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Abstract. We call a rational map f graph critical if any critical point either belongs
to an invariant finite graph G, or has minimal limit set, or is non-recurrent and has
disjoint from G limit set. We prove that for any conformal measure either for almost
every point of the Julia set J(f) its limit set coincides with J(f) or for almost every
point of J(f) its limit set coincides with the limit set of a critical point of f .

1. Introduction

The central question in the Dynamical Systems Theory is about the long term
behavior of orbits. In particular, it is important to know ω-limit sets for typical
orbits. In this paper we address this type of question for a class of rational maps
on the Riemann sphere, understanding “typical” in terms of conformal measures.

Let us describe ideas motivating our research. A conceptually important ap-
proach to the problem of long term behavior of orbits was suggested by Milnor in
[M1], where he introduced the notion of an attractor. One can think of an attractor
as the limit set assumed on a set of points of positive measure. In a few papers
which followed (see, e.g., the papers [BL1-BL4, L2], which are closer to our work
but certainly do not exhaust the list of all main papers on this popular subject),
attractors have been thoroughly studied for interval maps. It was established that
to a great extent the number and type of attractors of interval maps is related to
the behavior of the trajectories of their critical points (see also [BM], where the
attractors and critical limit sets of negative Schwarzian interval maps are studied
in great detail). Here by a critical limit set we mean the limit set of a critical point.

Clearly, the topology of the space is important for this type of results, so already
in real dimension two, in particular for complex rational maps, the problem becomes
harder to tackle. However, certain topological properties are shared by interval
maps and by some classes of rational maps. Judging from the fact that critical limit
sets play a central role for interval maps, it is reasonable to consider rational maps
for which critical points belong to invariant graphs (real one-dimensional branched
manifolds) as a class of maps for which similar results could hold. In other words,
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we want to replace one-dimensionality of the space by one-dimensionality of a set
containing critical limit sets and see if the attractors of such maps can be described.

On the other hand, a different, more dynamical than topological property of
critical limit sets, also can be sufficient to describe attractors. Recently it has been
proven (in [BMO], where results of [Ma] were used) that for a conformal measure
µ either almost every point has the limit set coinciding with the Julia set or almost
every point has the limit set contained in the union of the limit sets of recurrent
critical points. Thus, in the latter case, if all critical limit sets are minimal, it is
easy to see that for almost every point the limit set is exactly one of the critical
limit sets.

The class of graph critical maps, that we introduce later in this section and study
throughout the paper, contains classes of rational maps mentioned in the preceding
two paragraphs. Let us stress that our idea is to have a purely topological or
dynamical set of conditions which singles out the family of rational maps we want
to deal with. Rational maps are already smooth enough, so that to make conclusions
about their limit behavior there is no need to add more properties of smooth nature.

The paper [BL1] may be considered a prototype for out work. Some ideas and
general approach to the problem are certainly shared by both papers. However, we
had to come up with new tools in order to implement those general ideas.

To fix terminology and notation, recall that for a continuous map T of a compact
Hausdorff space X to itself and a point x ∈ X the orbit of x is the sequence
(fn(x))∞n=0 (we denote it orb(x) and sometimes consider it to be a set rather than
a sequence), and the ω-limit set of x is the set of all accumulation points of orb(x).
We denote it ω(x) and usually call it simply the limit set of x.

If f : ̂C → ̂C is a rational map, we denote by C(f) = C the set of its critical
points and by P (f) =

⋃

c∈C(f) ω(c) its postcritical set. A periodic orbit is called a
cycle. For a point x let B(x, r) be the open disk of radius r centered at x (r-disk)
and B(x, r) be the corresponding closed disk (closed r-disk). A Jordan disk is a
set U , homeomorphic to an open disk with U homeomorphic to a closed disk such
that U is the interior of U ; closed Jordan disks are closures of the open ones. Also,
a (closed) Jordan disk around a point z has interior containing z. Note that a
component of the inverse image of an open Jordan disk is a Jordan disk. We call a
set A minimal if the map restricted to this set is minimal (i.e., the orbit of every
point of A is dense in A). We say that f is exact (for a measure µ) if for any set B
such that B = f−n(Bn) for n = 0, 1, 2, . . . and measurable sets Bn, either B or its
complement has measure 0. Clearly, an exact map is ergodic.

