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ABSTRACT. Complex 1-variable polynomials with connected Julia sets
and only repelling periodic points are called dendritic. By results of
Kiwi, any dendritic polynomial is semi-conjugate to a topological poly-
nomial whose topological Julia set is a dendrite. We construct a contin-
uous map of the space of all cubic dendritic polynomials onto a lami-
national model that is a quotient space of a subset of the closed bidisk.
This construction generalizes the “pinched disk” model of the Mandel-
brot set due to Douady and Thurston. It can be viewed as a step towards
constructing a model of the cubic connectedness locus.

1. INTRODUCTION

The parameter space of complex degree d polynomials is by definition
the space of affine conjugacy classes of these polynomials. Equivalently,
one can talk about the space of all monic central polynomials of degree d,
i.e. polynomials of the form zd + ad−2z

d−2 + · · · + a0. Any polynomial is
affinely conjugate to a monic central polynomial. An important set is the
connectedness locus Md consisting of classes of all degree d polynomials
P , whose Julia sets J(P ) (equivalently, whose filled Julia sets K(P )) are
connected. General properties of the connectedness locus Md have been
studied for quite some time. For instance, it is known that Md is a compact
cellular set in the parameter space of complex degree d polynomials (this
was proven in [BrHu88] in the cubic case and in [Lav89] for higher de-
grees, see also [Bra86]; by definition, following M. Brown [Bro60, Bro61],
a subset of a Euclidean space Rn is cellular if its complement in the sphere
Rn ∪ {∞} is an open topological cell).

For d = 2, a monic centered polynomial takes the form Pc(z) = z2 + c,
and the parameter space of quadratic polynomials can be identified with the
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plane of complex parameters c. Clearly, Pc(z) has a unique critical point 0
and a unique critical value c in C. Thus, we can say that polynomials Pc(z)
are parameterized by their critical values. The quadratic connectedness lo-
cus is the famous Mandelbrot set M2, identified with the set of complex
numbers c not escaping to infinity under iterations of the polynomial Pc(z).
The Mandelbrot set M2 has a complicated self-similar structure.

1.1. A combinatorial model for M2. The “pinched disk” model for M2

is due to Douady and Thurston [Dou93, Thu85]. To describe their approach
to the problem of modeling M2, we first describe laminational models of
polynomial Julia sets (we follow [BL02]) and then use them to interpret re-
sults of [Dou93, Thu85]. We assume basic knowledge of complex dynamics
(a detailed description is given later).

Let S be the unit circle in C, consisting of all complex numbers of mod-
ulus one. We write σd : S → S for the restriction of the map z 7→ zd. We
identify S with R/Z by the mapping taking an angle θ ∈ R/Z to the point
e2πiθ ∈ S. Under this identification, we have σd(θ) = dθ. We will write D
for the open unit disk {z ∈ C | |z| < 1}.

Given a complex polynomial P , we let U∞(P ) denote the set C \K(P ).
This set is called the basin of attraction of infinity of P . Clearly, U∞(P ) =
U∞(P ) ∪ J(P ). If the Julia set J(P ) is locally connected, then it is con-
nected, and the Riemann map Ψ : C \ D → U∞(P ) can be continuously
extended to a map Ψ : C \ D → U∞(P ). This gives rise to a map ψ = Ψ|S,
which semiconjugates σd : S → S with P |J(P ). Define an equivalence rela-
tion ∼P on S so that x ∼P y if and only if ψ(x) = ψ(y). Then S/∼P and
J(P ) are homeomorphic, and the homeomorphism in question conjugates
the map f∼P

induced on S/∼P by σd, and P |J(P ). It is not hard to see that
the convex hulls of ∼P -classes are disjoint in D.

A productive idea is to consider equivalences relations ∼ whose proper-
ties are similar to those of ∼P . These properties will be stated precisely
below. Such equivalence relations are called laminational equivalence re-
lations (of degree d; if d = 2 they are said to be quadratic, and if d = 3
they are said to be cubic. The maps f∼ : S/ ∼→ S/ ∼ induced by σd are
called topological polynomials of degree d; again, if d = 2 they are called
quadratic and if d = 3 they are called cubic. For brevity, in what follows
we will talk about “∼-classes” instead of “classes of equivalence of ∼”.

An important geometric interpretation of a laminational equivalence re-
lation ∼ is as follows. For any ∼-class g, take its convex hull CH(g). Con-
sider the edges of all such convex hulls; add all points of S to this collection
of chords. The obtained collection of (possibly, degenerate) chords in the
unit disk is denoted by L∼ and is called a geodesic lamination (generated
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by ∼). For brevity in what follows we sometimes write “lamination” in-
stead of “geodesic lamination”. Clearly, L∼ is a closed family of chords.
Let ab denote the straight line segment connecting points a, b ∈ S. We will
never use this notation for pairs of points not in S. Recall also that points
in S are identified with their angles. Thus, 01

2
always means the chord of S

connecting the points with angles 0 and 1
2

(not a half-radius of the unit disk
originating at the center). For any chord ℓ = ab in the closed unit disk D set
σd(ℓ) = σd(a)σd(b). For any ∼-class g and, more generally, for any closed
set g ⊂ S, we set σd(CH(g)) = CH(σd(g)).

Recall the construction of Douady and Thurston. Suppose that a qua-
dratic polynomial Pc has locally connected Julia set. We will write Gc for
the convex hull of the ∼Pc-class corresponding to the critical value c. A
fundamental theorem of Thurston is that Gc ̸= Gc′ implies that Gc and Gc′

are disjoint in D. Consider the collection of all Gc and take its closure. The
thus obtained collection of chords and inscribed polygons defines a geo-
desic lamination QML introduced by Thurston in [Thu85] and called the
quadratic minor lamination; moreover, it induces an equivalence relation
∼QML on S [Thu85]. The corresponding quotient space Mcomb

2 = S/ ∼QML

is a combinatorial model for the boundary of M2. It is called the combi-
natorial Mandelbrot set. Conjecturally, the combinatorial Mandelbrot set is
homeomorphic to the boundary of M2. This conjecture is equivalent to the
famous MLC conjecture: the Mandelbrot set is locally connected.

1.2. Dendritic polynomials. When defining the combinatorial Mandel-
brot set, we used a partial association between parameter values c and lam-
inational equivalence relations ∼Pc . In order to talk about ∼Pc , we had to
assume that J(Pc) was locally connected. Recall that a dendrite is a locally
connected continuum that does not contain Jordan curves. Recall also, that
a map from a continuum to a continuum is called monotone if under this
map point-preimages (fibers) are connected.

Definition 1.1. A complex polynomial P is said to be dendritic if it has con-
nected Julia set and all cycles repelling. A topological polynomial is said to
be dendritic if its Julia set is a dendrite. In that case the corresponding lam-
inational equivalence relation and the associated geodesic lamination are
also said to be dendritic.

