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Abstract. We prove that if f is a continuous interval map such that all wandering
intervals converge to periodic orbits then the family of periodic orbits is dense in ω-limit
sets with Hausdorff metric.

1. Introduction

Periodic orbits together with their various characteristics are rather important for
dynamical systems. In the case of an interval map f it is reflected by the fact that
periodic points are dense in some sets which are important for the dynamics of f (from
now on by f we always denote a continuos interval map). The first result in this direction
is due to A. N. Sharkovsky who proved in [S1] that the set of periodic points is dense
in the set of all recurrent points of f (see also [N]). Since recurrent points are dense in
the center of a dynamical system it shows that on the interval the center of a dynamical
system coincides with the closure of the set of periodic points. A related result was later
obtained in [B] where it was proven that if µ is an f -invariant probabilistic measure then
a point x with µ(ω(x)) = 1 exists if and only if µ can be approximated by measures
concentrated on periodic orbits; in particular any ergodic measure is approximated by a
measure concentrated on a periodic orbit.

Another interesting topic in one-dimensional dynamics is studying of ω-limit sets with
Hausforff metric on them. More presicely, let K be the class of compact subsets of
[0, 1] endowed with Hausdorff metric H and let Z(f) ⊂ K be the family of all ω-limit
sets of an interval map f . There has been a series of papers studying the family Z(f)
and related topics. In particular the properties of the map ωf : [0, 1] → Z(f) defined
by ωf : x → ωf (x) were studied in [BC]. It was shown that this map is almost never
continuous but is always in the second Baire class, some general theorems relating the
Baire class of ωf to its Borel class and to certain notions of semi-continuity of ωf were
also obtained.
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One more paper where the properties of Z(f) are studied is [BBHS] where it is proven
that Z(f) is compact which in the light of the essential discontinuity of ωf seems some-
what surprising. A useful technical result obtained in [BBHS] is a criterion connecting
a local behavior of a map in a small neighborhood of a given compact set A with the
property of the set A to be the ω-limit set of some point; the compactness of Z(f) was
obtained in [BBHS] as a corollary of this criterion (see also [BS]).

The problem we study in this paper is whether or not periodic orbits are dense in
the family Z(f). One can consider this problem as a natural continuation of the above
mentioned ones ([S1], [B], [BBHS]). The question however significantly differs from the
old ones. For example, it is easy to see that the results of [B] do not apply to the situation
in question; indeed, in [B] we deal with measures while our problem concerns ω-limit sets.
Yet some tools developed in [B] prove to be useful for us as we shall see later.

The difference between the situation for measures and ω-limit sets can be seen from
the fact that actually periodic orbits are not always dense in the family Z(f) (we shall
give an example later in the paper). However there is a natural and from the practical
point of view the most interesting class of interval maps for which periodic orbits are
dense in Z(f). Let us introduce this class of maps. Let I be an interval such that
I, f(I), . . . are pairwise disjoint; then we call I wandering. Denote by |X| the Lebesgue
measure of a set X; in particular, if I is an interval then |I| is its length. It is clear that
if I is wandering then |fn(I)| → 0. Therefore all points x ∈ I have the same ω-limit set
which we denote by ω(I).

We consider a class of maps G such that for any f ∈ G if I is a wandering interval then
ω(I) is a periodic orbit. Even making only this assumption about the maps (i.e. without
assuming piecewise monotonicity) one can establish their nice properties. In particular,
for maps f ∈ G it is possible to describe their typical in topological sense limit behavior
(see [B]): if f ∈ G then there is a massive set E ⊂ [0, 1] such that for any x ∈ E the set
ω(x) is either a periodic orbit, or a limit set of special kind called solenoid or generalized
adding machine (see definitions later) or a finite union of pairwise disjoint closed intervals
cyclically permuted by f on which f is transitive. However - and from the point of view
of applications more importantly - it also turns out that smooth interval maps belong to
G (see [L], [BL], [MMS] for details). This justifies our interest to the maps from the class
G, and now we can state our

Main Theorem. Let f ∈ G. Then the family of all periodic orbits of f is dense in
Z(f).

This result seems to be reasonably sharp; in fact below we give an easy example of
a piecewise monotone (in fact bimodal) interval map g /∈ G for which the conclusion of
Main Theorem fails. To do so we will need a well known in one-dimensional dynamics
construction of ‘glueing in’ an interval with all its preimages which essentially allows us
to represent discontinuous interval maps as continuous interval maps on appropriately
chosen invariant subsets. This can be done for a wide variety of discontinuous interval
maps, yet for our purposes it is enough to work with the following specific case.

Consider a discontinuous map τ : [0, 1] → [0, 1] defined as τ(x) = x + θ mod 1 where
0 < θ < 1 is an irrational number; in other words, τ is a discontinuous lifting of an
irrational rotation by θ onto interval. Obviously the only point of discontinuity of τ is
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a = 1− θ.
Let us now construct a new map f by means of ‘blowing up’ the point a. That is, let

us look at a as if it were a small interval, say, [a′, b′], on which the map f is defined as
follows:

(a) points a′′, b′′ are chosen so that a′ < a′′ < b′′ < b′;
(b ) f [a′, a′′] = 1, f [b′′, b′] = 0, f |[a′′, b′′] is linear.

The next step is to consider the first τ -preimage ã of a and also replace it by an interval,
say, [a′1, b

′
1] on which our new map f is defined as monotone and such that a′1, b

′
1 are

mapped into the points a′, b′ appropriately (this depends on whether τ reverses mono-
tonicity at ã or not). Clearly one can repeat this construction over and over; carefully
choosing the lenghts of ‘inserted’ intervals one will get in the end a limit map f with the
following properties.

(1) f : [c, d] → [c, d] is a continuous map;
(2) there are points a′ < a′′ < b′′ < b′ such that f |[c, a′] is strictly increasing,

f [a′, a′′] = d, f |[a′′, b′′] is strictly decreasing, f [b′′, b′] = c, f |[b′, d] is strictly in-
creasing;

(3) if A = {x : orbf (x) ∈ [c, a′] ∪ [b′, d]} then A is in fact a minimal set on which f
is monotonically at most 2-to-1 semiconjugate to τ everywhere so that there are
no periodic orbits contained in [c, a′] ∪ [b′, d]; in particular, c, d ∈ A.

