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MEASURABLE DYNAMICS OF S-UNIMODAL MAPS
OF THE INTERVAL

BY A. M. BLOKH AND M. Yu. LYUBICH

ABSTRACT. — In this paper we sum up our results on one-dimensional measurable dynamics reducing them
to the S-unimodal case (compare Appendix 2). Let / be an S-unimodal map of the interval having no limit
cycles. Then / is ergodic with respect to the Lebesgue measure, and has a unique attractor A in the sense of
Milnor. This attractor coincides with the conservative kernel of/. There are no strongly wandering sets of
positive measure. If / has a finite a. c. i. (absolutely continuous invariant) measure a, then it has positive
entropy: h^(f)>0. This result is closely related to the following: the measure of Feigenbaum-like attractors
is equal to zero. Some extra topological properties of Cantor attractors are studied.
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1. Introduction

Let/: [0, 1] -> [0, 1] be a map of the interval satisfying the following conditions:
Sl. /is a C^smooth map with a negative Schwarzian derivative:

f" 3/F'V
S/='— - - "- <0;// Af)
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546 A. M. BLOKH AND M. YU. LYUBICH

52. /has a unique critical point ce(0,1); this point is non-degenerate: f" (c}^-Q', so c
is the extremum.

In addition to these main properties we introduce at once the convenient normalization
(the possibility of such a normalization is explained, for example, in [CE]):

53. /: c\—>-1 \—>0 (in particular, c is the maximum point).
The class of maps satisfying S1-S3 we denote by ^\ (the index "1" means the number

ofextrema). Throughout the paper we will assume (unless otherwise stated) that/e^i
and call such maps S-unimodal.

S-unimodal maps are very interesting from the dynamical viewpoint and have been
studied intensively since the 70's (see [CE]). However, many essential problems are still
unsolved. In the present paper the measurable dynamics of such transformations (i.e.,
the asymptotic behaviour of a. a. (almost all) trajectories with respect to the Lebesgue
measure) is studied.

In what follows/" will denote the n-th iterate of/ The set orb(x)={fn x}^Q is

called the trajectory (or the orbit) of xe[0,l]. The limit set of orb(-x) is denoted by
co(.x). The further general concepts related to the measurable dynamics of endomor-
phisms (invariant and wandering sets, ergodicity, conservativity and dissipativity, etc.)
can be found in Appendix 1.

Now let us introduce the important concept of the measure-theoretical attractor in the
sense of Milnor [M]. Let A be a closed invariant set, and rl (A) = { x : co (x) c: A} be its
"realm of attraction". The set A is called a measure-theoretical attractor if

(i) ?i(rl(A))>0 (i.e. A attracts "many" orbits);
(ii) 'k (rl (A)\rl (A')) > 0 for any closed invariant proper subset A' c= A (so the realm

of attraction of A' is essentially less than that of A).
As a rule, we will call measure-theoretical attractors simply attractors (unlike topologi-

cal attractors defined in Section 2).
In order to present the results of this paper we need to formulate the authors' earlier

results. The terminology used in the following theorem (a limit cycle, a solenoid, a
transitive interval) will be explained in detail in Section 2.

THE THEOREM ON THE ATTRACTOR [BL1,2,3]. A map /e^i has a unique measure-
theoretical attractor A and co (x) == A for a. a. x e [0,1]. The attractor A has the structure
of one of the following four types:

A 1: A is a limit cycle;
A2: A is a solenoid (or a Feigenbaum-like attractor);
A3: A is a cycle of transitive intervals;
A4. A is a "strange" attractor, i.e., a Cantor set contained in the cycle of transitive

intervals. Moreover, in case A4, A contains the critical point c and A=co(c).
These cases will be called cyclic, solenoidal, interval, and "strange," respectively.

THE MAIN PROBLEM (cf. [M]). — Are there fe^^ having "strange" attractors?
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S-UNIMODAL MAPS OF THE INTERVAL 547

The authors regard the results of the present paper as steps toward solving this
problem.

THE THEOREM ON ERGODICITY [BL1], [BL3], [BL4], [BL6]). - In the non-cyclic case the
map/e^i is ergodic with respect to the Lebesgue measure 'k.

The following concepts of a strongly wandering set and the conservative kernel C (/)
(or the conservative part) of/are defined in Appendix 1.

THE THEOREM ON STRONGLY WANDERING SETS. - In the non-cyclic case the map/e^i
has no measurable strongly wandering sets of positive measure.

THE THEOREM ON THE CONSERVATIVE KERNEL. - The conservative kernel C (/) of the
map/e^i coincides (modO) with the attractor A. Moreover,/is purely dissipative in
the cyclic and solenoidal cases, and asymptotically conservative in the standard transitive
case.

Remark 1.1.- The dissipativeness in the solenoidal case means that solenoids have
zero measure (see the Theorem on solenoids' measure in Section 8). So, in this case we
have the amusing example of a purely dissipative endomorphism without strongly wander-
ing sets of positive measure.

Remark 1 . 2 . — From the viewpoint of the Theorem on the Conservative Kernel, the
Main Problem can be reformulated in the following way:

Is it true that f is conservative on the cycle of transitive intervals?

Remark 1 . 3 . — The exponential map z^->ez of the complex plane gives an example of
a topologically transitive but purely dissipative and non-ergodic endomorphism ([LI],
[R]) (on a non-compact phase space, though).

Let us pass now to the problem of a. c. i. measure. The properties of a. c. i. measures
of positive entropy are well known in the one-dimensional case [Le]: they possess
strong statistical properties of exactness, weak Bernoullity and exponential decreasing of
correlations. The following result, concluding this paper, shows that actually every
finite a.c.i. measures of/e^i has positive entropy (and hence possesses all the above
properties).

THE THEOREM ON ENTROPY. - Let H be a finite a.c.i. measure of/e^i. Then
h (/)>0. In such a case the attractor A is the cycle of transitive intervals (case A3).

This theorem and the Theorem on solenoid's measure will be proved from a common
viewpoint in Section 12.

Let us also mention some additional properties of "strange" attractors A, making
them similar to solenoidal attractors {see § II): /|A is topologically minimal [i.e.,
O)(^)=A for all xeA] and the topological entropy A(/|A) is equal to zero.

The structure of the present paper is clear from the Table of Contents. In order to
make the picture complete, we present the proofs of the Theorems on the Attractor and
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548 A. M. BLOKH AND M. YU. LYUBICH

Ergodicity. These proofs have some advantages over those published earlier ([BL1]-
[BL6]) due to the adaptation of them to the S-unimodal case as well as to the systematical
use of the Koebe Principle instead of the Minimum Principle.

We would also like to draw the reader's attention to a number of technical results
collected in this paper: the Expanding, the Distortion and the Density Lemmas. The
most non-trivial ones are Lemmas 4.4 and 9.1.

Most of the results the authors can prove in a more general situation (polymodal and
smooth). The survey of these generalizations will be given in Appendix 2.

The results of the present paper are announced in [BL1] and [BL5].
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SOME NOTATIONS AND CONVENTIONS:

^j = {1 ,2 , . . . } is the set of natural numbers;
clX==X is the closure of the set X;
intX=X° is the interior of the set X;
y= [0,1]\X is the complement of X;
D(a,r)={xe[0,l]| |x-^r};
[a,b] is the (closed) interval ended at a and b (without assuming that a^b);
ck=fkc where c is the extremum; note that c^ = 1, ^=0 by the normalization S3.

Note: Recently we reveived G. Keller's preprint, which is closely related to the present
paper.

2. Topological picture of the dynamics

In this section we have collected the well-known facts on the topological dynamics of
S-unimodal maps, which will be systematically used (limit cycles, homtervals, spectral
decomposition). We begin with some remarks about limit cycles of/.