It is known that there are dendritic polynomials with non-locally con-
nected Julia sets. Nevertheless, by [Kiw04], for every dendritic polyno-
mial P of degree d, there is a monotone semiconjugacy mP between P :
J(P ) → J(P ) and a certain topological polynomial f∼P

such that the map
mP is one-to-one on all periodic and pre-periodic points of P . Moreover,
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by [BCO11] the map mP is unique and can be defined in a purely topo-
logical way. Call a monotone map φP of a connected polynomial Julia set
J(P ) = J onto a locally connected continuumL the finest monotone map of
J(P ) onto a locally connected continuum if, for any monotone ψ : J → J ′

with J ′ locally connected, there is a monotone map hwith ψ = h◦φP . Then
it is proven in [BCO11] that for any polynomial the finest monotone map on
a connected polynomial Julia set semiconjugates P |J(P ) to the correspond-
ing topological polynomial f∼P

on its topological Julia set J∼P
generated

by the laminational equivalence relation possibly with infinite classes ∼P ,
and that in the dendritic case this semiconjugacy coincides with the map
mP constructed by Kiwi in [Kiw04]. Clearly, this shows that mP is unique.

Thus, P gives rise to a corresponding laminational equivalence relation
∼P even if J(P ) is not locally connected. If Pc(z) = z2 + c is a quadratic
dendritic polynomial, then Gc is defined, and is a finite-sided polygon in-
scribed into S, or a chord, or a point. A parameter value c is said to be
quadratic dendritic if Pc is dendritic. The fundamental results of Thurston
[Thu85] imply, in particular, that Gc and Gc′ are either the same or disjoint,
for all pairs c, c′ of dendritic parameter values. Moreover, the mapping
c 7→ Gc is upper semi-continuous (if a sequence of dendritic parameters cn
converges to a dendritic parameter c, then the limit set of the corresponding
convex sets Gcn is a subset of Gc). We call Gc the tag associated to c.

Now, consider the union of all tags of quadratic dendritic polynomials.
This union is naturally partitioned into individual tags (distinct tags are pair-
wise disjoint!). Thus the space of tags can be equipped with the quotient
space topology induced from the union of tags. On the other hand, take the
set of quadratic dendritic parameters. Each such parameter c maps to the
polygon Gc, i.e. to the tag associated to c. Thus each quadratic dendritic
parameter maps to the corresponding point of the space of tags. This pro-
vides for a combinatorial (or laminational) model for the set of quadratic
dendritic polynomials (or their parameters).

In this paper, we extend these results to cubic dendritic polynomials.

1.3. Mixed tags of cubic polynomials. Recall that monic centered qua-
dratic polynomials are parameterized by their critical values. A combinato-
rial analog of this parameterization is the association between topological
polynomials and their tags. Tags of quadratic topological polynomials are
post-critical objects of the corresponding laminational equivalences. Monic
centered cubic polynomials can be parameterized by a critical value and a
co-critical point. Recall that the co-critical point ω∗ of a cubic polynomial
P corresponding to a simple critical point ω of P is defined as a point dif-
ferent from ω but having the same image under P as ω. If ω is a multiple
critical point of P , then we set ω∗ = ω. In any case we have P (ω∗) = P (ω).
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Let c and d be the two critical points of P (if P has a multiple critical point,
then c = d). Set a = c∗ and b = P (d). Assuming that P is monic and
central, we can parameterize P by a and b:

P (z) = b+
a2(a− 3z)

4
+ z3.

For P in this form, we have c = −a
2
, d = a

2
. Similarly to parameterizing

cubic polynomials by pairs (a, b), we will use the so-called mixed tags to
parameterize topological cubic dendritic polynomials.

Consider a cubic dendritic polynomial P . By the above there exists a
laminational equivalence relation ∼P and a monotone semiconjugacy mp :
J(P ) → S/ ∼P between PJP and the topological polynomial f∼P

. Given
a point z ∈ J(P ), we associate with it the convex hull GP,z of the ∼P -
equivalence class represented by the point mP (z) ∈ S/ ∼P . If P is fixed,
we may write Gz instead of GP,z. The set Gz is a convex polygon with
finitely many vertices, a chord, or a point; it should be viewed as a combi-
natorial object corresponding to z. For any points z ̸= w ∈ J(P ), the sets
Gz and Gw either coincide or are disjoint.

By definition, a (critically) marked (cf [Mil12]) cubic polynomial is a
triple (P, c, d), where P is a cubic polynomial with critical points c and d.
If P has only one (double) critical point, then c = d, otherwise c ̸= d. In
particular, if c ̸= d, then the triple (P, c, d) and the triple (P, d, c) are viewed
as two distinct critically marked cubic polynomials. When the order of the
critical points is fixed, we will sometimes write P instead of (P, c, d). Crit-
ically marked polynomials do not have to be dendritic (in fact, the notion
is used by Milnor and Poirier [Mil12] for hyperbolic polynomials, i.e., in
the situation diametrically opposite to that of dendritic polynomials). How-
ever in this paper whenever we talk about critically marked polynomials we
mean that they are dendritic.

Let MD3 be the space of all critically marked cubic dendritic polyno-
mials. With every marked dendritic polynomial (P, c, d), we associate the
corresponding mixed tag

Tag(P, c, d) = Gc∗ ×GP (d) ⊂ D× D.

Here c∗ is the co-critical point corresponding to the critical point c.
A similar construction can be implemented for any cubic dendritic lam-

inational equivalence relation ∼. Let C and D denote the convex hulls of
its critical classes. Then either C = D is the unique critical ∼-class or
C ̸= D are disjoint. The sets C and D are called critical objects of ∼.
By a (critically) marked cubic laminational equivalence relation we mean
a triple (∼, C,D); in that case we always assume that ∼ is dendritic. If
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C ̸= D, then we define C∗ = co(C) as the convex hull of the unique ∼-
class that is distinct from the class C ∩ S but has the same σ3-image. If
C = D, then we set C∗ = C. The set C∗ is called the co-critical set of C.
For a marked laminational equivalence relation (∼, C,D), define its mixed
tag as

Tagl(∼, C,D) = C∗ × σ3(D) ⊂ D× D

We endow the family of products of compact subsets of D with the product
topology on C(D)× C(D). It is easy to see that the map Tagl is continuous
as a map defined on a subset of C(D) × C(D). Evidently, the map Tagl
preserves inclusions.

The subscript l in Tagl indicates that Tagl acts on marked laminational
equivalence relations unlike the map Tag that acts on polynomials. These
two maps are closely related though: for any marked dendritic cubic poly-
nomial (P, c, d) and the corresponding marked laminational equivalence re-
lation (∼P , Gc, Gd), we have Tag(P, c, d) = Tagl(∼P , Gc, Gd).

1.4. Statement of the main result. Consider the collection of the sets
Tag(P ) over all P ∈ MD3. By [Kiw04, Kiw05], for any dendritic lam-
inational equivalence relation ∼, there exists a dendritic complex polyno-
mial P with ∼=∼P . Thus, equivalently, we can talk about the collection
of mixed tags of all dendritic laminations L∼. In Theorem 4.15 we show
that the mixed tags Tag(P ) are pairwise disjoint or equal. Let us denote
this collection of sets be CML(D) (for cubic mixed lamination of dendritic
polynomials). Note, that CML(D) can be viewed as (non-closed) “lami-
nation” in D × D whose elements are products of points, leaves or gaps.
One can consider CML(D) as the higher-dimensional analog of Thurston’s
QML restricted to dendritic polynomials.