It is easy to see that in fact no periodic orbit approximates A. Indeed, let ε = min(|a′′−
a′|, |b′′ − b′|). If a periodic orbit Q is such that H(Q,A) < ε then Q ⊂ [c, a′′] ∪ [b′′, d].
Due to the property (3) of the map f the set Q cannot belong to [c, a′]∪ [b′, d]. Therefore
Q ∩ ([a′, a′′] ∪ [b′′, b′]) is not empty. However by the construction it implies that either
d ∈ Q or c ∈ Q which is impossible.

Actually, it is easy to construct the map f so that essentially the same properties
hold with the only difference that f will have no flat spots (a flat spot is a maximal
non-degenerate interval on which a map is a constant); in order to do this we will have
to define f on [a′, a′′] and [b′′, b′] more carefully so that both intervals will be wandering
with orbits imitating orbits of points 1 and 0 under τ which in turn will imply for f the
same conclusions as before. We will not dwell on these details assuming that enough
motivation for Main Theorem has already been provided.

Acknowledgements. I would like to thank Andy Bruckner, Paul Humke and Jaroslav
Smital the work with whom on the paper [BBHS] was not just a starting point for the
present paper but also a great pleasure. I also would like to thank G. Keller for inviting
me to Erlangen and useful discussions as well as Erlangen University for its hospitality.

2. Preliminaries

In our study we rely upon some results of [B] which we now describe. Let I be an
interval such that I, f(I), . . . , fn−1(I) are pairwise disjoint while fn(I) = I. Then I
is called a periodic interval and both the union

⋃n−1
i=0 f i(I) and the family of intervals

{f i(I)}n−1
i=0 = orb I are called a cycle of intervals. Also, a continuous map defined on

a finite union of pairwise disjoint intervals and cyclically permuting these intervals is
called non-strictly periodic; for instance, a map f restricted to a cycle of intervals is non-
strictly periodic. Now, let I0 ⊃ I1 ⊃ . . . be periodic intervals with periods m0,m1, . . . .
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Obviously mi+1 is a multiple of mi for all i. If mi →∞ then the intervals {Ij}∞j=0 are said
to be generating and any invariant closed set S ⊂ Q =

⋂

j≥0 orb Ij is called a solenoidal
set; if Q is nowhere dense then we call Q a solenoid. It turns out that solenoidal ω-limit
sets are one of the three major classes of ω-limit sets existing for interval maps.

To introduce another class of ω-limit sets let us suppose that a map f has a cycle
of intervals M = I ∪ f(I) ∪ · · · ∪ fn−1(I). Consider a set {x ∈ M : for any relative
neighborhood U of x in M we have orb U = M}; it is easy to see that this is a closed
invariant set. It is called a basic set and denoted by B(M, f) provided it is infinite.
Basic sets are components of the decomposition of the set Per f constructed in [B].
Their properties are listed in Theorem 2.1, however first we need one more definition.
Let F : M → M and G : K → K be two non-strictly periodic maps of the same
period, ϕ : M → K be a (non-strict) monotone semiconjugacy between F and G and
B ⊂ M be an F -invariant closed subset of M . If ϕ(B) = J and for any x ∈ J we have
ϕ−1(x) ∩B = ∂ϕ−1(x) then we say that ϕ almost conjugates F |B to G. Here ∂Z is the
boundary of a set Z. Clearly this is equivalent to the fact that closures of complementary
to B intervals in M are exactly flat spots of ϕ (and therefore B is exactly the set of points
which do not have ϕ-‘flat spot’ neighborhoods).

We list the properties of basic sets in the following

Theorem 2.1 ([B]). Let f be a continuous interval map, A = ω(x). Then one of the
following statements holds for A.

(1) A is a periodic orbit, maximal by inclusion among ω-limit sets.
(2) A is a solenoidal set.
(3) There exists a basic set B such that A ⊂ B.

Moreover, the following additional statements hold:

(a) basic sets are perfect maximal by inclusion ω-limit sets;
(b) distinct basic sets intersect each other at finite or empty sets, no three basic sets

have a common point and any basic set is disjoint from any solenoidal set;
(c) if B = B(K, f) is a basic set of period m then there exists a transitive non-

srtrictly periodic map g of the same period and a map ϕ which almost conjugates
f |K and g;

(d) if ω(x) belongs to a basic set B then there exists a point x′ ∈ B such that ω(x) =
ω(x′).

This result justifies the approach to some problems in one-dimensional dynamics which
is based on cosidering the cases (1), (2) and (3) from Theorem 2.1 separately and then
combining the results into one. In particular, this allows us to establish some properties
of invariant measures of interval maps which prompted the problem in question. Note
that while studying the cases (1) and (2) is more or less straightforward, that of the case
(3) usually consists of two parts:

(a) working with non-strictly periodic transitive maps;
(b) lifting the results to an ω-limit set contained in a basic set.

For the part (a) the following facts about transitive maps are useful.

Lemma 2.2 ([B]). Let g : [0, 1] → [0, 1] be a transitive map. Then one of the following
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statements holds:

(1) g is mixing;
(2) there exists a fixed point a ∈ (0, 1) such that g[0, a] = [a, 1], g[a, 1] = [0, a] and

both g2|[0, a] and g2[a, 1] are mixing.

The following lemma deals with expanding properties of mixing maps.

Lemma 2.3 ([B]). Let f : [0, 1] → [0, 1] be mixing. Then for any δ > 0 and any open
U there exists N = N(δ, U) such that fn(U) ⊃ [δ, 1− δ] for any n ≥ N .

Corollary 2.4 easily follows from Lemmas 1.2 and 1.3.

Corollary 2.4. Let f : [0, 1] → [0, 1] be a transitive map. Then there exists ε′(f) = ε′ >
0 such that for any δ > 0 and 0 < ε < ε′ the following holds.

(1) There exists a number n = n(δ, ε) such that for any interval U of the length
greater than δ we have |fm(U)| ≥ ε for any m ≥ n (in particular if x ∈ U then
for any such m the distance between fm(x) and at least one of the endpoints of
fm(U) is greater than ε/2).

