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(Communicated by Alexander N. Dranishnikov)

Abstract. We show that a planar unshielded compact set X is finitely Susli-
nian if and only if there exists a closed set F ⊂ S1 and a lamination ∼ of F
such that F/∼ is homeomorphic to X. If X is a continuum, the analogous
statement follows from Carathéodory theory and is widely used in polynomial
dynamics.

1. Introduction

By a domain we mean a connected open subset of the plane C. A planar compact
set X is unshielded if there exists a complementary domain U with U ⊃ X (below we
always assume that U contains infinity). Julia sets of polynomials (or of expanding
polymodials, see [1, 2]) are unshielded. Below by an unshielded set we always mean
a planar unshielded compact set.

We look at unshielded sets “from infinity.” That is, let X be a continuum, U
be as above, and D∞ = C \ D, where D is the open unit disk in C. There exists a
conformal isomorphism (called a Riemann mapping) Ψ : D∞ → U and, by a result
of Carathéodory, X is locally connected if and only if Ψ extends to a continuous
function Ψ : D∞ → U . To state an important corollary of this result we need the
following definition. Consider an equivalence relation ∼ on a closed subset F of the
unit circle S1 ⊂ C with the following properties [6, 9], cf. [11] (usually F = S1):

(L1) ∼ is closed : the graph of ∼ is a closed set in F × F ;
(L2) ∼ is unlinked : if t1 ∼ t2 ∈ F and t3 ∼ t4 ∈ F , but t2 6∼ t3, then the straight

line segments in C with endpoints t1, t2 and t3, t4 are disjoint;
(L3) each equivalence class of ∼ is totally disconnected.
Call ∼ a lamination of F . In the situation above, with an unshielded continuum

X, set ψ = Ψ|S1 and define an equivalence ∼ψ on S1 by x ∼ψ y if and only
if ψ(x) = ψ(y). Then it is easy to see that the equivalence ∼ψ is a lamination
defined on S1 and X is homeomorphic to the quotient space S1/∼ψ. This yields
the following theorem.

Theorem 1.1. Let X be an unshielded continuum. If X is locally connected then
there exists a lamination ∼ of S1 such that X is homeomorphic to the quotient
space S1/∼.
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The converse to this theorem is also true. We will prove it in the next section.
The case when X is locally connected is the best case scenario for our investiga-

tion because then the structure of X is closely related to that of S1. Our aim is to
obtain a similar result without the assumption of connectivity of X. To see what
unshielded compacta are similar to unshielded locally connected continua we need
the following definition.

Definition 1.2. A compact metric space X is finitely Suslinian (FS) if for each
ε > 0, any collection of pairwise disjoint continua in X of diameter larger than ε is
finite (we call such compacta FS-sets).

Note that by the definition any FS-set is compact.
The next lemma shows that the notion of an unshielded FS-set is a generalization

of the notion of a locally connected unshielded continuum.

Lemma 1.3. [3, Lemma 2.7] An unshielded continuum Y is locally connected if
and only if it is FS.

Now we are ready to state our main result, namely Theorem 1.4 which is anal-
ogous to Theorem 1.1 and its converse; its main applications are in the field of
complex dynamics and will be discussed in forthcoming papers.

Theorem 1.4. Let X be an unshielded compact set. Then X is FS if and only if
there exists a closed set F ⊂ S1 and a lamination ∼ of F such that X is homeo-
morphic to the quotient space F/∼.

The authors are indebted to the referee for a careful reading of the original
manuscript which resulted in several improvements.

2. Reduction

In this section we reduce Theorem 1.4 to the following theorem, which is the
main technical result of the paper.

Theorem 2.1. Any unshielded FS-set is contained in an unshielded FS continuum.