Let A= {/"^}^<S be the cycle of a periodic point a. It is said to be a limit cycle if
rl° (A) 9^0. For maps with negative Schwarzian derivative it is equivalent for A to be
attractive [i.e., the modulus of the multiplier v^^Y (a) is less than 1] or neutral (i.e.,
| v = 1) {see [CE]).
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S-UNIMODAL MAPS OF THE INTERVAL 549

The role of the negative Schwarzian derivative condition was shown for the first time
by D. Singer in 1978 by the following result which is the real analogue of the classical
Fatou-Julia Theorem (1918-1920).

THEOREM A (on the Limit Cycle) [Si]. — Let A be a limit cycle of the mapfe^^. Then
cerl°(A). Hence, fhas at most one limit cycle.

Notice that if the multiplier v of the limit cycle A isn't equal to 1 then A c: rl° (A). If
00

v = 1 then for /e ̂  we have that A c o (rl (A)). Moreover, rl (A) = rl° (A) U U /"" A
n=0

and rl (A) contains some semi-neighborhood of A.
Let us pass now to Guckenheimer's important result on the absence of wandering

intervals (1978). By wandering intervals we will always mean strongly wandering inter-
vals, i.e., such ihsiifnJ(^fm]=0 (n>m^0).

An interval J is called a homterval if all iterates /" are monotone on J. In other
words, int (/" J) ̂  c for n ̂  0.

It is easy to understand the connection between wandering intervals and
homtervals. If J is a homterval then either its orbit converges to a limit cycle, or J is
wandering (perhaps, both).

Thus, the existence of wandering intervals is equivalent to the existence of homtervals.

THEOREM B (on Wandering Intervals) [Gl]. — Suppose fe^^ has a wandering interval
J. Then f has a limit cycle A andf"] —> A as n —> oo.

n-1
For a point x ^ { 0 , l } U Uf~kc denote by H^=H^(x) the maximal interval on

k=0

which /" is monotone. Set M^=M^(x)=/"H^(x). The intervals H^ end at points
n-l

{ 0 , 1 } U { J f ~ k c , and the intervals M^ end at points {cj,}^^ (recall that C i = l ,
fe=0

C2=0). It follows from the Theorem on Wandering Intervals that if orb(x) doesn't
converge to a limit cycle, then

(2.1) ^(H^(x))-^0 (n^^).

Let us pass now to the description of the spectral decomposition of/Ge9\. To this
end we need a few concepts.

An interval I c= [0,1] will be called periodic with period p if int^I) C\ mt(/11)= 0
p - i

(0^k<l^p-\) and/^lcl . In such a case the set (9= U/^I is called a cycle of
k=0

intervals.

An invariant compact set K will be called transitive if/|K is topologically transitive,
i.e., it has a dense orbit. The map/|K is called topologically exact if for any relative
neighbourhood U c: K there exists an n e 1̂  such that /" U = K.
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550 A. M. BLOKH AND M. YU. LYUBICH

A periodic interval I of period p will be called transitive {exact) if the restriction /p I
is topologically transitive (exact). Clearly, in such a case ceint (9, where (9 is the cycle
of the interval I.

An invariant set S is called a solenoid (or a solenoidal attractor or a Feigenbaum-like
attractor) of type {^}n°=i if it has the following structure:

oo Pn~1

s- n u f^n
n=l k=0

where p^ —> oo and where each !„ is a periodic interval of period p^, with 1^ =31^. . . It
easily follows from the Theorem on Wandering Intervals that int(S)=0 (i.e., S is a
Cantor set) and f\ S is topologically conjugate to a shift on a compact group (see
[CE], [Bl]).

Remark also that ceS and hence S=co(c). Besides, it is easy to see that if co(x) =3 S
then (o(x)=S. So, S is a maximal co-limit set.

If a set X isn't a set of first Baire category (i.e., a countable union of nowhere dense
sets) then X is said to be of 2nd category. Saying "almost all (a. a.) in the sense of
Baire" we mean "on a set of 2nd category."

A closed invariant set T c= [0,1] will be called a topological attractor of/if
(i) rl(T) is a set of second category;
(ii) for any proper closed invariant subset T7 c= T, the set rl (T^rl (T') is of 2nd

category as well. (Compare with the concept of measure-theoretical attractor in
Section 1.)

Denote by Per(/) the set of periodic points of/.
Let us state now the principal result on the topological dynamics of one-dimensional

maps/Gc^i. It is essentially based upon the Theorem on Wandering Intervals.

THEOREM C (on the Spectral Decomposition) [JR]. — There is the following decomposi-
tion'.

Per(/)=TUUR,
j

where T is the unique topological attractor off, and the R^ are invariant transitive Cantor
sets. Moreover, T has the structure of one of the following three types:

Tl. T=={fka}^o is a limit cycle;
oo Pn~1

T2. T= 0 U fk^n ls a solenoid;
n=1 n=l

p - 1

T3. T= U /fc! is a cycle of exact intervals.
k=0

In cases Tl and T3 there are only a finite number of repellers Rp while in case T2
there are countably many of them. Any two sets of the decomposition have at most
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S-UNIMODAL MAPS OF THE INTERVAL 551

finitely many points in common. For any point xe[0,1] either O)(^)=T or/"xeRj for
some n, j,

Remark. - The restrictions /) Rj are topologically conjugate to One-Sided Topological
Markov Chains.

Cases T3 and T2 sometimes are called finitely and infinitely renormalizable
correspondingly. We usually will refer to case T2 as solenoidal. (The terminology
agrees with that introduced in Section 1.)

3. Distortion lemmas

In this section we collect the principal analytical tools for studying the measurable
dynamics of one-dimensional maps. Within it X will denote a measurable set and I will
denote some interval. Set

dens(X[I)==X(Xni)A(I).

Let us introduce at once all notation and terms related to the density notion that we
will use throughout the paper. For a point <3e[0,1] set

dens (X | a) == lim — dens (X |[a - s, a + e])
e - O 2£

if this limit exists. If dens(X a)=l then a is called a density point of X. In such a
case we say also that "X is X-dense at a" ("X" is used in order to avoid the confusion
with topological density). The Lebesgue Theorem on Density Points states that any
measurable set X is ^-dense at a. a. its points. The expressions "X is Pi-dense at a from
the left" or "from the right" as well as the notations dens(X|a) and dens(X|(3) for
upper and lower density are clear without extra explanations.

Finally, let us introduce one non-standard notation. For an interval I = [a, b] set

Dens, (X 11) = Dens (X | [a, b]) = sup Dens (X | [a, y]).
yei°

Note that Dens (X | [a, b]) + Dens (X | [A, a]).

LEMMA 3.1 (the First Distortin Lemma) ([BL6], [BL8]). — Letf: [0,1] -^ [0,1] be a C1-
smooth map for which

C, x-c^^W^C^ x-c^

in neighbourhoods of critical points (where v depends on c). If I c= [0,1] and
dens (X 11) ̂ 1/4 then

dens (/X |/I) ̂  A dens (X 11)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



552 A. M. BLOKH AND M. YU. LYUBICH

where the constant A is independent ofl, X. •
The following result establishes the main analytical property of functions with negative

Schwarzian derivative. It is called the Koebe Principle because it is the exact analogue
of the classical Koebe Theorem in geometric function theory.

Up to the end of this section (p: I -> J will denote a diffeomorphism of open intervals
with negative Schwarzian derivative.

THE KOEBE PRINCIPLE ([vS], [G2]). - Let re (0,1). Then there exists a constant C,
independent of (p such that for any points x^x^el for which dist ((p (x,), QJ) ̂  r 'k (J) the
following estimate holds:

(/(xO

^ fe)
<C.