(2) Periodic points are dense in [0, 1].

Proof. (1) If f is mixing then let ε′ = 1. If f is not mixing then by Lemma 2.2 there exists
a ∈ (0, 1) such that f [0, a] = [a, 1] and f [a, 1] = [0, a]. In this case let ε′ = min(a, 1− a).
Let ε < ε′. We will need the following construction. Clearly there exists a finite family of
intervals U1, . . . , Ul of the length, say, δ/2 such that any interval of the length δ contains
at least one of them. Let us now consider mixing and non-mixing cases separately.

Let f be mixing. Applying Lemma 2.3 to each Ui and the interval I = [(1− ε)/4, (3+
ε)/4] of the length (ε + 1)/2 > ε we see that fr(Ui) ⊃ I for sufficiently big r and any
i. Therefore for any interval W of the length bigger than δ and any sufficiently big r we
have |fr(W )| > ε which proves statement (1) for mixing maps.

Suppose that f is not mixing. Then there is a point a ∈ (0, 1) such that f [0, a] =
[a, 1], f [a, 1] = [0, a] and both f2|[0, a] and f2|[a, 1] are mixing. Choose closed intervals
J ′ ⊂ (0, a) and J ′′ ⊂ (a, 1) of the length (ε + ε′)/2. Let Ui ⊂ [0, a]. Then by Lemma
2.3 there exists pi such that f2r(Ui) ⊃ J ′ for r ≥ pi. On the other hand f(Ui) is a non-
degenerate interval, so by Lemma 2.3 there exists q such that f2r(f(Ui)) = f2r+1(Ui) ⊃
J ′′ for r ≥ qi. Therefore for sufficiently big m we have |fm(Ui)| > ε. Similarly one can
consider the case when Ui ⊂ [a, 1] as well as the case when a ∈ int Ui. This completes
the proof of the first part of the statement (1). The second part immediately follows.

(2) Due to Lemma 2.3 for any x ∈ (0, 1), ε > 0 there is a closed interval I ⊂ [x−ε, x+ε]
and a number N such that fN (I) ⊃ I. So there is a periodic point in I which completes
the proof.

We call the constant ε′(f) from Corollary 2.4 the expansiveness of f .
The following two lemmas are of technical nature and will be useful in the proof of

Main Theorem.

Lemma 2.5. Let F : X → X be a continuous map of a compact metric space (X, d) and
let M = ω(x) have the following property: there are subsets M0, . . . , Mn−1 of M such
that M =

⋃n−1
k=0 Mk, Mi+1 = f(Mi), 0 ≤ i ≤ k − 2 and M0 = f(Mk−1) (so that all Mi
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are Fn-invariant). Then if for any ε there is an Fn-periodic orbit Q with H(Q,M0) < ε
then for any δ there is an f -periodic orbit P with H(P,M) < δ.

Proof. An Fn-periodic orbit Q is ε-close to M0 in Hausdorff metric if for any point x ∈ Q
there is a point y ∈ M0 such that d(x, y) < ε and for any z ∈ M0 there is ζ ∈ Q such
that d(z, ζ) < ε. Let us choose ε so that for any two points u, v if d(u, v) < ε then
d(f i(u), f i(v)) < δ for any 0 ≤ i ≤ n.

Let Q = orbF n(w) be an Fn-periodic orbit such that H(Q,M0) < ε and P = orbF (w)
be the corresponding F -periodic orbit. Let us prove that H(P, M) < δ. Indeed, if x ∈ M
then there exists a point x′ ∈ M0 and a number j, 0 ≤ j < n such that F j(x′) = x. By
the assumption there is a point y′ ∈ Q such that d(x′, y′) < ε. Therefore by the choice
of ε we have d(F j(x′), F j(y′)) < δ; in other words there is a point F j(y′) ∈ P in the
δ-neighborhood of F j(x′) = x.

It remains to prove that for any z ∈ P there is ζ ∈ M such that d(z, ζ) < δ. Indeed, if
z ∈ P then there exists z′ ∈ Q and j, 0 ≤ j < n such that F j(z′) = z. Now, there exists
ζ ′ ∈ M0 such that d(z′, ζ ′) < ε which implies that d(F j(z′), F j(ζ ′)) = d(z, F j(ζ ′)) < δ
and completes the proof.

For any map F we denote the set {Fn(x), Fn+1(x), . . . , Fn+k(x)} by Sn+k
n (x, F ).

Lemma 2.6. Let F : X → X be a continuous map of a compact metric space X into
itself, k ∈ N. Also, let ω(x) = M be infinite, A ⊂ M be finite. Then there exists a
neighborhood U ⊃ A for which one can find an arbitrarily big n such that Sn+k

n (x, F ) is
disjoint from U .

Proof. Consider the finite set B =
⋃k

i=0 F i(A) and choose a neighborhood W of B such
that M 6⊂ W . Then choose a neighborhood U of A such that F i(U) ⊂ W for any
0 ≤ i ≤ k. Let us prove that U has the required property. Indeed, by the choice of W
there is an arbitrarily big N = n + k such that FN (x) /∈ W . Then Fn+j(x) /∈ U for any
0 ≤ j ≤ k since otherwise fN (x) ∈ F k−j(U) ⊂ W which is a contradiction. Clearly since
N is arbitrarily big then n = N − k is arbitrarily big too which completes the proof.

Finally, we will also need the following well known fact (see, e.g. [S2]).

Lemma 2.7 [S2]. If ω(x) is finite then it is a periodic orbit.

3. Density of periodic orbits in ω-limit sets

We begin our study of the density of periodic orbits in the family of ω-limit sets with
Hausdorff metric by considering this question for transitive interval maps and then for
subsets of basic sets. This approach is justified by Theorem 2.1 and Lemma 2.5. However
for transitive interval maps we prove a refined version of Main Theorem.

