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Abstract. In his 84 preprint W. Thurston proved that quadratic laminations do not ad-
mit so-called wandering triangles and asked a deep question concerning their existence for
laminations of higher degrees. Recently it has been discovered by L. Oversteegen and the
author that some closed laminations of the unit circle invariant under z �→ zd, d > 2 admit
wandering triangles. This makes the problem of describing the criteria for the existence
of wandering triangles important because solving this problem would help understand the
combinatorial structure of the family of all polynomials of the appropriate degree.

In this paper for a closed lamination on the unit circle invariant under z �→ z3 (cubic
lamination) we prove that if it has a wandering triangle then there must be two distinct
recurrent critical points in the corresponding quotient space (“topological Julia set”) J with
the same limit set coinciding with the limit set of any wandering vertex (wandering vertices
in J correspond to wandering gaps in the lamination).

Introduction. It is well known that in a variety of cases connected Julia sets of
complex polynomials are locally connected. If so then the dynamics on them can be
studied by means of the so-called invariant laminations, i.e. specific equivalence
relations ∼ on the unit circle S1 ([16], [9], [13]) invariant for zd : S1 → S1 (d is
the degree of the polynomial). The Julia set J then can be viewed as the quotient
space J∼ of S1 under this equivalence, and the polynomial on J as the factor f
of zd induced by the quotient map. We will use the language of laminations in
this paper, with the understanding that our results apply to locally connected Julia
sets of polynomials as well. Saying “Julia set” we always mean the corresponding
quotient space J∼ (so our Julia sets are always locally connected). Since in what
follows we fix a lamination ∼, from now on we skip the reference to ∼ in the notation
and talk about the (topological) Julia set J meaning J∼ for the lamination ∼. We
also reserve the name f for the map f : J → J described above.

To state one of the main problems in the field of topological dynamics of f we
need a few notions. A point c is said to be critical if f at c is not a homeomorphism.
If x ∈ J then by N(x) we denote the number of components of the set J \ {x}).
We call N(x) the order of a point x in J ; points x with N(x) ≥ 3 are said to be
vertices of J and points x of order 1 are said to be endpoints of J . In the language
of continuum theory, vertices are cut points cutting the Julia set in at least three
components. A point x is said to be periodic (of period n) if x, f(x), . . . , fn−1(x)
are pairwise distinct points while fn(x) = x. Also, a point is preperiodic - resp.
precritical - if it is mapped onto a periodic - resp. critical - point by fk, k ≥ 0.
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Finally, if a point is non-preperiodic then we call it wandering. The following
problem was posed (and solved for quadratic laminations) in [16].

Problem 1. Do there exist wandering non-precritical vertices of the Julia sets?

Problem 1 is fundamental because solving it would help understand the com-
binatorial structure of the family of all monic polynomials with connected Julia
set (so-called “connectedness locus”) of the appropriate degree (see [16] for more
motivation).

In what follows we adopt the following terminology: a wandering vertex of the
Julia set is called a wave. Hence Problem 1 concerns the existence of non-precritical
waves. This problem is natural if we think of J as a “graph” with infinitely many
vertices and f as a continuous self-mapping of J . Indeed, by a “graph” we shall
understand a compact one-dimensional branched manifold, i.e. a compact space
which is locally an n-od (this includes 1-od ≡ closed interval at its endpoint and
2-od ≡ open interval). Clearly the notion of the order at a point, the notion of
an endpoint, and the notion of a vertex can be introduced for points of a “graph”.
Moreover, compactness implies that a “graph” has finitely many endpoints and
vertices. If J is a true “graph” (i.e. one-dimensional branched manifold) then the
answer to the question in Problem 1 is clearly negative because if a vertex of a graph
is non-precritical then its order in the graph cannot drop, and therefore its entire
orbit is contained in a finite set of al vertices of the graph. Problem 1 extends this
fact from “graphs” to polynomials on their Julia sets under the assumption that
the Julia set is locally connected (Thurston proved in [16] that in the quadratic
case there exist no waves of the Julia sets, so such extension holds in the quadratic
case).

Related questions in degrees higher than 2 were considered by Kiwi [10] who was
the first to extend some results of [16] onto laminations of degrees higher than 2.
It is proven in [10] that for a lamination of degree d the number N(x) ≤ d for any
non-precritical wave x ∈ J (this implies the result of [16]).

In [12, 2-4] further results were obtained. One of the main results of [12] was that
in the unicritical case (i.e. when there is a unique critical point of f |J) the waves
do not exist. In [2-3] we consider a non-empty collection Γ of non-precritical waves
in J with pairwise disjoint orbits and prove upper estimates on

∑
x∈Γ(N(x) − 2),

including
∑

x∈Γ(N(x)− 2) ≤ d− 2 (which implies results of [10] and [16]). We also
prove in [2-3] that Fatou domains (which can be easily introduced for laminations)
are preperiodic (i.e. map into periodic Fatou domains). In [4] we show that the
limit set of a non-precritical wave must coincide with the limit set of a recurrent
critical point.

Recently it has been discovered by L. Oversteegen and the author that some
closed laminations of the unit circle invariant under z �→ zd, d > 2 have waves (see
[6]). Thus, the main problem in this field becomes to characterize all laminations
which have waves. This paper can be considered as a step in this direction because
here we give a dynamic necessary condition for the existence of a wave of a cubic
lamination. Recall, that a dendrite is a locally connected continuum containing
no subsets homeomorphic to a circle.

Main Theorem. Let ∼ be a cubic lamination such that its quotient space J has
non-precritical waves. Then J is a dendrite and the following holds:

(1) f |J has two wandering critical points c, d with distinct grand orbits, N(c) =
N(d) = 2 and all forward images of c, d are endpoints of J ;
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(2) any two waves x′, x′′ have the same grand orbit, and are such that N(x′) =
N(x′′) = 3;

(3) the points c and d are recurrent and have the same limit set coinciding with
the limit set of any wave.

1. Preliminaries. Consider an equivalence relation ∼ on the unit circle S1 with
the following properties ([9, 13], cf. [16]):

(E1) ∼ is closed: the graph of ∼ is a closed set in S1 × S1;
(E2) ∼ defines a lamination, i.e. it is unlinked: if t1 ∼ t2 ∈ S1 and t3 ∼ t4 ∈

S1, but t2 �∼ t3, then the open intervals in C with the endpoints t1, t2 and
t3, t4 are disjoint;

(E3) each class of equivalence ∼ is totally disconnected.
Call ∼ a closed lamination. We assume that it is non-degenerate (has a class
of more than one point). Equivalence classes of ∼ are called (∼-)classes.

Our definitions are closer to [9, 13] than to [16]. Fix an integer d > 1 and denote
zd : S1 → S1 by σd = σ. Say that a subset of S1 is split into classes if it contains
a class of each its element. The relation ∼ is called (σ-)invariant iff:

(D1) ∼ is forward invariant: for a class g, the set σ(g) is a class too;
(D2) ∼ is backward invariant: for a class g, its preimage σ−1(g) = {x ∈ S1 :

σ(x) ∈ g} is split into classes;
(D3) for any gap g, the map σ : g → σ(g) is a covering map with positive

orientation.
Observe that in (D3) by “cover” we mean “even cover”. Also, in fact (D1) implies
(D2), but we put both here for the sake of convenience. Call a class g critical iff
the map σ : g → σ(g) is not 1-to-1. Denote by k∼ the number of distinct grand
orbits of critical non-preperiodic classes g such that |σ(g)| = 1. Also, call a class g
a gap if |g| ≥ 3 (by |A| we denote the cardinality of a set A). From now on by a
lamination we always mean a closed σ-invariant lamination.

Clearly, the notions above can be translated into the language of the Julia set
J = J∼ associated with the lamination (we denote the factor map by p). Call a
point c ∈ J critical if f is not one-to-one in any neighborhood of c. Critical classes
of the equivalence ∼ project by p onto critical points of f ; the behavior of critical
points is important for our investigation and is studied below in great detail. For
every point x = p(g) ∈ J the number N(x) is the same as the cardinality |g| of the
class g. Thus, vertices of J are p-images of gaps of ∼. Also, if N(x) = 1 then x is
called an endpoint of J ; endpoints of J are p-images of degenerate classes of ∼.
Observe, that critical wandering classes g whose all images are degenerate become
in the language of J wandering critical points of f |J whose all images are endpoints
of J .

Let D be the unit open disk bounded by S1, L∼ = L be the union of ∼-hulls,
i.e. convex hulls of ∼-classes; by the definition ∼-hulls are contained in D but not
in D. Define an extension 	 of ∼ onto D as follows [9]: a 	-class is a ∼-hull or a
point of D\L. Extend 	 onto C by declaring that a point in C\D is equivalent only
to itself. Call a connected component of the complement D \L a (∼-)component.
Given an open set Ω in D, denote by E(Ω) the set Ω̄ ∩ S1. Call a ∼-component Ω
periodic if E(Ω) is mapped back onto itself by some iteration of σ and denote the
number of all orbits of periodic σ-components by kp.

