
BACKWARD STABILITY FOR POLYNOMIAL MAPS
WITH LOCALLY CONNECTED JULIA SETS

ALEXANDER BLOKH AND LEX OVERSTEEGEN

Abstract. We study topological dynamics on unshielded planar con-
tinua with weak expanding properties at cycles for which we prove that
the absence of wandering continua implies backward stability. Then we
deduce from this that a polynomial f with locally connected Julia set is
backward stable outside any neighborhood of its attracting and neutral
cycles. For a conformal measure µ this easily implies that one of the
following holds: 1. for µ-a.e. x ∈ J(f), ω(x) = J(f); 2. for µ-a.e.
x ∈ J(f), ω(x) = ω(c(x)) for a critical point c(x) depending on x.

1. Introduction

In the present paper we study the problem of backward stability which is
an extension of the Lyapunov (forward) stability to the backward dynamics
of a non-invertible map. Essentially, this notion was first introduced by
Fatou who showed that f : ̂C→ ̂C is backward stable at points not belonging
to the limit sets of critical points. Other facts concerning backward stability
which follow from classical results (in particular, from the description of the
local dynamics at periodic points given, e.g., in [CG]) are that f : ̂C→ ̂C is
not backward stable at any parabolic periodic point which lies in the Julia
set. Obviously, f is not backward stable at attracting periodic points. Thus,
the well-known obstacle for the backward stability of a polynomial at a point
is that the point could be an attracting or neutral periodic point.

One can talk about backward stability in a more general setting not re-
quiring any analytical or smooth properties of the map. In fact, this is
exactly what we do in this paper. Our main result is that continuous maps
of so-called unshielded plane continua without wandering subcontinua and
with some weak expanding properties are backward stable. The main tools
are new and developed by combining ideas from continuum theory and dy-
namics.

As a corollary we show that polynomial maps with locally connected Julia
sets are backward stable at points which are neither attracting nor neutral.
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Thus, we remove the restriction from [BL1] (see also [BL3]) where we con-
sidered polynomials without neutral or attracting cycles and show that for
polynomials with locally connected Julia sets classical obstacles are the only
obstacles for backward stability. This is done by methods different from
those in [BL1]. We also prove backward stability for laminations. Finally,
we use our results as well as some standard arguments and results of [BM] to
describe Milnor primitive attractors for conformal measures of polynomials
with locally connected Julia sets which serves also as a motivation for our
research. In fact, the problem of describing attractors (in wider terms, of
describing typical limit sets) of polynomial or rational maps has been con-
sidered in a number of papers [Bar, BMO1, BMO2, BM, GPS, Lyu, McM,
Pra], and it is not hard to see that it can be solved for conformal mea-
sures of maps which are backward stable on their Julia set. Notice that in
[BM] an approach applicable to continuous maps of compact metric spaces
was discovered (of which the backward stable maps are a particular case)
which allows one to describe primitive attractors of graph-critical rational
functions, i.e. such rational functions whose critical points belong to an
invariant graph.

Let us give a short survey of more recent results concerning backward
stability. Mañé [Ma] showed that f : ̂C → ̂C is backward stable at non-
parabolic and non-attracting points not belonging to the limit sets of re-
current critical points. In [P] the backward stability was proven for Collet-
Eckmann rational maps of ̂C. In [L] the formal definition of backward sta-
bility was given, and then this property was verified for polynomials with
one critical point and connected locally connected Julia set (if a Julia set
is locally connected then it is connected, see e.g. [CG]; thus from now on
we will simply talk about polynomials with locally connected Julia sets),
but without neutral or attracting cycles. In [BL1] the backward stability
was verified for polynomials with locally connected Julia set and arbitrary
number of critical points, but still without neutral or attracting cycles. In
fact this was obtained in [BL1] as one of the corollaries of the fact that poly-
nomials with locally connected Julia sets have no wandering subcontinua in
the Julia set; the argument used a version of Yoccoz’ puzzle construction.
Since in the presence of attracting cycles the construction from [BL1] does
not apply we developed in this paper a different approach which combines
ideas from continuum theory and topological dynamics, and is applicable to
a wide class of continuous maps.

Everywhere below when speaking of convergence of sets we mean conver-
gence in the sense of Hausdorff metric.

We would like to express our gratitude to G. Levin for valuable discussions
of the results of this paper.
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2. Topological properties of unshielded continua

In what follows X always denotes a compact metric space. Also, we often
rely upon well-known facts from topology without referring the reader to
any specific source. For our purpose the book [Kurat] can be used as a
complete reference. Mainly we study finitely Suslinian continua and their
subclass (Lemma 2.9) formed by unshielded continua.

Definition 2.1. A metric space X is finitely Suslinian if for each ε > 0, any
collection of pairwise disjoint continua of diameter larger than ε is finite. A
metric space Y is hereditarily locally connected if any subcontinuum of Y is
locally connected.

Theorem 2.2. [Kurat] The following claims hold.

(1) A finitely Suslinian continuum is hereditarily locally connected.
(2) A locally connected continuum is arcwise connected.

The main object of study in this paper are unshielded continua.

Definition 2.3. A plane continuum X is called unshielded if there exists a
complementary domain U such that U ⊃ X.

The terminology is explained by the fact that any point of X can be
“seen” from U . We are interested in studying locally connected unshielded
continua. We will also need the following definition.

Definition 2.4. A θ-curve is a continuum which is the union of three arcs
having the same endpoints and having pairwise no other points in common
(so a θ-curve is homeomorphic to the letter θ).