First we need an important technical lemma describing dynamics of a point x with
infinite limit set ω(x) = A in small neighborhoods of a periodic point a ∈ A. It will be
convenient to denote the minimal distance between a point z and a compact set K by
d(z, K).
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Lemma 3.1. Let x be a point whose ω-limit set ω(x) = A is infinite. Let a ∈ A be a
periodic point of period m. Then for any ε > 0 there exist open neighborhoods U ⊃ V 3 a
and points y, z ∈ A ∩ U distinct from a with the following properties:

(1) |U | < ε;
(2) if f j(x) ∈ V for some j and k is the smallest number such that f j+mk(x) /∈ U

then any interval connecting f j+mk(x) and any point from V contains at least
one of the points y, z.

Proof. Let ε > 0 is given. It is well known that periodic points are not isolated in limit
sets containing them. Consider two cases according to whether a is not isolated in A
from one side or from two sides.

a) Suppose that a is not isolated in A from either side. Choose U so that |U | < ε and
there are points y, z of A in both components of U \ {a}. Choose a neighborhood V of
a so that V ⊂ (y, z). Then the required follows immediately because no matter on what
side of a the point f j+mk(x) lies any interval connecting f j+mk(x) and any point from
V contains at least one of the points y, z.

b) Suppose that a is isolated from the right. Choose U = (b, c) so that |U | < ε and
the following additional properties hold:

(1) (a, c) ∩A = ∅ and d(c, A) = |c− a|;
(2) fm(b, a) lies to the left of c.

Now, choose a neighborhood V ′ = (u, v) ⊂ U of a so that:

(1) fm(V ′) ⊂ U ;
(2) |v − a| ≤ |c− a|/2;
(3) (b, u) ∩A 6= ∅.

Then choose V ⊂ V ′ so small, that the least number k with fk(x) ∈ V is very big, so big
that for all i ≥ k we have d(f i(x), A) < |v− a|. Let us show that this implies that for all
i ≥ k the points f i(x) avoid the interval [v, c). Indeed, by the choice of the distances for
any point ζ ∈ [v, c) we have d(ζ, A) ≥ |v − a| while by the assumption for all i ≥ k we
have d(f i(x), A) < |v − a|.

Choose a point y = z ∈ (b, u)∩A. Let j be such number that f j(x) ∈ V and k be the
smallest number such that f j+mk(x) /∈ U . Then x′ = f j+mk−m(x) ∈ U and we consider
now the question of where in U can the point x′ lie. We already know that x′ /∈ (v, c).
On the other hand x′ /∈ V ′ since fm(V ′) ⊂ U while fm(x′) /∈ U . So the only possibility
is that x′ ∈ (b, u). However f(b, a) lies to the left of c, therefore so does fm(x′). We
conclude that f j+mk(x) = fm(x′) ≤ b and thus indeed any interval connecting f j+mk(x)
and any point from V contains y = z. This completes the proof.

The next step is to introduce an important technical notion of fine collections of
intervals. Let U = U1 ∪ U2 ∪ · · · ∪ Un be the union of closed intervals such that A =
ω(x) ⊂ U . We consider a specific class of such unions. Namely, U is called an ε-fine
with respect to the set A collection of intervals or simply a fine collection if the following
holds.

(1) Intervals in U are non-degenerate, their interiors are pairwise disjoint, all intervals
are non-disjoint from A and have the lengths less than ε.
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(2) Suppose that [a, b] is one of the intervals from U . Then neither a nor b is contained
in the orbit of x. Moreover, if a ∈ A (b ∈ A) then ω(a) (ω(b)) and a (b) is
approximated from within [a, b] by points of the orbit of x. On the other hand if
a /∈ A then f(a) /∈ int U1 ∪ int U2 ∪ · · · ∪ int Un and the same holds for b.

(3) orbf (x) ⊂ U .

There are obvious properties of the endpoints of intervals {Ui} that follow immediately
from the definition of a fine collection. Before we state them we introduce a few special
sets. Namely, let Π be the set of all endpoints of intervals from U and let also Π′ =
Π∩A, Π′′ = Π \A; clearly Π, Π′ and Π′′ are finite. Also, by the part (3) of the definition
of a fine collection for any j there exists s(j) such that f j(x) ∈ Us(j). We shall see shortly
that if ω(x) = A is infinite then s(j) is well-defined.

Lemma 3.2. For any k there exist a number ρ′ > 0 such that if |fm(x) − a| < ρ′ for
an endpoint a of the interval Us(m) then a ∈ Π and points f i+m(x), f i(a) belong to the
same interval Us(i+m) for all 0 ≤ i ≤ k.

Proof. First of all we may assume ρ′ to be so small that d(b, orb(x)) > ρ′ for any b ∈ Π′′.
Thus if |fm(x)− a| < ρ′ then a ∈ Π′.

Now, if a ∈ Π′ then the definition implies that orbf (a) ⊂ U . For any 0 ≤ i ≤ k
the distance between f i(a) and all the intervals {Uj} which do not contain f i(a) is
positive. Let ρ be the minimum of all these distances and choose ρ′ so small that
|u−v| < ρ′ implies that |f i(u)−f i(v)| < ρ, 0 ≤ i ≤ k. Therefore, if |fm(x)−a| < ρ′ then
|fm+i(x)−f i(a)| < ρ. On the other hand fm+i(x) ∈ Us(m+i). If f i(a) /∈ Us(m+i) then by
the choice of ρ we must have |fm+i(x)− f i(a)| > ρ, a contradiction. So f i(a) /∈ Us(m+i)
which completes the proof.

The following lemma immediately follows from the definition.

Lemma 3.3. Points of Π′′ are mapped into Π or outside U , so eventually all points of
Π′′ are mapped either outside U or into Π′.

Lemma 3.4 relies upon Lemma 3.3.

Lemma 3.4. If A is infinite then the point x is never mapped into a point from Π (and
so the interval Us(i) containing f i(x) is well defined).

Proof. Since A is infinite then x is never mapped into a point from Π′. On the other
hand if it is mapped into Π′′ then by Lemma 2.3 it is eventually mapped into Π′ (which
impossible as we have just seen) or outside U (which is impossible by the property (3)
of fine collections). This competes the proof.

