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HOW LITTLE IS LITTLE ENOUGH?

Alexander Blokh and Eric Teoh

Abstract. Let f be a continuous map f : X → X of a metric space X into itself.
Often the information about the map is presented in the following form: for a finite
collection of compact sets A1, . . . , An it is known which sets have the images contain-
ing other sets, and which sets are disjoint. We study similar but weaker than usual
conditions on compact sets A1, . . . , An assuming that the common intersection of all
sets A1, . . . , An is empty (or making even weaker but more technical assumptions).
As we show, this implies that the map is chaotic in the sense that it has positive
topological entropy, and moreover, there exists an invariant compact set on which f
is semiconjugate to a full one-sided shift.

1. Introduction

The modern theory of topological dynamical systems studies (continuous) maps
f : X → X of topological spaces (indeed, in a more general sense it also studies
flows, yet in this paper we concentrate upon maps only). An important problem
here is to describe the limit behavior of trajectories of points (the trajectory of a
point x is the sequence x, f(x), f2(x), . . . ). Apart from studying the trajectories of
individual points, it is reasonable to also study the limit behavior of all points of X
and estimate the variety of the behaviors exhibited by them.

A widely recognized parameter of a dynamical system which can serve as a quan-
titative counter-part of the term “variety” used above is the topological entropy
of a map, usually denoted h(g) where g is the map. Originally ([ACM]) it was
introduced for compact spaces X, but can be extended onto non-compact spaces as
well ([Bo]). Therefore, it is important to estimate the topological entropy of a map.
Moreover, even to be able to say that the topological entropy of a map is positive is
often important, and it is widely accepted that maps of positive entropy should be
recognized as “chaotic”. A well-known property of the topological entropy states
that h(gn) = nh(g), therefore the topological entropy is positive if and only if there
exists a power of the map which has positive topological entropy.

All of the above justifies the interest to conditions on the map which allow one
to estimate the topological entropy or at least to be able to say that the topological
entropy is positive. If we do not specify the topological space X on which the map
is defined, such conditions inevitably must be very general. A rather likely language
for them is that of the set theory, e.g. the language describing how various sets and
their images cover each other.
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The following definition is a part of such language. Suppose that there are
pairwise disjoint compact sets A1, . . . , An, n ≥ 2 such that for any 1 ≤ i ≤ n we have
f(Ai) ⊃ ∪n

j=1Aj . Then we say that f has an n-horseshoe or that f, A1, . . . , An

form a horseshoe (cf. [LM, MS, S]). In this case by A′ we denote the set of all
points x such that f i(x) ∈ ∪n

j=1Aj for every i. If f has an n-horseshoe for some n
we simply say that f has a horseshoe.

It is well-known that if a power of a map has an n-horseshoe then it has positive
entropy. Yet even when the suitable sets Ai are found one has to check not only the
fact that their images cover their union, but also the fact that the sets are pairwise

disjoint which means that one has to perform
n(n− 1)

2
verifications. A reasonable

question then is whether the number of such verifications, necessary to ensure that
the topological entropy is positive, can be decreased. On the other hand, it is also
reasonable to ask if indeed all the conditions defining horseshoes are necessary for
the conclusion that the entropy is positive. It is obvious that if we put no conditions
on how the sets intersect then we will not be able to make conclusions about the
dynamics at all. Indeed, we can set A1 = A2 = · · · = An = X in which case the
covering property f(Ai) ⊃ ∪n

j=1Aj will be satisfied. However in the situation in
question we can make no conclusion about the dynamics of f , and this precisely
because we make no assumptions about the intersections of sets A1, . . . , An. Hence
some conditions on the intersections of sets A1, . . . , An must remain for us to be
able to say something about the dynamics of f .

This justifies the following question: how can we weaken the assumption that a
power of a map has a horseshoe and still be able to say that the topological entropy
of the map is positive? Can we achieve this by replacing the condition of pairwise
disjointness of the sets by a weaker one? According to the above given trivial
example, even weakening the assumption of pairwise disjointness of the sets we
should not totally remove it keeping the intersections of the sets rather small. The
strategy thus is to assume that covering properties relating sets and their images
are satisfied, but then make assumptions upon their intersections which should be
sufficiently small, and the main question is how little is little enough for their
intersections to warrant that the entropy is positive. This not only explains the
title but also outlines the main idea of this paper thus making such non-standard
for a mathematical paper title quite appropriate. So, the aim of this paper is to
weaken the condition of pairwise disjointness of the sets A1, . . . , An and hence to
decrease the number of verifications involved in the checking of this condition while
still being able to conclude that the entropy is positive (we actually make a stronger
conclusion which will be described in detail below).

