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ABSTRACT. Complex 1-variable polynomials with connected Julia sets
and only repelling periodic points are called dendritic. By results of
Kiwi, any dendritic polynomial is semi-conjugate to a topological poly-
nomial whose topological Julia set is a dendrite. We construct a contin-
uous map of the space of all cubic dendritic polynomials onto a lami-
national model that is a quotient space of a subset of the closed bidisk.
This construction generalizes the “pinched disk” model of the Mandel-
brot set due to Douady and Thurston. It can be viewed as a step towards
constructing a model of the cubic connectedness locus.

1. INTRODUCTION

The Introduction assumes basic knowledge of complex dynamics and es-
pecially its combinatorial part; some concepts are introduced informally
and are formalized later in the main body of the paper.

The parameter space of complex degree d polynomials is by definition
the space of affine conjugacy classes of these polynomials. Equivalently,
one can talk about the space of all monic centered polynomials of degree d,
i.e., polynomials of the form zd + ad−2z

d−2 + · · ·+ a0. Any polynomial is
affinely conjugate to a monic centered polynomial. An important set is the
connectedness locus Md consisting of classes of all degree d polynomials
P , whose Julia sets J(P ) (equivalently, whose filled Julia sets K(P )) are
connected. General properties of the connectedness locus Md have been
studied for quite some time. For instance, it is known that Md is a compact
cellular set in the parameter space of complex degree d polynomials. This
was proven in [BrHu88] in the cubic case and in [Lav89] for higher degrees,
see also [Bra86]. By definition, following M. Brown [Bro60, Bro61], a
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subset of a Euclidean space Rn is cellular if its complement in the sphere
Rn ∪ {∞} is an open topological cell.

For d = 2, a monic centered polynomial takes the form Pc(z) = z2 + c,
and the parameter space of quadratic polynomials can be identified with the
plane of complex parameters c. Clearly, Pc(z) has a unique critical point 0
and a unique critical value c in C. Thus, we can say that polynomials Pc(z)
are parameterized by their critical values. The quadratic connectedness lo-
cus is the famous Mandelbrot set M2, identified with the set of complex
numbers c not escaping to infinity under iterations of the polynomial Pc(z).
The Mandelbrot set M2 has a complicated self-similar structure.

1.1. A combinatorial model for M2. The “pinched disk” model for M2

is due to Douady and Thurston [Dou93, Thu85]. To describe their approach
to the problem of modeling M2, we first describe laminational models of
polynomial Julia sets (we follow [BL02]).

Let S be the unit circle in C, consisting of all complex numbers of mod-
ulus one. We write σd : S → S for the restriction of the map z 7→ zd. We
identify S with R/Z by the mapping taking an angle θ ∈ R/Z to the point
e2πiθ ∈ S. Under this identification, we have σd(θ) = dθ. We will write D
for the open unit disk {z ∈ C | |z| < 1}.

Given a complex polynomial P , we let U∞(P ) denote the set C \K(P ).
This set is called the basin of attraction of infinity of P . Clearly, U∞(P ) =
U∞(P ) ∪ J(P ). If the Julia set J(P ) is locally connected, then it is con-
nected, and the Riemann map Ψ : C \ D → U∞(P ) can be continuously
extended to a map Ψ : C \ D → U∞(P ). This gives rise to a map ψ = Ψ|S,
which semiconjugates σd : S → S with P |J(P ). Define an equivalence rela-
tion ∼P on S so that x ∼P y if and only if ψ(x) = ψ(y). Then S/∼P and
J(P ) are homeomorphic, and the homeomorphism in question conjugates
the map f∼P

induced on S/∼P by σd, and P |J(P ). It is not hard to see that
the convex hulls of ∼P -classes are disjoint in D.

A productive idea is to consider equivalences relations ∼ whose proper-
ties are similar to those of ∼P . These properties will be stated precisely
later. Such equivalence relations are called laminational equivalence re-
lations of degree d. The maps f∼ : S/ ∼→ S/ ∼ induced by σd are
called topological polynomials of degree d. Degree two objects (lamina-
tional equivalence relations, topological polynomials, etc.) are referred to
as quadratic. Similarly, degree three objects are referred to as cubic. The
quotient space S/ ∼ is denoted J∼ and is called the topological Julia set (of
f∼). For brevity, in what follows, we will talk about “∼-classes” instead of
“classes of equivalence of ∼”.
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An important geometric representation of a laminational equivalence re-
lation ∼ is as follows. For any ∼-class g, take its convex hull CH(g). Con-
sider the edges of all such convex hulls; add all points of S to this collection
of chords. The obtained collection of (possibly, degenerate) chords in the
unit disk is denoted by L∼ and is called a geodesic lamination generated by
∼. In general, a geodesic lamination in D is a closed collection of chords in
D that are disjoint in D; the collection is assumed to include all degenerate
chords. For brevity, in what follows, we sometimes write “lamination” in-
stead of “geodesic lamination”. Observe that often hyperbolic geodesics are
used instead of chords; we use chords for the sake of brevity and simplicity.

Clearly, L∼ is a closed family of chords. Let ab denote the chord con-
necting points a, b ∈ S. We will never use this notation for pairs of points
not in S. Recall that points in S are identified with their “angles”. Thus,
01
2

always means the chord of S connecting the points with angles 0 and
1
2
. For any chord ℓ = ab in the closed unit disk D set σd(ℓ) = σd(a)σd(b).

For any ∼-class g and, more generally, for any closed set g ⊂ S, we set
σd(CH(g)) = CH(σd(g)).

Recall the construction of Douady and Thurston. Suppose that a qua-
dratic polynomial Pc has locally connected Julia set. We will write Gc for
the convex hull of the ∼Pc-class corresponding to the critical value c. A
fundamental theorem of Thurston [Thu85] is that Gc ̸= Gc′ implies that
Gc and Gc′ are disjoint in D (we will later state a more general and precise
version of Thurston’s result). Consider the collection of all Gc and take its
closure. The thus obtained collection of chords and inscribed polygons de-
fines a geodesic lamination QML introduced by Thurston in [Thu85] and
called the quadratic minor lamination. The lamination QML corresponds
to an equivalence relation ∼QML on S [Thu85]. The corresponding quotient
space Mcomb

2 = S/ ∼QML is a combinatorial model for the boundary of
M2. It is called the combinatorial Mandelbrot set. Conjecturally, the com-
binatorial Mandelbrot set is homeomorphic to the boundary of M2. This
conjecture is equivalent to the famous MLC conjecture: the Mandelbrot set
is locally connected.

1.2. Dendritic polynomials. When defining the combinatorial Mandel-
brot set, we used a partial association between parameter values c and lam-
inational equivalence relations ∼Pc . In order to talk about ∼Pc , we had to
assume that J(Pc) was locally connected. Recall that a dendrite is a locally
connected continuum that does not contain Jordan curves. Recall also that
a continuous map from a continuum to a continuum is called monotone if,
under this map, point-preimages (fibers) are connected.
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Definition 1.1. A complex polynomial P is said to be dendritic if it has con-
nected Julia set and all cycles repelling. A topological polynomial is said
to be dendritic if its Julia set is a dendrite. In that case, the corresponding
laminational equivalence relation and the associated geodesic lamination
are also said to be dendritic.