An unshielded continuum contains no θ-curve. On the other hand, a
locally connected continuum containing no θ-curve is homeomorphic to an
unshielded continuum ([Kurat, vol. 2, p. 328]). Thus, the following so-called
θ-curve Theorem holds ([Kurat, vol. 2, p. 329]).

Theorem 2.5. (θ-curve Theorem) Any connected subset of a locally con-
nected unshielded continuum is arcwise connected. Also, a locally connected
unshielded continuum is hereditarily locally connected.

We need the following standard definitions and notations.

Definition 2.6. Connected set is said to be regular at a point a if there exists
a basis of neighborhoods at a with finite boundaries, and simply regular if it
is regular at all points. Also, an arc is a homeomorphic image of the interval
[0, 1]. If the endpoints of an arc are a, b (and if it causes no confusion) we
will use the notation [a, b]. Open arcs are arcs without endpoints; they are
denoted by (a, b). A path is a continuous image of the interval [0, 1]. Finally,
by diam(A) we denote the diameter of a set A.

The following useful lemma follows easily from the results of [Why42].

Lemma 2.7. A locally connected unshielded continuum K is regular.
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Proof. By Corollary 4.3 from [Why42], p. 97, a continuum is regular if and
only if any two distinct points are separated in it by a finite set. Let us show
that this the case for the continuum K.

Choose an arc L = [x, y]. Suppose that there exists a point z ∈ (x, y)
which neither belongs to a simple closed curve with non-trivial intersection
with L nor is a vertex of any triod contained in K. Then z separates x and
y in K as desired. Otherwise all points of (x, y) are either vertices of sub-
triods of K or belong to non-degenerate intersections of simple closed curves
and L. Since there are only countably many vertices in sub-triods of K (see,
e.g., [BL2]) then there exists a simple closed curve R whose intersection with
L is non-degenerate. Observe that since K is unshielded, R does not have
non-degenerate intersections with other simple closed curves. Therefore we
can find points a ∈ R∩L and b ∈ R \L which are not vertices of sub-triods
of K. It follows that x and y are separated in K by a and b which completes
the proof. �

Now we can prove the following lemma.
Lemma 2.8. Let X be an unshielded continuum and Kn be a sequence of
arcs in X converging to a continuum K. Suppose that L = [x, y] ⊂ K,
x 6= y, is an arc such that X is locally arcwise connected at x and y. Then
there is a non-degenerate arc L′ and an infinite subsequence nm such that
L′ ⊂ Knm for all m.

Proof. Choose arcs Ln = [x, xn], Rn = [y, yn] and [xn, yn] such that [xn, yn] ⊂
Kn, Jn = Ln ∪ [xn, yn] ∪ Rn is an arc, lim Ln = x and lim Rn = y. Let
X ′ = K ∪n Jn, then X ′ ⊂ X is an unshielded continuum. Hence X ′ does
not contain a θ-curve. In particular for any simple closed curve S ⊂ X ′ and
any arc I ⊂ X ′, S ∩ I is connected. We may assume that there exists a non-
degenerate arc A ⊂ L \ ∪n[Ln ∪Rn]. If A ⊂ Jn for all n, A ⊂ [xn, yn] ⊂ Kn
and we are done. Hence assume, without loss of generality, that there exists
a point a ∈ A \ J1. Then there exists a bounded complementary region D
of X1 = L ∪ J1 such that a is contained in ∂D = S. Since X1 is unshielded
and locally connected, S is a simple closed curve. Then A1 = S ∩ L is a
non-degenerate arc containing a. Let I1 = S \A be the closure of the com-
plementary arc. Since X ′ contains no θ-curve, any pair of distinct points
p, q ∈ S such that p ∈ I1 and q ∈ A1 cuts each Jn between x and y. Hence
either A1 or I1 is contained in infinitely many Jn. �

Lemma 2.8 implies Lemma 2.9 given here without proof.
Lemma 2.9. Suppose that a continuum X is locally connected and un-
shielded. Then in any sequence of continua Kn with diam(Kn) 6→ 0 there
exists a subsequence K ′′

n such that the following holds:
(1) continua K ′′

n converge to a continuum K ′ in the Hausdorff sense;
(2) all continua K ′′

n contain some arc L ⊂ K ′.
In particular, X is finitely Suslinian.
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The first claim of the following lemma is well-known while the second one
is rather easy to prove, so we put it here without a proof.
Lemma 2.10. Let Ui be a sequence of pairwise disjoint complementary
domains of a planar locally connected continuum X. Then diam(Ui) → 0.
Moreover, if X is unshielded then for any two i 6= j the intersection ∂Ui∩∂Uj
consists of at most one point.

It is not difficult to suggest an example which shows that not all finitely
Suslinian plane continua have the “big intersection” property established for
unshielded continua in Lemma 2.9 (and thus not all of them are unshielded).
Indeed, consider a sequence of arcs Li defined as follows:

(1) all Li are contained in the closed upper half-plane {(x, y)|y ≥ 0} and
have endpoints a = (0, 0) and b = (1, 0);

(2) every Li intersects the interval I in the x-axis with endpoints a and b
only at the set of points Ai = {(k/2−i, 0)|k = 0, 1, . . . , 2i};

(3) every arc Li intersects any vertical line x = t, 0 ≤ t ≤ 1 at exactly one
point and does not intersect other vertical lines at all;

(4) lim Li = [a, b], for any two i < j the arc Li is located non-strictly
above the arc Lj and Li ∩ Lj = Ai.