From now on we fix a transitive map f : [0, 1] → [0, 1] and assume that ε′(f) = ε′ is
the expansivenes of f . Moreover, suppose that A = ω(x) ⊂ U is an infinite limit set and
U = U1 ∪ U2 ∪ · · · ∪ Un ⊃ A is an ε′/2-fine with respect to A collection. Moreover, let
Γ be the set of all points from those periodic orbits to which points from Π′ converge.
Also, a closed interval with endpoints a, b is denoted by [a; b] (where both possibilities
a < b and a > b are included).

We now prove the central technical lemma of this secton. Here speaking of semineigh-
borhoods we always mean compact semineighborhoods.
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Lemma 3.5. Let f : [0, 1] → [0, 1] be transitive, ε′(f) = ε′ be the expansivenes of f .
Suppose that A = ω(x) ⊂ U is an infinite limit set, U = U1 ∪ U2 ∪ · · · ∪ Un ⊃ A is
an ε′/2-fine with respect to A collection. Then there exists a number α > 0 with the
following property: in any semineighborhood W of x there exists an interval V such that
for some integer t we have f j(V ) ⊂ Us(j), 0 ≤ j ≤ t and f t(Vt) contains a point ζ ′ ∈ A
with its α-neighborhood.

Proof. Let us describe the following process. For the sake of definiteness let x ∈ W =
V0 ⊂ Us(1) be a left semineighborhood of x. We construct an interval V1 as follows. We
know that f(x) ∈ int (Us(1)). If f(V0) ⊂ Us(1) we set V1 = V0. Otherwise considering
the family of all left semineighborhoods of x we can get the biggest with the f -image in
Us(1) and denote it by V1. Obviously then G = [a; f(x)] ⊂ f(V1) ⊂ Us(1) for an endpoint
a of Us(1) and a ∈ Π.

Clearly, similarly we can construct by induction a nested sequence of left semineigh-
borhoods of x such that V0 ⊃ V1 ⊃ . . . , and the construction is well defined. More
precisely, let fm(x) ∈ int Us(m). If fm+1(Vm) is contained in Us(m) we set Vm+1 = Vm.
Otherwise we again consider the family of left semineighborhoods of x, contained in Vm,
get the biggest with the fm+1-image in Us(i) and denote it by Vm+1. Then for an appro-
priate interval G = [a; fm+1(x)] with a being an endpoint of Us(m+1) (a ∈ Π), we have
G ⊂ fm+1(Vm+1) ⊂ Us(m+1).

We have R =
⋂∞

i=0 Vi = {x}. Indeed, otherwise R is a closed interval whose images
are contained in the intervals Uj , 1 ≤ j ≤ n and therefore have the length smaller than
ε′/2 all the time which contradicts Corollary 1.4 and the choice of ε′. This implies that
the process in question eventually does not depend on the choice of W = V0. More
precisely, let V0 ⊃ V ′

0 be two left semineighborhoods of x and let Vi and V ′
i denote the

i-th semineighborhoods of x constructed for V0 and V ′
0 respectively. Then there exist

the least k such that Vk $ V ′
0 and the least i such that V ′

i $ V ′
0 . It is easy to see then

that i ≤ k, V ′
i = Vk and, moreover, for all r ≥ 0 we have V ′

i+r = Vk+r. Therefore the
arguments we are about to apply to some V0 in fact apply to all V0, so that the constant
α which we find for this V0 in fact is independent of V0.

So, let us fix V0. Also, let us denote the set of those m for which fm(Vm) ⊃
[dm; fm(x)], dm ∈ Π, by A; to avoid ambiguity with the choice of dm in the case when
fm(Vm) = Us(m) we always choose dm to be the left endpoint of Us(m) (which actually
does not make any difference). Consider a few cases concerning various types of behavior
of a point dm.

Suppose first that for all sufficiently big m ∈ A and some δ′ > 0 we have |fm(Vm)| > δ′

(in particular, this holds if |fm(x)− dm| > δ′); we may asssume that δ′ < ε′/2. Then by
Corollary 2.4 and because all interval Uj are shorter than ε′/2, there exists a number K
such that for any K consecutive and suffuciently big integers there exists an element of A
among them. Indeed, if |fm(Vm)| > δ′ then by Corollary 1.4 |fn(δ′,ε′/2)(fm(Vm))| > ε′/2
and so some number i ≤ n(δ′, ε′/2) must belong to A. Now it suffices to set K =
n(δ′, ε′/2).

Clearly this implies that for some δ′′ < δ′ we have that |fm(Vm)| > δ′′ for any m.
Indeed, transitivity implies that there are no flat spots of f . Define for any x a function
Φ(x) = min0≤i≤K{|f i[x, x + δ′]|}. Then Φ(x) is a continuous positive function which
therefore has a positive minimal value δ′′, and we may assume that δ′′ < δ′. Now, for any
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sufficiently big j there exists m ∈ A such that m ≤ j < m+K. Then by the construction
we have Vj = Vm and |f j(Vj)| = |f j−m(fm(Vm))| ≥ δ′′ because |fm(Vm)| ≥ δ′.

Let us show how this implies the required. Indeed, since A is infinite then there exists
a non-isolated point z ∈ A. We may assume that z is non-isolated in A from the right.
Then we can find three points z′, z′′, z′′′ ∈ A such that z < z′ < z′′ < z′′′ < z + δ′′/2. Let

0 < α < 1/2(min{|z′ − z|, |z′′ − z′|, |z′′′ − z′′|, |z + δ′′/2− z′′′|})

Suppose that for some sufficiently big i we have |f i(x) − z′′| < α. Since |f i(Vi)| > δ′′

then at least one component among the two into which f i(x) divides f i(Vi) is longer
than δ′′/2. If this the left component then it contains z′ with its α-neighborhood, and
if this is the right component then it contains z′′′ with its α-neighborhood. In other
words we were able to find a constant α(f) = α > 0 with the property that there exists
an arbitrary close to x interval Vi such that f i(Vi) contains a point from A with its
α-neighborhood and f j(Vi) is contained in one of the intervals from U for 0 ≤ j ≤ i.