Theorem 4.15, in addition, establishes the fact that the collection of sets
CML(D) is upper semi-continuous. Let the union of all sets in CML(D)
be denoted by CML(D)+ ⊂ D × D. It follows that the quotient space
of CML(D)+, obtained by collapsing all elements of CML(D) to points,
is a separable metric space which we denote by MDcomb

3 . Denote by π :
CML(D)+ → MDcomb

3 the corresponding quotient map.

Main Theorem. Mixed tags of critically marked polynomials from MD3

are disjoint or coincide. The map π◦Tag : MD3 → MDcomb
3 is continuous.

Hence MDcomb
3 is a combinatorial model for MD3.

This theorem can be viewed as a partial generalization of Thurston’s re-
sults [Thu85] to cubic polynomials. It is also a first step towards defining a
combinatorial model for M3.
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1.5. Previous work and organization of the paper. Lavaurs [Lav89] proved
that M3 is not locally connected. Epstein and Yampolsky [EY99] proved
that the bifurcation locus in the space of real cubic polynomials is not lo-
cally connected either. This makes the problem of defining a combinatorial
model of M3 very delicate. There is no hope that a combinatorial model
would lead to a precise topological model. Schleicher [Sch04] constructed
a geodesic lamination modeling the space of unicritical polynomials, that
is, polynomials with a unique multiple critical point. We have heard of an
unpublished old work of D. Ahmadi and M. Rees, in which cubic geodesic
laminations were studied, however we have not seen it. The present paper
is based on the results obtained in [BOPT16]. These results are applicable
to invariant laminations of any degree.

The paper is organized as follows. In Section 2, we discuss basic prop-
erties of geodesic laminations and laminational equivalence relations. In
Section 3, we recall the results of [BOPT16] adapting them to the cubic
case. Finally, Section 4 is dedicated to the proof of the main result.

2. LAMINATIONS AND THEIR PROPERTIES

By a chord we mean a closed segment connecting two points of the unit
circle. If these two points coincide, then the chord is said to be degenerate.

Definition 2.1 (Geodesic laminations). A geodesic lamination is a collec-
tion L of chords called leaves that are pairwise disjoint in D; it includes all
degenerate chords, and must be such that L+ =

∪
ℓ∈L ℓ is closed. Gaps of

L are the closures of the components of D \ L+.

We now introduce the notion of a (sibling) σd-invariant geodesic lam-
ination. This is a slight modification of an invariant geodesic lamination
introduced by Thurston [Thu85]. When d is fixed we will often write “in-
variant” instead of “σd-invariant”.

Definition 2.2 (Invariant geodesic laminations [BMOV13]). A geodesic
lamination L is (sibling) σd-invariant provided that:

(1) for each ℓ ∈ L, we have σd(ℓ) ∈ L,
(2) for each ℓ ∈ L there exists ℓ∗ ∈ L so that σd(ℓ∗) = ℓ.
(3) for each ℓ ∈ L such that σd(ℓ) is a non-degenerate leaf, there exist

d pairwise disjoint leaves ℓ1, . . . , ℓd in L such that ℓ1 = ℓ and
σd(ℓi) = σd(ℓ) for all i = 2, . . . , d.

Observe that, since leaves are chords, and chords are closed segments,
pairwise disjoint leaves in part (3) of the above definition cannot intersect
even on the unit circle (that is, they cannot have common endpoints).

Call the leaf ℓ∗ in (2) a pullback of ℓ. A sibling of ℓ is defined as a leaf ℓ′ ̸=
ℓ with σd(ℓ′) = σd(ℓ). Thus, part (3) of the definition implies that any leaf



8 A. BLOKH, L. OVERSTEEGEN, R. PTACEK, AND V. TIMORIN

with non-degenerate image has d− 1 pairwise disjoint siblings. Moreover,
these siblings can be chosen to be disjoint from the leaf. Definition 2.2
implies Thurston’s but is slightly more restrictive [BMOV13].

From now on, by (σd-)invariant geodesic laminations, we always mean
sibling σd-invariant geodesic laminations. Moreover, for brevity we often
talk about laminations meaning sibling σd-invariant geodesic laminations.

Definition 2.3 (Linked chords). Two distinct chords of D are linked if they
intersect in D. We will also sometimes say that these chords cross each
other. Otherwise two chords are said to be unlinked.

A gap G is said to be infinite (finite, uncountable) if G ∩ S is infinite
(finite, uncountable). Uncountable gaps are also called Fatou gaps. For a
closed convex set H ⊂ C, straight segments in the boundary Bd(H) of H
are called edges of H .

Definition 2.4 (Critical sets). A critical chord (leaf) ab of L is a chord
(leaf) of L such that σd(a) = σd(b). A gap is all-critical if all its edges are
critical. An all-critical gap or a critical leaf (of L) is called an all-critical set
(of L). A gap G of L is said to be critical if it is an all-critical gap or there
is a critical chord contained in the interior of G except for its endpoints.
A critical set of L is by definition a critical leaf or a critical gap. We also
define a critical object of L as a maximal by inclusion critical set.

Given a compact metric space X , the space of all its compact subsets
with the Hausdorff metric is denoted by C(X). Note that L+ is compact
for every geodesic lamination L. Hence it can be viewed as a point in the
space C(D). The family of sets L+ of all invariant geodesic laminations L
is compact in C(D). However the set L+ does not always determine the
geodesic lamination L. Indeed, any geodesic lamination L without gaps
has L+ = D. On the other hand, already in the cubic case there are two
distinct invariant geodesic laminations Lv and Lh without gaps. Here Lv

contains all vertical chords and Lh contains all horizontal chords. Observe
that the corresponding topological Julia sets are arcs with induced topolog-
ical polynomials being non-conjugate “saw-tooth” maps. However, L itself
is a point of C(C(D)) which determines all the leaves of L. For this reason
we consider the family of all invariant geodesic laminations as a subspace
of C(C(D)) with Hausdorff metric; the notion of convergence of invariant
geodesic laminations is understood accordingly.

Theorem 2.5 (Theorem 3.21 [BMOV13]). The family of all invariant geo-
desic laminations L is compact in C(C(D)).

In other words, if invariant geodesic laminations Li converge to a collec-
tion of chords L in C(C(D)) (that is, each leaf of L is the limit of a sequence
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of leaves from Li, and each converging sequence of leaves of Li converges
to a leaf of L), then L is an invariant geodesic lamination itself.

2.1. Laminational equivalence relations. Geodesic laminations naturally
appear in the context of laminational equivalence relations.

Definition 2.6 (Laminational equivalence relations). An equivalence rela-
tion ∼ on the unit circle S is said to be laminational if either S is one equiva-
lence class (such laminational equivalence relations are called degenerate),
or the following holds:
(E1) the graph of ∼ is a closed subset of S× S;
(E2) the convex hulls of distinct equivalence classes are disjoint;
(E3) each equivalence class of ∼ is finite.

A laminational equivalence relation ∼ is called (σd-)invariant if:
(D1) ∼ is forward invariant: for a ∼-class g, the set σd(g) is a ∼-class;
(D2) for any ∼-equivalence class g, the map σd : g → σd(g) extends to S
as an orientation preserving covering map such that g is the full preimage
of σd(g) under this covering map.