Now we are ready to formulate in more detail the results which we have already
stated in Introduction. In [10] it was proven that a wandering non-precritical gap
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has at most d elements. This result was extended in Theorem 1.1 which is stated
below in the language of f |J .

Theorem 1.1 (Theorem B [2, 3]). Let Γ be a non-empty collection of non-
precritical waves of J which have pairwise disjoint orbits. Then

∑

x∈Γ

(N(x) − 2) ≤ k∼ − 1 ≤ d − 2 − kp ≤ d − 2. (∗)

We will also need to rely upon Theorem 1.2 whose Part 1 is a combinatorial
version of the fundamental Sullivan No Wandering Domain Theorem ([15]).

Theorem 1.2 (Theorem C [2, 3]). The following holds for a lamination ∼.
(1) Let Ω be a ∼-component. Then the set E(Ω) ⊂ S1 is preperiodic.
(2) If M ⊂ J is a non-degenerate continuum then it is non-wandering.

Theorem 1.3 establishes necessary conditions for the existence of wandering
classes.

Theorem 1.3 ([4]). Let ∼ be an invariant lamination. Then the limit set of a
non-precritical waves of J coincides with the limit set of a recurrent critical point
(and so if there are no recurrent critical points then J has no waves).

Theorems 1.1, 1.2 and 1.3 imply Corollary 1.4.

Corollary 1.4. Let ∼ be a cubic lamination such that J has non-precritical waves.
Then the following facts hold:

(1) J is a dendrite;
(2) f |J has two wandering critical points c, d with distinct grand orbits, no

vertex ever maps into a critical point, N(c) = N(d) = 2 and all forward
images of c, d are endpoints of J ;

(3) any two waves x′, x′′ have the same grand orbits, and are such that N(x′) =
N(x′′) = 3;

(4) there exists a recurrent critical point s of f such that ω(y) = ω(s) for every
wave y.

Proof. (1) If there are ∼-components then by Theorem 1.2 they must be periodic
so that kp ≥ 1. However then by Theorem 1.1 we would have that d − 2 − kp ≤ 0
and hence non-precritical waves cannot exist, a contradiction.

(2) By Theorem 1.1, k∼ = 2. Thus, f |J has two wandering critical points c, d
with distinct grand orbits, and all their forward images are endpoints of J . Now,
the order of a critical point is at least 2; if the order of a critical point z is greater
than 2 then, since the image of z must be an endpoint of J we see that f has to be at
least 3-to-1 at z which implies that c = d, a contradiction. Hence N(c) = N(d) = 2
which in turn implies that no vertex ever maps into a critical point.

(3) Translating the results of Theorem 1.1 into the language of f |J we see that
if there are non-precritical waves x′, x′′ then they have the same grand orbit and
also N(x′) = N(x′′) = 3.

(4) Follows from Theorem 1.3.

2. Main Theorem. We prove our Main Theorem by establishing several facts
concerning possible behavior of waves of J . In the arguments we introduce some
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new ideas but also rely upon the tools developed in [12, 2-4]. One of such tools is
growing trees (see [12, 2-4]).

By a tree we mean a connected compact one-dimensional branched manifold
with no subsets homeomorphic to a circle. In this topological context we can still
use combinatorial notions (the order ordT (a) of T at a point a ∈ T , endpoints
(of T ), vertices (of T ), edges (of T ) ) without confusion. An arc (in T ) is a
subset of T homeomorphic to an interval. The absence in T of sets homeomorphic
to circles makes the arc [a, b] with endpoints a, b ∈ T well-defined; the notation like
(a, b], [a, b), (a, b) is self-explanatory. The numbers of edges, endpoints, vertices of
T are finite.

We also need another notion. Given a tree W and a point a ∈ W , consider all
arcs [a, b] ⊂ W such that (a, b) contains no vertices/critical points of W . Call two
arcs [a, b] and [a, b′] equivalent if (a, b) ∩ (a, b′) �= ∅; clearly, equivalent arcs are
ordered by inclusion. Classes of equivalence of arcs [a, b] of W are called germs of
W at a. One can say that a germ of a tree W at a ∈ W is a pair (a, S), where
S is an infinitesimal interval in W with one endpoint at a; in that sense a germ
may be contained in a tree. On the other hand, if there are two trees W ⊂ T
then a germ in T may or may not be contained in W . The image of a germ (a, S)
under a map g with finitely many critical points is defined as g(a, S) = (g(a), g(S))
with g(S) defined as the germ at g(a) containing g-images of intervals from S. In
particular, we may speak of the image of a germ contained in a tree.

Let X be a metric space, g : X → X be a continuous map. Given a sequence
of sets R0 ⊂ R1 ⊂ R2 ⊂ . . . , denote the set

⋃∞
i=0 Ri by R∞. This sequence (and

the set R∞) is called a generalized growing tree if the following holds: (a)
Ri ⊂ Ri+1 ⊂ Ri ∪ g(Ri), (b) Rn is a tree for any n, and (c) there is a finite set of
critical points Cg = {c1, . . . , ck} ⊂ R0 with g|R∞ injective in some neighborhood
of any x ∈ R∞ \Cg. Also, a point x ∈ R∞ is called a vertex of R∞ if x is a vertex
of some Rn. The definition of a growing tree given in [2, 3] is a bit different;
namely here in (a) we only require that Ri ⊂ Ri+1 ⊂ Ri ∪ g(Ri) for every i while in
[2, 3] when we defined a growing tree T∞ we required that Ti ⊂ Ti+1 = Ti ∪ g(Ti)
for every i. This is the only difference, and it is a subtle but important one (e.g., for
growing trees we always have that Tn =

⋃n
i=0 gi(T0) which is not necessarily true

for generalized growing trees).

u c a

b
d

f(c)

f(d)

f (d)
2

f (c)
2

Figure 2.1. A growing tree
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In [12, 2, 3] the specific growing tree T0 ⊂ T1 ⊂ . . . is constructed. Since in the
cubic case by Corollary 1.4 J is a dendrite, we introduce our definitions under this
assumption. Also, from now we fix notation T∞ for the tree constructed in [12, 2,
3]. Let us now introduce the construction which is defined as follows (see [12, 2,
3]):

(1) choose a non-dividing fixed point a and connect it with its preimages by
arcs within J which gives the initial tree T0;

(2) iterate T0 forward thus getting T1 = T0 ∪ f(T0), T2 = T1 ∪ f(T0) etc.

All properties of growing trees are easily satisfied by T∞; in particular, it is shown
in [2, 3] that all critical points of f belong to T0. It is also worth mentioning here
that despite the terminology, growing trees may happen to be finite. For example, if
we consider the tree T0 as defined above, and if all critical points of f map back into
T0 then f(T0) ⊂ T0 and so in fact T∞ = T0. However this is not a very interesting
case for us because as it easily follows, in this case there are no non-precritical
waves.

Figure 2.1 shows the tree T2 in the cubic case. Different width of line represents
different iterations of the map f ; moreover, letters a, b, u, c, d are located on the pic-
ture exactly where the corresponding points are on the tree while f(c), f(d), f2(c),
f2(d) are moved off the tree to avoid overloading the picture. We use the notation
[a1, a2, . . . , ak] for the smallest connected set containing points a1, a2, . . . , ak; then
T0 = [a, b, u] while T1 = [a, f(c), b, u, f(d)] and T2 = [a, f2(d), f(c), b, u, f(d), f2(c)].

The following lemma is proven in [2, 3].

Lemma 2.1 ([2, 3]). Let T ′ ⊂ T be two trees. Then the set T \ T ′ consists of
finitely many components each of which is a tree itself. Moreover, given a component
α of T \ T ′, the set α ∩ T ′ consists of a single point b(α).

In the future the point b(α) is called the basepoint of α, and the germ of α at
b(α) is called the basegerm of α.

Lemma 2.2. Suppose that A0 ⊂ A1 ⊂ . . . is a sequence of trees in a dendrite (e.g.,
in J). Then the maximal diameter of components of (∪∞

i=0Ai) \ Am converges to 0
as m → ∞.

Proof. Choose ε > 0. Denote ∪∞
i=0Ai by A∞. There may be infinitely many com-

ponents of A∞ \Am, yet only finitely many of them can have diameter greater then
ε because our dendrite is locally connected and contains A∞. Any component of
A∞ \ Am+1 of diameter greater than ε is contained in a well-defined component
of A∞ \ Am of diameter greater than ε. If on each step in this process there are
components of diameter greater than ε then by Ramsey type theorem there exists
an infinite nested sequence of such components S0 ⊃ S1 ⊃ . . . . Since they all
are of diameter greater than ε their intersection S = ∩Si is non-empty. However,
S ⊂ A∞ \ (∪∞

i=0Ai) = ∅, a contradiction.

We need some other general results which were obtained in [2, 3]. We also use a
well-known fact (see, e.g., Lemma 3.8 [5]) according to which any fixed point a of
f |J has a neighborhood U in J such that every point x ∈ U, x �= a exits U (a point
x like that may be called mildly repelling).