LEMMA 3.4 (The Second Distortion Lemma) [BL6]. —Divide the interval I into two
intervals L U R with a common endpoint a. Then

Dens^(X L)^8 1
?i((pL)/^((pR)^Kj

Dens^((pX|(pL)^y(8,K)

where the function y (8, K) is independent of (p and y (5, K) -> 0 as 5 -> 0 for any fixed K.
In other words, if the set X is thin in the interval L and the interval (pL isn't too long

compared with (pR, then (pX is thin in (p L.

Proof. — Suppose that for some interval N=[a,&] c= L we have: dens ((p X | (p N) ̂  c.
Consider the point a e N for which

|(p(oO-(p(^)|=J^((pN).

Then

dens((pX|[q)(a),(p(^)])^8

Now apply the Koebe Principle to the map (p | [a, a}. We obtain a constant C = C (c, K)
such that for any x^, x^e[^a\ the following estimate is satisfied:

(p' (xi)
<C.

(p' (^2)

Consequently,

8 ^ dens (cp X | [(p (a), (p (a)]) ̂  C dens (X | [oc, a]) ̂  C 8
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S-UNIMODAL MAPS OF THE INTERVAL 553

(here we use the estimate for Dens,,, not for dens). It follows that 8 ->- 0 as 8 ->• 0, and
the lemma is proved. •

4. Expanding lemmas

The first three purely topological lemmas of this section are less well known than they
deserve. In spite of their simplicity, they work very efficiently. The fourth lemma is
much more complicated, but up to now we've been applying it only in the solenoidal
case.

LEMMA 4.1 (On Non-contractability).—Let J be an interval whose orbit doesn't
converge to a limit cycle. Then

\im'k(fn])>0.
M 6 N

Proof. — Since/has no wandering intervals,/p J Pi J 7^ 0 for some pe^. Hence,
00

the set 1= U /^"J is an/^-invariant (perhaps, non-closed) interval. If I contains two
n=0

/^-fixed points a, P then/^J =) [a, (3] for all sufficiently large n which implies the required
inequality. The simple analysis of the case when I contains only one fixed point we
leave to the reader. •

Now let us consider the involution T : x \—> x ' where f(x) ̂ f(x') (it is well-defined on
the interval [0, c^]). The points x and x == T (x) will be called ^-symmetric. A set X is
called T-symmetric if T (X) = X and locally ^-symmetric if it is r-symmetric in a neighbour-
hood of c.

Say that a point y lies r-nearer to c than x if^e(x,x7).
The following lemma is, in fact, contained in the paper by Guckenheimer [Gl]. In

an explicit form, it was stated in [BL3], [BL4]. In this lemma the main specificity of
the unimodal case is concentrated.

LEMMA 4.2 (the First Expanding Lemma). — Let l=[a,a'] be a asymmetric interval,
00

let x^(0,l)\U f~kc be a point -whose orbit passes through 1°, and let n be the first
k=0

moment for which fxel0. Then provided ^(1) is sufficiently small, we have
(i) M^(x) =31 in the finitely renormalizable case;
(ii) M^(x) => P in the solenoidal case, where P is that half-interval [a,c\ or [c,a] which

contains /" x.

Proof. — (i) We must show that none of the intervals M^ is contained in I. Fix
a e { ± l } .

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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If X(I) is sufficiently small then n is large enough, and by (2.1) the interval H^(x)
n

doesn't end at the points c, 0, 1. Hence, it ends at some points of the set U f~kc.
k= 1

Consequently, there is a p e[ \,n- 1] such that W^=fp[fn~px,c}.
Let us consider the T-symmetric interval ^^[f'1'1'x^(fn~p x)]. By the definition of

n we have that K -=> I. If M^ c= I then /p! (=:fpK=M^ c= I, so I is /^-invariant. But
as we consider the transitive case, I is contained in an exact periodic interval, which is,
of course, impossible.

(ii) By the same argument as above one can be convinced that otherwise there is a p
such that fPF c: P and fP P is monotone. But then P contains a limit cycle, which
contradicts the assumption. •

LEMMA 4.3 (the Second Expanding Lemma).—Suppose c is non-periodic. Let
I c: [0,1] be an arbitrary interval of sufficiently small length such that the orbit of c^ passes
through its interior. Let n be the first moment for which /" ̂ eP. Then M^(c^) =) I.

Proof. - The endpoints of the interval M^(c^) belong to the set [c^=^. By
assumption, they lie outside of I. •

Remark now that by non-degenerateness of the extremum c, the involution T is
smooth and x ' (c) == - 1. Hence, in a sufficiently small neighbourhood [c - T|, c + T|] of the
extremum, the involution T is Lipschitz with the constant 2.

Further, under the circumstances of Lemma 4.2 let M^ be the component of
MM\{/"X} which contains c, and M^ be the other component. Unlike the previous
results of this section, the following lemma is of an analytical nature and uses the
negative Schwarzian derivative condition in an essential manner.

LEMMA 4.4 (the Third Expanding Lemma).—Let a map /e^ have no limit
cycles. Then under the assumptions of Lemma 4.2 there exists a constant K>0 such that

(i) ^M^K-^I);
(ii) for x=c^ HM^K-1^!).
Part (ii) of the lemma was proved in [BL7] and was applied there for proving that

?i(S)==0 for solenoidal attractors S {see §8). We think that this lemma could be useful
in plenty of other problems.

Here we confine ourselves to the proof of Part (i). Remark at once that in the finitely
renormalizable case the statement trivially follows from Lemma 4.2 (i) and the Lipschitz
property of T. Thus, Lemma 4.4 (i) is actually concerned with the solenoidal case only.

Proof of Lemma 4.4 (i). - Recall that l==[a,a']. Denote Xk•==fkx. Let, for definite-
ness, x^ E (a, c). By Lemma 4.2 M^ =) [x^, c]. If M^ =3 [x^ a] then as we have already
noted the statement is trivial. So, from now on we assume that

(4.1) M^c^,^)cl°.

If ^ (I) is sufficiently small then M^ =/n-s [x,, c] for some s e [0, n - 1]. By assumption,
x, lies outside 1°. Let us show that it lies T-nearer to c than all points

4eSERIE - TOME 24 - 1991 - N° 5



S-UNIMODAL MAPS OF THE INTERVAL 555

Xi(l=s+l, . . . ,/z-l). Otherwise denote by x^ that point x,, x's for which x^(x^c).
Note that Cj_, lies on the same side of c as ̂  (since/n-^ is monotone on [.^^.J^/^ ]-[„).

Now consider two cases:
(a) If Ci_^e[x,,c], then the map/1"5 monotonically transforms the interval [^,c] inside

itself—on the interval [.Xj,^_J. In such a case / would have a limit cycle, which
contradicts our assumption.

(b) If^e[c,_^]thenby(4.1)

I^M^/"-^.^]^^,

despite n being the first moment for which/"xel°.
Thus, the points x^+^ . . . , x^_ i lie T-farther from c than x^ while x^ lies T-nearer.
Let now x^ denote that one of the points x^, x^ that lies on the same side of c as

x^. It is shown in the papers [Mi], [Gl] that under such circumstances there exists an
interval (a, P) 9 x^ such that

/——O^OC, /"-^^^(P).

Moreover,

(4.2) ((/"-^OO^yX)

for all ̂ [a, P] where y does not depend on x, n.

fiL-S

4 M^
A ^ ' '^.r i—E—^-r-^r/^——^5 a ^ ii c ^ c^, ^

Fig. 1.

Consider the point u e [x^ P] for which /"- s u = c. By (4.2)

(4.3) x^-c|^y|x,-M|.

Remark now that

(4.4) [^_J=M;^[^],

for otherwise the function/w-s would monotonically transform the interval [c,u1} into
itself (despite the absence of limit cycles). Now consider two cases:

(a) | u — c | ̂  (1/2) | a — c \. Then by (4.4) and the 2-Lipschitz property of T, we have

X(M^)^|c-z/|^|c-M|^i|^-cj^-^(I).
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(b) \u-c\<(\/2)\a-c\. In particular, ue{a,c\ Then by (4.3) and (4.4) we get

^(M^)^\x,-c\^y\a-u\^7\a-c ^^(I).
2 6

The lemma is proved.