Consider the plane continuum K = I ∪ (∪∞i=1Li); it is easy to see that
it is finitely Suslinian. On the other hand, the arcs Li together with the
interval I give us an example of a sequence of continua without the “big
intersection” property of Lemma 2.9 and K is clearly not unshielded.

3. Dynamical properties of self-mappings of unshielded
continua

We need a few definitions; everywhere below f : X → X is a continuous
map of a compact metric space (X, d) into itself.
Definition 3.1. A map f satisfies the Contraction Principle if for a con-
tinuum I ⊂ X with lim inf diam(fn(I)) = 0 we have lim diam(fn(I)) = 0.

The Contraction Principle comes up in one-dimensional dynamics (e.g.,
[B, BLyu, BM]) and is used in [BLyu, BM] in connection with the study of
attractors. Yet in those papers f is a map on an interval or a graph while
here we deal with a more general setting.
Definition 3.2. A set K is wandering if for all n 6= m ≥ 0, fn(K)∩fn(K) =
∅. A map f has Property A if for a non-wandering continuum K ⊂ X, which
is never mapped into a point, lim inf diam(fn(K)) > 0.
Definition 3.3. A map f is expanding if for some ε the map f restricted onto
any ε-ball B centered at a point z is a homeomorphism onto a neighborhood
of f(z) such that for any x, y ∈ B we have d(f(x), f(y)) > d(x, y).

Examples of expanding maps are angle-multiplying circle maps and sub-
shifts of finite type. Because of the compactness if f is expanding then f is
no more than N -to-1 for some N ; also, for any ε/2-ball B there are at most
N homeomorphic preimages of B on each of which f expands the distance.
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We study finite-to-one factors of expanding maps. It is easy to give an
example of such a factor which is not finite-to-one: suppose that there ex-
ists a compact invariant set R ⊂ X with infinitely many points outside R
mapped into R, identify all points of R and consider the corresponding fac-
tor space X ′ and the quotient map h : X → X ′. The map h carries f down
onto a factor map g : X ′ → X ′ which is not finite-to-one. To avoid these
complications we consider the following class of factor maps.
Definition 3.4. Let f : X → X be semiconjugate by a map h : X → X ′

to a map g : X ′ → X ′. If for any x′ ∈ X ′ the map f maps h−1(x′) onto
h−1(g(x′)) then we say that g is a full factor of f .
Lemma 3.5. Let a map g : X ′ → X ′ be a full factor of a finite-to-one open
map f : X → X. Then g is a finite-to-one open map.

Proof. By way of contradiction assume that there is a point x′ ∈ X ′ which
has infinitely many g-preimages y′1, y

′
2, . . . . Then since by the assumption

each of the sets h−1(y′i) maps onto h−1(x′) then points of h−1(x′) must have
infinitely many f -preimages, a contradiction.

Also, let us show that g is an open map. Indeed, otherwise there are points
y′ and x′ = g(y′) ∈ X ′ such that small neighborhoods of y′ have images
whose interiors do not contain x′. Thus, there exists a neighborhood U ′ of
y′ and a sequence of points z′i → x′ which do not belong to g(U ′). Choose
points zi ∈ h−1(z′i); we may assume that zi → z for some z ∈ h−1(x′). Then
since g is a full factor there is a point t ∈ h−1(y′) such that f(t) = z. Choose
a neighborhood V of t such that h(V ) ⊂ U ′. Since f is open the f -image of
V contains a neighborhood W of z. Since W contains zi for big i, V contains
points ti such that f(ti) = zi. Then g(h(ti)) = z′i and since h(ti) ∈ U ′ we
conclude that z′i ∈ g(U ′), a contradiction. �

To state the next lemma we need the following new definitions.
Definition 3.6. An f -fixed point x has Property B if there exists a sequence
of integers mi and a basis {Ui} of neighborhoods at x such that for every i
and every z ∈ ∂Ui we can find j, 1 ≤ j ≤ mi with f j(z) 6∈ Ui. A periodic
point x is mildly repelling if for every M such that fM (x) = x the point x
has Property B as a fixed point of fM .

Clearly, repelling periodic points in the usual sense are mildly repelling.
Later on we will use the notion of mildly repelling periodic point to give
alternative proofs to some of our results.

We also need several fairly standard definitions given here for the sake of
completeness.
Definition 3.7. A point c is said to be a critical point of a continuous map
f : X → X if f is not injective on any neighborhood of x. Also, a map
f : X → Y is said to be light provided f−1(y) is 0-dimensional for each
point y ∈ Y .

Observe that by Lemma 2.7 locally connected unshielded continua are
regular. Now we can state an important technical lemma.
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Lemma 3.8. Let f : X → X be an expanding map semiconjugate by a
map h : X → X ′ to its full factor map g : X ′ → X ′ where both X, X ′ are
metric compacta. Then g is light and has Property A as well as the following
properties:

(1) for any periodic orbit P of g there exists a neighborhood U of P such
that every point of U \ P exits U at some moment in the future;

(2) for any point x′ ∈ X ′ such that ωg(x′) = P ′ is a periodic orbit there
exists a number n such that gn(x′) ∈ P ′.

(3) if X ′ is a regular compact set (e.g., if it is an unshielded locally
connected continuum) then all its periodic points are mildly repelling.