Lemma 2.3 below is applicable to laminations of all degrees. To state it we need
the following definition: an endpoint of Tn+1 which does not belong to Tn is called
an outer endpoint of Tn+1.
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Lemma 2.3 ([2, 3]). Let ∼ be a lamination. Then the following holds.
(1) All critical points of f |J belong to the initial tree T0.
(2) All outer endpoints of Tn are the fn-images of critical points of f .
(3) Any germ (a, S) ⊂ T∞ such that a is not an endpoint of J eventually maps

inside T0.
(4) If x ∈ J is not an endpoint of J then for some integer n we have fn(x) ∈ T0.
(5) If y is a non-precritical vertex of J then for some n,m the point fn(x) is a

vertex of Tm which has the same order in both J and Tm.
(6) If y is a non-precritical wave of Tm−1 then for the least k such that fk(y)

is not a vertex of Tm−1 we have that fk(y) is either a basepoint of one of
the components of Tm \ Tm−1, or a vertex of such component.

(7) For every integer there are only finitely many fixed points of fn|J .

Proof. Claims (1)-(6) are obtained in [2, 3]. Claim (7) immediately follows from
Lemma 3.8 ([5]).

From now on we prove the Main Theorem. So, in the rest of the section we
assume that ∼ is a cubic lamination such that the quotient space J has a non-
precritical wave. We rely upon Corollary 1.4 and use the notation from it. Let us
consider the growing tree T∞. By Lemma 2.3(1) c, d ∈ T0. By Corollary 1.4(2) and
Lemma 2.3(2), points fn(c) and fn(d) are the only outer endpoints of Tn. Also, by
Lemma 2.3(5) and Corollary 1.4(3) we may assume that for some integer Z a point
x ∈ TZ is a non-precritical wave of J of order 3 in both TZ and J such that any its
image f i(x) has the same order 3 in J and in TZ+i with i ≥ 0.

Consider Tm with m > Z (considering growing trees below we always assume
that m > Z, i.e. we work with trees for whom x is a vertex). Then the outer
endpoints of Tm are fm(c) = cm and fm(d) = dm. The points cm and dm define
the components C ′′

m and D′′
m of Tm \ Tm−1 which contain cm and dm respectively;

denote their closures by Cm and Dm. By Lemma 2.1 Cm,Dm are “attached” to
Tm−1 at their basepoints um, vm. Clearly, Cm and Dm have their well-defined
basegerms at the basepoints um, vm respectively. There are two possibilities for the
sets Cm and Dm. First, it may happen that Cm �= Dm (see Figure 2.2 on which
the tree Tm−1 is shown “symbolically” as a segment of a thin straight line)).

cm

c m

D
m

d
m

Tm-1

u
m

vm

Figure 2.2. The case when Cm �= Dm

However, the sets Cm and Dm may coincide; then there is a unique triod-shaped
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component of Tm \ Tm−1 with the basepoint um = vm and outer endpoints cm and
dm (see Figure 2.3 where Tm−1 is shown the same way as on Figure 2.2). In this
case we denote the branch point of Cm = Dm by zm.

m

c m

Dm

dm

T

C =

u 
   m

= v
m

z
m

m-1

Figure 2.3. The case when Cm = Dm

By Ĉm we denote the closure of the component of J \ {um} containing cm and
by D̂m we denote the closure of the component of J \ {vm} containing dm.

The following lemma is important in the proof of the Main Theorem.

Lemma 2.4. For any ε > 0 and big enough m there exists k ≥ 0 such that fk(dm) ∈
Ĉm and d(fk(dm), cm) < ε.

Proof of Lemma 2.4. We prove the lemma by establishing a series of claims. Observe
that Figures 2.2 and 2.3 can be considered as illustrations to some of them.

Claim A. Points um and vm do not belong to the orbits of critical points, are not
endpoints of Ti for any i and hence are vertices of Tm.

Proof of Claim A. Indeed, if um is an endpoint of Ti for some i then um is an
image of a critical point. However, um is not an endpoint of Tm because at least
one more germ of Tm grows out of um compare to the germs of Tm−1, namely the
basegerm of Cm. Since all the orbits of critical points consist of endpoints of J ,
this is a contradiction. Similarly, vm is not an endpoint of Ti for any i. Clearly this
implies the rest of the lemma.

Assume that M > Z is chosen big enough to guarantee that the maximal diam-
eter of a component of T∞ \ Tm for any m > M is less than ε/3 (this is possible by
Lemma 2.2).

Claim B. If Cm ∩ Dm �= ∅ then Lemma 2.4 holds.

Proof of Claim B. Left to the reader.

By Claim B from now on we assume that Cm and Dm are disjoint (and hence
Cm = [um, cm],Dm = [vm, dm] and um �= vm).

Claim C. At least one of the points um, vm belongs to the forward orbit of x.

Proof of Claim C. Follows from Lemma 2.3(6) and the fact that Cm,Dm are
arcs.
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Now we continue the proof by way of contradiction. Observe that by the choice
of M if the former claim of the lemma holds then so does the latter. Thus from
now on in the proof of the lemma we make the following assumption.

Assumption Z. For some m > M there exists no k such that fk(dm) ∈ Ĉm.

Below we will use the following a bit non-conventional terminology: given two
trees which have a unique point a in common we say that one of them (usually
perceived as the smaller one) sticks out of the other one (at the point a). Now we
introduce a useful for the future construction. Define a sequence of sets T ′

r, r ≥ m−1
inductively as follows. Set T ′

m−1 = Tm−1 and T ′
m = T ′

m−1 ∪Dm. Then T ′
m is a tree

which coincides with the union of T ′
m−1 and an arc D′

m = Dm = [vm, dm] which
sticks out of T ′

m−1. Now, for every j ≥ m we set T ′
j+1 = T ′

j ∪ f(T ′
j \ T ′

j−1). In
particular, T ′

m+1 = T ′
m ∪ f(D′

m) = T ′
m1

∪ D′
m ∪ f(D′

m), and so on. In Claim D we
show that T ′

m−1 ⊂ T ′
m ⊂ . . . is a generalized growing tree with specific properties.

Claim D. The following facts hold.
(1) The sequence T ′

m−1 ⊂ T ′
m ⊂ . . . is a generalized growing tree: for any two

trees T ′
i−1 ⊂ T ′

i there is an arc D′
i = [v′

i, di] sticking out of T ′
i−1 with an

endpoint di = f i(d) such that T ′
i = T ′

i−1 ∪ D′
i and T ′

i+1 = T ′
i ∪ f(D′

i).
(2) T ′

i+1 = T ′
m−1 ∪ (∪i

j=mD′
j) ∪ f(D′

i) = T ′
m−1 ∪ (∪i+1

j=mD′
j)).

(3) The basepoint v′
m+i of sets D′

m+i do not belong to the orbits of critical points
and are vertices of T ′

m+k with k ≥ i.

Proof of Claim D. Observe first that the claim (2) of the lemma follows from the
claim (1) and the construction. Observe also that if (1) holds then repeating the
arguments from the proof of Claim A we can easily prove (3). Thus it remains to
establish (1) which we do by induction.

First notice that the base of induction holds. Now, suppose that all the properties
listed in (1) are satisfied for all numbers m − 1,m, . . . ,m + k and show that they
are then satisfied for m + k + 1. By induction T ′

m+k = T ′
m+k−1 ∪ D′

m+k and
by the construction we define T ′

m+k+1 as T ′
m+k ∪ f(D′

m+k). Consider the point
v′

m+k ∈ T ′
m+k−1 and show that f(v′

m+k) ∈ T ′
m+k. By (3) and induction vm+k does

not belong to the orbit of a critical point and is not an endpoint of T ′
r for any r.

Now, since v′
m+k ∈ T ′

m+k−1 then either f(v′
m+k) ∈ T ′

m+k−1, or f(v′
m+k) ∈ Cm, or

f(v′
m+k) ∈ D′

m+k (by induction the only two places where points can exit T ′
m+k−1

are D′
m+k and Cm). Let us show that f(v′

m+k) cannot belong to Cm. Indeed, if
v′

m+k is mapped into Cm then f(D′
m+k) sticks out of Cm because v′

m is not a critical
point and a neighborhood of v′

m+k in T ′
m+k−1 maps onto a neighborhood of f(v′

m+k)
in Cm thus “occupying” all available germs of Cm at f(v′

m) and “forcing” f(D′
m+k)

to stick out of Cm. Since the point dm+k+1 is obviously an endpoint of f(D′
m+k)

this implies that dm+k+1 ∈ Ĉm and contradicts Assumption Z. So, f(v′
m+k) /∈ Cm

and hence f(v′
m+k) ∈ T ′

m+k.
We conclude that f(D′

m+k) is an arc connecting f(v′
m+k) ∈ T ′

m+k and dm+k+1.
Since J is a dendrite we see that in general f(D′

m+k) is the union of two concatenated
arcs, one of which is the arc [f(v′

m+k), v′
m+k+1] contained in T ′

m while the other is
D′

m+k+1 = [v′
m+k+1, dm+k+1]. Observe that if f(D′

m+k) sticks out of T ′
m+k then

D′
m+k+1 = f(Dm+k) and f(v′

m) = v′
m+1. Otherwise (i.e. if f(D′

m) turns inside
T ′

m) the arc [f ′(vm+k), v′
m+k+1] is non-degenerate and D′

m+k+1 � f(D′
m+k). In any

case, this inductively proves the first claim of the lemma and therefore the entire
lemma.
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Essentially, Claim D follows from Assumption Z. If Assumption Z failed then
some v′

m+i could belong to Cm, and the corresponding T ′
m+i defined as above would

not be a tree because it would then be disconnected.
In what follows we will need another non-conventional term. Suppose that we

are given two sequences of trees, Ai and Bi, such that for all 0 ≤ i ≤ k − 1 the tree
Ai sticks out of Bi while Ak has more than one common point with Bk (usually
these trees will be dynamically defined). Then we say that at the moment k the
tree Ak−1 turns (inside Bk), and the moment k when it happens is said to be the
first turning moment (for Ak). We think that this terminology helps visualize
the proofs which justifies its introduction.