For an invariant laminational equivalence relation ∼, consider the topo-
logical Julia set J∼ = S/∼ and the topological polynomial f∼ : J∼ → J∼
induced by σd. The quotient map π∼ : S → J∼ semiconjugates σd with
f∼|J∼ . A laminational equivalence relation ∼ admits a canonical exten-
sion over C whose non-trivial classes are convex hulls of classes of ∼. By
Moore’s Theorem, the quotient space C/∼ is homeomorphic to C. We
will still denote the extended quotient map from C to C/∼ by π∼; the
corresponding point-preimages (fibers) are the convex hulls of ∼-classes.
With any fixed identification between C/ ∼ and C, one can extend f∼ to
a branched covering map f∼ : C → C of degree d called a topological
polynomial too. The complement K∼ of the unique unbounded component
U∞(J∼) of C\J∼ is called the filled topological Julia set. Define the canon-
ical geodesic lamination L∼ generated by ∼ as the collection of edges of
convex hulls of all ∼-classes and all points of S.

Lemma 2.7 (Theorem 3.21 [BMOV13]). Geodesic laminations L∼ gener-
ated by σd-invariant laminational equivalence relations are invariant.

2.2. Dendritic case. We now consider dendritic laminations and corre-
sponding topological polynomials.

Definition 2.8. An invariant geodesic lamination L∼ is called dendritic if
all its gaps are finite. Then the corresponding topological Julia set S/ ∼
is a dendrite. The laminational equivalence relation ∼ and the topological
polynomial f∼ are said to be dendritic too.
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Recall that, by [Kiw04], with every dendritic polynomial P one can asso-
ciate a dendritic topological polynomial f∼P

so that P |J(P ) is monotonically
semi-conjugate to f∼P

|J(f∼P
). By [Kiw05], for every dendritic topological

polynomial f , there exists a polynomial P with f = f∼P
. Below, we list

some well-known properties of dendritic geodesic laminations.

Definition 2.9 (Perfect parts of geodesic laminations [BOPT16]). Let L be
a geodesic lamination considered as a subset of C(D). Then the maximal
perfect subset Lp of L is called the perfect part of L. A geodesic lamination
L is called perfect if L = Lp. Equivalently, this means that all leaves of L
are non-isolated in the Hausdorff metric.

Observe that Lp must contain S. The following lemma is well-known.

Lemma 2.10. Dendritic geodesic laminations L are perfect.

We will need Corollary 6.6 of [BOPT16], which reads:

Corollary 2.11. Let L be a perfect invariant geodesic lamination. Then the
critical objects of L are pairwise disjoint and are either all-critical sets, or
critical sets whose boundaries map exactly k-to-1, k > 1, onto their images.

By Lemma 2.10, Corollary 2.11 applies to dendritic geodesic lamina-
tions. Moreover, by properties of dendritic geodesic laminations, all their
critical objects are finite.

Finally, let us state a property that follows from Definition 2.8. If L is a
dendritic geodesic lamination, and L′ ⊃ L is an invariant geodesic lamina-
tion, then it follows that L′ can be obtained from L by inserting leaves in
some grand orbits of gaps of L. Moreover, as long as this insertion is done
in a dynamically consistent fashion (added leaves do not cross and form a
fully invariant set), the new collection of leaves L′ is an invariant geodesic
lamination. On the other hand, the fact that L′ is closed follows from the
fact that if gaps of L converge, then they must converge to a leaf of L.

3. LINKED QUADRATICALLY CRITICAL GEODESIC LAMINATIONS

Now we will review results of [BOPT16] that are essential for this paper.
Let us emphasize that results of [BOPT16] hold for any degree. However,
we will adapt them here to degree three, omitting the general formulations.

Consider a quadratic lamination L with a critical quadrilateralQ. Thurston
[Thu85] associates to L its minor m = σ2(Q). Then Q ∩ S is the full σ2-
preimage of m ∩ S. Thurston proves that different minors obtained in this
way never cross in D. Observe that two minors cross if and only if the
vertices of the corresponding critical quadrilaterals strictly alternate in S.
Thurston’s result can be translated as follows in terms of critical quadrilat-
erals. If two quadratic laminations generated by laminational equivalences
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have critical quadrilaterals whose vertices strictly alternate, then the two
laminations are the same. This motivates Definition 3.1.

Definition 3.1. Let A and B be two quadrilaterals. Say that A and B are
strongly linked if the vertices of A and B can be numbered so that

a0 6 b0 6 a1 6 b1 6 a2 6 b2 6 a3 6 b3 6 a0,

where ai, 0 6 i 6 3, are vertices of A and bi, 0 6 i 6 3 are vertices of B.

Since we want to study critical quadrilaterals in the degree three case, we
now give a general definition.

Definition 3.2. A (generalized) critical quadrilateral Q is a circularly or-
dered quadruple [a0, a1, a2, a3] of points a0 6 a1 6 a2 6 a3 6 a0 in S,
where a0a2 and a1a3 are critical chords called spikes; critical quadrilaterals
[a0, a1, a2, a3], [a1, a2, a3, a0], [a2, a3, a0, a1] and [a3, a0, a1, a2] are viewed
as equal.

We will often say “critical quadrilateral” when talking about the convex
hull of a critical quadrilateral. Clearly, if all vertices of a critical quadrilat-
eral are distinct, or if its convex hull is a critical leaf, then the quadrilateral
is uniquely defined by its convex hull. However, if the convex hull is a tri-
angle, this is no longer true. For example, let CH(a, b, c) be an all-critical
triangle. Then [a, a, b, c] is a critical quadrilateral, but so are [a, b, b, c] and
[a, b, c, c]. If all vertices of a critical quadrilateral Q are pairwise distinct,
then we call Q non-degenerate. Otherwise Q is called degenerate. Vertices
a0 and a2 (a1 and a3) are called opposite.

Considering invariant geodesic laminations, all of whose critical sets are
critical quadrilaterals, is not very restrictive: we can “tune” a given invariant
geodesic lamination by inserting new leaves into its critical sets in order to
construct a new invariant geodesic lamination with all critical objects being
critical quadrilaterals.

Lemma 3.3 (Lemma 5.2 [BOPT16]). The family of all critical quadrilater-
als is closed. The family of all critical quadrilaterals that are critical sets
of invariant geodesic laminations is closed too.

Being strongly linked is a closed condition on two quadrilaterals: if
two sequences of critical quadrilaterals Ai, Bi are such that Ai and Bi are
strongly linked and Ai → A, Bi → B, then A and B are strongly linked
critical quadrilaterals.

In [BOPT16], linked invariant geodesic laminations with quadratically
critical portraits are defined for any degree d. Below, we adapt this in the
case of cubic laminations. Let L be a cubic geodesic lamination; in fact, in
what follows when talking about laminations we always mean cubic lami-
nations (unless explicitly stated otherwise). Consider critical quadrilaterals
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Q1, Q2 that are leaves or gaps of L. The pair (Q1, Q2) is called a quadrati-
cally critical portrait of L if Q1 and Q2 are distinct. The triple (L, Q1, Q2)
is then called a cubic lamination with quadratically critical portrait. Some-
times, when the quadratically critical portrait is fixed, we write L instead of
(L, Q1, Q2). Observe that not all cubic geodesic laminations admit quadrat-
ically critical portraits. For example, if L has a unique critical object that
is not all-critical, then L has no quadratically critical portrait. If L has two
disjoint critical objects, then Q1, Q2 must coincide with these objects. In
particular, a cubic geodesic lamination with two disjoint critical objects ad-
mits a quadratically critical portrait if and only if both critical objects are
(possibly degenerate) critical quadrilaterals.