Let us list some known results about limit sets of points for rational maps. By
[Su2] the limit set of a point in the Fatou set is either an attracting or parabolic
cycle, or a simple closed curve on which the map is conjugate to an irrational
rotation. Hence, we restrict our attention to the limit sets of points from the Julia
set J(f).

The first results in this direction were obtained in [L1], where it is proven that if
J(f) 6= ̂C then the limit set of the Lebesgue almost every point in J(f) is contained
in P (f). Also, in case when the Julia set has positive Lebesgue measure it was
shown in [McM1] that if the limit set of the Lebesgue almost every point in J(f) is
not contained in P (f) then J(f) = ̂C, f is ergodic and the limit set of almost every
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point is the entire ̂C. In [Ba] it was shown that in the second case the map is also
exact and conservative.

These papers deal with the Lebesgue measure. One may hope to generalize their
results to conformal measures. A measure µ on J(f) is conformal (for f) if for an
exponent α > 0 we have µ(f(A)) =

∫

A |f
′(z)|αdµ whenever f |A is 1-to-1 (by [Su1]

f has at least one conformal measure), and indeed it turns out that results similar
to those of [L1, McM1, Ba] hold for conformal measures too. Note that since we
assume that the conformal measure is defined on J(f), the Lebesgue measure is
usually not conformal.

Now, for x ∈ ̂C and n > 0 consider the supremum rn(x) of all r such that
B(fn(x), r) can be pulled back to x univalently. By this we understand that there
are sets Vi 3 f i(x) for i = 0, . . . , n such that Vn = B(fn(x), r) and Vi−1 is a
connected component of f−1(Vi), and f is univalent on all Vi, i < n. Then rn(x) > 0
if all points x, . . . , fn−1(x) are not critical; otherwise define rn(x) as 0. Moreover,
there exists a critical point cn belonging to the boundary of one of the sets Vmn ,
where r = rn(x). We call (cn,mn) a generating pair for rn(x).

If x ∈ J(f) and rn(x) 6→ 0 then x is called (C-)reluctant. The set of all such
points is denoted by Rlc(f) (reluctant points are also called conical, see e.g. [DMNU]
and the set Rlc(f) is also called the radial Julia set of f , see [McM2]; in Section 8.3
of [LM] those points are discussed in the context of Kleinian groups). If x ∈ J(f)
and rn(x) → 0, the point x is called (C-)persistent. There are trivial cases when
a point is persistent, e.g., if it is eventually mapped into a critical point or into
a parabolic periodic point (whose orbit by the Fatou Theorem is the limit set of
some critical point). The set of all persistent points is denoted by Prs(f). By the
definition Prs(f) ⊂ J(f) and Rlc(f) ⊂ J(f). Also, let Pr(f) be the union of the
limit sets of recurrent critical points of f .

Theorem 1.1 [BMO]. The following holds for a conformal measure µ for f .
(1) If µ(Rlc(f)) > 0 then supp(µ) = J(f), µ(Rlc(f)) = 1, µ is non-atomic, the

map f is exact, conservative, and ω(x) = J(f) for µ-a.e. point x ∈ ̂C.
(2) If µ(Rlc(f)) = 0 then for µ-a.e. point x ∈ J(f) either ω(x) ⊂ Pr(f) or x is

an eventual preimage of a critical or parabolic point of f .