There are dendritic polynomials with non-locally connected Julia sets.
Nevertheless, by [Kiw04], for every dendritic polynomial P of degree d,
there is a monotone semiconjugacy mP between P : J(P ) → J(P ) and
a certain topological polynomial f∼P

such that the map mP is one-to-one
on all periodic and pre-periodic points of P . Moreover, by [BCO11], the
map mP is unique and can be defined in a purely topological way. Call
a monotone map φP of a connected polynomial Julia set J(P ) = J onto
a locally connected continuum L the finest monotone map of J(P ) onto a
locally connected continuum if, for any monotone ψ : J → J ′ with J ′ lo-
cally connected, there is a monotone map h : L → J ′ with ψ = h ◦ φP . It
is proven in [BCO11] that, for any polynomial P with J(P ) connected, the
finest monotone map of J(P ) onto a locally-connected continuum semicon-
jugates P |J(P ) to a topological polynomial f∼P

on its topological Julia set
J∼P

generated by a laminational equivalence relation possibly with infinite
classes ∼P , and that in the dendritic case this semiconjugacy identifies with
the map mP constructed by Kiwi in [Kiw04]. Clearly, this shows that mP

is unique up to post-composition with a homeomorphism.
Thus, P gives rise to a corresponding laminational equivalence relation

∼P even if J(P ) is not locally connected. If Pc(z) = z2 + c is a quadratic
dendritic polynomial, thenGc is defined, and is either a finite-sided polygon
inscribed into S, or a chord, or a point. A parameter value c is said to be
quadratic dendritic if Pc is dendritic. The fundamental results of Thurston
[Thu85] imply, in particular, that Gc and Gc′ are either the same or disjoint,
for all pairs c, c′ of dendritic parameter values. Moreover, the mapping
c 7→ Gc is upper semi-continuous (if a sequence of dendritic parameters cn
converges to a dendritic parameter c, then the limit set of the corresponding
convex sets Gcn is a subset of Gc). We call Gc the tag associated to c.

Now, consider the union of the tags of all quadratic dendritic polynomi-
als. This union is naturally partitioned into individual tags (distinct tags are
pairwise disjoint!). Thus the space of tags can be equipped with the quotient
space topology induced from the union of tags. On the other hand, take the
set of quadratic dendritic parameters. Each such parameter c maps to the
polygon Gc, i.e. to the tag associated to c. Thus each quadratic dendritic
parameter maps to the corresponding point of the space of tags. This pro-
vides for a combinatorial (or laminational) model for the set of quadratic
dendritic polynomials (or their parameters).
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In this paper, we extend these results to cubic dendritic polynomials.

1.3. Mixed tags of cubic polynomials. Recall that monic centered qua-
dratic polynomials are parameterized by their critical values. A combinato-
rial analog of this parameterization is the association between topological
polynomials and their tags. Tags of quadratic topological polynomials are
post-critical objects of the corresponding laminational equivalences. Monic
centered cubic polynomials can be parameterized by a critical value and a
co-critical point. Recall that the co-critical point ω∗ of a cubic polynomial
P corresponding to a simple critical point ω of P is defined as a point dif-
ferent from ω but having the same image under P as ω. If ω is a multiple
critical point of P , then we set ω∗ = ω. In any case we have P (ω∗) = P (ω).
Let c and d be the two critical points of P (if P has a multiple critical point,
then c = d). Set a = c∗ and b = P (d). Assuming that P is monic and
central, we can parameterize P by a and b:

P (z) = b+
a2(a− 3z)

4
+ z3.

For P in this form, we have c = −a
2
, d = a

2
. Similarly to parameterizing

cubic polynomials by pairs (a, b), we will use the so-called mixed tags to
parameterize topological cubic dendritic polynomials.

Consider a cubic dendritic polynomial P . By the above, there exists a
laminational equivalence relation ∼P and a monotone semiconjugacy mp :
J(P ) → S/ ∼P of PJP with the topological polynomial f∼P

. Given a point
z ∈ J(P ), we associate with it the convex hull GP,z of the ∼P -equivalence
class represented by the point mP (z) ∈ S/ ∼P . The set GP,z is a convex
polygon with finitely many vertices, a chord, or a point; it should be viewed
as a combinatorial object corresponding to z. For any points z ̸= w ∈ J(P ),
the sets GP,z and GP,w either coincide or are disjoint.

By definition, a (critically) marked (cf [Mil12]) cubic polynomial is a
triple (P, c, d), where P is a cubic polynomial with critical points c and d.
If P has only one (double) critical point, then c = d, otherwise we require
that c ̸= d. In particular, if c ̸= d, then the triple (P, c, d) and the triple
(P, d, c) are viewed as two distinct critically marked cubic polynomials.
We will sometimes write P instead of (P, c, d). Critically marked polyno-
mials do not have to be dendritic (in fact, the notion is used by Milnor and
Poirier [Mil12] for hyperbolic polynomials, i.e., in the situation diametri-
cally opposite to that of dendritic polynomials). Convergence in the space
of marked polynomials is understood as convergence of the coefficients and
of the marked critical points.

Let MD3 be the space of all critically marked cubic dendritic polyno-
mials. With every marked dendritic polynomial (P, c, d), we associate the
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corresponding mixed tag

Tag(P, c, d) = Gc∗ ×GP (d) ⊂ D× D.

Here c∗ is the co-critical point corresponding to the critical point c.
A similar construction can be implemented for any cubic dendritic lami-

national equivalence relation ∼. Let C and D denote the convex hulls of its
critical classes, i.e., classes, on which the map σ3 is not one-to-one. Then
either C = D is the unique critical ∼-class, or C ̸= D are disjoint. The sets
C and D are called the critical objects of ∼. By a (critically) marked cubic
laminational equivalence relation we mean a triple (∼, C,D). If C ̸= D,
then we define C∗ = co(C) as the convex hull of the unique ∼-class that is
distinct from the class C ∩ S but has the same σ3-image. If C = D, then
we set C∗ = C. The set C∗ is called the co-critical set of C. For a marked
laminational equivalence relation (∼, C,D), define its mixed tag as

Tagl(∼, C,D) = C∗ × σ3(D) ⊂ D× D

Let C(D) denote the set of all compact subsets of D. Clearly the range of
the map Tagl is a subset of C(D)× C(D).

The subscript l in Tagl stands for “laminational”. We distinguish the map
Tagl from the map Tag, which acts on polynomials. These two maps are
closely related though: for any marked dendritic cubic polynomial (P, c, d)
and the corresponding marked laminational equivalence relation (∼P , Gc, Gd),
we have Tag(P, c, d) = Tagl(∼P , Gc, Gd).