Let us pass on to the exact statements. First we need some standard information
from the field. Well-known properties which guarantee that the topological entropy
of a map is positive are Theorem 1.1 and Lemma 1.2 below. To formulate them
we need several definitions. Namely, we denote by Σn the space of all one-sided
sequences of n symbols, and by σn the one-sided shift on Σn; if we do not want to
specify n we call σn|Σn a full shift. Also, let X and Y be topological spaces and
let f : X → X and g : Y → Y be continuous maps. If there is a continuous onto
map h : X → Y with h ◦ f = g ◦ h, we will say that f and g are semiconjugate
(by h). The map h is called a semiconjugacy (between f and g), and the map g
is called a factor of f .

Theorem 1.1. Suppose that f : X → X is a continuous map of a topological space
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X which has a horseshoe. Then there exists an f -invariant compact set on which f
is semiconjugate to a full shift.

The following lemma together with Theorem 1.1 introduces a useful machinery
allowing one to prove that maps have positive topological entropy.

Lemma 1.2. If for a continuous map F there exists an F -invariant compact set
on which F is semiconjugate to a full shift, then h(F ) > 0. In particular, if a power
of a map f has a horseshoe then h(f) > 0.

Notice that we deliberately avoid quantitative versions of Theorem 1.1 and
Lemma 1.2 in which we would specify the number of sets forming a horseshoe,
the power of f admitting this horseshoe and the numerical lower bound on the
topological entropy. Indeed, our main concern in this paper is to suggest new con-
ditions for the positivity of the topological entropy while not concentrating upon its
estimates. However, in our view obtaining such estimates under the circumstances
described in this paper is an interesting mathematical problem (we would like to
mention here a recent paper [W] whose results can be helpful in this respect).

Before we move on, we need to introduce several new notions; they are needed to
describe some results which motivated us in our study (even though they are more
of measure-theoretic nature and thus are not directly relevant to the purpose of our
study). A set in a measurable space is said to have trivial measure if the measure
of this set is 0, or the measure of its complement is 0. A map is said to be ergodic
if every invariant set for this map has trivial measure.

Another parameter which describes the variety of possible limit behaviors of
points and depends on an invariant measure µ of the map g, is called the metric
entropy (of g with respect to µ). It is denoted by hµ(g). There is a very nice
connection between the metric entropy and the topological entropy: the topologi-
cal entropy is the supremum of metric entropies taken over all (ergodic) invariant
measures. Thus, if the topological entropy is positive then there exists an invariant
ergodic measure with respect to which the map has positive entropy in which case
it is easy to see that the measure in question is non-atomic, i.e. vanishes on points
(“atoms”) of the space (non-atomic measures are also called continuous). In fact
the existence of a non-atomic invariant measure can serve as another characteristic
of the fact that the map is to some extent chaotic and that the variety of the limit
behaviors of points is big, but this characteristic is weaker than the positivity of
the entropy (for the positivity of the topological entropy implies the existence of a
non-atomic invariant ergodic measure, but not vice versa).

A condition guaranteeing that a map f admits a non-atomic invariant measure
is obtained in [LP]. Before we state it, let us introduce some useful terminology.
Suppose that f : X → X is a continuous map of a topological space X. Suppose that
there are n ≥ 2 compact non-empty sets A1, . . . , An such that f(Ai) ⊃ ∪n

j=1Aj and
∩n

k=1Ak = ∅. Then we say that f has a weak n-horseshoe and that f, A1, . . . , Ak

form a weak n-horseshoe. If we do not want to specify the number n we simply
say that f has a weak horseshoe. Observe that a weak 2-horseshoe is simply a
2-horseshoe. For n ≥ 3, it is easy to find examples for which a weak n-horseshoe is
different from an n-horseshoe. Thus, if the condition of pairwise disjointness of our
sets is replaced by a weaker condition of their common intersection being empty,
then the sets are said to form a weak horseshoe. Observe that it is easier to verify
whether a collection of sets forms a weak horseshoe because we only need to check
n intersections of our sets (we intersect the first set with the second, then their
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intersection with the third etc) rather than
n(n− 1)

2
intersections of pairs of the

sets.
The following theorem was proven in [LP].