Assume that L has an all-critical triangle ∆. Then possible quadratically
critical portraits of L are:

(1) pairs of distinct edges of ∆; and
(2) pairs consisting of ∆ and an edge of it.

Now we define linked laminations with quadratically critical portraits.

Definition 3.4. Let (L1, Q
1
1, Q

2
1) and (L2, Q

1
2, Q

2
2) be cubic invariant geo-

desic laminations with quadratically critical portraits. These two lamina-
tions are said to be linked or essentially equal if one of the following holds:

(1) For every j = 1, 2, the quadrilaterals Qj
1 and Qj

2 are strongly linked.
If Qj

1 and Qj
2 share a spike for every j = 1, 2, then L1 and L2 are

said to be essentially equal.
(2) The laminations L1 and L2 share the same all-critical triangle. Then

L1 and L2 are also said to be essentially equal.

If (1) or (2) holds but L1, L2 are not essentially equal, then L1, L2 are said
to be linked. We can also talk about linked or essentially equal quadratically
critical portraits without referring to laminations containing them.

Critically marked polynomials, topological polynomials, and laminational
equivalence relations were defined in the introduction; recall that there they
are all assumed to be dendritic. Let us now define critically marked cubic
geodesic laminations. Suppose that L is a cubic geodesic lamination and
an ordered pair of critical sets (gaps or leaves) C,D of L is chosen so that
on the boundary of each component E of D \ (C ∪ D) the map σ3 is one-
to-one (except for the endpoints of possibly existing critical edges of such
components). Then we can consider (L, C,D) as a (critically) marked lam-
ination even though L is not necessarily dendritic. For brevity we often talk
about marked (topological) polynomials and laminations rather than criti-
cally marked ones. Let (L, C1, C2) be a marked cubic geodesic lamination.
Then (C1, C2) is called a critical pattern of L; when talking about critical
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patterns we mean critical patterns of some marked lamination L and allow
for L to be unspecified.

Let L be a dendritic lamination. Then if C ̸= D are its critical sets, the
only two possible critical patterns that can be associated with L are (C,D)
or (D,C). Now, if L has a unique critical set X which is not an all-critical
triangle then the only possible critical pattern of L is (X,X). However if
L has a unique critical set ∆ which is an all-critical triangle then there are
more possibilities for a critical pattern of L. Namely, by definition a critical
pattern of L can be either (∆,∆), of ∆ and an edge of ∆, or an edge of ∆
and ∆, or an ordered pair of two edges of ∆.

We defined linked or essentially equal cubic laminations with quadrati-
cally critical portraits. Let us extend this notion to marked laminations and
their critical patterns. A collapsing quadrilateral is a critical quadrilateral
that maps to a non-degenerate leaf.

Definition 3.5. Marked laminations (L1, C
1
1 , C

2
1) and (L2, C

1
2 , C

2
2), and their

critical patterns (C1
1 , C

2
1) and (C1

2 , C
2
2), are said to be linked (essentially

equal) if there are quadratically critical portraits (Q1
1, Q

2
1) and (Q1

2, Q
2
2)

such that Qj
i ⊂ Cj

i , Lm
i ⊃ Li, i, j = 1, 2, for which if Qj

i is a collaps-
ing quadrilateral, then it shares a pair of opposite edges with Cj

i .

Let Q be one of Qj
i , and C be the corresponding Cj

i . Then the image
of Q is an edge of σ3(C). Hence forward images of quadrilaterals Qj

i will
never form linked leaves. Pulling back the setsQj

i , we construct the “tuned”
laminations Lm

1 and Lm
2 with quadratically critical portraits Q1

1, Q
2
1) and

(Q1
2, Q

2
2). The existence of “tuned” laminations with quadratically critical

portraits follows from our definitions and Thurston’s pullback construction.
Lemma 3.6 follows immediately from definitions.

Lemma 3.6. If two limit laminations contain the same all-critical triangle,
then they are essentially equal.

The following is a special case of one the central results of [BOPT16] (in
[BOPT16] more general results are obtained for all degrees).

Theorem 3.7 (Theorem 9.6 [BOPT16]). Let (L1, C
1
1 , C

2
1) and (L2, C

1
2 , C

2
2)

be marked laminations. Suppose that L1 is perfect (e.g., by Lemma 2.10 L1

may be dendritic). If they are linked or essentially equal then L1 ⊂ L2 and
Cj

1 ⊃ Cj
2 for j = 1, 2. In particular, if both laminations are perfect, then

(L1, C
1
1 , C

2
1) = (L2, C

1
2 , C

2
2).

4. PROOF OF THE MAIN RESULT

In the rest of the paper, we define a visual parameterization of the family
of all marked cubic dendritic geodesic laminations.
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4.1. Limit laminations. Let (Li,Zi) be a sequence of marked laminations
with critical patterns Zi = (C1

i , C
2
i ) whereC1

i ∩S, C2
i ∩S are finite. Assume

that the sequence Li converges to an invariant lamination L∞ (see Theo-
rem 2.5); then the critical sets C1

i , C2
i converge to gaps (or leaves) C1

∞, C
2
∞

of L∞. We say that the sequence (Li,Zi) converges to (L∞, C
1
∞, C

2
∞).

Lemma 4.1. Let a sequence (Li,Zi) of marked laminations with finite crit-
ical sets converge to (L∞, C

1
∞, C

2
∞). Then sets C1

∞, C
2
∞ are critical and

non-periodic, and (L∞, C
1
∞, C

2
∞) is a marked lamination.

Proof. Every vertex of C1
∞ has a sibling vertex in C1

∞. It follows that C1
∞

is critical. If C1
∞ is periodic of period, say, n, then, since it is critical, it

is an infinite gap. Then the fact that σn
d (C

1
∞) = C1

∞ implies that any gap
C1

i sufficiently close to C1
∞ will have its σn

3 -image also close to C1
∞, and

therefore coinciding with C1
i . Thus, C1

i is σ3-periodic, which is impossible
because C1

i is finite and critical. Similarly, C2
∞ is critical and non-periodic.

Let us show that (L∞, C
1
∞, C

2
∞) is a marked lamination. To this end we

need to show that on the boundary of each component E of D \ (C1
∞ ∪

C2
∞) the map σ3 is one-to-one (except for the endpoints of possibly existing

critical edges of such components). However this follows from definitions
and the fact that the same claim holds for all (Li,Zi). �

Any marked lamination similar to (L∞, C
1
∞, C

2
∞) from Lemma 4.1 will

be called a limit marked lamination. In particular, a marked dendritic lam-
ination is a limit marked lamination (consider a constant sequence). Recall
that for a compact metric space X , the space of all its compact subsets with
the Hausdorff metric is denoted by C(X).