1.4. Statement of the main result. Consider the collection of the sets
Tag(P ) over all P ∈ MD3. By [Kiw04, Kiw05], for any dendritic lam-
inational equivalence relation ∼, there exists a dendritic complex polyno-
mial P with ∼=∼P . Thus, equivalently, we can talk about the collection
of mixed tags of all dendritic laminations L∼. In Theorem 4.15, we show
that the mixed tags Tag(P ) are pairwise disjoint or equal. Let us denote
this collection of sets by CML(D) (for cubic mixed lamination of dendritic
polynomials). Note, that CML(D) can be viewed as (non-closed) “lami-
nation” in D × D whose elements are products of points, leaves or gaps.
One can consider CML(D) as the higher-dimensional analog of Thurston’s
QML restricted to dendritic polynomials.

Theorem 4.15, in addition, establishes the fact that the collection of sets
CML(D) is upper semi-continuous. Let the union of all sets in CML(D)
be denoted by CML(D)+ ⊂ D × D. It follows that the quotient space of
CML(D)+, obtained by collapsing all elements of CML(D) to points, is
a separable metric space, which is denoted by MDcomb

3 . Denote by π :
CML(D)+ → MDcomb

3 the corresponding quotient map.
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Main Theorem. Mixed tags of critically marked polynomials from MD3

are either disjoint or coincide. The map π ◦ Tag : MD3 → MDcomb
3 is

continuous.

Hence MDcomb
3 is a combinatorial model for MD3. This theorem can

be viewed as a partial generalization of Thurston’s results [Thu85] to cubic
polynomials. Indeed, Thurston establishes the existence of tags of lamina-
tional equivalence relations that are pairwise disjoint and form an upper-
semicontinuous family of subsets of the closed unit disk. We extend this to
the cubic dendritic case by suggesting a new method of tagging such poly-
nomials that guarantees that if two tags are distinct then they are actually
disjoint. Choosing such tags and showing that they have the just mentioned
properties is, in our view, an important step towards constructing a combi-
natorial model the cubic connectedness locus.

1.5. Previous work and organization of the paper. Lavaurs [Lav89] proved
that M3 is not locally connected. Epstein and Yampolsky [EY99] proved
that the bifurcation locus in the space of real cubic polynomials is not lo-
cally connected either. This makes the problem of defining a combinatorial
model of M3 very delicate. There is no hope that a combinatorial model
would lead to a precise topological model. Schleicher [Sch04] constructed
a geodesic lamination modeling the space of unicritical polynomials, that
is, polynomials with a unique multiple critical point. We have heard of an
unpublished old work of D. Ahmadi and M. Rees, in which cubic geodesic
laminations were studied, however, we have not seen it. The present paper
is based on the results obtained in [BOPT16]. These results are applicable
to invariant laminations of any degree.

The paper is organized as follows. In Section 2, we discuss basic prop-
erties of geodesic laminations and laminational equivalence relations. In
Section 3, we recall the results of [BOPT16] adapting them to the cubic
case. Finally, Section 4 is dedicated to the proof of the main result.

2. LAMINATIONS AND THEIR PROPERTIES

By a chord we mean a closed segment connecting two points of the unit
circle. If these two points coincide, then the chord is said to be degenerate.

Definition 2.1 (Geodesic laminations). A geodesic lamination is a collec-
tion L of chords called leaves that satisfy the following properties:

(1) different leaves do not intersect in D;
(2) all degenerate chords (points of S) are leaves;
(3) the set L+ =

∪
ℓ∈L ℓ is compact.

Gaps of L are the closures of the components of D \ L+.



8 A. BLOKH, L. OVERSTEEGEN, R. PTACEK, AND V. TIMORIN

Given a compact metric space X , the space of all its compact subsets
with the Hausdorff metric is denoted by C(X). Any leaf of a geodesic
lamination is an element of C(D). Thus a lamination itself can be regarded
as a compact subsect of C(D), i.e., as an element of C(C(D)). In what
follows, convergence of laminations is always understood in the sense of
the Hausdorff distance on C(C(D)).

In the introduction, we discussed laminational equivalence relations. We
now give a precise definition.

Definition 2.2 (Laminational equivalence relations). An equivalence rela-
tion ∼ on the unit circle S is said to be laminational if the following holds:

(E1) the graph of ∼ is a closed subset of S× S;
(E2) the convex hulls of distinct equivalence classes are disjoint;
(E3) each equivalence class of ∼ is finite.

Let d > 2 be a integer. A laminational equivalence relation ∼ is called
(σd-)invariant if:

(D1) it is forward invariant: for a ∼-class g, the set σd(g) is a ∼-class;
(D2) for any ∼-equivalence class g, the map σd : g → σd(g) extends to

S as an orientation preserving covering map such that g is the full
preimage of σd(g) under this covering map.

As in the introduction, we write L∼ for the lamination generated by ∼.
Recall that it consists of edges of the convex hulls of all ∼-classes. Equiv-
alently, ab ∈ L∼ if a ∼ b, and the points a, b are not separated in S by
elements of the same equivalence class. A geodesic lamination is called a
σd-invariant q-lamination (q from equivalence) if it has the form L∼, where
∼ is a σd-invariant laminational equivalence.

Definition 2.3. A σd-invariant limit lamination is defined as a limit of σd-
invariant q-laminations.

Below, we list the most important properties of σd-invariant q-laminations
L with references.

Forward leaf invariance: for every non-degenerate leaf ℓ ∈ L, we
have σd(ℓ) ∈ L. This property is straightforward from the defini-
tion. It is a part of the original definition of an invariant lamination
by Thurston [Thu85].

Backward leaf invariance: for every non-degenerate leaf ℓ ∈ L, there
is a leaf ℓ∗ ∈ L such that σd(ℓ∗) = ℓ. This property is straightfor-
ward from the definition. It is a part of the original definition of an
invariant lamination by Thurston [Thu85].

Forward gap invariance: if G is a gap of L, then H = σd(G) is a
leaf of L (possibly degenerate), or a gap of L. In the latter case, the
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map σd : G ∩ S → H ∩ S extends to a map of the boundary of G
onto the boundary of H so that the extended map is an orientation
preserving composition of a monotone map and a covering map.
This property is proved in [BMOV13]. It is a part of the original
definition of an invariant lamination by Thurston [Thu85].

Sibling property: for every ℓ ∈ L such that σd(ℓ) is a non-degenerate
leaf, there exist d pairwise disjoint leaves ℓ1, . . . , ℓd in L such that
ℓ1 = ℓ, and σd(ℓi) = σd(ℓ) for all i = 2, . . . , d. This property is
proved in [BMOV13]. It is a part of the notion of a sibling invariant
lamination.