5. The measure-theoretical attractor

Here we will prove the Theorem on the Attractor stated in the Introduction. We are
starting with the well-known lemma whose proof gives the simplest illustration of the
self-similarity idea (passing from small scales to large ones controlling the distortion).

LEMMA 5.1 [Gl]. — Let K be an invariant compact set which does not contain the
extremum c and (in the case when f has a limit cycle a) does not intersect rl° (a) (1). Then
MK)=O.

Proof. — Let x be an arbitrary point of K distinct from the endpoints 0, 1 and
preimages of the neutral cycle a (if there is such an oc). As K C\ rl° (a) = 0, these
assumptions exclude at most countably many points.

Since orb (x) does not converge to a limit cycle, by (2.1) the intervals H^ for sufficiently
large n end at preimages of c, not at the endpoints 0, 1. Hence M^/""^ [ c ^ ' ^ x ]
for some k^ e[0,n— 1]. But

k-/fc ± ^- l^ dist (c, K) = § > 0.

By Lemma 4.1, ^(M^)^£>O [remark that £=s(x) depends on x since x can be near
to the neutral cycle; the independence of £ from n for fixed x is important].

Thus, for any y e (0, s] there is an interval Y^ 9 x which is monotonically transformed
by/^ontoDC^y).

Remark now that by the Theorem on Wandering Intervals the set K is nowhere dense
(in fact, it follows from the easier fact: The orbit of a hypothetical homterval would
have to approach the critical point, Schwartz, 1963). If follows from the compactness
ofK, that for all yeK

dens(K|D(^,y))^(Y)<l.

Applying to/": H^ D (/"x, e) the Koebe Principle, we obtain

dens(K\W,2)^p(s)<\.

As 'k (H^2) -> 0 (n -> oo), dens (K | x) < 1; so x is not a density point of K. Since x is an
arbitrary point of K excluding at most countably many points, we conclude 'k (K) =0. •

(1) But it may happen that K =) a where a is a neutral cycle.
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Remark. — In [Gl] a stronger statement is proved: if an invariant compact set K does
not contain critical points and limit cycles, then f\ K is an expanding transformation,
i.e., 3C>0, y > l such that

\(fny(x)\^Cyn, xeK, neN.

However, we will not make use of this.

COROLLARY 5.1. — If a map/has no limit cycles, then w(x)3cfor a. a. xe[0,1].

Proof. — Let us consider the following family of invariant compact sets:

K=[x•.\fmx-c\^]-(m=(^x-.^x-c ^(^O.l,...)}.
I n J

By the above lemma \ (K^) =0. But [0,1]\ U K^ = { x : co (x) 9 c}. •
n=l

Call a set E nowhere \-dense if dens(E I)< 1 for any interval I.

LEMMA 5.2. — If E is a nowhere \-dense invariant set of positive measure, then for a. a.
x e E we have co (x) = CD (c) 9 c.

Remark. — So, c is a recurrent point: 0) (c) 9 c.

Proof. - By Corollary 5.1, co(x) =) o)(c) for a. a. xeE.
In order to prove the inverse inclusion, let us consider a density point xeE and

show that co(x) <= co(c). Indeed, otherwise there is a sequence L c= I^J such that
dist(fnx,orb(c))^£>0 for all neL. Estimating the distortion of the map
/": H^2-^ D (/" x, 8/2) in the same way as in the proof of Lemma 5.1, we will be
convinced that dens(E | x)< 1, contradicting the assumption.

So, co (x) = co (c) for a. a. x e E. As co (x) 9 c for a. a. x e E, co (c) 9 c, and we are done. •

PROOF OF THE THEOREM ON THE ATTRACTOR. - Let us consider subsequently Cases TI-
TS of the Theorem on Spectral Decomposition (§2).

In case Tl the limit cycle T attracts the critical point c (Theorem A). Hence, the
invariant compact set K=[0, l]\rl°(T) satisfies the assumptions of Lemma 5.1. We
conclude that ^ (K) = 0 and hence T is the unique measure-theoretical attractor.

In case T2 we have
00

ceco(c)==T= U (9,
n= 1

where (9^ are the cycles of intervals of period p^-> oo. By Corollary 5.1 co(x)9c for
a. a. xe[0,1]. For such an x we have co(x) ^ (o(c)=T and hence co(x)=T, since T is
the maximal co-limit set.
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Let us pass to the main case, T3, when there is the cycle (9 of transitive intervals. As
ceint^, by Corollary 5.1, a. a. orbits are absorbed by (9. Hence, it is sufficient to
consider the restriction/I (P.

We intend to show that one of the following holds:
(i) o)(x)==^ for a. a. xe(9,
(ii) co (x) = co (c) 9 c for a. a. x 6 (9.
In the first case we obtain the standard transitive attractor (of type A 3), in the second

case we obtain the standard or the "strange" attractor (A3 or A4) depending on o (c) ̂  (9
or co(c)^^.

So, let us consider a countable base of intervals J^ of the space (9 and construct for
each of them the following invariant compact set:

K^xe^/^J^m^O,!,...)}.
00

Set K^- U K,. Then €\^^{x€(9\^(x)^(9]. Hence, if X(KJ==0 then case (i)
H=l

holds. So, assume in what follows that X(K^)>0 and hence ^(K^)>0 for some n.
All the sets K^ are nowhere dense. Indeed, if K^ contains an interval L then

00

^n ̂  U /""L^ which is not the case. Consequently, we can apply Lemma 5.2:
w==0

(^(x)^^(c)3c for a. a. xeK^. Since K^ is nowhere dense, o)(c) is nowhere dense as
well.

Thus, A==co(c) is the unique measure-theoretical attractor for the set K^ possessing
all the properties enumerated in the theorem.

It remains to show that X(^\KJ=0. To this end remark that ^\K^sK^ is
nowhere X-dense. Indeed, otherwise there is an interval I c= (P such that

n

dens (K^ 11) == 1. As \J f^^Q for some n e N, dens (K^ | Q) - 1. Hence, X (KJ = 0,
f c = = i

contradicting the assumption. Consequently, by Lemma 5.2 co(x)==co(c) for a. a.
x e ̂ \K^. But as we know, co (x) ̂  (P for all x € K^, while co (c) ̂  (9. This contradiction
completes the proof. •

6. Ergodicity

In this section we will prove the Theorem on Ergodicity. It is based upon the
following technical lemma which will be used throughout the paper.

LEMMA 6.1 (On X-density at the extremum). — Suppose/has no limit cycles. Let X
be a measurable invariant locally ^-symmetric set of positive measure. Then dens (X | c) = 1.

Remark-term. - Hence, any invariant set X of positive measure (perhaps, non-t-
symmetric) is Wense at ^ (^== 1,2, . . .) on that side of ^ which is the/"-image of a
neighbourhood of c. Such a side of ^ will be called good.
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Proof. •" Consider a T-symmetric neighbourhood I == [a, a'} of c in which the involution
T is 2-Lipschitz and the set X is T-symmetric. By Corollary 5.1 (D (x) 9 c for a. a.
xeX. Let us consider a density point xeX with this property. Let n be the first
moment when /" x e 1°. Assume for defmiteness that x^ ==/" x € (a, c). By the First and
Third Expanding Lemmas

M; =)[^,xJ, and ^(M;)^K'1 \a-x,

Consequently, there exist intervals R^, L» with the common endpoint x for which

/"R,-[a,xJ, /"L^M^

and/" has no critical points inside L^ R^. Applying the Second Distortion Lemma, we
obtain

(6.1) dens(XC|[^J)^y(8,K)

whereS-Dens^X'lR^).
If the interval I is short, then by Lemma 4.1 the interval R^ is short as well. As x is

a density point ofX, 5 is small and hence y(8,K) is small as well. Hence, by (6.1) the
set X is thick in the interval [a,x^].