In fact one of important and general (applicable to laminations of all degrees)
observations concerning the growing tree T0 ⊂ T1 ⊂ T2 ⊂ . . . deals exactly with
the phenomenon of turning. Indeed, fix m and consider the tree Tm = B0 and a
component A = A0 of Tm+1\Tm. Then as Bi we take Tm+i and as Ai we take f i(A).
Consider the basepoint a of A and the basegerm (a, S) of A. Then by Lemma 2.3(3)
the germ (a, S) eventually maps into T0, so definitely there will be the first moment
j when it will map into Bj . This is the first turning moment we introduced in the
previous paragraph. More explicitly - and without our terminology - one can say
that j is the least such number i that f i(A) and Tm+i are non-disjoint (observe,
that when i = 0 the sets Tm = B0 and A = A0 are disjoint and that for every i we
have f i(a) ∈ Tm+i).

In general at the first turning moment of A a number of combinatorial (in the
dynamical sense) events may take place. We illustrate only one simple way in which
this can happen because the picture is applicable in the cubic case. Namely, assume
that a is not an endpoint of Tm and does not pass through a critical point before
A turns. Assume also that f i−1(A) is an arc and so are all other components of
Tm+i \ Tm+i−1. Then the fact that i is the first turning moment of A implies that
actually f i(a) is a vertex of Tm+i. Indeed, under f the basegerm of f i−1(A) maps
into Tm+i, but the germs of Tm+i−1 at a do so as well, and since by the assumptions
on a there are at least two of them we see that there are at least 3 germs of Tm+i

at f i(a) as claimed. This is sketched on Figure 2.4 (thick lines show the images of
A).

T
m+i-1

f
i-1

(A)

f

T

f (A)

m+i

i

Figure 2.4. The turning moment

Denote by Sk the set of all basepoints of sets D′
m+i. By Claim D all these
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basepoints are vertices of T ′
m+k. Moreover, by Claim D the set Sk together with

the vertices of Tm−1 form the set of all vertices of T ′
m+k. The set Sk can be divided

into orbit segments of some particular vertices from Sk. Indeed, first these are
images of vm = v′

m taken over the period of time when arcs fs(D′
m) do not turn

inside trees T ′
m+s−1. At the first turning moment (when fs1(D′

m) turns inside
T ′

m+s1−1) a new basepoint v′
m+s1

is created and then an initial segment of its orbit
is included in the set Sk of vertices, namely the initial segment until the next
turning moment m + s1 + s2, etc. We summarize these observations in Claim E
below.

Claim E. The set Sk can be divided into orbit segments of points

{v′
m, f(v′

m) = v′
m+1, . . . , f

s1−1(v′
m)} = I1; {v′

m+s1
, . . . , fs2−1(v′

m+s1
)} = I2; . . .

where m + s1,m + s1 + s2, . . . are the turning moments as defined above.

Now we can describe the strategy of the proof of the lemma. We will show that
the set V ′

m+k of all vertices of any tree T ′
m+k, k ≥ 0 consists of points which are

preperiodic or preimages of um (in particular vm is preperiodic or preimage of um).
On the other hand, if k is big enough the analysis of the behavior of um shows that
either um is preperiodic or it is eventually mapped onto one of the vertices from
V ′

m+k. Since by Claim C the wave x passes through either um or vm we see that x
cannot be wandering, a contradiction.

Claim F. The point fm+l(d) = dm+l does not belong to T ′
m+l−1.

Proof of Claim F. Indeed, by Corollary 1.4(2) all images of d are endpoints of
J , hence dm+l is an endpoint of T ′

m+l. Assume by way of contradiction that dm+l

belongs to T ′
m+l−1. Then it is an endpoint of T ′

m+l−1. By the construction the
endpoints of T ′

m+l−1 are either endpoints of T0 (all of which are preperiodic), or
images of c (with which dm+l cannot coincide by Corollary 1.4(2)), or points di with
i < m + l (so that if dm+l = di then d is preperiodic, a contradiction to Corollary
1.4(2)). Thus dm+l /∈ T ′

m+l−1.

The next claim is one of the major ingredients of the proof of Lemma 2.4.

Claim G. All vertices of T ′
m+k are preperiodic or preimages of um.

Proof of Claim G. First consider vertices of T ′
m−1 = Tm−1; by Corollary 1.4(2)

none of them is precritical. By way of contradiction consider a wave z of Tm−1.
Then by Lemma 2.3(6) z is eventually mapped onto um or vm. In the former case
we are done with respect to z, in the latter case it is enough to consider points
of the set Sk which are not vertices of Tm−1. So let us now assume that z is a
non-precritical wave in Sk. First let z = vm. Let us follow the orbit of vm. Observe
that if vm ever maps onto a vertex of Tm−1 then by Lemma 2.3(6) some future
image of vm coincides with either vm or um as desired. Assume that vm is never
mapped onto a vertex of Tm−1. Take the first moment s1 when fs1(D′

m) turns
inside T ′

m+s1−1. At this moment z = vm maps onto a vertex of T ′
m+s1−1 which by

assumption is not a vertex of T ′
m−1. However as explained above all such vertices

are images of vm = z. Hence vm = z is preperiodic as desired.
Consider now the case of z being a vertex of T ′

m+k which is never mapped onto
a vertex of T ′

m−1 or onto vm. By Claim E it is enough to consider the case when
z is the initial point z = v′

m+s1+···+si
of an orbit segment Ii+1, one of the orbits
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segments into which Sk is divided by Claim E. Then the point fsi+1(z) is a vertex
of Tm+s1+···+si+1−1 which either belongs to the same orbit segment Ii+1 (and so z
is preperiodic) or belongs to another orbit segment It with t < i + 1. Clearly, after
finitely many steps the point z is “forced” to either become a preperiodic point or
be mapped onto a vertex of T ′

m−1 or vm which as we saw above leads to the desired
conclusion.

To finish the proof of Lemma 2.4 we need the formula for the tree Tm+j obtained
in Claim H below.

Claim H. Tm+j = T ′
m+j ∪ (∪j

i=0f
i(Cm)).

Proof of Claim H. By the construction of the standard growing tree Ti ⊂ Ti+1 ⊂
. . . we know that Tm+j = Tm−1∪(∪j

i=0f
i(Cm∪Dm)). To prove the claim it is enough

to show that Tm+j ⊂ T ′
m+j ∪ (∪j

i=0f
i(Cm)) (the opposite containment is obvious).

Because of the above formula for Tm+j it is sufficient to show that ∪j
i=0f

i(Dm) ⊂
T ′

m+j ∪ (∪j
i=0f

i(Cm)). Let us prove it by induction. Clearly, this containment holds
for j = 0. Assume that it holds for j, i.e. that ∪j

i=0f
i(Dm) ⊂ T ′

m+j ∪(∪j
i=0f

i(Cm)).
This implies that f(∪j

i=0f
i(Dm)) ⊂ f(T ′

m+j ∪ (∪j+1
i=1f i(Cm))), and since by the

construction f(T ′
m+j) ⊂ Cm ∪ T ′

m+j+1 we see that indeed ∪j+1
i=0f i(Dm) ⊂ T ′

m+j+1 ∪
(∪j+1

i=0f i(Cm)). So we finally conclude that Tm+j+1 = T ′
m+j+1 ∪ (∪j+1

i=0f i(Cm)) as
desired.

The next claim effectively completes the proof of Lemma 2.4.

Claim I. The point um is preperiodic.

Proof of Claim I. Let us consider the arc Cm until its own first turning mo-
ment by which we as always mean the least k such that fk(Cm) turns inside
Tm+k−1. For each j ≤ k − 1 we have the following: the arc Cm+j sticks out of
Tm+j−1 and has the image f j(um) of um as the basepoint. Then fk(um) is a
vertex of Tm+k−1 = T ′

m+k−1 ∪ (∪k−1
i=0 f i(Cm)). If fk(um) is a vertex of T ′

m+k−1

then by Claim G it is either preperiodic or mapped onto um; either way um is
preperiodic. Otherwise fk(um) is a vertex of Tm+k−1 which is not a vertex of
T ′

m+k−1. As follows from the choice of k and Claim H, in fact all the vertices
of Tm+k−1 are divided into two subsets: A which is the set of all vertices of
T ′

m+k−1 and B = {um, f(um), . . . , fk−1(um)}. Hence the only remaining case is
when fk(um) ∈ B which again implies that um is preperiodic as desired.