To prove one implication in Theorem 1.4, we have to show that if X is an
unshielded FS-set then there exist a closed set F ⊂ S1 and a lamination ∼ of F
such that X is homeomorphic to F/∼. If Theorem 2.1 holds then there exists an
unshielded FS continuum Y ⊃ X. Then by Lemma 1.3 and Theorem 1.1 there exists
a lamination ∼ of S1 with Y = S1/∼. Let p : S1 → S1/∼ be the corresponding
quotient map, and F = p−1(X). Then F is closed and F/∼ is homeomorphic to
X. This proves the implication, provided Theorem 2.1 holds.

In order to prove the other implication in Theorem 1.4, assume that for a set X
there is a closed set F ⊂ S1 and a lamination ∼ on F such that X is homeomorphic
to F/∼. We want to prove that then X is FS. Let us start with a simple lemma
that follows immediately from the fact that continuous maps of metric compact
spaces are uniformly continuous.

Lemma 2.2. Any set homeomorphic to an FS-set is itself an FS-set.

Now we prove a theorem that is essentially the converse to Theorem 1.1.

Theorem 2.3. Let ∼ be a lamination of S1. Then any set X ⊂ C homeomorphic
to the quotient space S1/∼ is locally connected and FS.
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Proof. Let L be the union of ∼-hulls, i.e., the convex hulls of ∼-classes in D. Define
an extension ' of ∼ onto C as follows [6]: a '-class is a ∼-hull or a point of
C \ L. The quotient space K = D/ ' is embedded in the quotient space C/ '.
Denote the interior of K by Q. Let p : C → C/ ' be the quotient map. Then
p|C\D : C \ D → (C/ ') \ K and p|D\L : D \ L → Q are homeomorphisms. The
set Z = p(S1) = p(L) is the boundary of K in C/'; clearly, Z is homeomorphic
to S1/ ∼. Observe that K and Z are compact, connected and locally connected
because p : D → K is continuous. Note also that p−1(z) is a non separating plane
continuum for each z. By a theorem of Moore [10], C/' is homeomorphic to the
plane. By construction the set Z is unshielded in the plane C/', and the fact that
Z is FS follows from Lemma 1.3. Since X is homeomorphic to Z and by Lemma 2.2,
X is locally connected and FS. ¤

Now we can prove the second implication in Theorem 1.4. Assume that X is an
unshielded compact set and there exists a closed set F ⊂ S1 and a lamination ∼ of
F such that X is homeomorphic to the quotient space F/∼. If F = S1, then by
Theorem 2.3 X is FS. Assume that F 6= S1. Extend the equivalence ∼ onto the
entire unit circle S1 by declaring that a point in S1 \ F is equivalent only to itself.
This creates a lamination ∼ on S1. By Theorem 2.3 the continuum Y = S1/∼ is
FS. Obviously, the quotient space F/∼ is homeomorphic to a compact subset R of
Y . Since X is homeomorphic to F/∼, it is also homeomorphic to R. A compact
subset of an FS-set is clearly an FS-set, so R is an FS-set, and thus, by Lemma 2.2,
X is an FS-set itself. This proves the implication and completes the reduction of
Theorem 1.4 to Theorem 2.1.

3. Embedding an unshielded FS-set into an unshielded FS-continuum

In this section we prove Theorem 2.1, using an inductive construction.
Given a compact planar set A and ε > 0 let B(A, ε) be the union of all open ε-

balls centered at points of A. Open sets U and V are called strongly disjoint if their
closures are disjoint. Given a set X we denote its boundary by ∂X = X \ Int(X).
By a Jordan disk we mean the bounded component of C \ P , where P ⊂ C is
a Jordan curve. Given a compactum Y ⊂ C, the unbounded component U of
C \ Y is well-defined. Call the set T (Y ) = C \ U the topological hull of Y . To
get the topological hull of a compactum one adds to this compactum all bounded
components of its complement (“fill-in”). We have diam(Y ) = diam(T (Y )) and the
set T (Y ) is also compact. If a compactum X is unshielded, then we can say more:
T (A) ∩ T (B) = ∅ for any two distinct components A and B of X, and X is the
boundary of T (X). Finally, if W is open, K ⊂ W is a continuum and for some
ε > 0 and for each x ∈ W \ T (K) there exists an arc Ax ⊂ W joining x to K with
diam(Ax) < ε, then W is called an ε-arc-neighborhood of K.