By the Lipschitz property of T, X is thick also in the symmetric interval [x'^a'].
Setting II^K,X^], we obtain

dens(X|l\I0^1"£

for some small e>0. Replacing I=Io by 1^, we obtain

dens(X|Ii\72)^l-£

where Ii^l^nd^nd)]. and n(l) is the first moment for which /"^x el?. Continuing
the process, we obtain the nested sequence of intervals 1̂  shrinking to c and such that

dens(X|Ifc\I^i)^l-£, fe-0,1, . . .

Hence, dens (X 11) ̂  1 - e. Since s -> 0 as X (I) -^ 0, the lemma is proved. •

PROOF OF THE THEOREM ON ERGODICITY. - Let [0,1] - X^ U X^ where X, are completely
invariant sets of positive measure, X^ 0 X^ = 0. As r (X,) c /"1 (/X,) = X,, the sets X,
are locally symmetric. By Lemma 6.1, dens (X, | c) ̂  1 which is impossible. •

7. Absence of strongly wandering sets

Here we are proving the Theorem on Strongly Wandering Sets stated in the
Introduction. It can be regarded as the strengthening of the Theorem on Wandering
Intervals. It is also some sort of "conservativity" of/.
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Let us note that the absence of strongly wandering sets X for which/" X is monotone
for n e I^J (cf. [S]) immediately follows from the ergodicity. Indeed, if Y is an arbitrary

00 / 00 \

non-trivial measurable subset of X, then U /""( U /^Yps a non-trivial measurable
n=0 \m=0 /

completely invariant subset of [0,1].

PROOF OF THE THEOREM ON STRONGLY WANDERING SETS. — Let X be a set of a positive
oo

measure, and X^=/"X. Take a density point xeX\U f ' 3 ^ such that co(x)9c and
n=0

consider the moments n(\)<n(T)<. . . of the T-nearest approaches of orb(x) to the
extremum c [this means that x^^^f^x lies T-nearer to c than all points x^
(Q<^l<n(k))}. Moreover, let us start from the moment n(\) for which x^^ is close to
c. Let

^_i be that one of the points x^^-i), ^n^-i) which lies on the same side of c as
xn (fe)?

z^+i be that one of x^^+iy ^(k+i) which lies on the same side of c as x^; and x^
be that one of x^ ̂ , x^ ̂  which lies to the left of c.

By the First Expanding Lemma

^w^k- i .^+iL

Denote by L^ and R^ the semi-neighbourhoods of x which are monotonically mapped
by/"w onto [^^,^+J and K^,^_J correspondingly.

Fix c>0. Proving Lemma 6.1, we have shown that X^^ is thick in the interval
^i-i^nd)] ^or a^ sufficiently large /:

dens(X^^ [ui_^x^^])^ 1 -c.

Applying / once more, we get, by the First Distortion Lemma,

(7-!) dens(X,^j[x^_i)+i,x^+J)^l-A8.

00

On the other hand, as ^ ^(k)~x^(k+l)\< °°. ^ere exist arbitrary large k for which
f c = i

^(k+i) ~ ̂ (k) I < ^(k) ~ ̂ (k-1) I - ^en by the 2-Lipschitz property of T we get

(7 • 2) | -^n (k) ~ Vk + 1 | < 4 | ̂  ̂  - ̂  _ i

Applying to /"(fe) L^ U R^ the second Distortion Lemma and taking into account (7.2),
we conclude

dens (X, ̂  [̂  ̂ , ̂  + J) ̂  1 - y (^, 4)

where 5fc=Dens^(XC |Lfc). As x is a density point of X, y(8^4)<£ for sufficiently
large k.
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By the First Distortion Lemma we obtain

(7.3) dens(X^fe^j[^^+i,^^+i)+J)^l-Ay (8^4)^1-As.

For /=A;+1 and sufficiently small s>0 the estimates (7.1), (7.3) yield
^ (fe+ D+ i Pix^ (fe)+1 ̂  0- The theorem is proved.

8. The solenoidal case: pure dissipativeness

In Sections 8-10 we will classify maps /e^ from the viewpoint of the Hopf
decomposition. In this section we dwell on the solenoidal case which gives an amusing
example of a purely dissipative endomorphism having no wandering sets of positive
measure (2).

Let us start from the simple remark: the conservative kernel C(f) (see Appendix 1) is
contained in the attractor A. Indeed, otherwise there is a set Y c: C (f) of positive
measure such that dist(Y,A)>0. Then the orbits of a. a. points yeY must return to Y
infinitely many times. But this is impossible since /n y —> A for a. a. y .

Thus, if X(A)==0 then / is purely dissipative (in Section 10 the converse will be
proved). Clearly, it is held in the cyclic case. The next theorem shows that solenoidal
maps are purely dissipative as well. It was proved in [G2] for dyadic solenoids (f. e.,
^=2") and in [BL7], [MMSS] for unimodal solenoids of any type.

THEOREM ON SOLENOID'S MEASURE. — Let a transformation /£^i have a solenoidal
attractor A of type {pn]^o- Then

(i) MA)=O;
(ii) If A is a solenoid of finite type (/. e., pn+i/Pn^^^ ^en dim A< 1.

oo Pn~1

Sketch of the proof. - (i) By definition, A= n U Ij^, where Ij^ are periodic
n=l k=0

intervals of period p^ and/: Ij^ -> I^i, I^^c. Evidently, Cp^ is the T-nearest point to c
of the orbit {<^}^i . Setting ^=M^_^(c^) (3) we find from the Second and Third
(ii) Expanding Lemmas:

(8.1) K; ^ [c^ c;J = J, ^ (K,-) ̂  K1 ̂  (J,).

(2) In [He] a special construction of a strongly wandering set X for any purely dissipative endomorphism is
given. But the meaning of this result is unclear as X can have zero measure.

00

(3) It is easy to see that in the solenoidal case c^e{0,\} U / - A ' c and hence, the intervals M^ (c^) are well-
M=0

defined. This holds in the transitive case as well if we exclude the well-known Ulam-Neumann map (when
C3=0).
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Let R^ and !.„ be the semi-neighbourhoods of €3 which are mapped by/^~3 onto K^~
and J^ correspondingly. It easily follows from the absence of limit cycles that J^ lies on
the "good" side of c^ (see the Remark in Section 6). Hence, L^ lies on the "good"
side of €3. If ^(A)>0, then by Lemma 6.1 the attractor A is X-dense on this
side. Consequently, for sufficiently large n the set A is thick in L^, i.e.,
Dens^ (A | L,,) = 1 - §„ is close to 1.

Applying the Second Distortion Lemma to the function f^ ~3 \ R^ U L^ and taking
into account (8.1), we get

dens(A|J^l-y(5,,K)^l-£

for sufficiently large n. Then dens(TA|J^l-4e, and hence ^(AHTA)>O. This
contradicts the injectivity of/| A.

(ii) In [G2], [BL7], [MMSS] more is proved: dens(Q("+l)|IW)^< 1 where
Pn-1

Q(n) ̂  ^j j^ ^^ ^ ^ independent of n, k. This easily implies dim A < 1. •
fc=0

9. Density lemmas

By the relative length of an interval J in an interval I we mean dens (J 11).

LEMMA 9.1 (The Main Density Lemma). — Suppose f has no limit cycles. Let X be
an invariant set of positive measure. Then V £ > 0 , 3 § > 0 with the following property :

Ifl is any short interval (k (I)<8) intersecting A, then there is an open interval J c= I\A
(perhaps empty) such that dens (X (L) > 1 — s for any component L of I\J.