Proof. In the situation of the lemma the map g does not have to be expand-
ing in terms of the metric on X ′. In fact, g can even have critical points.
A relevant example is the locally connected Julia set J(f) of a polynomial
f . Then f |J(f) is a full factor map of the appropriate angle multiplication
map of the circle. However, unless J(f) is homeomorphic to the circle it
contains critical points of f and therefore f |J(f) is not expanding.

Still, it turns out that to a lesser extent local expansion of f is inherited
by g. The tool which allows us to observe this is the function d′ introduced
below. First let us introduce an extension of the metric d defined on the
compact subsets of X as follows: d(L,M) = {min d(u, v) : u ∈ L, v ∈ M}.
Now, given two points x′, y′ ∈ X ′ we define d′(x′, y′) as follows: d′(x′, y′) =
d(h−1(x′), h−1(y′)). The function d′ is not a metric because it does not sat-
isfy the triangle inequality. Indeed, imagine points x′, y′ and z′ such that the
minimal distances from h−1(x′) and h−1(z′) to h−1(y′) are close to 0, but
h−1(x′) and h−1(z′) are located on distinct “sides” of h−1(y′) so that h−1(y′)
“stretches” between h−1(x′) and h−1(z′) making the minimal distance be-
tween h−1(x′) and h−1(z′) rather big. In other words, an inequality which
can be established is that d′(x′, y′)+d′(y′, z′)+diam(h−1(y′)) ≥ d′(x′, z′) but
this is only a version of the triangle inequality which involves a “correction”
equal to diam(h−1(y′)) and not the triangle inequality itself.

However, the function d′ has some nice properties. First of all, it is lower
semicontinuous as a function on X ′ ×X ′. Indeed, let x′n → x′, y′n → y′ and
lim inf d′(x′n, y′n) = δ. Choose points xn ∈ h−1(x′n) and yn ∈ h−1(y′n) so
that d′(x′n, y′n) = d(xn, yn). Refining these sequences, we may assume that
xn → x ∈ h−1(x′), yn → y ∈ h−1(y′) and d(x, y) = lim d(xn, yn) = δ. By
the definition of the function d′ this implies that d′(x′, y′) ≤ δ as desired. In
other words, we show that if x′n → x′ and y′n → y′ then lim inf d′(x′n, y′n) ≥
d′(x′, y′). Also, since d′(x′′, y′′) = 0 implies x′′ = y′′, we see that in particular
if x′′n → x′′, y′′n → y′′ and d′(x′′n, y′′n) → 0 then x′′ = y′′.

Moreover, observe that d′ may indeed decrease in the situation similar
to the one described in the previous paragraph where we illustrate the fact
that the triangle inequality may not hold for d′: just imagine that points
x′n, y′n approach the same limit point z′ but from the “opposite sides”, so
that d′(x′n, y′n) stays big while for their limit point z′ = lim x′n = lim y′n we
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of course have d′(z′, z′) = 0. It is also just as easy to see that if x′n → x′

then d′(x′n, x′) → 0.
For us the most important property of d′ is that the map g is d′-expanding:

every x′ ∈ X ′ has a neighborhood U ′ such that d′(g(x′), g(y′)) > d′(x′, y′)
for every y′ ∈ U ′, y′ 6= x′. Since this is in fact a property of compact
subsets of X, we prove it as a statement for such subsets. Namely, we prove
that if T = h−1(x′) then there exists a neighborhood U of x′ such that for
any set R ⊂ h−1(U ′) disjoint from T we have d(f(R), f(T )) > d(R, T ). If
R = h−1(y′) we get d′(g(x′), g(y′)) > d′(x′, y′) for any y′ ∈ U ′, y′ 6= x′.

Indeed, otherwise there are neighborhoods U ′
n of x′ and sets Rn ⊂ h−1(U ′

n)
disjoint from T with diam(U ′

n) → 0 and d(Rn, T ) ≥ d(f(Rn), f(T )). Thus,
there are points yn ∈ Rn, xn ∈ T such that for them d(f(yn), f(xn)) ≤
d(Rn, T ). Choosing a subsequence we may assume that yn → y ∈ T and
xn → x ∈ T ; since diam(U ′

n) → 0 then d(Rn, T ) → 0 and f(y) = f(x) =
z. Clearly, x 6= y since otherwise xn, yn will be close and we will have
d(f(yn), f(xn)) > d(yn, xn) which contradicts d(f(yn), f(xn)) ≤ d(Rn, T ).
Now, for a small neighborhood W of z there is a neighborhood S of x
and a neighborhood V of y such that f homeomorphically maps S and V
onto W . By Lemma 3.5 there are finitely many g-preimages of g(x′) de-
noted here x′1, x

′
2, . . . , x

′
k. If W is small then S and V contain no points of

h−1(x′1), . . . , h
−1(x′k) because S and V contain points x ∈ T, y ∈ T respec-

tively and the sets h−1(x′1), . . . , h
−1(x′k) are disjoint from T .

If Q = W ∩f(T ) then f maps S∩T and V ∩T onto Q homeomorphically
(since V contains no points of h−1(x′1), . . . , h

−1(x′k)), so we can choose points
bn ∈ V ∩T with f(bn) = f(xn), and it is clear that bn → y. Since f is locally
expanding, d(f(yn), f(bn)) > d(yn, bn) ≥ d(Rn, T ). On the other hand by
the choice of points yn, xn we have d(f(yn), f(bn)) = d(f(yn), f(xn)) ≤
d(Rn, T ), a contradiction which proves that g is d′-expanding.