As was explained in the Introduction, a marked cubic dendritic polyno-
mial always defines a marked cubic lamination. Take a marked dendritic
polynomial (P, c1, c2) and let (L, C1, C2) be the corresponding marked lam-
ination. Define the map Γ : MD3 → C(D)×C(D) by setting Γ(P, c1, c2) =
(C1, C2). Consider a sequence of marked dendritic cubic geodesic lami-
nations (Li, C

1
i , C

2
i ). If Li converge then, by Theorem 2.5, the limit L∞

is itself a cubic geodesic lamination, and by the above the critical patterns
(C1

i , C
2
i ) converge to the critical pattern (C1

∞, C
2
∞) of L∞. We are interested

in the case when L∞ is in a sense compatible with a dendritic lamination.

Lemma 4.2 (Lemma 6.18 [BOPT16]). Let (Li, C
1
i , C

2
i ) and (L∞, C

1
∞, C

2
∞)

be as above. If there exists a dendritic cubic geodesic lamination L with a
critical pattern (C1, C2) such that Cj

∞ ⊂ Cj for j = 1, 2. Then L∞ ⊃ L.

Lemma 4.2 says that if critical patterns of dendritic cubic geodesic lam-
inations converge into a critical pattern of a dendritic cubic geodesic lami-
nation L, then the limit lamination contains L.
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Corollary 4.3 (Corollary 6.20 [BOPT16]). Suppose that a sequence (Pi, c
1
i ,

c2i ) of marked cubic dendritic polynomials converges to a marked cubic den-
dritic polynomial (P, c1, c2). Consider corresponding marked laminational
equivalence relations (∼Pi

, C1
i , C

2
i ) and (∼P , C

1, C2). If (L∼Pi
, C1

i , C
2
i )

converges to (L∞, C
1
∞, C

2
∞), then we have L∞ ⊃ L∼P

, C1
∞ ⊂ C1, C2

∞ ⊂
C2. In particular, the map Γ is upper semi-continuous.

By Corollary 4.3, critical objects of dendritic invariant geodesic lamina-
tions L∼P

associated with polynomials P ∈ MD3 cannot explode under
perturbation of P (they may implode though).

4.2. Mixed tags of geodesic laminations.

Definition 4.4 (Minor set). Let (L, C,D) be a marked lamination. Then
σ3(D) is called the minor set of (L, C,D).

Note that, in Definition 4.5, the set C is not assumed to be critical.

Definition 4.5 (Co-critical set). Let C be a leaf or a gap of a cubic invariant
geodesic lamination L. Assume that either C is the only critical object of
L, or there is exactly one hole of C of length > 1

3
. If C is the only critical

object of L, we set co(C) = C. Otherwise let H be the unique hole of C
of length > 1

3
, let A be the set of all points in H with the images in σ3(C),

and set co(C) = CH(A). The set co(C) is called the co-critical set of C.

We now define tags of marked laminations.

Definition 4.6 (Mixed tag). Suppose that (L, C1, C2) is a marked lamina-
tion. Then we call the set Tagl(C1, C2) = co(C1) × σ3(C

2) ⊂ D × D the
mixed tag of (L, C1, C2) or of (C1, C2).

Sets co(C1) (and hence mixed tags) are well-defined. The mixed tag T of
a marked lamination is the product of two sets, each of which is a point, a
leaf, or a gap. One can think of T ⊂ D×D as a higher dimensional analog
of a gap/leaf of a geodesic lamination. We show that the union of tags
of marked dendritic laminations is a (non-closed) “geodesic lamination” in
D × D. The main idea is to relate the non-disjointness of mixed tags of
marked dendritic laminations and their limits with the fact that they have
“tunings” that are linked or essentially equal.

In Definition 4.7, we mimic Milnor’s terminology for polynomials.

Definition 4.7 (Unicritical and bicritical laminations). A marked lamination
(and its critical pattern) is called unicritical if its critical pattern is of form
(C,C) for some critical set C and bicritical otherwise.

Clearly, a unicritical marked lamination has a unique critical object. How-
ever a lamination L with unique critical object may have a bicritical critical
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pattern. By definition this is only possible if L has an all-critical gap ∆ and
the critical pattern is either two edges of ∆ or ∆ and an edge of ∆.

The following lemma is a key combinatorial fact about tags.

Lemma 4.8. Suppose that two marked laminations have non-disjoint mixed
tags. Suppose also that at least one of the two laminations is dendritic.
Then either the two marked laminations are linked or essentially equal, or
the geodesic laminations are equal and share an all-critical triangle.

The proof of Lemma 4.8 is mostly non-dynamic and involves checking
various cases. We split the proof into propositions. Observe that mixed tags
are determined by critical patterns; we do not need laminations to define
mixed tags. In Propositions 4.9 - 4.10 we assume that the critical patterns
(C1

1 , C
2
1) and (C1

2 , C
2
2) are bicritical and have non-disjoint mixed tags.

Proposition 4.9. Suppose that some distinct edges of co(C1
1) and co(C1

2)
cross. Then the two critical patterns are linked or essentially equal.

Proof. By the assumption, some distinct edges of the sets co(C1
1) and co(C1

2)
cross. Denote these linked edges by a1b1 and a2b2, see Fig. 1. We may
choose the orientation so that (a1, b1), (a2, b2) are in the holes of co(C1

1),
co(C1

2) disjoint from C1
1 , C1

2 respectively, and so that a1 < a2 < b1 < b2.
We claim that (a1, b1) is of length at most 1

3
. Indeed, if (a1, b1) had length

greater than 1
3
, then there would exist a sibling ℓ of a1b1 with endpoints in

(a1, b1). Evidently, ℓ would be an edge of C1
1 , contradicting the choice of

(a1, b1). Thus, (a1, b1) is of length at most 1
3

and the restriction σ3|(a1,b1)
is one-to-one. Similarly, (a2, b2) is of length at most 1

3
and the restriction

σ3|(a2,b2) is one-to-one.
Let us show now that σ3(C2

1) ∩ S ⊂ [σ3(b1), σ3(a1)]. If C1
1 = C2

1 is of
degree three, this follows immediately. Otherwise, let a′1 = a1 +

1
3

and
b′1 = b1 +

2
3
. Then a′1b′1 ⊂ C1

1 . Moreover, since C1
1 is critical, vertices

of C1
1 partition the arc (a′1, b

′
1) into open arcs on each of which the map is

one-to-one. Hence C2
1 must have vertices in [b′1, a1]∪ [b1, a

′
1]. Since each of

these intervals maps onto [σ3(b1), σ3(a1)] one-to-one, our claim follows.
We claim that b2 6 a1+

1
3
. Indeed, otherwise [b1, a1+ 1

3
] ⊂ [a2, b2), which

implies that [σ3(b1), σ3(a1)] ⊂ [σ3(a2), σ3(b2)). On the other hand, by the
above we have σ3(C1

1) ⊂ [σ3(b1), σ3(a1)] and σ3(C1
2) ⊂ [σ3(b2), σ3(a2)].

Since σ3(C2
1) ∩ σ3(C

2
2) ̸= ∅, we have in fact b1 = a2, a contradiction.

Thus, the points ai and bi for i = 1, 2 belong to an arc of length at most 1
3
.

We claim that then co(a1b1) = Q1
1 and co(a2b2) = Q1

2 are strongly linked
collapsing quadrilaterals. Indeed, we have that a1 < a2 < b1 < b2 6 a1+

1
3
.