So we may assume that there are arbitrarily big numbers m ∈ A for which |fm(Vm)|
(and therefore |fm(x)−dm|) is arbitrarily small. Choosing a subsequence we may assume
that in fact there is a point d ∈ Π such that fm(x) → d and [d; fm(x)] ⊂ fm(Vm);
moreover, if there are periodic or preperiodic points which appear infinitely many times
as points dm, m ∈ A, then we choose d as one of them; that is, d neither periodic nor
preperiodic only if there are no periodic or preperiodic points appearing infinitely many
times among the points dm,m ∈ A. Notice that by Lemma 3.4 x is never mapped into
Π and so fm(x) 6= d for any m ∈ A. Moreover, the set Π′′ is disjoint from ω(x), so
d ∈ ω(x) = A. Consider some cases.

1) The point d is periodic (of period, say, l). Let us show that then Lemma 3.1
implies the required. Indeed, choose sufficiently small neighborhoods U ⊃ V and points
y, z as guaranteed by Lemma 3.1. Then choose a large number m ∈ A so that dm =
d, fm(x) ∈ V . Suppose that k is the least number such that f lk+m(x) /∈ U . Then
(d; f lk+m(x)) contains either a point y or a point z with a neigborhood of fixed size. On
the other hand by the construction [d; f lk+m(x)] ⊂ f lk+m(Vlk+m). Clearly, this implies
the required.

2) The point d is preperiodic. In this case it is enough to map d by the corresponding
power of f into a periodic point and then apply the arguments from the case 1).

3) The point d is neither periodic n ot preperiodic. Since d ∈ Π′ we see that d converges
to a periodic orbit of a point from the set Γ, say, of period l. Let u be a point from this
periodic orbit. Choose sufficiently small neighborhoods U ⊃ V of u and corresponding
points y, z as guaranteed by Lemma 3.1. Also, choose a much smaller neighborhood V ′

of u so that V ⊃ V ′ and let ε be smaller than the length of either of components of
V ′ \ {u}. Choose k sufficiently large so that for all j ≥ 0 we have |fk+j(d)− f j(u)| < ε.
Then choose δ so small that |fs(d) − fs(v)| < ε, 0 ≤ s ≤ k for any point v such that
|d−v| < δ. Finally, choose m so big that |d−fm(x)| < δ. Then |fs(d)−fm+s(x)| < ε for
all 0 ≤ s ≤ k. Moreover, by the choice of k the further images of d stay in ε-neighborhood
of the orbit of u while the orbit of x must leave U because the limit set of x is infinite. We
can again apply Lemma 3.1 which similarly to the cases 1) and 2) implies the existence
of the required number α. This completes the proof of the lemma.

Lemma 3.6 relies upon Lemma 3.5.
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Lemma 3.6. Let f : [0, 1] → [0, 1] be transitive, let A = ω(x) ⊂ U be an infinite limit set
where U = U1 ∪ U2 ∪ · · · ∪ Un is an ε′(f)/2-fine with respect to A collection. Then there
is a periodic orbit Q ⊂

⋃n
i=1 int Ui which visits interiors of all intervals Ui, 1 ≤ i ≤ n.

Proof. Let α > 0 be a constant from Lemma 3.6. Consider the orbit of x and choose
numbers N < M in the following way. First of all, we require that the set SN

0 (x, f)
intersect all intervals from U and the same holds for SN+M

N+1 (x, f). Also, if some of the
endpoints of intervals from U are periodic then let M be greater than all their periods.
Finally, let N and M be such that H(SN

0 (x, f), A) < α/4,H(SN+M
N+1 (x, f), A) < α/4 (to

get these last properties we may need to replace x by its forward iterate under sufficiently
high power of f). Choose a small neighborhood W of x so that for any 0 ≤ j ≤ N + M
we have f j(W ) ⊂ int Us(j) (this is possible since by Lemma 3.4 the orbit of x does not
pass through endpoints of the intervals from U). Notice that together with the choice
of n, M this implies that sets f i(W ), 0 ≤ i ≤ N visit all intervals from U and also
sets f i(W ), N + 1 ≤ i ≤ M visit all intervals from U . Moreover, we may assume that
|f j(W )| < α/4 for any 0 ≤ j ≤ N + M .

By Lemma 3.5 there is a number t and an interval V ⊂ W such that f i(V ) ⊂ Us(i), 0 ≤
i ≤ t and f t(V ) contains a point ζ ′ ∈ A with its α-neighborhood. Notice that by the
choice of W we have t > N + M . Now, since H(SN

0 (x, f), A) < α/4 then there exists
l ≤ N such that f l(x) is α/4-close to ζ ′. Thus the α/4-neighborhood of f l(x) is contained
in f t(V ); on the other hand by the choice of W we see that f l(V ) is contained in the
α/4-neighborhood of f l(x) which implies that f t(V ) ⊃ f l(V ).

Therefore there is a periodic point z ∈ f l(V ) such that f t−l(z) = z. By the choice of
V and W we see that orb z ⊂

⋃n
i=1 int Ui. Indeed, the fact that orb z ⊂ U is obvious.

Suppose that z is mapped into an endpoint y of one of intervals from U by some iterate
of f ; this endpoint is then periodic of period less than M . The period in question is in
fact the period of z as well which implies that the point y can be found among points
fN+1(z), fN+2(z), . . . , fN+M (z). On the other hand by the choice of W we have that
f j(W ) is contained in the interior of some interval from U for N ≤ j ≤ N + M . This
contradiction implies that orb z ⊂

⋃n
i=1 int Ui. To complete the proof it remains to

notice that sets f i(V ), N ≤ i ≤ M visit all intervals from U because they are contained
in f i(W ), and that l ≤ N < N + M ≤ t.

Now we are ready to prove our Main Theorem. Recall, that we consider a class of
maps G such that for any f ∈ G if I is a wandering interval then ω(I) is a periodic orbit.
Also, by K we denote the class of compact subsets of [0, 1] endowed with Hausdorff metric
H and by Z(f) ⊂ K we denote the family of all ω-limit sets of an interval map f .

Main Theorem. Let f ∈ G. Then the family of all periodic orbits of f is dense in
Z(f).