Lemma 3.1. Let X ⊂ C be an unshielded FS-set and let η > 0. Then for every
component K of X there exists a Jordan disk U such that K ⊂ T (K) ⊂ U ⊂
B(T (K), η) and ∂U is disjoint from X.

Proof. Set X ′ = T (X). Fix a component K of X. By [5], there exists a sequence
εn ↘ 0 such that for each n, each component of the boundary of B(X ′, εn) is a
singleton or an arc or a Jordan curve. One of those closed curves has to be the
boundary of a Jordan disk Un containing K.
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Set K ′ =
⋂

n Un. Clearly, T (K) ⊂ K ′. To prove the reverse inclusion, observe
that the boundaries of B(X ′, εn) and B(X ′, εn+1) are disjoint, so Un+1 ⊂ Un.
Therefore K ′ is a continuum as an intersection of the descending sequence of con-
tinua. Suppose that there is a point x ∈ K ′ \ X ′. Then it is contained in the
unbounded component of C \X, so it can be connected with ∞ by an arc A dis-
joint from X ′. The distance between A and X ′ is positive, so if n is sufficiently
large, then A is disjoint from ∂Un. Thus, x /∈ Un, a contradiction. This proves that
K ′ ⊂ X ′. Thus, K ′ is a connected subset of X ′ containing T (K). Since T (K) is a
connected component of X ′, we get K ′ = T (K). Therefore, if n is sufficiently large
then K ⊂ Un ⊂ B(T (K), η).

By the definition of ∂Un, it is disjoint from X ′. This completes the proof. ¤

Lemma 3.2. Let X ⊂ C be an unshielded FS-set, Y a closed subset of X such
that every component of X intersecting Y is contained in Y , and let ε ≥ η > 0.
Assume that every component of Y has diameter smaller than ε. Then there exist
strongly disjoint Jordan disks U1, . . . , Un such that Y ⊂ ⋃n

i=1 Ui ⊂ B(T (Y ), η) and
for i = 1, . . . , n the diameter of Ui is less than 3ε, the boundary of Ui is disjoint
from X and Ui ∩ Y 6= ∅.
Proof. By Lemma 3.1 for every component K of Y there exists a Jordan disk U
such that K ⊂ U ⊂ B(T (K), η) and ∂U is disjoint from X. This gives us an open
cover of Y , so we can choose from it a finite subcover V1, . . . , Vk. We can modify
each Vi by moving slightly its boundary in C \T (X), so that the resulting disks V ′

i

still satisfy Ki ⊂ V ′
i ⊂ B(T (Ki), η) for the appropriate components Ki of Y , ∂V ′

i is
disjoint from X and ∂V ′

i ∩∂V ′
j is finite if i 6= j. Let U ′

i , i = 1, . . . , n, be the bounded
components of C \⋃k

j=1 ∂V ′
j whose intersection with Y is nonempty. Then all U ′

i

are Jordan disks. Their boundaries are contained in
⋃k

j=1 ∂V ′
j , so they are disjoint

from X. Each U ′
i is contained in some V ′

j ⊂ B(T (Ki), η), so U ′
i ⊂ B(T (Y ), η) and

diam(U ′
i) < ε + 2η ≤ 3ε. Now we can replace each U ′

i by a slightly smaller Jordan
disk Ui such that Ui ⊂ U ′

i , Ui ∩ X = U ′
i ∩ X and ∂Ui ∩ X = ∅. Then the disks

U1, . . . , Un satisfy the assertions of the lemma. ¤

Now we can prove a stronger version of Lemma 3.1.

Lemma 3.3. Let X ⊂ C be an unshielded FS-set and let ε > 0. Then for every
component K of X there exists a Jordan disk U such that U is an ε-arc-neighborhood
of T (K) and ∂U is disjoint from X.