Finally we are ready to finish the proof of Lemma 2.4. Indeed, by Claim C the
forward orbit of the wave x passes through either um or vm. However, um is prepe-
riodic by Claim I and vm is preperiodic by Claim G and Claim I, a contradiction.
This shows that Assumption Z leads to a contradiction. Therefore for any m > M
there exists k such that fk(dm) ∈ Ĉm and d(fk(dm), cm)ε.

Observe that Lemma 2.4 is symmetric with respect to the critical points c and
d. With respect to the limit behavior of these points it tells us that given ε from
some time on any forward image of c can be approximated by some forward image
of d, and vice versa. This implies the claim of the Main Theorem which states that
ω(c) = ω(d) = A. By Corollary 1.4(4) we conclude that in fact ω(y) = A for any
wave y.

The second half of the Main Theorem is the claim that both critical points of f
are recurrent. We prove that in fact for the wave x chosen above we have d ∈ ω(x)
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(it follows similarly that c ∈ ω(y)). Clearly together with the conclusions of the
preceding paragraph this would complete the proof of the Main Theorem. Observe
that our proof of the fact that d ∈ ω(x) does not use Corollary 1.4(4). Since by
Corollary 1.4(2) no vertex is ever mapped into a critical point we conclude that x
does not come closer to d than a certain positive number ε.

Now we need a couple of general properties which can be considered as extensions
of well-known properties of interval maps onto certain maps of dendrites. Basically
these properties follow from the fact that f |J has no wandering continua (by The-
orem 1.2(2)) and that for any n the set of fixed points of fn is zero-dimensional
(Lemma 2.3(7)). First we need the following lemma.

Lemma 2.5. For every ε > 0 there exists a number σ(ε) > 0 such that for any
continuum K ⊂ J with diam(K) ≥ ε we have that diam(f i(K)) > σ(ε) for any
i ≥ 0.

Proof. First observe that there exists a finite collection of continua K1, . . . ,Km

in J such that every continuum of diameter greater than ε contains one of Ki’s.
Indeed, by Theorem 10.27 from [14] there exists a finite tree T ⊂ J such that
the diameter of any component of J \ T is less than ε/4. Clearly, there exist
finitely many arcs K1, . . . ,Km in T such that any subcontinuum of T of diameter
greater than ε/2 contains a set Ki with 1 ≤ i ≤ m. Consider a continuum K ⊂ J
such that diam(K) ≥ ε. Then K ∩ T is a continuum itself. Let us show that
diam(K ∩ T ) > ε/2. Indeed, suppose otherwise. Choose two points y, y′ ∈ K such
that d(y, y′) = diam(K) > ε and also the component Y of J \ T containing y and
the component Y ′ of J \T containing y′. Then diam(Y ) < ε/4, diam(Y ′) < ε/4 and
on the other hand there are points a ∈ Y ∩K ∩ T, b ∈ Y ′ ∩K ∩ T . By the triangle
inequality we conclude that d(a, b) > d(y, y′) − d(y, a) − d(b, y′) > ε − ε/2 = ε/2
which implies that diam(K ∩ T > ε/2. Hence there exists i, 1 ≤ i ≤ m such that
K ⊃ K ∩ T ⊃ Ki as desired.

Now, by Lemma 3.8 ([5]) given a non-degenerate continuum K ⊂ J there exists
δ > 0 such that diam(f j(K)) > δ for any j ≥ 0. In particular this holds for
K1, . . . ,Km. Thus if for every i we choose the lower bound on diam(f j(Ki)), j ≥ 0
and then choose the maximum of these lower bounds we will get the desired number
σ(ε) > 0.

Next we discuss another general fact which now deals with preperiodic and pre-
critical points. A set A such that every non-degenerate continuum in S contains
a point from A is said to be condense in S (“continuum” + “dense”); this term
was introduced in [7] where it was used in a totally different context. In the case of
finite graphs the fact that a set is condense is equivalent to the fact that it is dense.
In general it is not so; the next lemma specifies the situation for dendrites.

Lemma 2.6. If S is a dendrite then a set A is condense in S if and only if every
non-degenerate arc in S contains a point from A.

Proof. It is enough to show that if every non-degenerate arc in S contains a point
of A then so does every non-degenerate continuum. To see that observe that every
non-degenerate continuum in S is arcwise connected (see [11]) and therefore contains
non-degenerate arcs; since they contain points of A by assumption, we are done.

In the next lemma we draw one more parallel between f |J and one-dimensional
maps (i.e. maps of one-dimensional branched manifolds, or “graphs”) and show
that some properties of one-dimensional maps hold for maps of dendrites without
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wandering continua (which then applies to a factor map f |J of zd under a lamination
by Theorem 1.2(2)). A map is said to be topologically exact if for any open set U
there is a number n such that fn(U) = J . Also, by a critical point of a continuous
map we mean a point at which the map is not a local embedding.

Lemma 2.7. Suppose that f : J ′ → J ′ is a continuous self-mapping of a dendrite
J ′ without wandering continua. Then the following holds.

(1) Preperiodic points are condense in J .
(2) If the set of fixed point of fn is zero-dimensional for every n then precritical

points are condense in J .
(3) If f : J → J is a factor of zd under a lamination then it is topologically

exact.

Proof. (1) By way of contradiction assume otherwise. Then there exists an arc I
whose forward orbit avoids periodic points. On the other hand by assumptions I is
not wandering. So we may assume that there exists k > 0 such that fk(I) ∩ I �= ∅.
Consider the set A′ = ∪∞

i=0f
ikI and then the set A = A′. By the construction

fk(A) ⊂ A. We want to study the restriction fk|A. By the assumption A′ contains
no periodic points. On the other hand there must exist fk-fixed points in A because
A is a dendrite itself (see, e.g., [14], Theorem 10.31). We conclude that all fk-fixed
points in A are endpoints of A.

Choose a fixed endpoint a of A and consider dynamics in its small neighborhood.
Pick a point b ∈ A very close to a and consider the arc [b, a] and the set fk([b, a]).
Since a is an endpoint of A we see that these sets have a non-trivial intersection
which has to be an arc [a, y]. We can choose a smaller arc [a, z] ⊂ [a, y] such that all
its points map into [a, y]. Then since by the assumption all fixed points of fk|A are
endpoints of A and there are no wandering continua we see that all points of (a, za]
map farther away from a. Choose a point za ∈ (a, z) which is not a vertex of A (by
[14], Theorem 10.23, the set of all vertices of A is countable). Then za cuts A into
two components; denote that one of them which contains a by Ra. We can always
choose za so close to a that diam(Ra) is smaller than diam(A)/3. The set Ra is
open and its endpoint za does not map into Ra. Repeating this argument for all
points from the set F of fixed points of fk|A and using the fact that F is compact
we can find a finite set B of fixed points of fk such that ∪a∈BRa = W ⊃ F .

It is easy to see that if u, v ∈ B then either Ru and Rv are disjoint, or one of
these sets contains the other. Indeed, suppose that u /∈ Rv and show that then
zu /∈ Rv. Indeed, otherwise we get that Ru ∪ Rv = A which impossible because
diam(Ru) < diam(A)/3,diam(Rv) < diam(A)/3. So, zu /∈ Rv which implies that
Ru and Rv are disjoint. Now, suppose that u ∈ Rv. Then there are two possibilities:
it may happen that zu ∈ Rv in which case Ru ⊂ Rv, or it may happen that zu /∈ Rv

in which case Rv ⊂ Ru. Either way the claim is proven, and so we can refine our
collection B and assume that all sets Rt, t ∈ B are pairwise disjoint.

Define a map h : A → A which maps each Ra, a ∈ B onto a and is identity
elsewhere. Next, consider a dendrite D = A \ W and define a new map g = hfk of
D into itself. Clearly, g is a continuous map of a dendrite D into itself, so it must
have at least one fixed point. However it cannot be a point of D not coinciding
with za for some a ∈ B because of the assumption that all fixed points of fk|A are
endpoints of A. On the other hand it cannot be za with some a ∈ F because of the
choice of points za, a contradiction which completes the proof.

(2) By way of contradiction assume otherwise. Then there exists an arc I whose
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forward orbit avoids critical points. Applying to I and its iterates the same con-
struction as before we may assume that A ⊂ J is a dendrite such that fk(A) ⊂ A
for some k and fk : A → A is an embedding (in principle, critical points of f may
belong to A but only as endpoints). Let us show that this is impossible.

Indeed, by (1) there are two periodic points x, y of fk|A. Consider a power g of
f such that g(x) = x, g(y) = y. Since g (being a power of fk|A) is an embedding
we see that g maps the arc [x, y] onto itself in a homeomorphic fashion. Since by
the assumption the set of all fn-fixed points is zero-dimensional, this implies that
there exists a g-fixed point z ∈ [x, y] attracting points on at least on side in [x, y],
a contradiction with the non-existence of wandering continua.