Call a leaf ℓ∗ such that σd(ℓ∗) = ℓ a pullback of ℓ. A sibling of ℓ is defined
as a leaf ℓ′ ̸= ℓ with σd(ℓ′) = σd(ℓ). The backward leaf invariance property
stipulates the existence of pullbacks of non-degenerate leaves. The sibling
property is equivalent to saying that every leaf ℓ with non-degenerate image
has d − 1 siblings that are disjoint from each other and from ℓ. For d = 2,
the sibling property means that, for any ℓ ∈ L, the chord obtained from ℓ by
a half-turn around the center of the disk D also belongs to L. Observe that,
since leaves are closed segments, pairwise disjoint siblings cannot intersect
even on the unit circle.

For brevity we often talk about laminations meaning σd-invariant limit
geodesic laminations. Clearly, the limit of a sequence of σd-invariant limit
laminations is again a σd-invariant limit lamination.

Definition 2.4 (Linked chords). Two distinct chords of D are linked if they
intersect in D. We will also sometimes say that these chords cross each
other. Otherwise two chords are said to be unlinked.

A gap G is said to be infinite (finite, uncountable) if G ∩ S is infinite
(finite, uncountable). Uncountable gaps are also called Fatou gaps. For a
closed convex set H ⊂ C, straight segments in the boundary Bd(H) of H
are called edges of H .

Definition 2.5 (Critical sets). A critical chord (leaf) ab of L is a chord
(leaf) of L such that σd(a) = σd(b). A gap is all-critical if all its edges are
critical. An all-critical gap or a critical leaf (of L) is called an all-critical set
(of L). A gap G of L is said to be critical if it is an all-critical gap or there
is a critical chord contained in the interior of G except for its endpoints.
A critical set of L is by definition a critical leaf or a critical gap. We also
define a critical object of L as a maximal by inclusion critical set. See
Figure 1 for illustrations of various critical sets.

2.1. Dendritic laminations. We now consider dendritic laminations and
corresponding topological polynomials.
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FIGURE 1. From left to right: a critical quadrilateral and
its image leaf, an all-critical triangle, a critical hexagon of
degree 3 and its image leaf (all critical sets are for σ3)

Definition 2.6. A q-lamination L∼ is called dendritic if all its gaps are fi-
nite. Then the corresponding topological Julia set S/ ∼ is a dendrite. The
laminational equivalence relation ∼ and the topological polynomial f∼ are
said to be dendritic too.

Recall that, by [Kiw04], with every dendritic polynomial P one can asso-
ciate a dendritic topological polynomial f∼P

so that P |J(P ) is monotonically
semi-conjugate to f∼P

|J(f∼P
). By [Kiw05], for every dendritic topological

polynomial f , there exists a polynomial P with f = f∼P
. Below, we list

some well-known properties of dendritic geodesic laminations.

Definition 2.7 (Perfect parts of geodesic laminations [BOPT16]). Let L be
a geodesic lamination considered as a subset of C(D). Then the maximal
perfect subset Lp of L is called the perfect part of L. A geodesic lamination
L is called perfect if L = Lp. Equivalently, this means that all leaves of L
are non-isolated in the Hausdorff metric.

Observe that Lp must contain S.

Lemma 2.8. Dendritic geodesic laminations L are perfect.

Proof. Indeed, otherwise two gaps G,H of L = L∼ meet along a common
edge that is an isolated leaf of L. However by definition they are convex
hulls of classes of ∼ which means that the corresponding two classes are
non-disjoint, a contradiction. �

We will need Corollary 6.6 of [BOPT16], which reads:

Corollary 2.9. Let L be a perfect limit lamination. Then the critical objects
of L are pairwise disjoint and are either all-critical sets, or critical sets
whose boundaries map exactly k-to-1, k > 1, onto their images.

By Lemma 2.8, Corollary 2.9 applies to dendritic geodesic laminations.
Moreover, by properties of dendritic geodesic laminations, all their critical
objects are finite.
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3. LINKED QUADRATICALLY CRITICAL GEODESIC LAMINATIONS

Now we will review results of [BOPT16] that are essential for this paper.
Let us emphasize that results of [BOPT16] hold for any degree. However,
we will adapt them here to degree three, omitting the general formulations.
By quadratic (respectively, cubic) laminations, we mean σ2-invariant (re-
spectively, σ3-invariant) limit laminations.

Consider a quadratic lamination L with a critical quadrilateralQ. Thurston
[Thu85] associates to L its minor m = σ2(Q). Then Q ∩ S is the full σ2-
preimage of m ∩ S. Thurston proves that different minors obtained in this
way never cross in D. Observe that two minors cross if and only if the ver-
tices of the corresponding critical quadrilaterals alternate in S. Thurston’s
result can be translated as follows in terms of critical quadrilaterals. If two
quadratic laminations generated by laminational equivalences have critical
quadrilaterals whose vertices strictly alternate, then the two laminations are
the same. This motivates Definition 3.1.

Definition 3.1. Let A and B be two quadrilaterals with vertices in S. Say
that A and B are strongly linked if the vertices of A and B can be numbered
so that

a0 6 b0 6 a1 6 b1 6 a2 6 b2 6 a3 6 b3 6 a0,

where ai, 0 6 i 6 3, are vertices of A and bi, 0 6 i 6 3 are vertices of B.
The inequalities refer to the circular order on S.

By definition, a critical chord is a chord ab with a ̸= b such that σ3(a) =
σ3(b).

Definition 3.2. A (generalized) critical quadrilateral Q is a circularly or-
dered quadruple [a0, a1, a2, a3] of points a0 6 a1 6 a2 6 a3 6 a0 in S,
where a0a2 and a1a3 are critical chords called spikes; critical quadrilaterals
[a0, a1, a2, a3], [a1, a2, a3, a0], [a2, a3, a0, a1] and [a3, a0, a1, a2] are viewed
as equal.

We will often say “critical quadrilateral” when talking about the convex
hull of a critical quadrilateral. Clearly, if all vertices of a critical quadrilat-
eral are distinct, or if its convex hull is a critical leaf, then the quadrilateral
is uniquely defined by its convex hull. However, if the convex hull is a tri-
angle, this is no longer true. For example, let CH(a, b, c) be an all-critical
triangle. Then [a, a, b, c] is a critical quadrilateral, but so are [a, b, b, c] and
[a, b, c, c]. If all vertices of a critical quadrilateral Q are pairwise distinct,
then we call Q non-degenerate. Otherwise Q is called degenerate. Vertices
a0 and a2 (a1 and a3) are called opposite.
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Lemma 3.3 (Lemma 5.2 [BOPT16]). The family of all critical quadrilat-
erals is closed in C(D). The family of all critical quadrilaterals that are
critical sets of cubic laminations is closed too.

Being strongly linked is a closed condition on two quadrilaterals: if
two sequences of critical quadrilaterals Ai, Bi are such that Ai and Bi are
strongly linked and Ai → A, Bi → B, then A and B are strongly linked
critical quadrilaterals.