If we want to apply this theorem to the Lebesgue measure m instead of a confor-
mal measure, there are two cases possible. If m(J(f)) = 0 then the statements are
vacuous. If m(J(f)) > 0 then the restriction of m to J(f) is a conformal measure
and we can apply the theorem. The same will apply to our Main Theorem stated
later in this section.

The aim of Theorem 1.1 is to deal with conformal measures with no assumptions
on maps. Stronger results for maps with specific assumptions are known: if J(f)
is expanding [Bo, Su1, W] or if f is from a certain class of unimodal polynomials
[Pr] then f is ergodic with respect to µ. Also, results close to Theorem 1.1(1)
were obtained in [GPS] for Lebesgue measure and could actually be extended onto
conformal measures by a slight modification of methods of [GPS]. For a rational
map with no recurrent critical points in the Julia set it is shown in [U] that for any
nonatomic conformal measure and almost every z the limit set is J(f). Finally,
other related results concerning conformal measures are obtained in [P] under cer-
tain hyperbolic assumptions.
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We study limit sets of persistent points (which is justified by Theorem 1.1) for the
class of rational maps which we now define. A graph is a compact one-dimensional
branched manifold (not necessarily connected). A rational map f of degree at least
2 is graph critical if for some f -invariant graph G (not necessarily smooth) all
critical points of f either have minimal limit sets, or are non-recurrent and have
limit sets disjoint from G, or belong to G.

Two obvious examples of graph critical maps are: rational maps with real co-
efficients and real critical points, and rational maps with all critical points having
finite limit sets. To give less obvious examples, consider a polynomial f with a
locally connected Julia set containing all critical points of f . Then one can prove
that all critical points of f belong to an invariant graph if and only if all critical
points of f are eventually mapped into points at which two external rays land.

Main Theorem (Theorem 4.13). For a graph critical map f and a conformal
measure exactly one of the following holds.

(1) For almost every x ∈ J(f), ω(x) = J(f).
(2) For almost every x ∈ J(f), ω(x) = ω(c) for some critical point c of f .

This theorem is a corollary to Theorem 1.1 and the following main technical
result of the paper.

Theorem 4.12. For a graph critical map f and a persistent point x ∈ J(f),
ω(x) = ω(c) for some critical point c of f .

Main Theorem allows us to answer (for graph critical maps) the questions about
primitive attractors in the sense of Milnor ([M1]). For a given measure µ (in our
case, any conformal measure, including the case when the Julia set has positive
Lebesgue measure and µ is the restriction of the Lebesgue measure to the Julia
set), they are the sets A such that µ({x : A = ω(x)}) > 0. In Case 1 of Main
Theorem, there is only one primitive attractor, namely J(f). In Case 2 all primitive
attractors are of the form ω(c) for a critical point c of f , so there may be several
primitive attractors, but their number is no greater than the degree of the map.

We would like to make one final remark concerning the proofs. As we have
explained, our definition of graph-critical maps is supposed to accommodate several
possible types of behavior of critical points. Still, as an introductory step, the reader
may think of a simpler situation of graph-critical functions in the narrow sense, i.e.
rational functions whose all critical points belong to an invariant graph. In this
case one can simply omit certain parts of the proofs.

We would like to express our gratitude to G. Keller for useful discussions of the
results of this paper that he had with one of us (AB). We are also grateful to the
referee for valuable remarks.

2. Contraction principles for graph maps

Throughout this section G denotes a graph and f : G → G a continuous map.
The open n-od is the set of all points z in the open unit disk with zn real and
positive; its closure is called the closed n-od or just the n-od. A point x ∈ G
has a neighborhood homeomorphic to the open n-od for some n = n(x) with x
corresponding to the origin. The number n here is called the valence of x (in G)
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and denoted by valG(x). If n = 1 then x is called an endpoint of G (then x has
a neighborhood in G homeomorphic to [0, 1), where x corresponds to 0). If n > 2
then x is called a branching point of G. The branching points and endpoints are
called vertices. The set of vertices of G is finite. Let d be a metric in G.