(3) Immediately follows from the fact that zd : S1 → S1 is topologically exact
and properties of laminations.

The assumption that J is a dendrite is necessary here - otherwise the Julia set
may contain a Siegel type closed curve, and there are not periodic points in such
curves. Also, one can think of claim (1) of Theorem 2.7 as an extension of a
well-known fact according to which periodic points are dense in the Julia set of a
polynomial. For the interval maps results similar to claims (1) and (2) of Theorem
2.7 are known (see, e.g., [1]).

The last general technical result which we need here is the backward stability
of f . We define it as follows: if X is a compact metric space then f is said to
be backward stable if for any δ there is ε such that for any continuum K with
diam(K) ≤ ε, any n ≥ 0 and any component M of f−n(K), diam(M) ≤ δ (similarly,
the backward stability at a point can be defined).

The notion extends the classical Lyapunov stability onto backward orbits of non-
invertible maps. Essentially, it was first introduced by Fatou who showed that a
polynomial P : C → C is backward stable at points not belonging to the limit
sets of critical points. Other facts concerning backward stability which follow from
classical results (in particular, from the description of the local dynamics at periodic
points - see, e.g.,[8]) are that P : C → C is not backward stable at any parabolic
periodic point which lies in the Julia set. Obviously, P is not backward stable at
attracting periodic points. Thus, the well-known obstacle for the backward stability
of a polynomial at a point of its non-wandering set is that the point could be an
attracting or neutral periodic point, and in [5] we prove that if J(P ) is locally
connected then this is the only obstacle for backward stability at such a point. Let
us also point out that the above discussed way of defining backward stability was
introduced in [12].

In the preceding paragraph the map is considered at points on the plane while
we are interested in the backward stability of the entire f |J as defined above. This
problem was partially solved in [12, 2] and then solved in [5].

Theorem 2.8 [5]. The map f |J is backward stable.

Now we are ready to pass on to the proof of the rest of the Main Theorem which
states that both critical points of f are recurrent. By Corollary 1.4 there are two
possible cases for the sets Cm,Dm.

Case 1. The sets Cm,Dm are disjoint arcs.

This was the main case considered in the proof of the fact that with the assump-
tion of the existence of a non- precritical wave we have ω(c) = ω(d).
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Case 2. The sets Cm and Dm coincide and are homeomorphic to a triod.

Below we will prove, that in fact Case 2 is impossible. However to begin with
we will have to argue assuming that Case 2 can take place. In order to consider
possibilities we need to introduce notation. Recall that the basepoints of Cm,Dm

are denoted um, vm respectively. In Case 2 the vertex of Cm = Dm is denoted by
zm. In our arguments an important role is played by the arc Im

m defined as follows:
if Case 1 takes place then Im

m = (vm, dm], if Case 2 takes place then Im
m = (zm, dm].

So in any case Im
m is an arc in Dm whose one endpoint is dm and who extends

inside Dm until it hits a vertex of Tm. We want to pull Im
m back m times along

the orbit of d inside Tm−1. By a pull back of a continuum K ⊂ Tm inside Tm−1

we understand a component of f−1(K) ∩ Tm−1, and if we specify a point from the
pull back then we mean the pull back containing this point. For example, Im

m−1 is
defined as the pull back of Im

m inside Tm−1 containing dm−1, Im
m−2 is defined as the

pull back of Im
m−1 in side Tm−1 containing dm−2, and so on. This defines continua

Im
0 , Im

1 , . . . , Im
m , and explains our notation.

Let us now make a couple of useful observations. First, it follows from Lemma
2.2 that diam(Im

m ) → 0 as m → ∞. By Theorem 2.8 this implies that in fact
diam(Im

i ) → 0 as m → ∞ uniformly over i, 0 ≤ i ≤ m. Second, Im
0 is a continuum

containing d inside which maps onto Im
1 in at most 2-to-1 fashion (the point d1 has

a unique preimage inside Im
0 though), the set Im

1 has d1 as an endpoint, the set Im
2

has d2 as an endpoint, etc. The entire collection of sets Im
m , . . . , Im

0 is denoted by
I.

The main step now is to show that in some cases the sets Im
j , 0 ≤ j ≤ m are

arcs. Also, we describe the trajectory of a point z ∈ Tm−1 assuming that it stays
in Tm−1 for a while and then exits Tm−1 and gets mapped into Im

m . Basically, we
show that this can happen only if the point z passes through Im

0 .
We want to remind the reader that we call k +1 the turning moment for Ck if

f maps the basegerm of Ck into Tk. Let us show that if k + 1 is a turning moment
for Ck then f(uk) is a vertex of Tk. Indeed, by Corollary 1.4(2) uk is not a critical
point, so distinct germs at uk map onto distinct germs. Now, there are at least
2 germs of Tk−1 at uk which are not the basegerm of Ck (observe that if there
is a basegerm of Dk �= Ck at uk then as follows from Corollary 1.4(3) uk = vk is
preperiodic whereas x must pass through uk or vk by Lemma 2.3(6), a contradiction
with the assumption that x is wandering). The images of all the germs of Tk at uk

are in Tk, hence indeed f(uk) is a vertex of Tk.

Lemma 2.9. Let m + 1 be a turning moment for Cm. Then sets from I contain
no vertices of Tm.

Proof. First we prove that sets Im
m , Im

m−1, . . . , I
m
0 contain no vertices of Tm−1. Even

though the pictures are different depending on whether Case 1 or Case 2 take place
for m, to begin with a common argument can be suggested which covers both cases.
Before we proceed recall that none of the sets Im

r contains a critical point of f , and
hence if a germ/tree sticks out of some Im

j then its images stick out of images of
Im
j on each step through the interval Im

m .
By way of contradiction assume that there is a vertex ej of Tm−1 in Im

j , and that
j is the greatest number between 0 and m with this property. Then j < m because
no part of Tm−1 sticks out of Im

m . We denote a component of Tm−1 \ {ej} which
sticks out of Im

j at ej by Ej and denote the basegerm of Ej at ej by (ej , R). Since
(ej , R) is contained in Tm−1, its image f(ej , R) is contained in Tm. This shows that
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in fact j < m− 1. Indeed, otherwise f(ej , R) sticks out of Im
m while no germ of Tm

sticks out of Im
m , a contradiction. Hence j < m−1 and therefore f(ej , R) sticks out

of Im
j+1 where j + 1 < m.

Next we prove the following claim.

Claim J. The set Dm cannot stick out of the set Im
r with 0 ≤ r ≤ m.

Proof of Claim J. We may assume that r < m. It follows that if Dm sticks out
of Im

r then the set fm−r(Dm) sticks out of fm−r(Im
r ) ⊂ Im

m . This implies that D̂m

is mapped by fm−r inside itself which contradicts topological exactness of f .

Consider the germ f(ej , R). On the one hand, f(ej) ∈ Tm−1, on the other hand
f(ej , R) is a germ of Tm which sticks out of Tm−1 (by the choice of j the germ
f(ej , R) cannot belong to Tm−1). Hence it is the basegerm of either Cm or Dm.
By Claim J the case when f(ej , R) is the basegerm of Dm which sticks out of Im

j+1

is impossible. Therefore under our assumptions Case 2 cannot hold for m because
otherwise f(ej , R) must be the basegerm of Dm (recall that in this case Cm = Dm).

Thus we may assume that Case 1 takes place for m and that f(ej , R) is the
basegerm of Cm which sticks out of Im

j+1, j + 1 < m. By the choice of m if f(ej , R)
is the basegerm of Cm then on the next step the germ f(ej , R) has to map into Tm

(because m+1 is a turning moment for Cm). So, the germ f2(ej , R) belongs to Tm

and sticks out of Im
j+2 with j + 2 ≤ m. If j + 2 = m then we get that a germ of Tm

sticks out of Im
m which is impossible. If j+2 < m then there are several possibilities,

and we will show that none of them can take place. First, f2(ej , R) can belong to
Tm−1. In this case f2(ej) is a vertex of Tm−1 because there are at least three germs
of Tm−1 at f2(ej), namely the two germs of Im

j+2 and f2(ej , R). This is impossible
by the choice of j as the maximal number between 0 and m such that Im

j contains
a vertex of Tm−1. Next, the germ f2(ej , R) can be the basegerm of Dm which then
sticks out of Im

j+2 with j + 2 < m. By Claim D, this is impossible either. Finally,
f2(ej , R) can be the basegerm of Cm. However, f(ej , R) is the basegerm of Cm too.
Thus in this case f(Ĉm) ⊂ Ĉm which contradicts the topological exactness of f .
We conclude that none of the three possibilities can take place and so no vertices
of Tm−1 belong to the sets from I.

It remains to show that um or vm cannot belong to the sets Im
m , Im

m−1, . . . , I
m
0 .

There are several cases when it follows from the previous results. Namely, by Claim
J the basepoint um = vm of Cm = Dm cannot belong to sets from I, so we may
assume that Case 1 takes place. Moreover, um /∈ Im

m simply by the definition.
By Claim J it remains to consider the case when Cm �= Dm, um ∈ Im

r , r < m.
Then there are at least three germs of Tm at um: the basegerm of Cm and two germs
of Im

r . Since um is not a critical point then these three germs have distinct images.
Moreover, the image of the basegerm of Cm is contained in Tm because Cm turns,
and the images of germs of Im

r at um are contained in Tm because Im
r ⊂ Tm−1.