In [BOPT16], quadratically critical portraits are defined for any degree
d. Below, we adapt this definition for cubic laminations. Consider distinct
critical quadrilaterals Q1, Q2 whose relative interiors are disjoint. (Recall
that the relative interior of a subset X ⊂ C is the interior of X in the affine
hull ofX). The pair (Q1, Q2) is called a quadratically critical portrait. If L
is a cubic lamination such that Q1, Q2 are leaves or gaps of L, then we say
that (Q1, Q2) is a quadratically critical portrait of L. Observe that not all
cubic laminations admit quadratically critical portraits. For example, if L
has a unique critical object that is not all-critical (say, if this critical object
is a hexagon that maps forward in the three-to-one fashion), then L has no
quadratically critical portrait. If L has two disjoint critical objects, then it
admits a quadratically critical portrait if and only if both critical objects are
(possibly degenerate) critical quadrilaterals.

Assume that L has an all-critical triangle ∆. Then possible quadratically
critical portraits of L are:

(1) pairs of distinct edges of ∆; and
(2) pairs consisting of ∆ and an edge of it.

Now we define linked quadratically critical portraits.

Definition 3.4. Let (Q1
1, Q

2
1) and (Q1

2, Q
2
2) be quadratically critical portraits.

These two portraits are said to be linked or essentially equal if one of the
following holds.

(1) For every j = 1, 2, the quadrilaterals Qj
1 and Qj

2 are strongly linked.
If Qj

1 and Qj
2 share a spike for every j = 1, 2, then the two portraits

are said to be essentially equal.
(2) We have that CH(Q1

1∪Q2
1) = CH(Q1

2∪Q2
2) is an all-critical triangle.

In this case, the two portraits are also said to be essentially equal.
If (1) but (Q1

1, Q
2
1) and (Q1

2, Q
2
2) are not essentially equal, then the two

portraits are said to be linked.

Critically marked polynomials, topological polynomials, and laminational
equivalence relations were defined in the introduction. Let us now define
critically marked cubic laminations. Suppose that L is a cubic lamination
and an ordered pair of critical sets (gaps or leaves) C, D of L is chosen
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so that on the boundary of each component E of D \ (C ∪ D) the map σ3
is one-to-one (except for the endpoints of possibly existing critical edges
of such components). Then we call (L, C,D) a critically marked lamina-
tion. For brevity, we often talk about marked (topological) polynomials and
laminations meaning critically marked ones. Let (L, C1, C2) be a marked
cubic lamination. Then (C1, C2) is called a critical pattern of L; when
talking about critical patterns we mean critical patterns of some marked
lamination L and allow for L to be unspecified.

Let L be a dendritic lamination. If C ̸= D are its critical sets, then the
only two possible critical patterns that can be associated with L are (C,D)
or (D,C). If L has a unique critical set X that is not an all-critical triangle,
then the only possible critical pattern of L is (X,X). However, if L has
a unique critical set ∆ that is an all-critical triangle, then there are more
possibilities for a critical pattern of L. Namely, by definition, a critical
pattern of L can be either (∆,∆), or ∆ and an edge of ∆, or an edge of ∆
and ∆, or an ordered pair of two edges of ∆.

A collapsing quadrilateral is a critical quadrilateral that maps to a non-
degenerate leaf.

Definition 3.5. Marked laminations (L1, C
1
1 , C

2
1) and (L2, C

1
2 , C

2
2), and their

critical patterns, are said to be linked (essentially equal) if there are linked
(respectively, essentially equal) quadratically critical portraits (Q1

1, Q
2
1) and

(Q1
2, Q

2
2) such that Qj

i ⊂ Cj
i for all i, j = 1, 2, and, if Qj

i is a collapsing
quadrilateral, then it shares a pair of opposite edges with Cj

i .

The following is a special case of one the central results of [BOPT16].

Theorem 3.6 (Theorem 9.6 [BOPT16]). Let (L1, C
1
1 , C

2
1) and (L2, C

1
2 , C

2
2)

be marked laminations. Suppose that L1 is perfect. If L1, L2 are linked or
essentially equal, then L1 ⊂ L2 and Cj

1 ⊃ Cj
2 for j = 1, 2. In particular, if

both laminations are perfect, then (L1, C
1
1 , C

2
1) = (L2, C

1
2 , C

2
2).

In particular, Theorem 3.6 applies when L1 is dendritic, as follows from
Lemma 2.8.

4. PROOF OF THE MAIN RESULT

In the rest of the paper, we define a visual parameterization of the family
of all marked cubic dendritic laminations.

4.1. Convergence of marked laminations. Let (Li,Zi) be a sequence of
marked cubic laminations with critical patterns Zi = (C1

i , C
2
i ). Assume

that the sequence Li converges to a limit lamination L∞. Then the critical
sets C1

i , C2
i converge to gaps or leaves C1

∞, C2
∞ of L∞. We say that the

sequence (Li,Zi) converges to (L∞, C
1
∞, C

2
∞).
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Lemma 4.1. Suppose that a sequence (Li,Zi) of marked cubic laminations
with finite critical sets converges to (L∞, C

1
∞, C

2
∞). Then sets C1

∞, C
2
∞ are

critical and non-periodic, and (L∞, C
1
∞, C

2
∞) is a marked lamination.

Proof. Every vertex of C1
∞ has a sibling vertex in C1

∞. It follows that C1
∞

is critical. If C1
∞ is periodic of period, say, n, then, since it is critical, it

is an infinite gap. Then the fact that σn
d (C

1
∞) = C1

∞ implies that any gap
C1

i sufficiently close to C1
∞ will have its σn

3 -image also close to C1
∞, and

therefore coinciding with C1
i . Thus, C1

i is σ3-periodic, which is impossible
because C1

i is finite and critical. Similarly, C2
∞ is critical and non-periodic.

Let us show that (L∞, C
1
∞, C

2
∞) is a marked lamination. To this end we

need to show that on the boundary of each component E of D \ (C1
∞ ∪

C2
∞) the map σ3 is one-to-one (except for the endpoints of possibly existing

critical edges of such components). This follows from definitions and the
fact that the same claim holds for all (Li,Zi). �

Any marked lamination similar to (L∞, C
1
∞, C

2
∞) from Lemma 4.1 will

be called a limit marked lamination. In particular, a marked dendritic lami-
nation is a limit marked lamination (consider a constant sequence).

As was explained in the Introduction, a marked cubic dendritic polyno-
mial always defines a marked cubic lamination. Take a marked dendritic
polynomial (P, c1, c2) and let (L, C1, C2) be the corresponding marked lam-
ination. Define the map Γ : MD3 → C(D)×C(D) by setting Γ(P, c1, c2) =
(C1, C2). Consider a sequence of marked dendritic cubic laminations (Li,
C1

i , C
2
i ). If Li converge, then the limit L∞ is itself a cubic lamination, and,

by the above, the critical patterns (C1
i , C

2
i ) converge to the critical pattern

(C1
∞, C

2
∞) of L∞. We are interested in the case when L∞ is in a sense

compatible with a dendritic lamination.