This immediately implies that g is light. Indeed, otherwise there exists a
continuum Z ′ ⊂ X ′ such that g(Z ′) is a singleton. However as follows from
the fact that g is d′-expanding, every point z′ ∈ X ′ has a neighborhood U ′

such that for any u′ ∈ U ′, u′ 6= z′ we have g(z′) 6= g(u′), a contradiction.
Let us show that g has Property A. If K ⊂ X ′ is a non-wandering con-

tinuum with lim inf diam(gn(K)) = 0 then we may assume that for some
n > 0, gn(K)∩K 6= ∅; also observe that all images of K are non-degenerate
because g is finite-to-one. Then grn(K) ∩ g(r+1)n(K) 6= ∅ for all r ≥ 0 and
lim infr→∞ diam(grn(K)) = 0. Let a′ ∈ X ′ be the limit of a subsequence of
sets gnri(K) chosen in such a way that lim diam(gnri(K)) = 0. From the con-
tinuity and the fact that grn(K)∩g(r+1)n(K) 6= ∅ it follows that gn(a′) = a′.
Since g is d′-expanding and continuous we can choose a small neighborhood
W of a′ with d′(gn(x′), gn(a′)) > d′(x′, a′) for any x′ 6= a′, x′ ∈ W . Then the
properties of the function d′ established above imply that for any sufficiently
small ε the following two facts hold: a) d′(y′, a′) > ε if y′ /∈ W , and b) the
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closure of the set Bε = {z′ : d′(z′, a′) < ε} is contained in W . Let us use
these facts to prove that the situation described above is impossible.

Since K is not degenerate, we may assume that d′(z′0, a
′) ≥ ε for some

z′0 ∈ K. Let us show that then for every m there exists a point z′m ∈ gmn(K)
such that d′(z′m, a′) ≥ ε. Indeed, otherwise there exists the least m such that
for every point z′ ∈ gmn(K) we have d′(z′, a′) < ε. Since m is the least such
number there exists z′m−1 ∈ gn(m−1)(K) with d′(z′m−1, a

′) ≥ ε. If z′m−1 ∈ W
then by the choice of W we see that d′(gn(z′m−1), a

′) ≥ ε which is impossible.
Hence z′m−1 /∈ W . Now, g(m−1)n(K) intersects gmn(K) ⊂ Bε and therefore
contains points z′ ∈ Bε ⊂ Bε. By the previous paragraph X ′ \W and Bε

are disjoint, and since g(m−1)n(K) is connected and contains points of both
these closed and disjoint sets it must contain points of the complement of
their union. Clearly, if y′ is one of such points then y′ ∈ W and d′(y′, a′) ≥ ε,
hence d′(gn(y′), a′) ≥ ε, a contradiction with the assumption that for every
point z′ ∈ gmn(K) we have d′(z′, a′) < ε. Thus, g has Property A.

Let us prove now that for any periodic orbit P ′ there exists a neighborhood
U ′ such that any point x′ ∈ U ′ \ P ′ exits U ′ at some moment. Indeed, we
may assume that P ′ = {a′} is a fixed point; setting h−1(a′) = T we get
f(T ) = T . If U ′ is a small neighborhood of a′ then for any x′ ∈ U ′ \ P ′

we have d′(g(x′), a′) > d′(x′, a′). Suppose that a point x′ does not exit U ′.
Then the sequence {d′(gn(x′), a′)} is increasing. Choose a limit point y′ =
lim gni(x′) (clearly, y′ ∈ U ′). We may assume that the sets h−1(gni(x′)) = Ri
converge to a set R ⊂ h−1(y′). Then lim d′(gn(x′), a′) = lim d′(gni(x′), a′) =
d(R, T ) = ε > 0 and d′(gn(x′), a′) < ε for any n. By the claim proven during
the establishment of the fact that the map g is d′-expanding we have that
if U ′ is small enough then d(f(R), f(T )) > d(R, T ). Hence the fact that
f(T ) = T implies that ε = lim d′(gni+1(x′), a′) = d(f(R), T ) > d(R, T ) = ε,
a contradiction. Obviously, the existence of a desired neighborhood U ′ of a
periodic orbit P ′ implies also that if ω(x′) = P ′, then x′ has to be eventually
mapped into P ′ since otherwise it will have limit points outside U ′.

It remains to prove claim (3) of the lemma. We may assume that P ′ =
{a′} is a gM -fixed point. Choose a basis of neighborhoods Ui of a so that
the boundary ∂Ui of each Ui is finite (this is possible since X ′ is regular).
Since gM is a full factor of fM and fM is expanding, we see by the claim
(1) that there exists a small neighborhood W of a′ such that for every
point z ∈ W, z 6= a′ there exists a number k(z) such that gk(z)M (z) 6∈ W .
Assuming that Ui ⊂ W we can then choose such numbers for all points
of ∂Ui and then choose their maximum mi. Then for each point z ∈ ∂Ui
there exists a number k(z) < mi such that gk(z)M (z) 6∈ Ui which shows that
indeed a′ is mildly repelling. �

The next lemma easily follows from the obtained results and can serve as
an introduction into our study of dynamical properties of maps of continua.
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Lemma 3.9. If X is finitely Suslinian and f : X → X is a map with
Property A, then f satisfies the Contraction Principle.