Hence f(um) is a vertex of Tm, and since it belongs to Im
r+1, r + 1 ≤ m it cannot be

a vertex of Tm−1 by the proven above. By Claim J f(um) �= vm either. So the only
remaining case is when f(um) = um. However then um is a dividing fixed point of
f which has to belong to T0 by Lemma 2.3(4) while the set Im

r+1 is disjoint from T0

(if it is not then applying fm−r−1 we see that there are points of Tm−1 is Im
m which

is impossible). Thus we see that indeed vm or um cannot belong to the intervals
Im
m , Im

m−1, . . . , I
m
0 .

Let us now prove the following lemma which uses the notation from the previous
lemma (e.g., m + 1 is the turning moment for Cm).
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Lemma 2.10. Suppose that for a point y there exists a number k such that y ∈
Tm−1, f(y) ∈ Tm−1, . . . , f

k−1(y) ∈ Tm−1, f
k(y) ∈ Im

m . Then fk−1(y) ∈ Im
m−1,

fk−2(y) ∈ Im
m−2, . . . and in general fk−i(y) ∈ Im

m−i for any i ≤ min{k,m}.
Proof. We prove the lemma by way of contradiction. Consider the initial segment
of the orbit of the point y. If the conclusions of the lemma fail then there exists
0 < j ≤ k such that f i(y), 0 ≤ i ≤ j − 1 does not belong to the union of the arcs
Im
m , Im

m−1, . . . , I
m
0 while f j(y) belongs to an interval Im

r with some r > 0. In other
words, the first time y enters the intervals Im

m , Im
m−1, . . . , I

m
0 takes place outside Im

0 .
Consider the point f j−1(y) ∈ Tm−1. Since by Lemma 2.9 no parts of Tm stick

out of the intervals Im
m , Im

m−1, . . . , I
m
0 then a small neighborhood U of f j−1(y) in

Tm−1 is mapped by f onto a small neighborhood of f j(y) in Im
r . This implies that

U is an arc; we can think of it as a “vector” starting at its initial point, ending
at its terminal point and pointing in the direction which, when mapped forward
by f , corresponds to the direction toward dr. Extend the “vector” U beyond its
terminal point until it hits an endpoint of Tm−1 or a critical point (whichever comes
first) and denote the new vector U ′ and its new (compare to U) terminal point by
w. Observe that by Lemma 2.10 there are no vertices of Tm−1 in U ′. The f -image
of U ′ must end within Im

r , and since f(w) is an image of a critical point we see
that f(w) = dr (otherwise we contradict Lemma 2.9). However this implies that
w = dr−1 and that f j−1(y) already belongs to Im

r−1, a contradiction.

Consider now Case 1 and Case 2 with respect to the behavior of sets Cm,Dm as
m → ∞. To do so we need more notation. Namely, the endpoint of Im

k which is
not equal to an image of d will be denoted by wm−k and the germ of Im

k at wm−k

will be denoted by (wm−k, A).

Lemma 2.11. Let m be a large number such that Cm �= Dm = Im
m and Cm turns.

Then the f-image of the basegerm of Cm cannot be a germ (wm−k, A) for some
0 ≤ k < m.

Proof. We prove the lemma by way of contradiction. Assume that the basegerm of
Cm is (um, B) and that f(um, B) = (wm−k, A) for some 0 ≤ k < m. Then the map
fk maps (wm−k, A) onto the basegerm (vm, F ) of Dm. Let us follow the forward
orbit of Dm until it turns for the first time; denote the turning moment for Dm by
m + s (so that s is the least number such that fs maps the basegerm of Dm inside
Tm+s−1). By Lemma 2.3(6) and because fk+1(um) = vm we see that actually both
um and vm are waves, and so vm never maps into um. Thus at the moment m + s
the point fm+s(vm) is not equal to um or vm.

Next we need the following claim.

Claim K. For any i, 0 ≤ i ≤ s, we have that the point f i(vm) belongs to Tm−1 and
if i < s then the set f i(Dm) = Dm+i sticks out of Tm−1.

Proof of Claim K. Indeed, if vm+i does not belong to Tm−1 for the first time
then one of the following two cases takes place: a) vm+i ∈ Cm, b) vm+i ∈ Dm. In
the case a) f i(Dm) sticks out of Cm because the other germs of Tm−1 at vm+i−1

have images which occupy germs of Cm at vm+i while vm+i−1 is not critical (by
Corollary 1.4(2)). Then the assumptions on the behavior of Cm imply that fk+i+1

maps Ĉm into itself, a contradiction. If Case b) holds then similarly f i maps D̂m

into itself, a contradiction. The other statement of the claim is obvious. One can
visualize the dynamics by thinking of Dm as “sliding” on the “surface” of Tm−1.
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The fact the point fm+s(vm) is not equal to um or vm and Claim K imply that
fm+s(vm) is a vertex of Tm−1. Then because it is wandering Lemma 2.3(6) and our
assumptions concerning the behavior of um and vm imply that some forward image
of vm coincides with vm, a contradiction.

For the sake of completeness we now prove the following lemma.

Lemma 2.12. There exists Q such that for any i ≥ Q Case1 takes place.

Proof. We prove the lemma by way of contradiction. First suppose that Case 1
and Case 2 take place for infinitely many values of m. Then there are moments
when Case 1 is replaced by Case 2 and vice versa. Consider a moment m when
Case 1 is replaced by Case 2, and assume that m is sufficiently large. Then Cm and
Dm are disjoint arcs while Cm+1 = Dm+1 is a triod. This implies that there are
points sm, tm ∈ Cm, pm, qm ∈ Dm such that f(sm) = f(pm) = um+1 = vm+1 and
f(tm) = f(qm) = zm+1. Now, let us follow the set Cm+1 = Dm+1 until its turning
moment. That is, let k ≥ m + 1 be the least such number that Ck = Dk turns (the
basegerm of Ck = Dk maps inside Tk). By the proven above, this implies that for
the interval Ik

k = (zk, dk] its backward orbit in Tk−1 is Ik
k−1, . . . , I

k
0 continued by

preimages of Ik
0 . Now we continue by proving a series of claims. Claim K1 below is

very close to Claim K from the proof of Lemma 2.11; in Claim K1 we look at the
behavior of the set Dm+1 from the moment m + 1 through the moment k (that is,
within the segment of the orbit when no turns take place).

Claim K1. For any i, 0 ≤ i ≤ k −m− 1, we have that the point f i(um+1) belongs
to Tm and the set f i(Dm+1) = Dm+i+1 sticks out of Tm.

Proof of Claim K1. Indeed, if um+i+1 does not belong to Tm for the first time
then it must belong to Dm+1. By the choice of k as the first turning moment after
m+1 and because m+ i+1 ≤ k this implies that f i(Dm+1) = Dm+i+1 sticks out of
Dm+1. Therefore f i(D̂m+1) = D̂m+i ⊂ D̂m+1, a contradiction with the topological
exactness of f . So, we have f i(um+1) ∈ Tm for 0 ≤ i ≤ k −m− 1, and by choice of
k the set f i(Dm+1) = Dm+i+1 sticks out of Tm.

The next claim studies the behavior of a wave x ∈ Tk−1.

Claim L. If x ∈ Tk is a wave then x = fs(zm+1), 0 ≤ s ≤ k − m − 1.

Proof of Claim L. Suppose that x is a vertex of Tk−1. Consider the first time x
stops being a vertex of Tk−1. By Lemma 2.3(6) it can only happen when fr(x) = uk

or when fr(x) = zk. Moreover, germs of Tk−1 at x map by fr into germs of Tk

at uk or zk respectively because otherwise we would have that N(fr(x)) > 3, a
contradiction with Corollary 1.4(3). Suppose that fr(x) = zk and consider a tiny
interval U = (x, y] ⊂ Tk−1 such that fr(x, y] ⊂ Ik

k = (zk, dk] and for any j < r
we have f j(U) ⊂ Tk−1. Such interval U exists because otherwise there is a smaller
than r power of f which maps x into a non-vertex of Tk−1. Then by Lemma 2.10,
by Claim K and by the assumptions from above about creation of Cm+1 = Dm+1

we see that it can happen only if x = fs(zm+1), 0 ≤ s ≤ k − m − 1.
It remains to consider the case when fr(x) = uk. We prove below that uk is

not a wave which excludes this case. Moreover, this shows that of the vertices of
Tk which are not vertices of Tk−1 only zk could be a wave and thus completes the
proof of the claim.

