infinitesimal Vitali cover with multiplier 5. �

Putting Theorems 3.8 and 3.13 together yields the following:

Corollary 3.14. There exists K such that the collection QK2 of closures of K2-balls is a
Vitali cover and thus for any µ ∈ FOB and any bounded set R with µ(R) > 0 we have that
µ-a.e. x ∈ R is a point of QK2-density of R with respect to µ.

4. Main Theorem

For x ∈ Ĉ and n > 0, consider rn(x) = sup{r : B(fn(x), r) can be pulled back to
x univalently}. Then rn(x) > 0 if and only if all points x, . . . , fn−1(x) are not critical;
otherwise we set rn(x) = 0 which fully defines rn(x). Let L(f) be the set of all points
x ∈ J(f) with rn(x) 6→ 0. Then L(f) is forward invariant. Sometimes L(f) is called the
conical set of f [DMNUrb]. Below K is the constant from Corollary 3.14.

Lemma 4.1. Let x ∈ L(f) and µ be an α-conformal measure. Then there exists a point
ζ, a number γ > 0, a sequence of integers ni → ∞ and a sequence of K2-balls W ′

i → x,
centered at x, such that fni : W ′

i → B(ζ, γ) = B is univalent, onto, has distortion at

most
√
K and min{|(fni)′(z)| : z ∈ W ′

i} → ∞. Moreover, there exists c = c(α) such that
µ(B)

c
|(fni)′(x)|−α ≤ µ(W ′

i ) ≤ cµ(B)|(fni)′(x)|−α.

Proof. Let x ∈ L(f). Then there exists η′ > 0, a sequence ni → ∞ and a sequence of
compact disks Wi 3 x such that fni : Wi → B(fni(x), η′) is univalent. We may assume that
fni(x) → ζ for some ζ ∈ J(f). By the Koebe Theorem, we can choose η < η′ such that for

all i and any y, z ∈ Wi with fni(y), fni(z) ∈ B(fni(x), η) we have |(fni)′(y)/(fni)′(z)| <
√
K.

Let us fix s which is slightly bigger than 1. For sufficiently large i fni(x) is so close to ζ that
the Moebius transformation ϕi which keeps B(ζ, η/2s) invariant and maps ζ into fni(x) has

distortion at most
√
K on B(ζ, η/s) and maps B(ζ, η/s) into B(ζ, η).

Let W ′
i be the connected component of the set f−ni(B(ζ, η/2s)) containing x. We show

that W ′
i are elements of QK2 (i.e. K2-balls) centered at x. Indeed, consider the map

f−niϕi : B(ζ, η/s) → C with the appropriately chosen branch of inverse function f−ni . Under
this map ζ is mapped onto x, W ′

i = f−niϕi(B(ζ, η/2s)) and the distortion of the map is at
mostK. HenceW ′

i (x) ∈ QK2. Moreover, diam(W ′
i ) → 0 and min{|(fni)′(x)| : x ∈ W ′

i} → ∞
as i → ∞ (see, e.g., [McM94, Theorem 3.6, p. 39]). Hence, W ′

i (x) → x is a sequence of
elements of QK2 centrally nested at x, and we can set γ = η/2s. The last statement of the
lemma follows from the definition of a conformal measure. �
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Lemma 4.2. Let µ be a conformal measure of exponent α with µ(L(f)) > 0. Then µ is a
unique measure with this property and the following holds:

(1) f is lim sup full, exact, ergodic, conservative, µ is non-atomic, supp(µ) = J(f) and

ω(z) = J(f) for µ-a.e. z ∈ Ĉ;
(2) α is the minimal exponent for which a conformal measure with support on J exists.

Proof. The uniqueness of the measure µ follows from [DMNUrb]. Let us prove the rest of
the lemma.

(1) Assume that x ∈ L(f) ∩ R is a point of QK2-density of a set R with respect to µ
and prove that then R is lim sup full. Choose a sequence of sets W ′

i with all properties

from Lemma 4.1. Then lim
µ(W ′

k(x)∩R)

µ(W ′
k(x))

= 1. On the other hand the distortion of the map

fni : W ′
i → B(ζ, γ) is at most K. This and the properties of conformal measures imply that

µ(fni(R) ∩B(ζ, γ)) → µ(B(ζ, γ)) > 0. By statement 3 of Lemma 2.3 R is lim sup full.
Assume now that R ⊂ L(f) is such that µ(R) > 0. By Theorem 3.8 µ-a.e. point of R

is a point of QK2-density of R with respect to µ. Hence R is lim sup full. By statement 1
of Lemma 2.2, µ(L(f)) = 1 (and so µ(J(f)) = 1) and f is lim sup full. By statement 4 of
Lemma 2.3, supp(µ) = J(f), µ is non-atomic and ω(x) = J(f) for µ-a.e. x. The rest follows
from Theorem 2.1.