Proof. Let I be a continuum with lim inf diam(fn(I)) = 0. By Property A
either I maps into a point under some power of f or I is wandering. In the
former case limdiam(fn(X)) = 0; in the latter case lim diam(fn(X)) = 0
because X is finitely Suslinian. �

To state Theorem 3.11 we need the following definition.
Definition 3.10. A continuous map f : X → X of a metric space is said to
be backward stable at a point x if for any δ there exists ε such that for any
connected set K with diam(K) ≤ ε contained in the ε-ball centered at x,
any n ≥ 0 and any component M of f−n(K), diam(M) ≤ δ; it is backward
stable if it is backward stable at all points.

If X is compact then f is backward stable if and only if for any δ there
is ε such that for any continuum K with diam(K) ≤ ε, any n ≥ 0 and
any component M of f−n(K), diam(M) ≤ δ. Thus, if f is not backward
stable, then there exists a sequence of continua Kn and a sequence of positive
integers mn with diam(fmn(Kn)) → 0 while diam(Kn) ≥ ε for some ε > 0.

Observe the following simple cases in which a map f cannot be backward
stable: a) f is not light, and b) X is finitely Suslinian and there exist
wandering continua. Thus, any result establishing backward stability for
certain maps should have the necessary assumptions corresponding to the
cases a) and b). It turns out that in certain cases they are not only necessary
but also sufficient.
Theorem 3.11. Let X be a locally connected and unshielded continuum,
and f : X → X be a light map with Property A and with no wandering
continua. Then f is backward stable. In particular, suppose that X is a
locally connected and unshielded continuum, and f : X → X is a full factor
of an expanding map. In this case if f has no wandering continua then f is
backward stable.

Proof. Suppose that f is not backward stable. Then there exists a se-
quence of continua Kn and a sequence of positive integers mn such that
diam(fmn(Kn)) → 0 while diam(Kn) ≥ ε for some ε > 0. By Lemma 2.9
there exists a continuum S contained in infinitely many Kn which obviously
implies that diam(fmn(S)) → 0. Then by Property A either S is wandering
or otherwise it eventually maps into a point which may be assumed to be
periodic. Since f does not collapse continua into points and has no wan-
dering continua then this situation is impossible, and f is backward stable.
The particular case of a full factor of an expanding map follows now from
the proven and Lemma 3.8. �

An alternative approach to proving that maps have Property A relies
upon the notion of a mildly repelling periodic point and can be used for a
direct proof of the fact that polynomials are backward stable on their Julia
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sets (see the end of Section 4). For the sake of completeness we prove below
an important lemma which represents this alternative approach.

Lemma 3.12. Let f : X → X be a map of a metric compact space X
into itself such that each periodic point of f is mildly repelling. Then f has
Property A.

Proof. Suppose that K is a non-wandering continuum which is never mapped
into a point. Then K ∩ fM (K) 6= ∅ for some M . If lim inf diam(fn(K)) = 0
then by continuity lim inf diam(fMn(K)) = 0 which again by continuity
and compactness implies that there exists a point a such that fM (a) = a
and fMnr(K) → {a} along a subsequence nr. Since a is mildly repelling it
implies that it has Property B as a fixed point of F = fM (see Definition 3.6
where Property B is introduced). Denote by mi the sequence of integers and
by Ui the basis of neighborhoods at a which exist according to Property B.

Choose a small neighborhood Ui of a so that K 6⊂ Ui, and consider the
set A of all integers l such that F l(K) 6⊂ Ui; observe that A 6= ∅ because
0 ∈ A. Let us prove that in fact A is infinite and moreover, that gaps in A
are no greater than mi. Indeed, if l ∈ A then F l(K) 6⊂ Ui. If F l+1(K) 6⊂ Ui
then we are done because l + 1 is the next element of A. Suppose that
F l+1(K) ⊂ Ui. Since F l(K) and F l+1(K) are non-disjoint, this implies that
F l(K) cannot be contained in the complement of Ui. Hence F l(K) contains
points of X \Ui as well as points of Ui which implies that F l(K) contains a
point z ∈ ∂Ui. Therefore there exists an integer s < mi such that F s(z) 6∈ Ui
which implies that l + s ∈ A. In other words, the gaps in A are no longer
than mi. Clearly, this contradicts the existence of the sequence nr such that
fMnr(K) → {a} and thus completes the proof. �

4. Applications to laminations and complex dynamics

The main purpose of this section is to apply our results to complex dy-
namics. One of the major tools used in this area is laminations, so we devote
the first half of this section to them. The notion was introduced in [Do],
[McM], [Th] (see also [BL1], [BL3]). Consider an equivalence relation ∼ on
the unit circle S1 with the following properties:

(E1) ∼ is closed : the graph of ∼ is a closed set in S1 × S1;
(E2) ∼ defines a lamination, i.e., it is unlinked : if t1 ∼ t2 ∈ S1 and

t3 ∼ t4 ∈ S1, but t2 6∼ t3, then {t1, t2} is contained in one component of
S1 \ {t3, t4}.

(E3) each equivalence class of ∼ is totally disconnected.
Call ∼ a closed lamination. We assume that it is non-degenerate, i.e.

has a class of more than one point. Equivalence classes of ∼ are called
(∼-)classes.

Fix an integer d > 1, denote by σd = σ : S1 → S1 the map σ(z) = zd.
The relation ∼ is called (σ-)invariant iff:

(D1) ∼ is forward invariant : for a class g, the set σ(g) is a class too;
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(D2) ∼ is backward invariant : for a class g, its preimage σ−1(g) = {x ∈
T : σ(x) ∈ g} is split into classes;

(D3) for a class g, the map σ : g → σ(g) is an orientation preserving
covering map.