So, let us show that uk is not a wave. By the choice of k on the next step f(uk)
remains a vertex of Tk (the image of the basegerm of Dk belongs to Tk, and so are the
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images of the two germs of Tk−1 at uk). If this vertex f(uk) is zk then it is easy to see
that the basegerm (s,A) of Dk cannot map into Ik

k . Indeed, otherwise f(D̂m) ⊂ D̂m

which contradicts the topological exactness of f . Hence it is a germ of Tk−1 at uk

which maps into Ik
k by f . By Lemma 2.10 it implies that uk = zk−1. However by

the shown above uk ∈ Tm while zk−1 /∈ Tm because zk−1 ∈ Dk−1 and Dk−1 sticks
out of Tm. This contradiction shows that f(uk) �= zk. Then f(uk) is a vertex of
Tk−1 which will have to exit the set of vertices of Tk−1 at a later moment. When it
happens, it cannot happen at uk because then uk is periodic. So f(uk) is a wave in
Tk−1. By the previous paragraph f(uk) = fs(zm+1) = zm+s+1, 0 ≤ s ≤ k − m − 1.

Consider this situation in detail. If the basegerm of Dk maps into the germ
(zm+s+1, A) of [zm+s+1, dm+s+1] by f then as before we see that fk−m−s maps
D̂m+s+1 into itself which is impossible because f is topologically exact. Hence it is
a germ of Tm at uk which maps into (zm+s+1, A). By Lemma 2.10 if s > 0 then
uk = zm+s which is impossible because uk ∈ Tm while points zm+s /∈ Tm if s > 0.
Hence s = 0. Now, the only parts of Tm which map into Cm+1 = Dm+1 are points
of Cm,Dm. In fact, we introduced the appropriate notation before; according to it,
either uk = tm ∈ Cm or uk = qm ∈ Dm. However in either case the image of a small
interval connecting uk with um or vm respectively covers a small semineighborhood
of zm+1 in the interval [zm+1, um+1]. In the language of germs we can say that the
f -image of one of the two germs of Tm at uk must be the germ of [zm+1, um+1] at
zm+1. Therefore, the f -image of the basegerm of Dk at uk must be either the germ
of [zm+1, cm+1] at zm+1, or the germ of [zm+1, dm+1] at zm+1. This shows that the
f -image of D̂k is the component of J \ {zm+1} containing either (zm+1, cm+1] or
(zm+1, dm+1] respectively. If we now apply fk−m−1 to this picture then we see that
fk−m(D̂k) ⊂ D̂k, a contradiction with the topological exactness of f . This finally
shows that uk is not a wave and completes the proof of the claim.

To summarize: we have proven that in the situation as above (i.e. if Case 1 is
replaced by Case 2 at some moment m and then the first turning moment of Dm+1 is
k+1) we have that waves of Tk−1 are points fs(zm+1) = zm+s+1), 0 ≤ s ≤ k−m−1
and all other vertices of Tk−1 are periodic. Let us now show that zk is preperiodic
too. This will imply that all vertices of Tk are preperiodic.

Lemma 2.3(4) shows that there exists a natural number t such that f t(zk) ∈ T0.
Then choose numbers K > M > k+t such that at the moment M Case 1 is replaced
by Case 2, and K ≥ M + 1 is the least such number that CK = DK turns (the
basegerm of CK = DK maps inside TK). All that is possible i n particular because
by the assumption Case 1 and Case 2 take place for infinitely many values of m.
Then similarly to the above we can define points ZM+1, . . . , ZK . The fact that
M > k + t implies that the point f t(zk) cannot be one of the points ZM+1, . . . , ZK

and therefore by the proven above it is preperiodic. Thus we see that Case 1 and
Case 2 take place infinitely many times then for a wave x we can find a big number
m such that x is a vertex of Tm and m is a moment when Case 1 is replaced by Case
2. By the proven above it would imply that x is not wandering, a contradiction.

Hence the dynamics cannot infinitely many times switch from Case 1 to Case 2.
On the other hand it is easy to show that Case 2 cannot take place all the time
from some time on. Indeed, if so then for some number m and for all i ≥ 0 we
will have that Cm+i = Dm+i is a triod. However if we choose the least i such that
f i(zm) ∈ Tm+i−1 (such i exists by Lemma 2.3(3)) then we see that Cm+i = Dm+i

being a triod is impossible for this i, a contradiction. This shows that the only
remaining case is when Case 1 takes place from some time on, i.e. when Cm �= Dm
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for all m > Q for some Q ≥ 0 and proves the lemma.

Let us now prove that the critical point d belongs to ω(x). To this end we choose
a big number N > Q for which there exists a triod Y ⊂ TN “centered” at x and
such that:

(1) for some k we have Y ⊂ TN , f(Y ) ⊂ TN , . . . , fk(Y ) ⊂ TN ,
(2) fk|Y is 1-to-1,
(3) fk(x) is not the basepoint of CN or DN ,
(4) each branch Yi, i = 1, 2, 3 of Y maps forward by fk in such a way that at

some moment ji < k its f ji -image is an arc whose endpoints are f ji(x) and
one of the critical points (this can be done by Lemma 2.7(2));

(5) N + 1 is a turning moment for CN (i.e., the f -image of the basegerm of CN

maps into TN ).
It is easy to see that a number N with properties (1)-(5) exists (just fix k for which
(2) and (4) hold, and then choose N which is big enough so that CN turns).

Let us study the orbit of x. By Lemma 2.3(6) there exists R such that fR(x)
is either uN or vN and before that the images of x are vertices of TN−1. By (3)
we see that R > N . Assume to begin with that fR(x) = vN and that along the
way the orbit of x does not pass through uN . Then there exists a germ (x,A) of Y
which has the orbit contained in TN−1 until fR maps it into the basegerm of DN .
By Lemma 2.10 this implies that (x,A) is contained in the set IN

k for some k > 0
or is mapped into IN

0 on a non-negative step.
Let us show that the former is impossible. Indeed, if it holds then the branch

of Y which contains (x,A) is contained into images of IN
k and hence cannot be cut

by a critical point on a step before R, a contradiction with the assumptions. Hence
x passes through IN

0 on a non-negative step. Suppose that the described above
phenomenon (when fR(x) = vN ) takes place for infinitely many Ni’s satisfying
(1)-(5) above. Observe that diam(Dn) → 0 as n → ∞ by Lemma 2.2. Then by
the backward stability of f (Theorem 2.8) we see that diam(INi

0 ) → 0 as Ni → ∞.
Since we know by the above that x passes through INi

0 for every i we conclude that
d ∈ orb(x) and since x never maps onto d by Corollary 1.4(2) we conclude that
d ∈ ω(x). On the other hand we know that ω(x) = ω(d) by the first part of the
Main Theorem. Hence d ∈ ω(d) = ω(x) is a recurrent point.

It remains to consider the case when from some time on for any N satisfying
(1)-(5) we have fR(x) = uN (which implies that uN is wandering itself) while all
preceding images of x are vertices of TN−1. Recall that N is the time when CN

turns. Then f(uN ) is either a vertex of TN−1 or vN . In the former case we can
apply f yet several (say, q) times to see by Lemma 2.3(6) that fq(f(uN )) equals
vN . So in general (regardless of which case takes place) we can say that there exists
a unique q ≥ 0 such that fq(f(uN )) = vN . Moreover, for any 0 ≤ i < q (so if q = 0
such i does not exist) the point f i(f(uN )) is a vertex of TN−1 because otherwise it
will have to pass through uN or vN thus making uN periodic, a contradiction. By
Lemma 2.10 this implies that either f(uN ) passes through IN

0 or f(uN ) belongs to
IN
k with some k > 0. If the former takes place for infinitely many N ’s then similarly

to the previous paragraph one can easily show that d is recurrent. So from now on
we may assume that f(uN ) belongs to IN

k with some k > 0. Since IN
k by Lemma

2.9 contains no vertices of TN−1 we see that in fact f(uN ) is the endpoint wk of IN
k

not equal to dk. Observe that all these arguments are necessary if q > 0; if q = 0
then f(uN ) = vN is the endpoint of IN

N not equal to dN , so essentially the same
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picture holds. Our aim now is to show that this picture still implies that the orbit
of x taken from the very beginning passes through IN

0 which as before implies
that d is recurrent.

An important step of the proof now is to observe that Lemma 2.11 is applicable
to our situation. It implies that the basegerm of CN cannot map to the germ
(wk, A) of IN

k at wk. Hence it is a germ of TN−1 which maps to (wk, A). If we now
follow the orbit of x from x to uN we see that along the way it cannot pass through
either uN or vN (because then it is not wandering) and therefore the entire segment
of the orbit of x from x to uN (i.e. the points x, f(x), . . . , fR−1(x)) consists of
vertices of TN−1. Denote by (x,B) the germ of Y at x which maps into (wk, A) by
fR+1. Then we see that in fact this germ maps into the basegerm of DN by fR+q

and stays inside TN−1 throughout this orbit segment. This is the situation where
Lemma 2.10 is applicable to (x,B). By Lemma 2.10 we have that either x passes
through IN

0 on its way to vN , or it does not. In the former case the same arguments
as before imply that d is recurrent. Now, in the latter case we see by Lemma 2.10
that in fact x ∈ IN

k with some k > 0. However this implies that there is a branch
of Y contained in IN

k which thus does not get cut at a critical point as it should
according to our choice of Y and related numbers. This shows that x ∈ IN

k , k < N
is impossible and completes the proof of the second claim of the Main Theorem.
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