It follows then that

a1+
1

3
< a2+

1

3
< b1+

1

3
< b2+

1

3
6 a1+

2

3
< a2+

2

3
< b1+

2

3
< b2+

2

3
6 a1,
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FIGURE 1. This figure illustrates Proposition 4.9.

and therefore that, indeed, Q1
1 and co(a2b2) = Q1

2 are strongly linked col-
lapsing quadrilaterals. Moreover, since a1b1 and a2b2 are edges of co(C1

1)
and co(C1

2) it follows that the quadrilateralQ1
1 shares two edges with the set

C1
1 , and the quadrilateral Q1

2 shares two edges with the set C1
2 .

Note that all vertices of C2
1 and C2

2 are in [b2, a
′
1] ∪ [b′2, a1], where a′1 =

a1 +
1
3

and b′2 = b2 +
2
3
. The restriction of σ3 to each of the arcs [b2, a

′
1],

[b′2, a1] is injective. Therefore, a pair of linked edges (or a pair of coinciding
vertices) of σ3(C2

1) and σ3(C2
2) gives rise to a pair of linked quadrilaterals

Q2
1 and Q2

2 in C2
1 and C2

2 , respectively, so that if these quadrilaterals share
edges with containing them critical sets. �

Now we simply assume that co(C1
1) and co(C1

2) intersect.

Proposition 4.10. If L1 is dendritic, and L2 is a limit marked lamination,
then at least one of the following holds:

(1) the two critical patterns are linked or essentially equal;
(2) L1 = L2 share an all-critical triangle ∆.

Proof. We will use the same notation as in the proof of Proposition 4.9. If
co(C1

1) and co(C1
2) have distinct edges that cross in D, then Proposition 4.9

applies. Assume now that co(C1
1) and co(C1

2) share a vertex a. Clearly,
there is a unique critical chord ℓ such that co(a) = ℓ. Then C1

1 ∩ C1
2 ⊃ ℓ,

and we may set Q1
1 = Q1

2 = ℓ.
Both sets C2

i have vertices in the closed arc A of length 2
3

bounded by
the endpoints of ℓ. By our assumption, σ3(C2

1) ∩ σ3(C
2
2) ̸= ∅. If the sets

σ3(C
2
i ), i = 1, 2 have a pair of linked edges or share a vertex z ̸= σ3(ℓ),
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then these edges or z can by pulled back to CH(A) as a pair of linked critical
quadrilaterals. Assume now that σ3(C2

1) ∩ σ3(C2
2) = {σ3(ℓ)}.

Clearly, a ∈ A. Set ∆ = CH(a, ℓ). We claim that ∆ is a gap of L1.
Indeed, the set C2

1 contains at least two vertices of ∆ and is non-disjoint
from C1

1 . Since L1 is dendritic, L1 has a unique critical objectE. IfE ̸= ∆,
then by definition the critical pattern of L1 is (E,E), a contradiction with
the assumption that L1 is bicritical. Thus, ∆ is a gap of L1.

We claim that ∆ is a gap L2. We prove first that there is an edge ℓ∗ ̸= ℓ of
∆ such that one of the sets C1

2 , C
2
2 contains ℓ while the other one contains

ℓ∗. This is obvious if C2
2 contains an edge ℓ∗ ̸= ℓ of ∆. Otherwise C2

2 ⊃ ℓ.
Then ℓ must be an edge of C2

2 because otherwise the sets C1
2 and C2

2 will
have either non-disjoint interiors, or one of them is contained in the interior
of the other one, a contradiction. Similarly, ℓ is an edge of C1

2 . It follows
that one of the sets C1

2 , C
2
2 is ℓ while the other one is a critical gap G ̸= ∆

with ℓ as an edge.
By the above, ℓ and ℓ∗ are either leaves of L2 or are contained in gaps of

L2. Moreover endpoints of ℓ and ℓ∗ are not periodic since ∆ is a gap of a
dendritic lamination L1. Hence ℓ and ℓ∗ can be pulled back in a unique way
and its pullbacks either will be contained in gaps of L2 or will be leaves
of L2. This yields a new lamination L̂2 ⊃ L2 and a marked lamination
(L̂2, ℓ, ℓ

∗). Consider also the marked lamination (L1, ℓ, ℓ
∗). Since these two

marked laminations are essentially equal, Theorem 3.7 implies that L1 ⊂
L̂2. Hence ∆ is a gap of L̂2 and, moreover, leaves shared by L1 and L̂2

approximate all edges of ∆ from outside of ∆.
It follows that ∆ is a subset of a gap G of L2. Let us show that G = ∆.

By Lemma 4.1, G is not periodic. Hence pullbacks of ℓ and ℓ∗ do not re-
enter G, and so an edge of ∆ contained in the interior of G (except for the
endpoints) remains isolated in both L2 and L̂2. However in the previous
paragraph we concluded that it is not isolated in L̂2, a contradiction. We
conclude that ∆ is a gap of L2.

Let us show that L1 = L2. We can adjust the critical pattern of L2 so that
it coincides with the critical pattern of L1. By Theorem 3.7, we then have
L2 ⊃ L1. Moreover, no leaves of L2 are contained in the unique critical set
∆ of L1. By [Kiw02], any periodic gap of L1 has a single cycle of edges.
We conclude that no leaves of L2 are contained in periodic or preperiodic
gaps of L1. Finally, by [BL02] there are no wandering gaps of L1. This
implies that L2 = L1, as claimed. �

This proves Lemma 4.8 for two bicritical marked laminations. Consider
unicritical marked laminations.
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Lemma 4.11. Suppose that (L1, C1, C1) and (L2, C2, C2) are marked uni-
critical laminations with non-disjoint mixed tags. Then (L1, C

1
1 , C

2
1) and

(L2, C
1
2 , C

2
2) are linked or essentially equal where Cj

i either equals Ci or is
a critical chord contained in Ci.

Proof. Suppose that L1 has an all-critical triangle ∆ (and so C1 = ∆).
Since the mixed tags intersect, then σ3(C1) ∈ σ3(C2) and hence C1 ⊂ C2.
Choosing two edges of ∆ as a quadratically critical portrait in C1 and in
C2, we see that by definition (L1, C

1
1 , C

2
1) and (L2, C

1
2 , C

2
2) are essentially

equal. Suppose that neither invariant geodesic lamination has an all-critical
triangle. If σ3(C1) ∩ σ3(C2) contains a point x ∈ S, then the entire all-
critical triangle CH(σ−1

3 (x)) = ∆ is contained inC1∩C2; we can choose the
same two edges of ∆ as a quadratically critical portrait for both laminations.
Otherwise, we may assume that an edge ℓ1 of σ3(C1) crosses an edge ℓ2 of
σ3(C2). This implies that the hexagons σ−1

3 (ℓ1) ⊂ C1 and σ−1
3 (ℓ2) ⊂ C2

have alternating vertices and proves the lemma in this case too. �

Proof of Lemma 4.8. Denote laminations in question by L1 and L2. If both
laminations are bicritical, then the result follows from Proposition 4.10. If
both laminations are unicritical, then the result follows from Lemma 4.11.
It remains to consider the case where the first critical pattern (C1, C1) is
unicritical, and the second one (C1

2 , C
2
2) is bicritical.