Theorem 1.3. Suppose that f : X → X is a continuous map of a topological space
X and it has a weak n-horseshoe. Then f admits a non-atomic invariant measure.

It turns out that the assumptions about the sets made in [LP] serve our purposes
too. Namely, the following theorem is the main theorem of our paper.

Theorem 1.4. Suppose that f : X → X is a continuous map of a topological
space X. Suppose that a power of f admits a weak horseshoe. Then h(f) > 0
and there exists a set B and a power g of f such that B is g-invariant and g|B is
semiconjugate to a full shift.

A question asked in [LP] is whether in the situation of Theorem 1.3 f has an
invariant non-atomic ergodic measure. Theorem 1.4 implies Corollary 1.5 answering
this question.

Corollary 1.5. Suppose that f : X → X is a continuous map of a topological
space X. Suppose that a power of f has a weak horseshoe. Moreover, there exists
an invariant non-atomic measure ergodic measure µ of f such that hµ(f) > 0.

In a recent paper [BGL] some weaker conditions implying the existence of a weak
horseshoe for a map are discovered. Combined with Theorem 1.4 they imply the
same conclusions as this theorem. However since the conditions from [BGL] are of
technical nature we postpone their exact formulations as well as the statement of
the theorem which combines the results of [BGL] and our Theorem 1.4 until the
third section of this paper.

Let us now make some final remarks. We show that under some circumstances
a certain power fk of the map f has an fk-invariant subset on which fk is semi-
conjugate to a full shift which implies the positivity of the entropy. In other words,
in our case the positive entropy is assumed on an invariant for some power of f
horseshoe-like set. This is related to a deep question whether for certain classes
of dynamical systems the topological entropy of the map can be approximated on
horseshoes admitted by its powers. Even a relevant but weaker question below does
not have a general answer: for what classes of non-invertible dynamical systems
is it true that the existence of horseshoes in the above sense is equivalent to the
positive entropy of the map? This problem is that of topological dynamics rather
than theory of smooth dynamical systems. It was answered in dimension one (it is
proven in [LM, MS] that the topological entropy is approximated on horseshoes for
all maps of graphs), yet we are not aware of general topological results in higher
dimensions.

The number of papers devoted to various definitions of “chaotic” maps is enor-
mous. It is virtually impossible, and actually unnecessary, to list them in a short
paper devoted to a very specific aspect of this notion. Therefore we decided to
refer the reader of this paper only to works which are relevant to our topic while
the choice of more general sources of information open (we recommend the book
[ALM] a good source). In fact the advantage of our approach is that even though
the corollaries of the main result use non-trivial and highly non-elementary notions
such as the metric and topological entropy, the main argument is quite elemen-
tary and available to the reader with minimal experience in the dynamical systems
theory.
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One of papers containing results somewhat related to ours is [KY]. The main
result of [KY] is indeed that under some circumstances a topological dynamical
system admits an invariant subset on which it is semiconjugate to a full shift over
M symbols where M > 1. However, the assumptions made in [KY] are much more
complicated than ours and topological in its nature (in particular, they involve con-
nected sets and a specific partition of the space Q into connected subsets connecting
two chosen subsets of Q and mapping onto each other in a specific way). Moreover,
the part of the conditions in [KY] which slightly resembles what is being done in
our paper, is in fact assuming pairwise disjointness of the sets involved whereas the
whole point of our paper is to weaken this assumption and replace it by the fact
that the common intersection of all sets involved is empty. However it may well
be so that combining the tools developed in [KY] and our tools one can get new
results, and we thank the referee for drawing our attention to the paper [KY] as
well as for other useful remarks.

2. Main Theorem

It will be convenient to refer to sets which form a weak horseshoe as allowed
sets. Even though the conclusions of Theorem 1.4 deal with a power of f , we may
assume, without loss of generality, that the map itself admits a weak horseshoe.
We prove Theorem 1.4 by mathematical induction. The case involving a weak 2-
horseshoe is covered by Theorem 1.1 and Lemma 1.2, thus establishing the base
of mathematical induction. We clarify the inductive proof by proving the theorem
for the case of a weak 3-horseshoe based on the fact that the theorem holds for a
weak-2 horseshoe.