At the end of the section we will dwell in more detail on the case X,(A)>0. And
now let us formulate one corollary. The notation used for it has the same meaning as
in the above lemma.

COROLLARY 9.1. — Under the assumptions of Lemma 9.1, for any point aeA the
following holds:

max { dens (X | [a - s, a}\ dens (X | [a, a + e])} -> 1 (e -^ 0).

Hence dens (X \a)^\/2.

Proof. — Let c^: x \—> 2 a — x denote the usual central symmetry with respect to a. For
beR set 5== a,, (Z?).

Given s>0, find a 8>0 by Lemma 9.1. Let I ==[^5] be an arbitrary interval
symmetric with respect to a with ?i(I)<8. We want to show that X is thick either in
[b,a] or in [a, b].

y

E———i—> r^\—3
i oT a ^ P j

Fig. 2.
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To this end consider an interval J = (oc, P) c: I with the properties described in Lemma
9.1. Let, for definiteness, J c= [a,b] and a lies nearer to a than P. By Lemma 9.1,
dens (X | [b, a]) > 1 — s and, hence, dens (X | [b, a]) > 1 — 2 c. This proves the corollary. •

Remark. — If a == c then instead of the intervals [a — s, a} and [a, a + s] we can consider
[b,a] and [a^(b)} correspondingly. So, dens(X[A) can be understood in the sense of
T-symmetric intervals.

PROOF OF THE MAIN DENSITY LEMMA. - Let first A = (9 be a cycle of intervals (case
A3) and ©(c)^^. Then X==A modO. Indeed, otherwise X is nowhere X-dense (due
to exactness) and by Lemma 5.2 co (x) == co (c) 7^ A for a. a. x e X — a contradiction. So,
dens (X 11) = 1 for any interval I c: A.

Now, let A=co(c). Consider an arbitrary interval l=[a,b] such that I°OA^0.
Then orb(c^) passes through 1° infinitely many times. Consider, as usual, the first
moment n for which c^+n=fnc3e^o' Let us show that there is an interval V c: I
containing c^+^ and having a common endpoint with I, in which X is thick:

dens(X V)^l-s if ^(I)<5=5(8).

By the Second Expanding Lemma, M^ (c^) ̂  I. Consequently, there exist intervals L
and R ending at €3 which are diffeomorphically mapped by/" onto [^,^+3] and [^+3,^]
correspondingly.

Suppose for definiteness that L lies on the "good" side of €3. By Lemma 4.1, L is a
short interval if ?i(I)<5 is sufficiently small. Hence by Lemma 6.1, the set X is thick
in L: T| = Dens^ (X01 L) is small.

Fix now a constant K>2/8 and consider two cases:
(a) | ^ — ^ + 3 ^ K | €„ + 3 — b |. Then by the Second Distortion Lemma we have

dens(XC |[^c^3])<Y(^^,K).

For sufficiently small T| we have y(r|,K)<8 and, hence, we can set V==[a,c^+3].

(b) | ^ — ^ + 3 ] > K | c ^ + 3 — ^ | . Then let us consider the point de(a,c^+^ such that
d-c^^\=K ^+3-&|.

a ^ ^ 7 ^
Fig. 3.

Let us show that one can set V=[^,^]. Indeed, in the same way as in (a) we get for
sufficiently small T|:

dens (X-1 K c^ 3]) ̂  y (T|, K) < 8/2.
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Consequently,

dens(XC|K&])^MXCnKcn+3])+lcn+3-z?

\d-b\

^dens(XC|K^3])+ c n + 3 b i < ̂  + -L- <s.J-&| 2 K + l

So, the existence of an interval V with the required properties is proved. Now consider
the interval Ii=I\V. If I^nA^0 then we make the above construction again
replacing I by I^. More precisely, we consider the first moment n(\)>n when
/"^(^el^ and find the interval V\ c 1^, containing ^ / i )+3 and having a common
endpoint with I^, such that dens (X | V\) ̂  1 — e.

Continuing in such a manner, we will construct a sequence (finite or infinite) of
intervals V=Vo, V\,... with disjoint interiors, and a decreasing sequence of intervals

m
I=Io =? Ii =? . . . such that U V,==I\I^+i; dens (X | V^) ̂  1 — s. Moreover, V^9c^+3,

where n(i) is the first moment for which /m c^ e I,.
Let us consider the interval J = Fl If. Then the set I\J is covered by the intervals

V(. Hence, for any component L of this set we have

(9.1) dens(X|L)^l-e.

It remains to show that J° nA=0. Indeed, if the process above was finite, then it
was stopped at the moment m for which 1̂ , C\ A= 0.

Suppose the process was infinite. If J° (^ A =/= 0, we can consider the first moment
/ for which /^eJ0. As c^^^J0, l^n(m) for w=0, l , . . . Find an m such that
n(m)<l<n(m-\-1). Then I^+i => J°9^ contradicting the choice of n(m-\-1) as the first
moment k for which /fc ^3 e 1̂  +1. The lemma is proved. •

For an interval I c [0,1], components of I\A will be called gaps in I. Gaps in [0,1]
will be called simply "gaps".

The statement of Lemma 9.1 can be made more accurate in the case 'k (A) > 0.

LEMMA 9.2. — Under the conditions of Lemma 9.1 suppose also that ^(A)>0. Then
one of the following holds:

(i) all gaps in I have the relative length < e; in such a case dens (X 11) > 1 — 2 c;
(ii) there is a unique gap J in I of the relative length ^ s; in such a case dens (X 11) > 1 — s

for any component L ofT\J.

Proof. — By ergodicity, ^(AnX)>0. So, replacing X by XOA, we can assume
X c= A. Then, clearly, the interval J in Lemma 9.1 can be chosen as a gap in I.

As dens (X | I\J) > 1 — E, J can be the only gap in I of relative length > e. If J is such
a gap, case (ii) holds, otherwise we have case (i). •

COROLLARY 9.2. — Under the conditions of Lemma 9.2 we have
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(i) if a is a boundary point of some gap, then dens(X|^)= 1/2, i.e., X is \-dense at a
on the A-side,

(ii) if a is not a boundary point of any gap, then dens (X | a) = 1.

Proof. — (i) is the immediate consequence of Corollary 9.1 and the convention X <= A
(which, as we have remarked, can be accepted without loss of generality).

(ii) Let us consider any short interval l=[b,b] symmetric with respect to a. We want
to show that X is thick in some symmetric interval K <= I. In case (i) of Lemma 9.2
we can set K==L In case (ii) let us consider the maximal gap J=[oc, (3] (see Fig. 2) and
note that a 1=- a, as a is not a boundary point of any gap. Set T = [oc, (3]. Then T° H A 9 a
and, thus, we can apply Lemma 9.2 to T. It gives dens (X | [a, a]) ̂  1 — £, and we are
done. •

10. The conservative kernel

The Theorem on the Conservative Kernel has been stated in the Introduction. It has
been explained in Section 8 that the Conservative Kernel C (/) is contained in the
attractor A. The solenoidal case has been studied there as well. The following result
completes the proof of the Theorem.

THEOREM ON CONSERVATIVITY. — Let X-(A)>0. Then /|A is conservative.

Proof. — Let X <= A be an invariant set of positive measure. We have to show that
X=A mod 0 (see Appendix 1). By Corollary 9.1 dens (X a)^\/2 for any point
aeA. So, the set A\X has no density points and hence ?i(A\X)=0. •

REMARK ON THE HOFBAUER-KELLER EXAMPLE [HK]. — In this amusing example the
averages of the Lebesgue measure ^ converge to the Dirac measure on the repelling fixed
point b:

n-i
(10.1) - E/^-8,.

n k=o

We will show in the next section that in such a case, A is a standard transitive attractor
(since "strange" attractors don't contain periodic points). Consequently, here we have
a conservative map of the interval without finite a. c. i. measure.