Lemma 4.2 (Lemma 6.18 [BOPT16]). Let (Li, C
1
i , C

2
i ) and (L∞, C

1
∞, C

2
∞)

be as above. If there exists a dendritic cubic geodesic lamination L with a
critical pattern (C1, C2) such that Cj

∞ ⊂ Cj for j = 1, 2, then L∞ ⊃ L.

Lemma 4.2 says that if critical patterns of dendritic cubic geodesic lam-
inations converge into a critical pattern of a dendritic cubic geodesic lam-
ination L, then the limit lamination contains L. Recall that convergence
in the space of marked polynomials is understood as convergence of the
coefficients and of the marked critical points.

Corollary 4.3 (Corollary 6.20 [BOPT16]). Suppose that a sequence (Pi, c
1
i ,

c2i ) of marked cubic dendritic polynomials converges to a marked cubic den-
dritic polynomial (P, c1, c2). Consider corresponding marked laminational
equivalence relations (∼Pi

, C1
i , C

2
i ) and (∼P , C

1, C2). If (L∼Pi
, C1

i , C
2
i )

converges to (L∞, C
1
∞, C

2
∞), then we have L∞ ⊃ L∼P

, C1
∞ ⊂ C1, C2

∞ ⊂
C2. In particular, the map Γ is upper semi-continuous.
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By Corollary 4.3, critical objects of dendritic cubic laminations L∼P
as-

sociated with polynomials P ∈ MD3 cannot explode under perturbation of
P (they may implode though).

4.2. Mixed tags of geodesic laminations.
Definition 4.4 (Minor set). Let (L, C,D) be a marked lamination. Then
σ3(D) is called the minor set of (L, C,D).

Note that, in Definition 4.5, the set C is not assumed to be critical.

Definition 4.5 (Co-critical set). Let C be a leaf or a gap of a cubic lami-
nation L. Assume that either C is the only critical object of L, or there is
exactly one hole of C of length > 1

3
. If C is the only critical object of L,

then we set co(C) = C. Otherwise, let H be the unique hole of C of length
> 1

3
, let A be the set of all points in H with the images in σ3(C), and set

co(C) = CH(A). The set co(C) is called the co-critical set of C.

We now define tags of marked laminations.

Definition 4.6 (Mixed tag). Suppose that (L, C1, C2) is a marked lamina-
tion. Then we call the set Tagl(C1, C2) = co(C1) × σ3(C

2) ⊂ D × D the
mixed tag of (L, C1, C2) or of (C1, C2).

Sets co(C1) (and hence mixed tags) are well-defined. The mixed tag T of
a marked lamination is the product of two sets, each of which is a point, a
leaf, or a gap. One can think of T ⊂ D×D as a higher dimensional analog
of a gap/leaf of a geodesic lamination. We show that the union of tags
of marked dendritic laminations is a (non-closed) “geodesic lamination” in
D × D. The main idea is to relate the non-disjointness of mixed tags of
marked dendritic laminations and their limits with the fact that they have
“tunings” that are linked or essentially equal.

In Definition 4.7, we mimic Milnor’s terminology for polynomials.

Definition 4.7 (Unicritical and bicritical laminations). A marked lamination
(and its critical pattern) is called unicritical if its critical pattern is of form
(C,C) for some critical set C and bicritical otherwise.

Clearly, a unicritical marked lamination has a unique critical object. How-
ever a lamination L with unique critical object may have a bicritical critical
pattern. By definition this is only possible if L has an all-critical gap ∆ and
the critical pattern is either two edges of ∆ or ∆ and an edge of ∆.

The following lemma is a key combinatorial fact about tags.

Lemma 4.8. Suppose that two marked laminations have non-disjoint mixed
tags. Suppose also that at least one of the two laminations is dendritic.
Then either the two marked laminations are linked or essentially equal, or
the geodesic laminations are equal and share an all-critical triangle.
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The proof of Lemma 4.8 is mostly non-dynamic and involves checking
various cases. We split the proof into propositions. Observe that mixed tags
are determined by critical patterns; we do not need laminations to define
mixed tags. In Propositions 4.9 — 4.10, we assume that the critical patterns
(C1

1 , C
2
1) and (C1

2 , C
2
2) are bicritical and have non-disjoint mixed tags.

Proposition 4.9. Suppose that some distinct edges of co(C1
1) and co(C1

2)
cross. Then the two critical patterns are linked or essentially equal.

Proof. By the assumption, some distinct edges of the sets co(C1
1) and co(C1

2)
cross. Denote these linked edges by a1b1 and a2b2, see Fig. 2. We may
choose the orientation so that (a1, b1), (a2, b2) are in the holes of co(C1

1),
co(C1

2) disjoint from C1
1 , C1

2 respectively, and so that a1 < a2 < b1 < b2.
We claim that (a1, b1) is of length at most 1

3
. Indeed, if (a1, b1) had length

greater than 1
3
, then there would exist a sibling ℓ of a1b1 with endpoints in

(a1, b1). Evidently, ℓ would be an edge of C1
1 , contradicting the choice of

(a1, b1). Thus, (a1, b1) is of length at most 1
3

and the restriction σ3|(a1,b1)
is one-to-one. Similarly, (a2, b2) is of length at most 1

3
and the restriction

σ3|(a2,b2) is one-to-one.
Let us show now that σ3(C2

1) ∩ S ⊂ [σ3(b1), σ3(a1)]. If C1
1 = C2

1 is of
degree three, this follows immediately. Otherwise, let a′1 = a1 +

1
3

and
b′1 = b1 +

2
3
. Then a′1b′1 ⊂ C1

1 . Moreover, since C1
1 is critical, vertices

of C1
1 partition the arc (a′1, b

′
1) into open arcs on each of which the map is

one-to-one. Hence C2
1 must have vertices in [b′1, a1]∪ [b1, a

′
1]. Since each of

these intervals maps onto [σ3(b1), σ3(a1)] one-to-one, our claim follows.
We claim that b2 6 a1+

1
3
. Indeed, otherwise [b1, a1+ 1

3
] ⊂ [a2, b2), which

implies that [σ3(b1), σ3(a1)] ⊂ [σ3(a2), σ3(b2)). On the other hand, by the
above we have σ3(C1

1) ⊂ [σ3(b1), σ3(a1)] and σ3(C1
2) ⊂ [σ3(b2), σ3(a2)].

Since σ3(C2
1) ∩ σ3(C

2
2) ̸= ∅, we have in fact b1 = a2, a contradiction.

Thus, the points ai and bi for i = 1, 2 belong to an arc of length at most 1
3
.

We claim that then co(a1b1) = Q1
1 and co(a2b2) = Q1

2 are strongly linked
collapsing quadrilaterals. Indeed, we have that a1 < a2 < b1 < b2 6 a1+

1
3
.