Either an edge of σ3(C1) crosses an edge of σ3(C2
2) or a vertex of σ3(C1)

lies in σ3(C2
2). In either case, there are two sibling edges or sibling vertices

ofC2
2 that are linked or coincide with edges or vertices ofC1. Taking convex

hulls of these pairs of (possibly degenerate) leaves, we obtain Q2
1 ⊂ C1

and Q2
2 ⊂ C2

2 . By construction, these are strongly linked quadrilaterals.
Similarly, there is a (possibly degenerate) leaf in co(C1

2) that is linked or
equal to a leaf in C1. It follows that the two siblings of this leaf in C1

2 are
linked or equal to some leaves in C1. As above, this leads to strongly linked
quadrilaterals Q1

1 ⊂ C1 and Q1
2 ⊂ C1

2 . It is easy to see that (Q1
1, Q

2
1) and

(Q1
2, Q

2
2) are linked or essentially equal quadratically critical portraits. �

We are ready to prove Theorem 4.12.

Theorem 4.12. If (L1, C
1
1 , C

2
1) and (L2, C

1
2 , C

2
2) are marked laminations

and L1 is dendritic, then they have non-disjoint mixed tags if and only if (1)
or (2) holds:

(1) L1 = L2 has an all-critical triangle ∆, it is not true that C1
1 and C1

2

are distinct edges of ∆, and either C1
1 ⊃ C1

2 , or C1
2 ⊃ C1

1 .;
(2) there is no all-critical triangle in L1 ⊂ L2, and Cj

1 ⊃ Cj
2 for j =

1, 2 (in particular, if L2 is dendritic then L1 = L2).
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Proof. If the mixed tags of (L1, C
1
1 , C

2
1) and (L2, C

1
2 , C

1
2) are non-disjoint,

then, by Lemma 4.8, either L1 = L2 share an all-critical triangle ∆, or
these marked laminations are linked or essentially equal. In the first case
consider several possibilities for the critical patterns. One can immediately
see that the only way the mixed tags are disjoint is when C1

1 and C1
2 are

distinct edges of ∆; since the mixed tags are known to be non-disjoint we
see that this corresponds to case (1) from the theorem. In the second case
the fact that our marked laminations are linked or essentially equal implies,
by Theorem 3.7, that case (2) of the theorem holds. The opposite direction
of the theorem follows from definitions. �

4.3. Upper semi-continuous tags.

Definition 4.13. A collection E = {Eα} of compact and disjoint subsets of
a metric spaceX is upper semi-continuous (USC) if, for everyEα and every
open set U ⊃ Eα, there exists an open set V containing Eα so that, for each
Eβ ∈ D, if Eβ ∩ V ̸= ∅, then Eβ ⊂ U . A decomposition of a metric space
is said to be upper semi-continuous (USC) if the corresponding collection
of sets is upper semi-continuous.

Upper semi-continuous decompositions are studied in [Dav86].

Theorem 4.14 ([Dav86]). If E is an upper semicontinuous decomposition
of a separable metric space X , then the quotient space X/E is also a sepa-
rable metric space.

Before applying Theorem 4.14 to our tags, we draw a distinction be-
tween two notions. If ∼ is a dendritic laminational equivalence relation,
and L∼ has critical objects X, Y then by a marked laminational equiva-
lence relation we mean a triple (∼, X, Y ) or a triple (∼, Y,X) (if X ̸= Y ),
and just (∼, X,X) (if X = Y ). Consider a marked geodesic lamination
(L∼, C1, C2). Each marked laminational equivalence relation is associated
with the corresponding marked geodesic lamination (the first of the two crit-
ical sets in a marked laminational equivalence relation becomes C1 and the
second becomes C2). However if ∼ has an all-critical triangle ∆ then there
are more possibilities for (L∼, C1, C2) than just (L∼,∆,∆). E.g., C1, C2

could be two distinct edges of ∆. Still, mixed tags of laminational equiv-
alence relations are mixed tags of the corresponding geodesic laminations
and so our results obtained for geodesic laminations apply to them.

Recall that the map Tagl was defined in Definition 4.6. To a marked lam-
inational equivalence relation (∼, C,D), or to its critical pattern (C,D),
the map Tagl associates the corresponding mixed tag Tagl(∼, C,D) =
co(C)× σ3(D) ⊂ D× D.
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Theorem 4.15. The family {Tagl(C1, C2)} = CML(D) of mixed tags of
cubic marked dendritic invariant laminational equivalence relations forms
an upper semi-continuous decomposition of the union CML(D)+ of all
these tags.

Proof. If (∼1, C
1
1 , C

2
1) and (∼2, C

1
2 , C

2
2) are marked dendritic laminational

equivalence relation, and Tagl(C
1
1 , C

2
1) and Tagl(C

1
2 , C

2
2) are non-disjoint,

then, by Theorem 4.12 applied to the marked geodesic laminations (L∼1 ,
C1

1 , C
2
1) and (L∼1 , C

1
2 , C

2
2), we have that the corresponding marked lamina-

tional equivalence relations are equal, i.e. (L∼1 , C
1
1 , C

2
1) = (L∼2 , C

1
2 , C

2
2).

Hence the family {Tagl(C1, C2)} forms a decomposition of CML(D)+.
Suppose next that (∼i,Zi) is a sequence of marked dendritic lamina-

tional equivalence relations with Zi = (C1
i , C

2
i ). Assume that there is a

limit point of the sequence of their tags co(C1
i ) × σ3(C

2
i ) that belongs to

the tag of a marked dendritic laminational equivalence (∼D,ZD) where
ZD = (C1

D, C
2
D). By [BMOV13] and Lemma 4.1 we may assume that

the sequence (L∼i
,Zi) converges to a marked lamination (L∞, C

1
∞, C

2
∞)

with critical pattern P∞ = (C1
∞, C

2
∞). By the assumption, Tagl(ZD) ∩

Tag(P∞) ̸= ∅. By Theorem 4.12, LD ⊂ L∞ and Cj
∞ ⊂ Cj

D for j = 1, 2.
Hence Tagl(L∞,P∞) ⊂ Tagl(LD,ZD). �

Denote the quotient space of CML(D)+, obtained by collapsing every
element of CML(D) to a point, by MDcomb

3 (elements of CML(D) are
mixed tags of critical patterns of marked dendritic laminational equivalence
relations). Let π : CML(D)+ → MDcomb

3 be the quotient map. By Theo-
rem 4.14, the topological space MDcomb

3 is separable and metric. We show
that MDcomb

3 can be viewed as a combinatorial model for MD3. Recall that
the map Γ : MD3 → C(D)× C(D) was defined right before Lemma 4.2.

Theorem 4.16. The composition π ◦ Tagl ◦ Γ : MD3 → MDcomb
3 is a

continuous surjective map.

Proof. By definition and Corollary 4.3, the map Γ is upper semi-continuous
and surjective. Also, Tagl is continuous in the Hausdorff topology and pre-
serves inclusions. Finally, π is continuous by definition. Thus, π ◦Tagl ◦Γ :
MD3 → MDcomb

3 is a continuous surjective map as desired. �
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