11. Further topological properties of Cantor attractors

The present section is concerned with Cantor attractors, i.e., solenoidal and "strange"
attractors. Certainly, we do not get any new information about solenoids whose topolog-
ical structure is completely clear.
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LEMMA 11.1 (On Inverse Branches). — Let A be a Cantor attractor. Then for any
s>0 there exists an N such that for /^N there are no single-valued inverse branches f^
defined in neighbourhoods D (a, e) of a e A and such that /7" a 6 A.

THE EQUIVALENT STATEMENT. - Let ^ (x) be the distance from /" x to the nearest
endpoint of the interval M^(x). Then

(11.0) supr«(;c)^0 (n-^w).
x e A

Proof. — Suppose it is not the case: let c>0, a^eA and suppose there are inverse
branches/7" defined on the intervals D(a^,s) such that/T^^s^eA. Then there are
intervals K^ ended at b^ and such that

/"K^D^^J^D^

where D^ (<3,§)= { x : 0 ^ ±(;c-^)^8}.
Further, consider an invariant set X of positive measure satisfying the following

property: There is an T|>O such that for any interval I of length s/2 the inequality
dens (X 11) ̂  1 — r| is valid. If \ (A) > 0 then we can set X == A. Otherwise take a small
^>0 and set

X={x:dist(fmx,A)^(m==0,l, . . .)}.

Then dens (X' | D^) ̂  T| > 0. Applying the Koebe Principle to /": K^ -> D^ we get

(11.1) dens(XC |K„±)^K>0,
(11.2) C-^MK^/MK^C.

Let c5^:x\—>2bn~x be the symmetry with respect to b^. Suppose for deflniteness that
X- (K^) ̂  K (K^) and consider the interval a^ K^ containing K^. Then (11.1) and (11.2)
yield

( 1 1 . 3 ) dens(XC|a„K„-)^dens(XC|K;)MK:)^C-lK.
M^n )

The estimates (11.1) and (11.3) contradict Corollary 9.1. •

THE THEOREM ON CANTOR ATTRACTORS. ~ If A is a Cantor attractor then
(i) the transformation/I A is minimal, i. e., co(x)^A for any point xe A (in particular,

A does not contain periodic points);
(ii) the topological entropy /?(/|A) is equal to zero;
(iii) T(c^)^A for any ne ̂  (so, <:„ are boundary points of gaps).
Proof. — (i) Let us show that if o)(x)^c then r^(x)^£>0 [which contradicts

(10.0)]. Indeed, r^ (x) == min ̂  (M^ (x)). For sufficiently large n we have
4:

M»* (;<-)==/"-"i EC,/" ±x] where 0^+^n-l.
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If<Q(x)^c then \fli± x—c\^S>Q and the required condition follows from Lemma 4,1.
(ii) We will make use of some standard facts of the entropy theory of dynamical

systems. Suppose ,^(fJA)>0. Then by the Variational Principle there is an invariant
measure H of a positive entropy: h^(/)>Q, with supp }i <= A.

Now make use of the Pesin-Ledrappier theory of unstable manifolds (see [Le]). It
yields that for almost each point x=(x,x_^,x^ , . .) of the natural extension of (/p)
the series of the inverse branches f^" is well-defined in e^^x^neighbourhood of x,
/^"x=x_^ This contradicts Lemma 11.1.

(iii) Suppose the opposite is valid: ^== T (c^) e A, m'^1. Set €„= {c^ } ;̂o. Take an
€>0 such that there is the inverse branch fQl:D(c^^^£)—>L^a and
L.nCw+i=0. By Lemma 4.1 there is a 5>0 such that for any component K^ , of
/"^(c^ i,5) we have

(11.4) diamK^,<£.

Let us construct a chain of intervals in the following way: K^ == D (c^ + ̂  8)5
KQ^f^K^ K_^-some component of/"1^ intersecting A and so on. Let i>Q be
the first moment for which K _, H C^ +1 ̂  0. Clearly K _, 9 c^ + ^.

By (11.4), the branch/o'1 is well-defined on KL_^ Set K_^+i )= /o 1 ̂ S c ^-0 an^ §°
on with the construction. In such a manner we will get a chain of intervals (K_,}^o
such that K_^ is a component of the inverse image/"1 KQ and K-^n C^=0. Hence,
there exist inverse branches/^1: KQ -^ K_^ contradicting Lemma 11.1. •

Let us mention a corollary of the above theorem which will be used in the next section.
Denote by ^ the family of gaps L for which T L H A 7^ 0 or, equivalently, fL D A ̂  0.

COROLLARY 1 1 . 1 . — The family ^ is infinite.

Proof. - If a gap L does not belong to if, then/L is a gap as well. So, if^L^^
for all ^eN, then L is a homtervaL As there are no homtervals, there is an ^eN for
which/"Lei?.

By the above theorem, the points c^ lie on the boundary of some gaps L^(neN). If
if were finite, the extremum c would be preperiodic, despite the property co (c) = A. •

12. The finite a.c.i. measure has a positive entropy

This section is devoted to the proof of the Theorem on Entropy stated in the
Introduction and at the same time to the new proof of the Theorem on Solenoid's
Measure (see §8).

LEMMA 12.1 (Injective Scheme of Gluing). — Let the atty'actor A contain an invariant
set X of positive measure such that f: X -^ X is an invertible map. Then

(i) the extremum c lies on the boundary of a gap;
(ii) iff(a)=f(b) for some a, 6eA, then a and b lie on the boundary of some gaps L

and M. Moreover, T L 0 M = 0. In particular^ A is a Cantor attractor.
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Proof. - (i) By Corollary 9.2 (ii), if c is not a boundary point of any gap, then there
exist arbitrary short T-symmetric intervals I = [a, a'} for which dens (X 11) ̂  1 - e. By the 2-
Lipschitz property of T near c, we get dens (r X 11) ̂  1 - 2 e. Consequently, X P| T X ̂  0,
despite the assumption.

(ii) Suppose a is not a boundary point of any gap. Then by Corollary 9.2 (ii) there
is an interval I = [d, d\ symmetric with respect to a and such that

(12.1) dens(X|l)>l-e.

By the Main Density Lemma there exists an interval K c: T I having a common
endpoint with rl (say, a=r(^)), containing [oc,Z?] and such that
dens(X|K)^l-e. Hence

(12.2) densCcXiTK^l-L^,

where L is the Lipschitz constant of the involution T (on the whole interval [0, c'^\ where
T is defined).

K
dL^Z(d)^^ ^^^^^^//^—————— \€C(ci}

^W
Fig. 4.

On the other hand, as rK :=> [d,a\, (12.1) implies

(12.3) dens(X|TK)^l-2£.

It follows from (12.2) and (12.3) that XnTX^0-a contradiction.
We have shown that a and b are endpoints of some gaps L and M. Suppose

T L 0 M 7^ 0. Consider then short semi-neighbourhoods U and V of a and b correspon-
dingly such that T U = V. By Corollary 9.2 (i)

dens(X|U)^l-s, dens(X|V)^l-e.

Using the Lipschitz property of T once more, we conclude rX C\ X^0. This contradic-
tion completes the proof. •

LEMMA 12.2.—There are no attractors A possessing the Injective Gluing Scheme
described in Lemma 12.1.

Proof. — Let J^f denote the family of gaps L for which T L C\ A 7^ 0 (as at the end of
Section 11). For each L e ̂  find a point x^ e A Pi T L.

By Corollary 11.1 the family ^ is infinite. Hence, we can extract a sequence L^eJ^f
converging to some point aeA. Then x^ -> r(a). As points of A can approach c only
from one side (the Injective Gluing Scheme), we have a+c.