Consider invariant closed non-degenerate laminations; denote by D the
unit disk. Define an extension ' of ∼ onto C \ D by declaring that a point
in C \ D is equivalent only to itself. Let p : C \ D → (C \ D)/ ' be the
factor map and denote p(S1) by J . Then J is a locally connected unshielded
continuum, and since the map σ acts on S1 and the relation ∼ is σ-invariant,
we can consider a factor map f : J → J . The theorem below describes some
properties of the map f .
Theorem 4.1. Let ∼ be an invariant lamination and f : J → J be the cor-
responding factor map. Then f is backward stable and also has the following
properties:

(1) any periodic orbit P has a neighborhood U such that any point x ∈
U \ P eventually exits U ;

(2) any point whose ω-limit set is a cycle must be eventually mapped
into that cycle.

(3) all cycles of f are mildly repelling.

Proof. By the definition f is a full factor map of a expanding map σ. Hence
by Lemma 3.8 f has Property A, and by Lemma 3.5 f is a finite-to-one
map (so it does not collapse continua into points). Also, by [BL1] (see also
[BL2]) f has no wandering continua. Hence by Theorem 3.11 f is backward
stable. Properties (1), (2) and (3) follow from Lemma 3.8. �

Observe that, as was shown in [BL1] (see also [BL2]), there are laminations
which have infinite periodic classes and therefore are not polynomial (as is
shown in these papers, such classes are then necessarily (pre)critical). In
terms of the properties of the quotient space J = p(S1) it means that it
may contain points x such that the number of components of the set J \{x}
is infinite. Still, as was mentioned above, J is a regular space, and so by
Lemma 3.8 all periodic points of the factor map f : J → J are mildly
repelling.

We would like to point out that the approach relying upon mildly repelling
periodic points yields an alternative proof of Theorem 4.1. Namely, claims
(1), (2) and (3) of this theorem do not depend on its main claim about
backward stability of f . Now, in the proof of Theorem 4.1 we refer to
Lemma 3.8 to show that f has Property A. However, instead of that we
could refer to claim (3) of Theorem 4.1 and Lemma 3.12.

A polynomial f with locally connected J(f) defines a lamination whose
factor map is conjugate to f |J(f). So, by Theorem 4.1 f |J(f) is backward
stable. Yet we can prove a bit more.
Theorem 4.2. Let a polynomial f have a locally connected Julia set. Then f
is backward stable at any point which is not an attracting or neutral periodic.
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Proof. Assume that x is neither an attracting nor a neutral periodic point
and yet f is not backward stable at x. Then by the results of Fatou we
may assume that x ∈ J(f). Since a polynomial with a Cremer point has
a non-locally connected Julia set [Sul] then f has no Cremer points and
J(f) contains only parabolic or repelling periodic points. A critical point
c /∈ J(f) with ω(c) ∩ J(f) 6= ∅ must converge to parabolic cycles. Thus,
since x is not parabolic, we may assume that for some ε > 0 the only critical
points whose forward iterates may be ε-close to x are the critical points in
J(f).

Since by the assumption f is not backward stable at x then there exist a
number δ > 0, a sequence of connected sets Bi converging to x, a sequence
of numbers ni and components Ci of f−ni(Bi) with diam(Ci) > δ for all i
(then clearly ni → ∞). Since J(f) is locally connected, we can enlarge Bi
so that it becomes a connected neighborhood of x whose intersection with
J(f) is connected and has diameter εi, εi → 0, εi < ε for any i.

By the choice of ε the critical points ever mapped into Bi belong to J(f).
Thus Ci ∩ J(f) is connected. Since f |J(f) is backward stable, diam(Ci ∩
J(f)) → 0 as i →∞. Denote the Fatou set C \J(f) by F (f) and show that
for big i there exists a component Mi of Ci∩F (f) with diam(Mi) > δ/3. Pick
points y, z ∈ Ci with d(y, z) > δ. Then if necessary find y′ ∈ J(f) ∩Ci, z′ ∈
J(f)∩Ci such that y, y′ belong to the closure of a component Ri of Ci∩F (f),
and z, z′ belong to the closure of a component Si of Ci∩F (f). By the triangle
inequality d(y, z) ≤ d(y, y′) + d(y′, z′) + d(z′, z). Since diam(Ci ∩ J(f)) → 0
we may assume that d(y′, z′) < δ/3. Thus, at least one of the distances
d(y, y′), d(z′, z) is greater than δ/3, and the corresponding component of
Ci ∩ F (f) (Ri or Si) has diameter greater than δ/3 as desired.

By Lemma 2.10 there are finitely many Fatou domains with diameters
greater than δ/3. By [Sul] all Fatou domains are eventually periodic. Hence
after refining our sequence and passing to a power of f we may assume that
all Mi are contained in the same invariant Fatou domain V . Let us prove
that this is impossible.

Let fni(Mi) = Ki; then diam(Ki) < εi,Ki → x and so x ∈ ∂V . Assume
that Mi → M . Then M ⊂ ∂V . Indeed, otherwise there is z ∈ M ∩ V . If
V contains an attracting point a (or V contains a parabolic point a) then
a neighborhood W of z is attracted by a. Since Mi ∩W 6= ∅ for big i then
Ki = fni(Mi) contain points close to a which is impossible since Ki → x
and x 6= a. Also, if V is a Siegel domain then W stays positively distant
from ∂V , a contradiction to Ki → x ∈ ∂V .