Proof. Let A = ω(x); our aim is to find a periodic orbit Q such that H(Q,A) is arbitrary
small. This is trivial is A is a periodic orbit itself. Since by Lemma 2.7 all finite limit
sets are periodic orbits we may assume from now on that A is infinite.

Suppose that A is a solenoidal set. Then the fact that all wandering intervals of f
converge to periodic orbits implies that in fact A is a solenoid. Indeed, let V ⊃ V1 ⊃ . . .
be a nested sequence of periodic intervals of periods m0, m1, . . . ,mi → ∞, generating
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A. If A is not a solenoid then there is a non- trivial component of Q =
⋂∞

i=0 orbf (Vi);
in other words, there exists a sequence r0 ≤ r2 ≤ . . . and a non-degenerate interval
J =

⋂∞
i=0 fri(Vi). Clearly J is a wandering interval which does not converge to a periodic

orbit; this contradiction implies that A = Q =
⋂∞

i=0 orbf (Vi) is a solenoid. Therefore
εi = max{|fr(Vi)| : 0 ≤ i ≤ mi−1} converges to 0 while i tends to infinity. On the other
hand for any i there is a periodic orbit Qi ⊂ orbf (Vi) and it follows from the definition
that H(Qi, A) ≤ εi. So to find a periodic orbit which is no more than ε-distant from Q
in the sense of Hausdorff metric it is enough to take Qi with εi < ε.

It remains now to consider the case of an infinite limit set A contained in a basic set.
We prove this in a few steps establishing along the way some properties of basic sets and
transitive maps.

Property A. . If g : [0, 1] → [0, 1] is mixing then for any ε there is a periodic orbit Q
such that H(Q, [0, 1]) < ε.

Proof of Property A. Let us make use of Lemma 2.3. Indeed, we can find a finite family of
pairwise disjoint closed intervals U1, . . . , Un such that R =

⋃n
i=1 Ui ⊂ (0, 1) and the length

of any of these intervals and any of the gaps between them is less than ε/3. Then due to
Lemma 2.3 there is a number N such that fN (Ui) ⊃ R for any 1 ≤ i ≤ n. Hence there is
a periodic point z such that z ∈ U1, fN (z) ∈ U2, . . . , fN(n−1)(z) ∈ Un, fNn(z) = z. The
choice of the intervals Ui, 1 ≤ i ≤ n implies now that H(orbf (z), [0, 1]) < ε. �

Property A implies Property B.

Property B. Let A have a non-empty interior. Then for any ε there is a periodic orbit
Q such that H(Q,A) < ε.

Proof of Property B. It is easy to see that if A has a non-empty interior then in fact A is
a cycle of intervals on which f is transitive. Let A =

⋃k−1
i=0 fk(I) be the cycle of intervals

of period k where I = [c, d]. Then by Lemma 2.2 either fk|I is mixing or there is a point
a ∈ I such that fk[c, a] = [a, d], fk[a, d] = [c, a] and both f2k|[c, a] and f2k|[a, d] are
mixing. In any case, there is an interval J and a number m such that

⋃m−1
i=0 f i(J) = A,

any two iterates of J either coincide or have at most one point in common and fm|J is
mixing (either J = [c, d],m = k or [c, a],m = 2k). By Lemma 2.5 it is enough to show
that fm|J has the property that J as a limit set of fm is approximated in the sense of
Hausdorff metric by periodic orbits; this follows from Property A. �

From now on we assume that A = ω(x) ⊂ B = B(K), B is a basic set, A is nowhere
dense. Let K be a cycle of intervals of period k, I be one of the intervals from K. By
Theorem 2.1 we may also assume that x ∈ B. Denote A∩f i(I) by Ai for any 0 ≤ i ≤ k−1.
Then f(Ai) = Ai+1(0 ≤ i ≤ k − 2), f(Ak−1) = A0. Let fn = F ; by Lemma 2.5 it is
enough to show that A0 can be arbitrary well approximated by an F -periodic orbit. By
Theorem 2.1 F (I) = I, F |I is monotonically semiconjugate by a map ϕ to a transitive
interval map g : [0, 1] → [0, 1]. Also, we can assume that x ∈ B0 = B ∩ I. Our aim is
to find for any ε > 0 an F -periodic orbit Q so that H(Q,A0) < ε, so from now on we
consider the map F restricted to I instead of original map f .

We need to establish a few more technical properties. If H is a closed set then we call
an open interval W an H-gap if W is complementary to H.
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Property C. If y is a point of a B-gap whose limit set is contained to B (e.g., if y is
an endpoint of the gap) then it converges to a periodic orbit.

Proof of Property C. Due to the existence of the monotone semiconjugacy between F |I
and a map g the gap in question is either eventually mapped into a periodic B0-gap or
wandering and thus converging to a periodic orbit. In either case the assumption that
ω(y) ⊂ B implies that ω(y) is a periodic orbit. �

Property D. Suppose y ∈ B0 is a limit point for B0 from a side T but is not a limit
point of A0 from the side T ; then in any small T -semineighborhood of y there is an
F -periodic point y′ such that ϕ(orbF (y′)) is disjoint from ϕ(A0) = C0.

Proof of Property D. If U is a T -semineighborhood of y then ϕ(U) is non-degenerate by
Theorem 2.1. Since g is transitive the by Corollary 2.4 g-periodic points are dense in
[0, 1]. Thus we can find a g-periodic point z in int ϕ(U). The monotonicity of ϕ now
implies that the ϕ-preimage of z contains an F -periodic point which we denote by y′.
Since z /∈ C0 we see that ϕ(orbF (y′)) = orbg(z) is disjoint from C0. Notice that Property
D (unlike Property C) does not depend on the assumptions about f . �

Let us now prove Main Theorem. Consider first the case when A0 = B0. Clearly the
continuity of ϕ implies that there is δ > 0 such that |ϕ[x− ε, x + ε]| ≥ δ for any x ∈ B0.
Also, by Property A we can find a g-periodic orbit Q such that H(Q, [0, 1]) < δ/3. Then
there is an F -periodic orbit P such that ϕ(P ) = Q (we may even choose P ⊂ B). Let
us show that H(P, B0) < ε. Indeed, otherwise there exists a point x ∈ B0 such that
[x−ε, x+ε]∩P = ∅. On the other hand |ϕ[x−ε, x+ε]| ≥ δ which implies that there is a
point z ∈ int (ϕ[x−ε, x+ε])∩Q. Then ϕ−1(z) ⊂ [x−ε, x+ε] and so [x−ε, x+ε]∩P 6= ∅.
The contradiction implies that H(P,B0) = H(P, A0) ≤ ε.