Further, as a and T (a) lie on A, by the Injective Gluing Scheme, they are the endpoints
of some gaps L and M such that TLriM=0. Consequently, L, and L lie on the
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different sides of a and, hence, T L^ c= M for sufficiently large L This contradicts the
property T L^ 0 A 7^ 0. •

Now we get an immediate corollary from the above lemmas:

COROLLARY 1 2 . 1 . — An attractor A contains no measurable invariant sets X of positive
measure for which f: X —> X is invertible. •

THE SECOND PROOF OF THE THEOREM ON SOLENOID'S MEASURE (§8). — The theorem
immediately follows from the above Corollary as/|A is injective for a solenoidal A. •

PROOF OF THE THEOREM ON ENTROPY. — Let |A be an a. c. i. probability measure, with
supp |^==A. If/^C/)=0 then (/,^i) is invertible as the transformation with the invariant
measure [Ro]. In other words, there is a measurable invariant set X c= A such that
[t (X) = 1 and /: X -> X is a one-to-one transformation. As ^ is absolutely continuous,
X,(X)>0. So, we have arrived at a contradiction with Corollary 12.1. •

APPENDIX 1

Measurable endomorphisms with a quasi-invariant measure

Let X be a space with a finite measure v, and g:X->X be a measurable
endomorphism. The measure v is called quasi-invariant if v(Y)==0=>v(^ - lY)=0 for
any measurable set Y c= X. If as well v(Y)==0=>v(^Y)=0, then the transformation g
is called non-singular. In what follows we will assume that g is non-singular.

They say that some property is valid mod 0 if it is valid outside some null-set.
A set Y is called invariant i f g Y c Y and completely invariant if also g ~ 1 Y c= Y.
A map g is called ergodic if one of the following equivalent properties holds:
El. There are no partitions X=X^ UX^ of X into two invariant measurable sets of

positive measure.
E2. There are no non-trivial completely invariant subsets Y <= X [i.e., such that

0<v(Y)<v(X)].
A set X is called weakly wandering i f / nX^X=0 Oz^l) and strongly wandering if

/"X 0/^=0 (n>m^ff). Of course, in the invertible case these notions are equiva-
lent.

The transformation g is called conservative if it satisfies one of the following equivalent
conditions:

Cl. g has no weakly wandering sets of a positive measure.
C2. Any invariant measurable set Y is completely invariant mod 0, i.e.,

v(g-lY\Y)=0.
C3. The Poincare Return Theorem holds: if v(Y)>0, then orbits of a. a. points yeY

return to Y infinitely many times.
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Further, the transformation g is ergodic and conservative simultaneously if one of the
following properties is valid:

EC1. There are no non-trivial measurable invariant subsets Y c= X (exactly this pro-
perty is useful for us).

EC2. Let Y c= X be any set of positive measure. Then a. a. orbits pass through it
infinitely many times.

00

We call the endomorphism g asymptotically conservative i f X = U g~nC mod 0 where
n=0

C is an invariant set on which g is conservative.
A non-conservative map is called dissipative. It is called purely dissipative if there are

no invariant sets Y <= X of positive measure on which g is conservative.

THEOREM D (The Hopf Decomposition).—Let g:X->X be a non-singular trans-
formation. Then there is the following decomposition'.

X=AC(g)UB(g)

where AC and D are completely invariant sets such that g \ AC is asymptotically conserva-
00

five, while g\D is dissipative. Moreover, AC= U /~"C where C=C(g) is the maximal
n=0

invariant subset on which g is conservative. We call it the Conservative Kernel of g. The
sets AC, D and C are uniquely defined mod 0.

COROLLARY. — An ergodic endomorphism g is either asymptotically conservative or
purely dissipative.

00

Remark that if an invertible transformation g is purely dissipative then X = U /" Y
n=0

where Y is a strongly wandering set. This statement fails for non-invertible transforma-
tions as consideration of solenoidal maps of the interval shows (see § 8).

APPENDIX 2

Polymodal and smooth generalizations: survey of the results

Let us introduce some classes of transformations of the interval or the circle.
e^—C^maps with a negative Schwarzian derivative and d non-flat critical points each

of which is an extremum.
^ — C^maps with d non-flat critical points each of which is an extremum.
^j—C^maps with d non-flat critical points.

00 00 00

y= u y^ ^= u <,, 9i== u 9^
d=0 d=0 d=0
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Remark. — For C00 maps non-flatness of critical points means that/(n) (c) 7^ 0 for some
ne N. For lower smoothness this term needs extra explanation of the sort: "j/' [ is of a
power order near critical points" (see [BL9], [MMS]).

The widest reasonable class for which the results of the present paper should be valid
is the class 91. At the present time the authors can prove all the results for fe^— and
part of them in wider classes. Let us present these generalizations in more detail (we
are dwelling on all, not only our own, results).

Section 2. SINGER'S THEOREM ON LIMIT CYCLES is valid for arbitrary maps with negative
Schwarzian derivative [Si]. Consequently, such maps with d critical points have at most
a?+2 limit cycles. In the recent paper [MMS] it was proved that any map/e 91 has
finitely many limit cycles.

The Theorem on Wandering Intervals has been generalized subsequently to the following
classes: homeomorphisms of the circle of class 91 [Y]; class ^\ [MS]; class ^[L2]; class
^ [BL9]; class 91 [MMS]. So by the present time it has been proved in the maximal
sensible generality. The analytical tools for smooth generalizations were developed in
[Y], [MS], while the principle step toward the polymodal case was made in [L2].

The Theorem on the Spectral Decomposition is of a purely topological nature and goes
back to Sharkovskii's papers (1960's). The complete picture for arbitrary continuous
maps of the interval is described in [Bl] and for maps of one-dimensional branched
manifolds in [B2]. For piecewise monotone maps it was described as well by many
other authors (Z. Nitecki, F. Hofbauer, Preston...). F. Hofbauer treated also the discon-
tinuous case.

Section 4. THE LEMMA ON NON-CONTRACTABILITY is valid for arbitrary continuous maps
under the extra assumption that J is non-wandering.

In The First Expanding Lemma f can be non-smooth, but still unimodal. In the
polymodal case this lemma should be changed by the technique of unimodal decomposi-
tions [L2].

The Second Expanding Lemma clearly holds for arbitrary piecewise monotone maps.
For the Third Expanding Lemma the condition of unimodalness is essential. The

proof uses the condition S/< 0 as well, but probably it is extra.

Section 5. Lemma 5.1 was proven by Mane [Ma] for arbitrary C^maps.
The Theorem on Attractors was proven in [BL1], [BL2], [BL3] for arbitrary maps with

S/<0 and finitely many critical points (perhaps, flat). The authors also can prove it
for/ej^. For this class the way should be another: one must start from the Decomposi-
tion into Ergodic Components as in [BL6] and then construct the attractor for each
ergodic component of positive measure.

Section 6. In the polymodal case the Theorem on Ergodicity must be replaced by the
Decomposition into Ergodic Components. As we have just mentioned, it was realised
in[BL6]for/e^.
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Note, however, that in the polymodal solenoidal case Lemma 6.1 is proven in a
slightly weaker form, since we have no exact polymodal version of Lemma 4.4.

Section 7. Using the technique of Unimodal Decompositions, the Theorem on Strongly
Wandering Sets can be proven for fe^.

Section 8. The Theorem on Solenoid's Measure is proven in [MMSS] for/eja^ and in
[BL8] - for the widest class 91.

Sections 9-11. The results of these sections are generalized to the class y without
essential changes. Actually, we can prove them for/ej^.

Section 12. These results we can prove for/e^.
Note added in proof. — We draw the reader's attention to a paper by J. Guckenheimer and S. Johnson,

Distortion of S-unimodal maps closely related to the present one, and to a paper by M. Martens, Cantor
attractors of unimodal maps proving that strange attractors have zero measure.
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