So, let us look at the case of three allowed sets A1, A2, A3. In this case, each set
may intersect with all others, but the intersection of all sets is empty. Since the
union of all three sets (which we denote by Ã) is contained in the image of any set,
then for any i = 1, 2, 3 and j = 1, 2, 3 we have that f(f−1(Ai) ∩Aj) = Ai.

A finite itinerary is an m-tuple, Im(x) = (i0, i1, ..., im), which describes the
location of a given x in Ã under finitely many iterations of f . In this notation, ij
indicates that f j(x) ∈ Aij . The fact that the image of any allowed set under f
contains Ã enables us to construct an itinerary for any point in Ã for as long as the
point and its forward images remain in Ã. For example, suppose that we have a
point x that lies in A1 and is mapped into a point f(x) ∈ A2, and then into a point
f2(x) ∈ A1, and then into a point f3(x) ∈ A3. Then I3(x) = (1, 2, 1, 3).

Observe that in our situation we should talk of an itinerary, not the itinerary
because such itineraries are not necessarily unique. For example, suppose the point
x considered above lies in the intersection of A1 and A2. Then I ′3(x) = (2, 2, 1, 3) is
also a correct description of the location of x under iterations of f . Such a condition
may occur for any iterate of f . So, generally speaking for a given point x we may
have a set of itineraries of given length. Also, in the case when a point is mapped
outside of Ã we consider the corresponding finite itinerary of the point not defined
and do not work with such cases from now on.

Similarly we can define an infinite itinerary, I(x), of a point x as a sequence
(i0, i1, . . . ) such that for any j we have f j(x) ∈ Aij . Again, since we allow for
intersections between sets, we may have a collection (maybe even infinite) of infinite
itineraries of x, and I(x) is only defined for the set A′ of points x whose entire orbit
is contained in Ã.



974 ALEXANDER BLOKH AND ERIC TEOH

Let us define a finite cylinder as the set of all points exhibiting a given finite
itinerary under f . Similarly, an infinite itinerary determines an infinite cylinder
as the set of all points which exhibit it. It is easy to see from the definition that if
Im = (i0, i1, . . . , im) is a finite itinerary then the corresponding cylinder is AIm =
Ai0∩f−1(Ai1)∩f−2(Ai2)∩· · ·∩f−m(Aim). Similarly, if I = (i0, i1, . . . ) is an infinite
itinerary then the corresponding infinite cylinder is ∩∞j=0f

−j(Aij ). The following is
an easy but useful lemma.

Lemma 2.1. All cylinders, finite or infinite, are non-empty compact sets. The
m-th image of the cylinder generated by a finite itinerary I = (i0, i1, i2, ..., im), is
Aim , and so fm+1(AI) ⊃ Ã.

Proof. Left to the reader.

We now consider two cylinders and examine the intersection of these two cylin-
ders.

Lemma 2.2. Suppose that there exist finite itineraries I 6= J such that correspond-
ing cylinders AI and AJ , are disjoint. Then the following holds:

(1) a power g of f admits a horseshoe;
(2) there exists a g-invariant compact set on which g is semiconjugate to a full

shift;
(3) h(f) > 0.

Proof. By Theorem 1.1 and Lemma 1.2 it is enough to prove the first claim of the
lemma. Without loss of generality we may assume that I, J are of the same length
m. Let g = fm+1. Then by Lemma 2.1 we have g(AI) ∩ g(AJ ) ⊃ Ã ⊃ AI ∪ AJ .
Since AI , AJ are disjoint we see that claim (1) is verified as desired.

Recall that our aim is to prove Theorem 1.4 in the case when a power of the map
has a weak 3-horseshoe. According to Lemma 2.2, if there are two finite cylinders
which are disjoint then the conclusions of Theorem 1.4 hold. Therefore it remains
to consider the case when all finite cylinders are pairwise non-disjoint. Since by
Lemma 2.1 they are compact sets in this case any two infinite cylinders are also
non-disjoint.