It follows then that

a1+
1

3
< a2+

1

3
< b1+

1

3
< b2+

1

3
6 a1+

2

3
< a2+

2

3
< b1+

2

3
< b2+

2

3
6 a1,

and therefore that, indeed, Q1
1 and co(a2b2) = Q1

2 are strongly linked col-
lapsing quadrilaterals. Moreover, since a1b1 and a2b2 are edges of co(C1

1)
and co(C1

2) it follows that the quadrilateralQ1
1 shares two edges with the set

C1
1 , and the quadrilateral Q1

2 shares two edges with the set C1
2 .

Note that all vertices of C2
1 and C2

2 are in [b2, a
′
1] ∪ [b′2, a1], where a′1 =

a1 +
1
3

and b′2 = b2 +
2
3
. The restriction of σ3 to each of the arcs [b2, a

′
1],

[b′2, a1] is injective. Therefore, a pair of linked edges (or a pair of coinciding
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FIGURE 2. This figure illustrates Proposition 4.9.

vertices) of σ3(C2
1) and σ3(C2

2) gives rise to a pair of linked quadrilaterals
Q2

1 and Q2
2 in C2

1 and C2
2 , respectively, so that if these quadrilaterals share

edges with containing them critical sets. �

Now we simply assume that co(C1
1) and co(C1

2) intersect.

Proposition 4.10. If L1 is dendritic, and (L2, C
1
2 , C

2
2) is a limit marked

lamination, then at least one of the following holds:

(1) the two critical patterns are linked or essentially equal;
(2) L1 = L2 share an all-critical triangle ∆.

Proof. We will use the same notation as in the proof of Proposition 4.9. If
co(C1

1) and co(C1
2) have distinct edges that cross in D, then Proposition 4.9

applies. Assume now that co(C1
1) and co(C1

2) share a vertex a. Clearly,
there is a unique critical chord ℓ such that co(a) = ℓ. Then C1

1 ∩ C1
2 ⊃ ℓ,

and we may set Q1
1 = Q1

2 = ℓ.
Both sets C2

i have vertices in the closed arc A of length 2
3

bounded by
the endpoints of ℓ. By our assumption, σ3(C2

1) ∩ σ3(C
2
2) ̸= ∅. If the sets

σ3(C
2
i ), i = 1, 2 have a pair of linked edges or share a vertex z ̸= σ3(ℓ),

then these edges or z can by pulled back to CH(A) as a pair of linked critical
quadrilaterals. Assume now that σ3(C2

1) ∩ σ3(C2
2) = {σ3(ℓ)}.

Clearly, a ∈ A. Set ∆ = CH(a, ℓ). We claim that ∆ is a gap of L1.
Indeed, the set C2

1 contains at least two vertices of ∆ and is non-disjoint
from C1

1 . Since L1 is dendritic, L1 has a unique critical objectE. IfE ̸= ∆,
then by definition the critical pattern of L1 is (E,E), a contradiction with
the assumption that L1 is bicritical. Thus, ∆ is a gap of L1.
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We claim that ∆ is a gap L2. We prove first that there is an edge ℓ∗ ̸= ℓ of
∆ such that one of the sets C1

2 , C
2
2 contains ℓ while the other one contains

ℓ∗. This is obvious if C2
2 contains an edge ℓ∗ ̸= ℓ of ∆. Otherwise C2

2 ⊃ ℓ.
Then ℓ must be an edge of C2

2 because otherwise the sets C1
2 and C2

2 will
have either non-disjoint interiors, or one of them is contained in the interior
of the other one, a contradiction. Similarly, ℓ is an edge of C1

2 . It follows
that one of the sets C1

2 , C
2
2 is ℓ while the other one is a critical gap G ̸= ∆

with ℓ as an edge.
By the above, ℓ and ℓ∗ are either leaves of L2 or are contained in gaps of

L2. Moreover endpoints of ℓ and ℓ∗ are not periodic since ∆ is a gap of a
dendritic lamination L1. Hence ℓ and ℓ∗ can be pulled back in a unique way
and its pullbacks either will be contained in gaps of L2 or will be leaves
of L2. This yields a new lamination L̂2 ⊃ L2 and a marked lamination
(L̂2, ℓ, ℓ

∗). Consider also the marked lamination (L1, ℓ, ℓ
∗). Since these two

marked laminations are essentially equal, Theorem 3.6 implies that L1 ⊂
L̂2. Hence ∆ is a gap of L̂2 and, moreover, leaves shared by L1 and L̂2

approximate all edges of ∆ from outside of ∆.
It follows that ∆ is a subset of a gap G of L2. Let us show that G = ∆.

By Lemma 4.1, G is not periodic. Hence pullbacks of ℓ and ℓ∗ do not re-
enter G, and so an edge of ∆ contained in the interior of G (except for the
endpoints) remains isolated in both L2 and L̂2. However in the previous
paragraph we concluded that it is not isolated in L̂2, a contradiction. We
conclude that ∆ is a gap of L2.

Let us show that L1 = L2. We can adjust the critical pattern of L2 so that
it coincides with the critical pattern of L1. By Theorem 3.6, we then have
L2 ⊃ L1. Moreover, no leaves of L2 are contained in the unique critical set
∆ of L1. By [Kiw02], any periodic gap of L1 has a single cycle of edges.
We conclude that no leaves of L2 are contained in periodic or preperiodic
gaps of L1. Finally, by [BL02] there are no wandering gaps of L1. This
implies that L2 = L1, as claimed. �

This proves Lemma 4.8 for two bicritical marked laminations. Consider
unicritical marked laminations.

Lemma 4.11. Suppose that (L1, C1, C1) and (L2, C2, C2) are marked uni-
critical laminations with non-disjoint mixed tags. Then (L1, C

1
1 , C

2
1) and

(L2, C
1
2 , C

2
2) are linked or essentially equal where Cj

i either equals Ci or is
a critical chord contained in Ci.

Proof. Suppose that L1 has an all-critical triangle ∆ (and so C1 = ∆).
Since the mixed tags intersect, then σ3(C1) ∈ σ3(C2) and hence C1 ⊂ C2.
Choosing two edges of ∆ as a quadratically critical portrait in C1 and in
C2, we see that by definition (L1, C

1
1 , C

2
1) and (L2, C

1
2 , C

2
2) are essentially
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equal. Suppose that neither sibling invariant geodesic lamination has an
all-critical triangle. If σ3(C1) ∩ σ3(C2) contains a point x ∈ S, then the
entire all-critical triangle CH(σ−1

3 (x)) = ∆ is contained in C1∩C2; we can
choose the same two edges of ∆ as a quadratically critical portrait for both
laminations. Otherwise, we may assume that an edge ℓ1 of σ3(C1) crosses
an edge ℓ2 of σ3(C2). This implies that the hexagons σ−1

3 (ℓ1) ⊂ C1 and
σ−1
3 (ℓ2) ⊂ C2 have alternating vertices and proves the lemma in this case

too. �

Proof of Lemma 4.8. Denote laminations in question by L1 and L2. If both
laminations are bicritical, then the result follows from Proposition 4.10. If
both laminations are unicritical, then the result follows from Lemma 4.11.
It remains to consider the case where the first critical pattern (C1, C1) is
unicritical, and the second one (C1

2 , C
2
2) is bicritical.