Proof. By Lemma 1.3 each component K is locally connected, so the Riemann
mapping Ψ : D∞ → C \ T (K) extends to a continuous map Ψ : D∞ → C \ T (K).
Restricted to DR∩D∞, where DR is the disk of radius R > 1 centered at the origin,
this map is uniformly continuous. Therefore for a given δ > 0 there exists ξ > 0 such
that the diameter of the ray piece {Ψ(z) : z = tz0 ∈ C, 1 ≤ t ≤ 1+ξ} is smaller than
δ for any z0 of modulus 1. Then the set Vδ = T (K)∪Ψ({z ∈ C : 1 < |z| < 1+ξ}) is a
Jordan disk with the boundary Ψ({z ∈ C : |z| = 1+ξ}) and is a δ-arc-neighborhood
of T (K).

Since X is an FS-set, we may choose δ < ε/7 so small that every component of
X which meets ∂Vδ has diameter less than ε/7. Denote the union of all components
of X which meet ∂Vδ by XK . Then XK is a closed subset of X and each component
of XK has diameter less that ε/7. Let η > 0 be smaller than the distance between
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XK and K. By Lemma 3.2, there exist strongly disjoint Jordan disks U1, . . . , Un

such that XK ⊂ ⋃n
i=1 Ui ⊂ B(T (XK), η) and for i = 1, . . . , n the diameter of Ui is

less than 3ε/7 and the boundary of Ui is disjoint from X. For each i, since Ui ⊂
B(T (XK), η), we have Ui∩K = ∅. Let U be the component of C\ (

⋃n
i=1 ∂Ui∪∂Vδ)

which contains K. By Theorem 4, p. 512 of [8], U is a Jordan disk. We claim that
U is the required ε-arc-neighborhood of T (K). To see this choose x ∈ U \ T (K).
Since x ∈ Vδ, there exists an arc A ⊂ Vδ of diameter less than ε/7 joining x to
K. If A meets a Ui, we can modify it by using a piece of ∂Ui. Using the triangle
inequality it is easy to see that doing this for all Ui which A meets results in a new
arc A′ of diameter less than ε/7 + 6ε/7 = ε as required. By the construction, ∂U
is disjoint from X. ¤

Lemma 3.4. Let X be an unshielded FS-set contained in a Jordan disk U and let
K0, . . . ,Km be some components of X. Then for each ε > 0 there exists a finite
cover {U0, . . . , Un} (n ≥ m) of X by strongly disjoint Jordan disks and components
Km+1, . . . ,Kn of X such that for each i ∈ {0, . . . , n}, Ki ⊂ Ui ⊂ Ui ⊂ U and Ui is
an ε-arc-neighborhood of T (Ki). Moreover, for each component K of X such that
K 6∈ {K0, . . . , Kn}, diam(K) < ε/2.

Proof. Let X, U and K0, . . . ,Km be as specified above. Fix ε > 0. Since X is FS,
there exist k ≥ m and components Km+1, . . . , Kk such that diam(K) < ε/3 for
any component K of X which is not one of K0, . . . ,Kk. By Lemma 3.3 there exist
strongly disjoint Jordan disks U0, . . . , Uk such that Ui is an ε-arc-neighborhood of
T (Ki), Ui ⊂ U and ∂Ui is disjoint from X for i = 0, . . . , k.