Let us introduce new sets and itineraries with respect to them. Namely, set
P (i) = ∩i 6=jAj . Clearly, there are 3 sets P (1), P (2), P (3) which we get this way. It
is important to note that for every i 6= j, P (i) ∩ P (j) = ∅, otherwise ∩3

i=1Ai 6= ∅
contrary to the assumption that A1, A2 and A3 form a weak horseshoe.

Set ∪3
i=1P

(i) = R. Denote by R′ the set of all points y such that the orbit of y
is contained in R. As before, to every point y ∈ R′ we can associate its itinerary,
IP (y), in the sense of sets P (1), P (2), P (3) which we will simply call its P -itinerary.
Observe that since P -sets are pairwise disjoint then for any point for which there
exists its P -itinerary, this itinerary is unique.

Let us now show that actually for any P -itinerary there exists a point x which
exhibits it. It will be useful to introduce new notation. Namely, let {1, 2, 3}\{l} =
{b1(l), b2(l)} with b1(l) < b2(l). Set B1(l) = Ab1(l) and B2(l) = Ab2(l). In other
words, given l we remove the set Al from the collection of sets A1, A2, A3, and
consider two remaining sets denoting them B1(l), B2(l). Observe that P (l) = B1(l)∩
B2(l).

Now, let us consider a P -itinerary (i0, i1, . . . , in, . . . ). Define two sequences of
sets

K1 = (B1(i0), B1(i1), . . . , B1(in), . . . )
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and
K2 = (B2(i0), B2(i1), . . . , B2(in), . . . )

and consider them as usual itineraries in the sense of the allowed sets A1, A2, A3.
This allows us to define the infinite cylinders AK1 = ∩∞j=0f

−j(B1(ij)) and AK2 =
∩∞j=0f

−j(B2(ij)). By the assumptions these cylinders have a non-empty intersec-
tion. On the other hand it is easy to see that this intersection can be written as
follows:

AK1 ∩AK2 =
∞
⋂

j=0

(f−j(B1(ij)) ∩ f−j(B2(ij))) =
∞
⋂

j=0

f−j(P (ij))

which implies that there is a point on which the P -itinerary (i0, i1, . . . , in, . . . ) is
realized. In other words, if x ∈ AK1 ∩ AK2 , then for the l-th iteration of f at the
point x we have f l(x) ∈ B1(il)∩B2(il) = P (il). Therefore, the point x exhibits the
P -itinerary (i0, i1, . . . , in, . . . ) as desired.

We can summarize the proven as follows: in our situation there are three pairwise
disjoint compact sets P (1), P (2), P (3) such that every P -itinerary is exhibited by
some point in their union. To finish the proof of Theorem 1.4 in this case define the
map ϕ which associates to every point x ∈ R′ its P -itinerary. It remains to prove
that in this situation the map ϕ is continuous and semiconjugates f |R′ to the full
shift σ3|Σ3.

Let us start with a point x ∈ R′. Let IP (x) = (i0, i1, i2, ...) be its P -itinerary.
Then f(x) ∈ P (i1) by definition of the P -itinerary. So (ϕ ◦ f)(x) = (i1, i2, ...). Now
we compute (σ3 ◦ ϕ)(x). This is simply the one-sided shift on IP (x), which equals
(i1, i2, ...). Thus ϕ semiconjugates f |R′ to the full shift σ3|Σ3 as desired.

Let us now prove that ϕ is a continuous map. Let {xn} → x be a convergent
sequence in R′. By the continuity of f we easily observe that for a given l we
have {f l(xn)} → f l(x). Let us fix an integer l. Since P (1), P (2), P (3) are pairwise
disjoint compact sets, then if y, z ∈ R′ are sufficiently close then y, z ∈ P (i) for
some i. Moreover, fr(y) and fr(z) belong to the same P -set for all 1 ≤ r ≤ l. So
given l we see that for all sufficiently large n we have fr(xn), fr(x) ∈ P (ir) for all
r ≤ l. This implies that ϕ-images of x and xn all have the same first l entries and
therefore are close. So it follows that {ϕ(xn)} → ϕ(x) as desired.