An important role for interval maps is played by Contraction Principle (it can
be deduced from the “spectral decomposition” [B1] or proved directly [MMS]). A
similar fact holds for continuous graph maps (we call it First Contraction Principle).
It can also be deduced from the “spectral decomposition” (obtained for graph maps
in [B2]), but we give a direct proof and include in the statement some useful facts. In
addition, we prove Second Contraction Principle which seems to be new (although
it follows from [B2] as well). First we need to introduce appropriate language.

By the diameter of a set A we mean diam A = supx,y∈A d(x, y), so we can
speak of the diameter of any set (diam(∅) = 0). If (Ai) is a sequence of sets with
diam(Ai) → 0 and for some (and hence for any) sequence xi ∈ Ai we have xi → x
then we say that Ai converges to x and write Ai → x. If A ⊂ G is a set, x is
a periodic point of period k, and fnk(A) → x then we say that the orbit of A
(f-)converges to orb(x) (clearly, ω(y) = orb(x) for all y ∈ A). By continuity, the
orbit of A f -converges to a cycle if and only if it fm-converges to a cycle for some
m.

Consider an important special case. If P is a cycle of period k then for every
point b ∈ P we denote by Nb the union of all connected sets which contain b and
whose orbits fk-converge to b. By continuity in the definition of the set Nb we may
also use any multiple of k as a period of b, the resulting set Nb will be the same.
If b is periodic and there exists a point a ∈ orb(b) such that Na is non-degenerate
then we call b a sink. Equivalently, a periodic point b is a sink if there exists a
connected non-degenerate set which intersects orb(b) and whose orbit converges to
orb(b). Note that we understand the notion topologically; in the smooth case only
attracting and sometimes neutral cycles can be sinks.

A set A will be called roaming if it is connected and f i(A)∩ f j(A) = ∅ for every
i 6= j. If additionally the orbit of A does not converge to a cycle, we will call it
wandering. Our use of this term agrees with its common use in one-dimensional
dynamics (wandering intervals, wandering domains). Note that for a roaming set A
we have diam(f i(A)) → 0. If A is connected and either it is roaming, or its image
under some iterate of f is a periodic point, or its orbit converges to the orbit of a
sink, we say that A is waning. We choose this name since clearly if A is waning
then diam(f i(A)) → 0. In fact, from First Contraction Principle below it follows
that for a connected A this property is equivalent to A being waning. Note that a
roaming, wandering or waning set may well be a singleton (that is, consist of one
point).

Finally, a subset J ⊂ G is called an interval if it is homeomorphic to an interval
of the real line.

Lemma 2.1. Let I ⊂ G be a connected set such that I ∩ f(I) 6= ∅ and

lim inf
n→∞

diam(fn(I)) = 0.

Then the set K∞
0 =

⋃∞
j=0 f j(I) is connected and its orbit converges to a fixed point

a of f (so limn→∞ diam(fn(I)) = 0). Moreover, K∞
0 ⊂ Na.
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Proof. Since I intersects f(I), then also fn(I) intersects fn+1(I) for each n. There-
fore the sets Kn

m =
⋃n

j=m f j(I) (including the case n = ∞) are connected.
Since lim infn→∞ diam(fn(I)) = 0, there is a sequence kn →∞ with fkn(I) → a,

a ∈ G. Then fkn+1(I) → f(a), and since diam(fkn(I) ∪ fkn+1(I)) → 0 we get
f(a) = a.

Assume first that there is N such that fN+1(I) ⊂ KN
0 . Then by induction

fs(I) ⊂ KN
0 for every s > N , and therefore fkn+s(I) ⊂ Kkn+N

kn
. Thus, K∞

m ⊂
Kkn+N

kn
for any m ≥ kn. However, Kkn+N

kn
→ a, and therefore fm(K∞

0 ) = K∞
m → a.