Set Y = X \ ⋃k
i=0 Ui. Then Y is a closed subset of X and its distance from

(X ∩ ⋃k
i=0 Ui) ∪ (C \ U) is positive. Therefore by Lemma 3.2 there exist Jordan

disks Uk+1, . . . , Un of diameter less than ε such that Y ⊂ ⋃n
i=k+1 Ui, Ui ⊂ U ,

∂Ui is disjoint from X and Ui ∩ Y 6= ∅ for i = k + 1, . . . , n and all Jordan disks
U0, . . . , Uk, Uk+1, . . . , Un are strongly disjoint. To complete the proof, we choose
components Ki of X, i = k + 1, . . . , n, with Ki ⊂ Ui. ¤

Given a Jordan disk U and two points a, b ∈ U there exists a unique arc S(a, b) of
shortest arc length joining a, b in U [4]. We may, and from now on do, assume that
all Jordan disks have a piecewise linear boundary. Under this assumption there
exists a unique shortest arc S(a, b) ⊂ U between any two points a, b ∈ U and the
length |S(a, b)| of S(a, b) is finite. We call S(a, b) the s-arc (between a and b in U).
By [4] the family of s-arcs is continuous in the following sense: if ai → a, bi → b and
all these points belong to U then S(ai, bi) converge to S(a, b) in Hausdorff topology
and |S(ai, bi)| → |S(a, b)|. Hence, given two disjoint compact subsets A,B of U
there is an arc of shortest length between a point of A and a point of B - just take
a sequence of pairs of points ai, bi such that |S(ai, bi)| converges to the infimum
of lengths over all arcs connecting a point of A with a point of B, and use the
continuity. Thus we can talk of s-arcs between compacta; in particular, given a
point x ∈ U and a Jordan disk V ⊂ V ⊂ U we can find an arc (contained in U) of
shortest length from x to V .

Similarly, one can consider arcs of smallest diameter between two points in U .
Given two points a, b ∈ U , call an arc with endpoints a and b a d-arc (between a and
b in U) if its diameter is the smallest possible among all arcs connecting a and b in
U . By [7], if a, b ∈ X ⊂ U and X is a continuum, then diam(X) ≥ diam(S(a, b)).
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Hence the s-arc between a and b is a d-arc between a and b. The case of arcs
between sets is analogous to the above. Given two compacta A,B ⊂ U call an arc
with the endpoints in A,B a d-arc (between A and B) if it has the smallest diameter
among all such arcs. To show that d-arcs between A and B exist, choose sequences
ai ∈ A, bi ∈ B so that ai → a ∈ A, bi → b ∈ B and diam(S(ai, bi)) converges to the
infimum of the diameters of arcs connecting points of A and B. Then by [4] the
arcs S(ai, bi) converge to the arc S(a, b) in Hausdorff topology and it is easy to see
that diam(S(ai, bi)) → diam(S(a, b)). Thus, S(a, b) is a d-arc between A and B.
An upper bound on the diameter of an s-arc between a point in U and a Jordan
disk in U is established below.

Lemma 3.5. Let U be a Jordan disk, V ⊂ V ⊂ U be a Jordan disk, x ∈ U be a
point, δ be the diameter of a d-arc between x and V , and let S(x, y) be an s-arc
between x and V . Then diam(S(x, y)) ≤ 9δ.

Proof. Choose a d-arc S(x, z) between x and V of diameter δ, such that S(x, z) ∩
V = {z}. We may assume that x /∈ V and z 6= y. Observe that since S(x, y) is an
s-arc between x and V , we have S(x, y) ∩ V = {y}. Fix ε > δ; we will show that
diam(S(x, y)) < 9ε. Draw the circle P centered at x of radius ε. If S(x, y) ⊂ T (P )
then diam(S(x, y)) ≤ 2ε < 9ε as desired. Thus we may assume that S(x, y) is not
a subset of T (P ).

By uniqueness of shortest arcs, there is a point q such that S(x, y) ∩ S(x, z) =
S(x, q). Moreover, S(x, y) \ S(x, q) = S(q, y) and S(x, z) \ S(x, q) = S(q, z). Since
S(x, z) ⊂ T (P ), we have q ∈ T (P ). Choose an arc R ⊂ ∂V connecting y and z and
consider the Jordan curve A = S(q, y) ∪R ∪ S(q, z).