Now we can prove Theorem 1.4 in general by means of mathematical induction.
Let us make the inductive hypothesis by supposing that given a weak k-horseshoe,
the conclusions for Theorem 1.4 hold. Suppose we are given a weak (k+1)-horseshoe
(this will be a standing assumption for the rest of the paper). We may again define
finite or infinite itineraries and cylinders relating the given allowed sets with f as
we did in the case when f admits a weak 3-horseshoe. We also let Ã = ∪k+1

i=1 Ai.

Lemma 2.3. All cylinders, finite or infinite, are non-empty compact sets. The
m-th image of the cylinder generated by a finite itinerary I = (i0, i1, i2, ..., im), is
Aim , and so fm+1(AI) ⊃ Ã.

Proof. Left to the reader.

Lemma 2.4. If there exist k finite itineraries I1, . . . , Ik in terms of A1, . . . , Ak+1

such that ∩k
j=1AIj = ∅, then the following holds:

(1) a power g of f admits a weak k-horseshoe;
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(2) there exists a g-invariant compact set on which g is semiconjugate to a full
shift;

(3) h(f) > 0.

Proof. Without loss of generality, we may again assume that itineraries I1, I2, . . . , Ik

are of length m. Let g = fm+1. Then by Lemma 2.3, we have ∩k
j=1g(AIj ) ⊃ Ã ⊃

∪k
j=1AIj . Since ∩k

j=1AIj = ∅, we see that we do have a weak k-horseshoe. By
the inductive hypothesis, there exists a set B such that B is g-invariant and g|B
is semiconjugate to a full shift. This completes the proof of Theorem 1.4 in this
case.

By Lemma 2.4, we may assume that for any collection of k itineraries, the inter-
section of their corresponding cylinders is non-empty(and therefore the intersection
of any k infinite cylinders is also non-empty). We may again introduce the sets
defined as P (j) = ∩i 6=jAi. This way we will get k+1 sets P (1), . . . , P (k+1). Observe
that these k + 1 sets are pairwise disjoint, otherwise ∩k+1

j=1Aj 6= ∅, contrary to the
assumption that the sets A1, A2, . . . , Ak+1 and f form a weak (k + 1)-horseshoe.

Let Q = ∪k+1
i=1 P (i). Denote by Q′ the set of all points y ∈ Q such that the

orbit of y is contained in Q. Notice that to every point y ∈ Q′ we can associate
its itinerary in terms of the sets P (1), P (2), . . . , P (k+1), which we again refer to as
its P -itinerary. This itinerary is unique since the sets P (1), P (2), . . . , P (k+1) are
pairwise disjoint.

Now let us show that for any P -itinerary, there exists a point y which exhibits it.
We again introduce a useful notation. Let B(l) = {1, 2, . . . , k + 1}\{l} = {b1(l) <
b2(l) < · · · < bk(l)}. As before, set Bi(l) = Abi(l). In other words, given l we remove
the set Al from the collection A1, A2, . . . , Ak+1 of sets and consider the k remaining
sets denoting them B1(l), B2(l), . . . , Bk(l). Observe that P (l) = ∩k

i=1Bi(l).
Let us consider a P -itinerary (i0, i1, ..., in, ...). Define k sequences of sets

Kj = (Bj(i0), Bj(i1), . . . , Bj(in), . . . ), 1 ≤ j ≤ k

and consider them as usual itineraries in the sense of the k+1 sets A1, A2, . . . , Ak+1.
This allows us to define the infinite cylinders AKh = ∩∞j=0f

−j(Bh(ij)), 1 ≤ h ≤ k.
By our assumptions, ∩k

h=1AKh 6= ∅. It is easy to again see that this intersection
can be written as follows:

k
⋂

h=1

AKh =
∞
⋂

j=0

∩k
h=1f

−j(Bh(ij)) =
∞
⋂

j=0

f−j(∩k
h=1Bh(ij)) =

∞
⋂

f−j(P (ij))

which implies that there is a point on which the P -itinerary (io, i1, . . . , in, . . . ) is
realized. In other words, if x ∈ ∩k

h=1AKh , then for the l-th iteration of f at the
point x we have f l(x) ∈ ∩k

h=1Bh(il) = P (il). Therefore, the point x exhibits the
P -itinerary (i0, i1, . . . , in, . . . ) as desired.