Assume now that such N does not exist. Suppose that a ∈ K∞
0 . This means

that a ∈ fM (I) for some M . Since f(a) = a, we get a ∈ fn(I) for all n ≥ M .
Among the components of the intersection of a sufficiently small neighborhood U
of a with Kn

0 there is one that contains a; call it Wn. It is homeomorphic to the
l(n)-od. The numbers l(n) may increase from time to time, but they eventually
stabilize. Thus, there is N ≥ M such that for n ≥ N the set Wn is homeomorphic
to the l(N)-od, so WN is a neighborhood of a in K∞

0 . If n is sufficiently large, the
set fkn(I) has a very small diameter and contains a. Since it is contained in K∞

0 , it
is also contained in WN , which is in turn contained in KN

0 , a contradiction. Hence,
a /∈ K∞

0 .
Hence, taking into account that the valence of a is finite, by replacing the se-

quence (kn) with its subsequence we may assume that all sets fkn(I) are contained
in an interval (a, b] for some b ∈ G and that there are no branching points of G
in (a, b]. Since K∞

0 is connected and contains all fkn(I), we can choose b in such
a way that (a, b] ⊂ K∞

0 . Then a /∈ f((a, b]) while f((a, b]) ∩ (a, b] 6= ∅ (the latter
follows from fkn(I) ∩ fkn+1(I) 6= ∅), so for any x ∈ (a, b] we can say whether it
gets mapped towards a or away from a. The third possibility, that f(x) = x, is ex-
cluded since then all fr(I) for r sufficiently large would contain x, which contradicts
fkn(I) → a.

By continuity, either all points of (a, b] are mapped away from a or all are mapped
towards a. Assume first that they are mapped away from a. Let m > 0 and let
fm(I) ⊂ (a, b) be a sufficiently small interval close enough to a. Since fm−1(I) ∩
fm(I) 6= ∅ then fm−1(I) contains points of (a, b] close to a. On the other hand,
fm−1(I) cannot contain points between fm(I) and b because they would not be
mapped into fm(I). Hence the set fm−1(I) is also contained in (a, b] and is closer to
a than fm(I). Repeating this argument m times we get that I is contained in (a, b]
and is closer to a than fm(I). On the other hand, by the assumption fkn(I) → a,
so we can choose n such that fkn(I) is closer to a than I, a contradiction.

Thus, all points of (a, b] are mapped towards a. Since fN (I) ⊂ (a, b] for N = k1,
we get fn(K∞

N ) → a. Taking into account that fN (K∞
0 ) = K∞

N , we get fn(K∞
0 ) →

a.
In such a way we have proved that in all cases fn(K∞

0 ) → a and a belongs to
the closure of K∞

0 . Hence, since the set K∞
0 is connected, it is contained in Na.

Note that in the above lemma a is a sink unless fn(I) = {a} for some n. Thus,
as a corollary, we get First Contraction Principle.

Corollary 2.2 (First Contraction Principle). Let I ⊂ G be a connected set
such that lim infn→∞ diam(fn(I)) = 0. Then I is waning.
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Remark 2.3. In the above situation, if I is not roaming, a is not a sink and fn(I)
consists of more than one point then fn(I) is disjoint from the orbit of a. �

Second Contraction Principle is related to First Contraction Principle, but deals
with sequences of sets rather than with one set. It can also be deduced from the
“spectral decomposition” ([B2]). To state it we need some definitions.

Let I be a connected subset of G. Then we can speak of the endpoints of I (they
are the endpoints of the graph I and the points of I \ I). We would like to be able
to use similar notions as for the case of intervals of a real line, when we speak of
an open or closed interval, and this indicates only whether we include endpoints or
not. In our case the notion of a closed set gives us what we want: if I contains all
its endpoints then it is closed. However, the topological notion of an open set may
give us what we do not want. For example, if G has the shape of the letter “T”
then we would like its horizontal segment without endpoints to be open, but the
branching point belongs to its boundary. Moreover, we would not like the vertical
segment with the lower endpoint included to be open, but it is. Thus, we say that
a connected set I is endless if it does not contain any of its endpoints.