So from now on we assume that A0 6= B0, or, equivalently, ϕ(A0) = C0 is nowhere
dense in [0, 1] (and thus A0 is nowhere dense in B0). We continue by constructing a
finite family of closed intervals with pairwise disjoint interiors U = U1 ∪ · · · ∪ Un ⊃ A0

with some additional properties. First, we may assume that ε > 0 is sufficiently small so
that for any x, y such that |x− y| < ε we have |ϕ(x)− ϕ(y)| < ε′(g)/2. In what follows
we construct a finite set V of points some of which will be the endpoints of our future
intervals Ui. We begin by assuming that V = ∅ and will be adding points to this set.

Let u0 be the leftmost point of A0. Suppose first that u0 is a limit point of the set B0

from the left. Then by Property D there is an f -periodic point v0 ∈ (u0 − ε/4, u0) such
that ϕ(orbF (v0)) is a g-periodic orbit disjoint from C0. We add orbF (v0) to the set V .
Suppose now that u0 is the right endpoint of a B0-gap. By Property C we may assume
that orbF (x) never enters this B0-gap; in this case let v0 = u0 and add the point v0 to
the set V .

Consider now a few possibilities for the interval (u0 + ε/4, u0 + ε/2) = W . First
suppose that W is not disjoint from B0. Then because A0 is nowhere dense in B0 we
can find a point v′ ∈ (W ∩B0) \A0. By Property D there is an F -periodic point v1 ∈ W
such that ϕ(orbF (v1)) is disjoint from C0; in this case we add the entire orbF (v1) to the
set V and set v′1 = v1.

Now suppose that W is contained in a B0-gap, say, (a, b). If a /∈ A0 we can by Property
D find a periodic point v1 < a close to a so that [v1, a]∩A0 = ∅ and ϕ(orbF (v1)) is disjoint
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from C0. Then we add orbF (v1) to V . On the other hand if a ∈ A0 then we set v1 = a
and add v1 to V . In any case we also set v′1 = b. Notice that in this case (i.e. when W is
contained in a B0-gap) the sets ω(v1) and ω(v′1) are periodic orbits (by the construction
and by Property C).

To go on we need to establish some properties of our construction. First of all, one of
the following holds

(1) u0 − ε/4 < v0 ≤ u0 < u0 + ε/4 < v1 = v′1 < u0 + ε/4

(this corresponds to the case when W is non-disjoint from B0) or

(2) u0 − ε/4 < v0 ≤ u0 < v1 ≤ u0 + ε/4 < u0 + ε/2 ≤ v′1

(this corresponds to the case when W is disjoint from B0).
Let us now make a few remarks concerning our construction.
a) Points which do not belong to A are all periodic and added to the set V together

with their orbits while points from A no matter whether periodic or not are added to
the set V ‘individually’, i.e. without adding the entire periodic orbit.

b) Although the point v′1 takes part in the construction we do not include this point
in the set V .

c) By Property C in the case (2) the point x cannot visit W . Thus, replacing x by
its appropriate forward image we may assume that in any case [v1, v′1] is disjoint from
orbF (x).

d) So far for a point v ∈ V we have the following choices: a) v /∈ A0 is a periodic point
such that ϕ(orbF (v)) is disjoint from C0; b) v ∈ A0, ωF (v) is a periodic orbit and either
v = v0 = u0 is approximated by the orbit of x only from the right, or v = v1 = v′1 is
approximated by the orbit of x from both sides, or v = v1 < v′1 is approximated by the
orbit of x only from the left and ωF (v′1) is a periodic orbit.

Now, let us continue dealing with the set A0 to the right of v′1. Denote the leftmost
point of A0 ∩ [v′1,∞) by u1 and repeat our construction with some additions. Namely, if
v′1 /∈ A0 then we find v2 and extend the set V as before with the only additional property
that v′1 < v2 which is clearly possible. If v′1 ∈ A0 then v′1 is the right endpoint of a B-gap
approximated from the right by the orbit of x in which case we set v2 = v′1 and add v′1
to V . It is clear that we can continue the contruction on and on until the entire set A0

is covered, i.e. until for some k we have A0 ⊂
⋃k

i=0[v2i, v2i+1]; since for any i we have
v′2i+1 − v2i ≥ ε/4 the process will end on a finite step.

Consider now the set of points V . They divide the whole interval into subintervals.
Take only those among these subintervals which have infinite intersections with the orbit
of x and denote them U1, . . . , Um. Consider various possibilities which can realize for Ui.

1) Ui = [d, d′] and d /∈ A0. Then by the construction d is an F -periodic point and
ϕ(orbF (d)) ∩ C0 = ∅.

2) Ui = [d, d′] and d ∈ A0. By the construction then ωF (d) is a periodic orbit and d
is approached by x from the right.

3) Ui = [d, d′] and d′ /∈ A0. Then by the construction d′ is an F -periodic point and
ϕ(orbF (d′)) ∩ C0 = ∅.
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4) Ui = [d, d′] and d′ ∈ A0. By the construction then ωF (d′) is a periodic orbit and d′

is approached by x from the left.
Consider the family of intervals ϕ(Ui) = Vi. Then it follows easily from the con-

struction and properties 1) - 4) that they form an ε′(g)/2-fine collection. Therefore by
Lemma 2.2 there is a g-periodic orbit P which belongs to the set

⋃m
i=1 int Vi and enters

each Vi at least once. If Q is an F -periodic orbit such that ϕ(Q) = P then obviously
Q ∈

⋃m
i=1 int Ui and Q enters each Ui at least once. Notice, that ∪Ui ⊃ A0 and the

length of each Ui is less than ε/2. This implies that H(Q,A0) < ε and completes the
proof.
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