Either an edge of σ3(C1) crosses an edge of σ3(C2
2) or a vertex of σ3(C1)

lies in σ3(C2
2). In either case, there are two sibling edges or sibling vertices

ofC2
2 that are linked or coincide with edges or vertices ofC1. Taking convex

hulls of these pairs of (possibly degenerate) leaves, we obtain Q2
1 ⊂ C1

and Q2
2 ⊂ C2

2 . By construction, these are strongly linked quadrilaterals.
Similarly, there is a (possibly degenerate) leaf in co(C1

2) that is linked or
equal to a leaf in C1. It follows that the two siblings of this leaf in C1

2 are
linked or equal to some leaves in C1. As above, this leads to strongly linked
quadrilaterals Q1

1 ⊂ C1 and Q1
2 ⊂ C1

2 . It is easy to see that (Q1
1, Q

2
1) and

(Q1
2, Q

2
2) are linked or essentially equal quadratically critical portraits. �

We are ready to prove Theorem 4.12.

Theorem 4.12. If (L1, C
1
1 , C

2
1) and (L2, C

1
2 , C

2
2) are marked laminations

and L1 is dendritic, then they have non-disjoint mixed tags if and only if (1)
or (2) holds:

(1) L1 = L2 has an all-critical triangle ∆, it is not true that C1
1 and C1

2

are distinct edges of ∆, and either C1
1 ⊃ C1

2 , or C1
2 ⊃ C1

1 ;
(2) there is no all-critical triangle in L1 ⊂ L2, and Cj

1 ⊃ Cj
2 for j =

1, 2 (in particular, if L2 is dendritic then L1 = L2).

Proof. If the mixed tags of (L1, C
1
1 , C

2
1) and (L2, C

1
2 , C

1
2) are non-disjoint,

then, by Lemma 4.8, either L1 = L2 share an all-critical triangle ∆, or
these marked laminations are linked or essentially equal. In the first case
consider several possibilities for the critical patterns. One can immediately
see that the only way the mixed tags are disjoint is when C1

1 and C1
2 are

distinct edges of ∆; since the mixed tags are known to be non-disjoint we
see that this corresponds to case (1) from the theorem. In the second case
the fact that our marked laminations are linked or essentially equal implies,
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by Theorem 3.6, that case (2) of the theorem holds. The opposite direction
of the theorem follows from definitions. �

4.3. Upper semi-continuous tags.

Definition 4.13. A collection E = {Eα} of compact and disjoint subsets of
a metric spaceX is upper semi-continuous (USC) if, for everyEα and every
open set U ⊃ Eα, there exists an open set V containing Eα so that, for each
Eβ ∈ E , if Eβ ∩ V ̸= ∅, then Eβ ⊂ U . A decomposition of a metric space
is said to be upper semi-continuous (USC) if the corresponding collection
of sets is upper semi-continuous.

Upper semi-continuous decompositions are studied in [Dav86].

Theorem 4.14 ([Dav86]). If E is an upper semicontinuous decomposition
of a separable metric space X , then the quotient space X/E is also a sepa-
rable metric space.

Consider a marked cubic lamination (L∼, C1, C2). Suppose that L∼ is
generated by a laminational equivalence relation ∼. Observe that (∼, C1, C2)
does not have to be a marked laminational equivalence relation. Indeed, if
the critical object of L∼ is an all-critical triangle ∆, then the only marked
laminational equivalence corresponding to ∼ is (∼,∆,∆). However, C1,
C2 can be two distinct edges of ∆. Despite this discrepancy, mixed tags
of laminational equivalence relations coincide with the mixed tags of the
corresponding geodesic laminations. Thus our results apply to mixed tags
of laminational equivalence relations.

Recall that the map Tagl was defined in Definition 4.6. To a marked lam-
inational equivalence relation (∼, C,D), or to its critical pattern (C,D),
the map Tagl associates the corresponding mixed tag Tagl(∼, C,D) =
co(C)× σ3(D) ⊂ D× D.

Theorem 4.15. The family {Tagl(C1, C2)} = CML(D) of mixed tags of
cubic marked dendritic laminational equivalence relations forms an upper
semi-continuous decomposition of the union CML(D)+ of all these tags.

Proof. If (∼1, C
1
1 , C

2
1) and (∼2, C

1
2 , C

2
2) are cubic marked dendritic lamina-

tional equivalence relations, and Tagl(C
1
1 , C

2
1) and Tagl(C

1
2 , C

2
2) are non-

disjoint, then, by Theorem 4.12 applied to the marked geodesic lamina-
tions (L∼1 , C

1
1 , C

2
1) and (L∼1 , C

1
2 , C

2
2), we have that the corresponding

marked laminational equivalence relations are equal, i.e. (L∼1 , C
1
1 , C

2
1) =

(L∼2 , C
1
2 , C

2
2). Hence the family {Tagl(C1, C2)} forms a decomposition of

CML(D)+.
Suppose next that (∼i,Zi) is a sequence of marked dendritic lamina-

tional equivalence relations with Zi = (C1
i , C

2
i ). Assume that there is a
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limit point of the sequence of their tags co(C1
i ) × σ3(C

2
i ) that belongs to

the tag of a marked dendritic laminational equivalence (∼D,ZD) where
ZD = (C1

D, C
2
D). By [BMOV13] and Lemma 4.1, we may assume that

the sequence (L∼i
,Zi) converges to a marked lamination (L∞, C

1
∞, C

2
∞)

with critical pattern P∞ = (C1
∞, C

2
∞). By the assumption, Tagl(ZD) ∩

Tag(P∞) ̸= ∅. By Theorem 4.12, we have LD ⊂ L∞ and Cj
∞ ⊂ Cj

D for
j = 1, 2. Hence, Tagl(L∞,P∞) ⊂ Tagl(LD,ZD). �

Denote the quotient space of CML(D)+, obtained by collapsing every
element of CML(D) to a point, by MDcomb

3 (elements of CML(D) are
mixed tags of critical patterns of marked dendritic laminational equivalence
relations). Let π : CML(D)+ → MDcomb

3 be the quotient map. By Theo-
rem 4.14, the topological space MDcomb

3 is separable and metric. We show
that MDcomb

3 can be viewed as a combinatorial model for MD3. Recall that
the map Γ : MD3 → C(D)× C(D) was defined right before Lemma 4.2.

Theorem 4.16. The composition π ◦ Tagl ◦ Γ : MD3 → MDcomb
3 is a

continuous surjective map.

Proof. By definition and Corollary 4.3, the map Γ is upper semi-continuous
and surjective. Also, Tagl is continuous with respect to the Hausdorff dis-
tance and preserves inclusions. Finally, π is continuous by definition. Thus,
π ◦ Tagl ◦ Γ : MD3 → MDcomb

3 is a continuous surjective map, as de-
sired. �
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