We can summarize the proven as follows: in this situation there are k pairwise
disjoint compact sets P (i), 1 ≤ i ≤ k + 1 such that every P -itinerary is exhibited by
some point in their union. To finish the proof of Theorem 1.4 in this general case,
we again define the map ϕ which associates to every point x ∈ Q′ its P -itinerary. It
remains to prove that in this situation the map ϕ is continuous and semiconjugates
f |Q′ to the full shift σk+1|Σk+1.
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The proof that ϕ semiconjugates f |Q′ to the full shift σk+1|Σk+1 is analogous to
its proof in the case of 3 allowed sets and is left to the reader.

Let us now prove that ϕ is a continuous map. Let {xn} → x be a convergent
sequence in Q′. By the continuity of f we easily observe that for a given l we have
{f l(xn)} → f l(x). Let us fix an integer l. Since P (1), P (2), . . . , P (k+1) are pairwise
disjoint compact sets, then if y, z ∈ Q′ are sufficiently close then y, z ∈ P (i) for
some i. Moreover, fr(y) and fr(z) belong to the same P -set for all 1 ≤ r ≤ l. So
given l we see that for all sufficiently large n we have fr(xn), fr(x) ∈ P (ir) for all
r ≤ l. This implies that ϕ-images of x and xn all have the same first l entries and
therefore are close. So it follows that {ϕ(xn)} → ϕ(x) as desired.

We have now shown that if Theorem 1.4 holds in the case of a weak k-horseshoe,
then it holds when the map has a weak (k + 1)-horseshoe. By the principle of
mathematical induction this completes the proof of Theorem 1.4 in general.

3. Concluding remarks

It is easy to see that Theorem 1.4 can be generalized even more. Just like
the existence of a weak horseshoe implies that there is a set on which a map is
semiconjugate to a full one-sided shift, there are conditions which on the surface
of it look weaker than that of existence of a weak horseshoe while imply such,
perhaps for some power of f . For example, consider a collection A of compact sets
A1, . . . , An such that f(Ai) ⊃ ∪n

i=1Ai. Also, denote the intersection ∩n
i=1Ai = BA

and assume that there are no points whose entire forward orbits are contained in
BA. Clearly this assumption is weaker than that of the set BA being empty (i.e.
than that of the collection A1, . . . , An forming a weak horseshoe. However it easily
implies that a power of f does have a weak horseshoe. Indeed, since there are no
points with forward orbits in BA we see that for the set ∪∞i=0f

−i(BA) = B∩
A we

have that B∩
A = ∅, and since BA is compact we see that there exists a finite N

such that ∪N
i=0f

−i(BA) = ∅. Now, let us consider finite itineraries of length N + 1
defined as I1 = (1, 1, . . . , 1), I2 = (2, 2, . . . , 2), . . . , In = (n, n, . . . , n). Then consider
the cylinders AI1 , . . . , AIn . By Lemma 2.3 we have that fN+2(AIk) ⊃ ∪n

i=1Ai for
any k = 1, . . . , n. On the other hand the fact that ∪N

i=0f
−i(BA) = ∅ implies that

∩n
k=1AIk = ∅. Therefore AI1 , . . . , AIn form a weak horseshoe for fN+2 and the

conclusions of Theorem 1.4 hold.
Similar ideas are employed in a recent paper [BGL] in which an even weaker than

above set of conditions implying the existence of a weak horseshoe is suggested.
Following [BGL] and using the notation introduced above, let us say that a map
T : X → X is strict with respect to finite collection A of non-empty compact sets
A1, . . . , AN if the set B∩

A has a neighborhood U such that ∩N
k=1Ak 6⊂ ∪∞k=1T

k(U).
The following theorem is proven in [BGL].

Theorem 3.1. Suppose that there exists a collection of compact sets A1, . . . , AN
such that f is strict with respect to this collection and also f(Ai) ⊃ ∪∞k=1Ak for any
i = 1, . . . , N . Then f has a weak horseshoe.

Combining Theorem 3.1 and Theorem 1.4 we immediately get the following The-
orem 3.2.

Theorem 3.2. Suppose that there exists a collection of compact sets A1, . . . , AN

such that some power fm of a map f is strict with respect to this collection and
also fm(Ai) ⊃ ∪N

k=1Ak for any i = 1, . . . , N . Then h(f) > 0 and there exists a set
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R and a power g of f such that R is g-invariant and g|R is semiconjugate to a full
shift.
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