Clearly, A ⊂ U and int(T (A)) ⊂ U is a Jordan disk. Let W be the component
of int(T (P ))∩ int(T (A)) containing q (and hence S(q, z)) in its boundary (by The-
orem 4, p. 512 [8], all components of int(T (P ))∩ int(T (A)) are Jordan disks). Note
that ∂W ⊂ A ⊂ U . Let B ⊂ ∂W \{z} be the minimal subarc of ∂W which connects
q to ∂V . Then B ⊂ S(q, y) ∪ P . Since S(q, y) is an s-arc between q and V then
|B| ≥ |S(q, y)|. Hence the parts of S(q, y) which are not in B have the total length
at most 2πε. In particular, all parts of S(x, y) outside T (P ) have the total length
at most 2πε. Therefore by the triangle inequality diam(S(x, y)) ≤ 2ε + 2πε < 9ε.
Since ε can be chosen arbitrarily close to δ, we get diam(S(x, y)) ≤ 9δ. ¤

We use Lemma 3.5 in the proof of the next lemma.

Lemma 3.6. Let U be a Jordan disk containing the closures of strongly disjoint
Jordan disks V0, V1, . . . , Vi and let Vi+1, . . . , Vn be points on ∂U . Choose ε > 0 so
that U is an ε-arc-neighborhood of V0 and diam(Vk) < ε, k = 1, . . . , n. Then there
exist disjoint trees T1, . . . , Tm, m < ∞, such that diam(Tj) < 20ε, exactly one point
of each Tj is in V0, and (

⋃m
j=1 Tj) ∩ Vi is a singleton for each i = 1, . . . , n.

Proof. By the remarks preceding Lemma 3.5, there is an s-arc A′i = S(ai, bi) be-
tween Vi and V0 (ai ∈ Vi, bi ∈ V0). If x ∈ A′i ∩ A′j then S(x, bi) is the arc in A′i
from x to bi, S(x, bj) is the arc of A′j from x to bj , and these arcs have the same
length. Hence the arc, say, S(ai, x)∪S(x, bj) is still an s-arc between ai and V0 (the
original s-arc is A′i). Endow A′i with the order ai < bi and use interval notation
for subarcs of A′i. Inductively define s-arcs Ai, 1 ≤ i ≤ n, between ai and V0 so
that each Gk =

⋃k
j=1 Aj , 1 ≤ k ≤ n, is the union of disjoint trees, each of which
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intersects V0 at one point. We can do this as follows. First we set A1 = A′1. Sup-
pose A1, . . . , Ak have been defined; choose the smallest point xk+1 on A′k+1 which
belongs to V0∪

⋃k
j=1 Aj , denote by B the unique arc in Gk joining xk+1 to V0 (such

arc is unique by induction), and set Ak+1 = [ak+1, xk+1] ∪ B. It is now easy to
verify the inductive assumptions which completes the construction.

Let C be a component of Gn, C ∩ V0 = {z}. By the construction, C is the
union of s-arcs between a point in U and V0. By Lemma 3.5 each such arc has
diameter at most 9ε, so diam(C) ≤ 18ε. Since some arcs Ai and Vj , j 6= i, may
intersect, to complete the proof we modify Gn. Choose strongly disjoint Jordan
disks V ′

i ⊃ Vi of diameters less than ε. For each i choose a Jordan disk Di ⊂ Vi

such that ∂Di ∩ ∂Vi = Di ∩ Gn = {ai} and also a Jordan disk D′
i ⊂ D′

i ⊂ V ′
i

containing Vi and such that ∂D′
i ∩ ∂Vi = {ai}. Then we can use an isotopy in V ′

i

which expands Di onto D′
i and is the identity on ∂V ′

i ∪ {ai}. Repeating this for all
i, we construct the desired union of trees. Since each change we made is confined
to a set of diameter less than ε, the diameter of each tree does not change by more
than 2ε. ¤

To prove Theorem 2.1 we apply Lemma 3.6; the inductive construction is close
to [2]. For brevity and to follow the terminology of [2], below we call Jordan disks
bubbles. Choose a bubble U0 ⊃ X, R > diam(U0), and a component K0 of X.
Set δn = 4−n. By Lemma 3.4 we can find a finite cover {U1