(2) Let ν be a conformal measure with exponent β < α, ω = µ + ν. Note that, by
uniqueness of µ on L(f), ν(L(f)) = 0 and, since ν(J(f)) > 0, ν(B) > 0 for any open set B
meeting J(f). For each x ∈ L(f), let W ′

i → x be a sequence of K2-balls, centrally nested at
x, as in Lemma 4.1. Then ω(L(f) ∩W ′

i )/ω(W ′
i ) → 1 for ω-a.e. x ∈ L(f).

Now, by Lemma 4.1, µ(W ′
i ) ≤ c(α)µ(B)|(fni)′(x)|−α while ν(W ′

i ) ≥
ν(B)
c(β)

|(fni)′(x)|−β.

Since by Lemma 4.1 min{|(fni)′(z)| : z ∈ W ′
i} → ∞, we get µ(W ′

i )/ν(W
′
i ) → 0. It is then

easy to see that lim supω(L(f) ∩W ′
i )/ω(W ′

i ) = 0, contradicting the fact this limit must be
1 for ω-a.e. x ∈ L(f). �

Note that in the proof of statement 1 of Lemma 4.2 one can use tools from [GPS90]. Note
also that if the set of points z such that ω(z) is not a subset of the union of the limit points
of all critical points has positive measure, then µ(L(f)) > 0.

For the sake of brevity we denote the union of the limit sets of recurrent critical points of
f by PR(f).

Lemma 4.3. If z /∈ L(f) is neither an eventual preimage of a critical point nor an eventual
preimage of a parabolic periodic then ω(z) ⊂ PR(f).

Proof. Suppose that z /∈ L(f) is neither an eventual preimage of a critical point nor an
eventual preimage of a parabolic periodic point and contrary to the conclusion of the lemma
ω(z) 6⊂ PR(f). Since z is not an eventual preimage of a parabolic periodic point then ω(z)
does not coincide with a parabolic cycle P . Indeed, assuming the contrary and replacing f
by its power we may suppose P = {a} to be a fixed parabolic point. Suppose that z is not
eventually mapped into a. Then the orbit of z is infinite. It is well-known (see, e.g., [CG93,
pages 35–41]) that a is repelling for f |J(f) in the following sense: there exists a metric d
on J(f) such that for some ε > 0 and any point x 6= a which is at most ε-distant from a
we have d(f(x), a) > d(x, a). Since the orbit of z is infinite and accumulates on {a}, there
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are arbitrarily large n such that 0 < d(fn(z), a) < ε. For any such n there exists m > n
such that d(fm(z), a) ≥ ε (otherwise by the definition of a repelling point z will always stay
farther away from a than fn(z)). Thus there exists a sequence of numbers m growing to
infinity such that d(fm(z), a) ≥ ε, a contradiction with ω(z) = {a}.

Since periodic points are not isolated in limit sets not coinciding with them we conclude
that no parabolic point is isolated in ω(z). Since ω(z) 6⊂ PR(f) we conclude that there
exists a sequence fnk(z) → y ∈ ω(z) \ PR(f) such that y is not a parabolic periodic point.
By a result of Mañé [Mn93], for each ε > 0 there exists a δ > 0 such that components of
f−n(B(y, δ)) have diameter less than ε and that B(y, δ) is disjoint from the union of parabolic
cycles of f . On the other hand z is not an eventual preimage of any critical point of f . Since
z 6∈ L(f), the critical points that force rnk

(z) → 0 are contained in ω(z). Moreover, if c is

such a critical point then y ∈ orb(c). Since y /∈ PR(f) we conclude that all critical points
generating rnk

(z) belong to ω(z) \ PR(f). Choose one of these points and denote it c1;

we have c1 ∈ ω(z) \ PR(f) and y ∈ orb(f(c1)). We can now apply the same argument to

c1 instead of y which yields a critical point c2 ∈ ω(z) \ PR(f) such that c1 ∈ orb(f(c2)).
Repeating this argument and relying upon the finiteness of the number of critical points of
f we will find a critical point c /∈ PR(f) with c ∈ orb(f(c)), a contradiction which completes
the proof. �

Proof of Theorem 1.1. Assume that the set of all points z which are not eventual preimages
of critical or parabolic points such that ω(z) 6⊂ PR(f) has positive µ-measure. Clearly, by
Lemma 4.3 this set is a subset of L(f). Now Lemma 4.2 completes the proof. �
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