Let us transfer f |V to the uniformization plane. This yields the appropri-
ate map g : D→ D which is semiconjugate to f |V by φ : D→ V (the map φ
is well-defined on the closed unit disk D because the boundary ∂V of V is lo-
cally connected). Consider sets φ−1(Mi) = M ′

i ⊂ D and φ−1(Ki) = K ′
i ⊂ D.

Assume that M ′
i → M ′ with φ(M ′) = M (so, M ′ ⊂ S1) and K ′

i → K ′ with
φ(K ′) = {x}. Then K ′ is a point. Indeed, otherwise K ′ ⊂ S1 is an arc.
Since the map g|S1 is conjugate to an irrational rotation or an appropriate
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power zn, after finitely many iterations of g the union of images of K ′ will
be the entire S1, a contradiction to φ(K ′) being a point. So, K ′ = {y} is a
point, and y ∈ S1.

Consider all the cases for the domain V and show that the described
dynamics is impossible in any of them. If V is a Siegel domain (and g is an
irrational rotation) it is impossible. If V contains an attracting fixed point
then so does g|D, some power of g is expanding on S1 and hence in a small
annulus A around S1. Replacing g by its power and using continuity we
may assume that g itself is expanding on A. Now, since all points inside D
are attracted under g to the attracting g-fixed point we can find an open
invariant set W ⊃ D \A whose closure is s-distant from y with s > 0.

Let i be such that M ′
i ⊂ A and the maximal distance between points

of K ′
i and y is less than s. Then all iterates M ′

i , g(M ′
i), . . . , g

ni(M ′
i) = K ′

i
avoid W since otherwise there are points of K ′

i belonging to W and thus
more than s-distant from y, a contradiction. So, sets M ′

i , g(M ′
i), . . . , g

ni(M ′
i)

are contained in A. Since diam(M ′
i) ≥ diam(M ′)/2 > 0 for big i and

diam(K ′
i) → 0, this is a contradiction to g|A being expanding.

The remaining case is when V contains a parabolic fixed point b. Then
g|D contains a parabolic fixed point a 6= y with φ(a) = b. On the other
hand, M ′ is an arc in S1 and there exists N such that gN (M) = S1. It
is known [CG], that V, and hence D, contains a connected attractive petal
U , such that a ∈ U and ∩gn(U) = {a}. If M ′

i approximates M ′ well then
gN (M ′

i) approximates S1 well. Moreover, tripling N we may assume that
it winds around the circle at least twice still approximating it well, and so
gN (M ′

i) intersects the attracting petal U of a. Since ∩l≥0gl(U) = {a} then
K ′

i = gni(M ′
i) = (gni−N (gN (M ′

i)) is non-disjoint from gni−N (U) → a, and
since K ′

i → y we get y = a, a contradiction. �

In the rest of this paper we apply backward stability to Milnor attrac-
tors [Mi] of polynomials with locally connected Julia sets. The connection
between the limit sets of typical points (with respect to Lebesgue or a con-
formal measure) and the behavior of pull-backs of small disks has been
understood since early Lyubich’s papers [Lyu] where the small scale - large
scale passing with bounded distortion was used as a tool. Since then it has
become clear that for typical points either the large scale covering takes
place or almost every point has forward images well approximated by the
appropriate critical images. However one can only conclude that in the lat-
ter non-ergodic case typical points have limit sets contained in the limit sets
of critical points which is in general insufficient to determine what limit sets
they have, and in particular to determine whether there are finitely many
of them.

It is easy to see that backward stability is a sufficient condition to show
that in the non-ergodic case the limit sets of typical points coincide with the
limit sets of critical points. In fact, by the results of [BM] (see also [BL2])
a weaker than backward stability property would suffice. This property has
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a topologically dynamical nature and may help establish results similar to
Theorem 4.3 for maps without backward stability.

Thus, the standard arguments or results of [BM] (see also [BL2]) show
that the following result follows from Theorem 4.2.
Theorem 4.3. For a polynomial f with a locally connected Julia set J(f)
and a conformal measure µ one of the following holds.

(1) For µ-almost every x ∈ J(f), ω(x) = J(f).
(2) For µ-almost every x ∈ J(f), ω(x) = ω(c(x)) for some critical point

c(x) depending on x.
The limit sets assumed on sets of positive measure are called primitive

attractors. Hence, Theorem 4.3 describes the primitive attractors in the
sense of a conformal measure of polynomials with locally connected Julia
sets. Let us point out here that by [Lyu] primitive attractors are contained
in the union of limit sets of critical points. However this does not imply
the description of primitive attractors, nor does it imply that there are
finitely many of them. As far as the authors know these problems are solved
only for polynomials with locally connected Julia sets (Theorem 4.3) or so-
called graph-critical rational functions, that is rational functions whose all
critical points are contained in an invariant graph [BM], and are not solved
in general.

Finally, we outline an alternative proof of the backward stability of the
restriction f |J(f) of a polynomial on its locally connected Julia set. Clearly,
J(f) is unshielded because J(f) is the boundary of the basin of attraction
of infinity. If J(f) is locally connected then periodic points of f in J(f) are
either repelling or parabolic (since if there is a Cremer periodic point then
J(f) is not locally connected [Sul]). It follows from [CG] that repelling and
parabolic points are mildly repelling in J(f). Hence by Lemma 3.12 f |J(f)
has Property A. Moreover, by [BL1] in this case there are no wandering
subcontinua in J(f) and clearly no non-degenerate continua are mapped
into points by f . Hence by Theorem 3.11 f |J(f) is backward stable.
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