0 , . . . , U1
m(1)} of X by

strongly disjoint bubbles and components K1
i ⊂ U1

i of X satisfying the conditions
of Lemma 3.4 with ε = δ1 and K0 = K1

0 . Thus, after the first step we have m(1)+1
components K1

i , 0 ≤ i ≤ m(1) of X with strongly disjoint δ1-arc-neighborhoods of
their topological hulls: the bubbles U1

i , 0 ≤ i ≤ m(1). By Lemma 3.6 the sets
U1

i , 1 ≤ i ≤ m(1) can be connected to U1
0 by means of pairwise disjoint trees of

diameters less than R. On sets ∂U1
i , 0 ≤ i ≤ m(1) we mark finitely many points at

which those trees intersect them (there will be at most m(1) marked points on ∂U1
0

and one marked point on each ∂U1
i , 1 ≤ i ≤ m(1)). Finally, by Lemma 3.4 all other

components of X (not belonging to {K1
0 , . . . ,K1

m(1)}) are of diameter less than
δ1/2. Let us denote the union of all connecting trees and all sets U1

i , 0 ≤ i ≤ m(1)
by T1. The set T1 can be thought of as a tree in which some points are replaced
by bubbles. Observe that by Lemma 3.6 the connecting trees do not penetrate the
bubbles.

Apply the same construction to the pairs (U1
i ,K1

i ), 0 ≤ i ≤ m(1) (K1
i and

U1
i replace K0 = K1

0 and U0, and the constant is δ2, not δ1). The difference is
that now we have bubbles and finitely many points on the boundary of each U1

i .
Still, Lemma 3.6 is applicable. Thus, inside each bubble of the first generation we
construct bubbles of the second generation each of which is a δ2-arc-neighborhood
of the appropriate component of X. Moreover, components K1

0 , . . . ,K1
m(1) chosen

on the previous step remain on the list of chosen components of second generation,
and some bubbles of second generation are δ2-arc-neighborhoods of the topological
hulls of those components. The trees with bubbles, constructed inside the bubbles
of first generation, replace the bubbles of first generation and are then added to
already existing trees. To sum it all up, once the construction is applied inside each
U1

i , we complete the second step which gives rise to the set T2 ⊂ T1 which is also
a tree with bubbles. Now apply the same arguments inside each bubble of second
generation with the new constant δ3, etc. In the end we get the infinite intersection
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Z =
⋂

Tn. Then Z is a non-separating continuum. Put Y = ∂Z, then Y is an
unshielded continuum. Let us now establish some properties of the construction.

Property A. We have X ⊂ Z.

Proof. It follows from the fact that X ⊂ Tn for any n. ¤
If K ⊂ X is a component of X, denote by Un

K the bubble of n-th generation
containing K.

Property B. If K is a component of X then
⋂

n Un
K =

⋂
n Un

K = T (K).

Proof. By the construction,
⋂

n Un
K =

⋂
n Un

K . Set B =
⋂

n Un
K . Then by the

construction T (K) ⊂ B. On the other hand, no point outside T (K) belongs to
B because for any ε > 0 from some time on the sets Un

K are contained in ε-balls
around K. Hence B = T (K). ¤
Property C. We have X ⊂ Y .

Proof. Let K be any component of X and let Un
K be the bubble of n-th generation

containing K. By Property B,
⋂

n Un
K =

⋂
n Un

K = T (K). Since X is unshielded,
K = lim ∂Un

K . It follows from the construction that ∂Un
K ⊂ C \ Z for every n.

Hence K ⊂ ∂Z = Y . ¤
Call a pair (U,K) which appears in the construction (on the step n) a building

pair (of generation n). Recall that T (X) denotes the union of the topological hulls
of all components of X and set A = Y \ T (X). Represent A as a countable union
of open (homeomorphic to (0, 1)) arcs as follows. Let (U,K) be a building pair of
generation n, (V, K) and (W,L) be building pairs of generation n + 1, W ⊂ U .
Then there is a unique arc I ⊂ Tn+1 connecting W and V . Outside W this arc
is extended on each step so that its endpoint approaches K. Finitely many points
on ∂U (coming from the previous step) are connected to V similarly. These sets,
connecting to K either bubbles of the next generation (contained in U), or the
finitely many points chosen on ∂U , are called partial connectors (of generation n).
On the other hand, similar process takes place inside W where the partial connector
towards L is being constructed. The entire inductively constructed set connecting
L and K are said to be a connector. Clearly, there are countably many connectors,
and A is the union of all of them. By the construction, a connector is the union
of two partial connectors (above one partial connector extends towards K, and the
other one towards L). Hence the claim that all connectors are arcs follows from
Property D below.

Property D. Let (U,K) be a building pair of generation n, (W,L) be a building
pair of generation n + 1, W ⊂ U and K 6= L. Then the following estimates hold.

(1) diam(W ) ≤ 4−n.
(2) Let I be a partial connector between W and K, or between one of the finitely

many points chosen on ∂U , and K. Then I is a closed arc, diam(I) <
80
3 4−n, and if I is a partial connector between W and K, then diam(I ∪
W ) < 83

3 4−n.

Proof. (1) By the construction diam(L) < δn/2. By Lemma 3.4 and the construc-
tion, for each point x ∈ W there is a point y ∈ L such that |x− y| ≤ δn+1. Hence
diam(W ) ≤ δn/2 + 2δn+1 = 4−n.
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(2) By the construction and Lemma 3.6 the partial connector I between W
and K (or between an appropriate point on ∂U and K) is the concatenation of
disjoint (except endpoints where two consecutive arcs meet) arcs of diameters at
most 20δn, 20δn+1, . . . . Hence diam(I) ≤ 20(δn + δn+1 + . . . ) = 80

3 4−n. Since
the endpoint of I belongs to K, it does not belong to any of the arcs that we
concatenate. Therefore I is a closed arc. Together with (1) this implies that
diam(I ∪W ) < 83

3 4−n and completes the proof. ¤

Property E. If C ⊂ Y is a continuum then its intersection with a component K
of X is a continuum too.

Proof. Let Cn be the intersection of C with the bubble of n-th generation containing
K. Then, by the definition of Tn, the set Cn is connected. The sequence of continua
(Cn)∞n=1 is descending, so its intersection C ∩ T (K) is a continuum. Since C ⊂ Y
and Y ∩ T (K) = K, we have C ∩ T (K) = C ∩K. ¤

To prove Theorem 2.1 we need to show that Y is FS. Suppose that for some
ε > 0 there are infinitely many disjoint continua Cn ⊂ Y with diameter greater
than ε. Choose m > 1 so that δm = 4−m < 3ε

332 . Consider Tm; as we know Tm is a
tree with finitely many bubbles, hence only finitely many Cn’s can be not contained
in one of those bubbles. Thus we may assume that for a building pair (U,K) of
generation m all Cn’s are contained in U .

Let us estimate the diameters of Cn’s. Since Cn’s are disjoint, their intersections
with K are disjoint too. By Property E each intersection K∩Cn is a continuum, and
since K is FS we see that diam(Cn ∩K) → 0. Hence we may assume that no Cn is
contained in K and that diam(Cn∩K) < ε/2. Now, it follows from the construction
that the set (Y ∩U) \K is the union of sets each of which is contained in the union
of a bubble V ⊂ U of generation greater than m, and a partial connector between
K and V , and a finite collection of partial connectors between finitely many chosen
points on ∂U and K. By Property D every set in the list is of diameter at most
83
3 4−m. By the triangle inequality it implies that diam(Cn) ≤ 166

3 4−m + ε/2 < ε

(the last inequality follows from the fact that 4−m < 3ε
332 ), a contradiction. Hence,

Y is finitely Suslinian.
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