Now we need a notion of convergence for intervals in G. Since we do not really
care about the endpoints, we assume that the limit is endless (except when it is
a singleton). Thus, if all In are intervals and I is either an endless interval with
distinct endpoints or a singleton, we will write In → I if the Hausdorff distance
between In and I goes to zero.

When speaking about terms of a sequence, by “almost all” we will mean “all but
a finite number”.

Proposition 2.4 (Second Contraction Principle). Let (In) be a sequence
of intervals such that In → I and let (mn) be a sequence of numbers such that
diam(fmn(In)) → 0. Assume that fm(I) is not a singleton for any m. Assume
also that there are k ≥ 0 and l > 0 such that fk(I) ∩ fk+l(I) 6= ∅. Then the
following properties hold.

(a) For all sufficiently large n we have fk(In) ∩ fk+l(In) 6= ∅.
(b) For some sink a with f l(a) = a and any interval J contained in infinitely

many of intervals In the set
⋃∞

i=0 fk+il(J) is contained in Na and its orbit
converges to orb(a).

(c) fk(I) ⊂ Na.

Proof. Suppose that mn 6→ ∞. Then we can choose a subsequence with mn = m,
hence by continuity fm(I) is a singleton and we get a contradiction. Therefore
mn →∞.

Since fk(I) ∩ fk+l(I) 6= ∅, there are points x, y ∈ I such that fk(x) = fk+l(y).
Observe that x and y are not the endpoints of I because we agreed that I is an
endless interval. Hence the fact that In → I implies that x and y belong to almost
all of the intervals In, so for all sufficiently large n we have fk(In) ∩ fk+l(In) 6= ∅.
This proves (a).

To prove (b), assume that the interval J is contained in infinitely many of the
intervals In. Since any closed interval contained in I is contained in almost all
intervals In, we may assume that fk(J) ∩ fk+l(J) 6= ∅. Since diam(fmn(In)) → 0
and mn → ∞, we have lim infs→∞ diam(fs(J)) = 0, so by Lemma 2.1 the set
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⋃∞
i=0 fk+il(J) is contained in Na and its orbit converges to orb(a) with f l(a) = a.

Moreover,
⋃∞

i=0 fk+il(J) is contained in Na. Note that a different choice of J yields
the same point a, since two intervals close to I intersect each other. Also, a is a sink
because no image of I is a singleton, and we can always enlarge J so that fk+l(J)
and therefore Na are not degenerate.

Since fk(J) → fk(I) as J → I, we see that fk(I) ⊂ Na which proves (c).

In the above Proposition one can replace intervals by general connected sets.
However, this requires an introduction of a rather complicated notion of convergence
for connected sets in order to avoid anomalies due to two or more endpoints of the
limit coinciding. Since we will apply this Proposition only for intervals, we decided
to spare the readers those details.

Remark 2.5. By the definition, the orbits of all points of Na converge to orb(a).
Therefore in the above situation if the orbit of a point z ∈ fk(I) does not converge
to orb(a), then z belongs to the finite set Na \Na. Moreover, Na and therefore Na

are f l-invariant, hence the entire orbit of z under f l is contained in the finite set
Na \Na. Thus, z is (pre)periodic (by this we understand periodic or preperiodic).
The orbit of z is disjoint from orb(a) since it does not converge to orb(a). �

Proposition 2.6. Let (In) be a sequence of connected sets and let (mn) be a se-
quence of nonnegative integers such that diam(fmn(In)) → 0. Assume that for some
points x, y and sequences of nonnegative integers (in), (jn) we have f in(x) ∈ In,
f jn(y) ∈ In and f in(x) → x′, f jn(y) → y′. Then diam(fn(K)) → 0 for some con-
nected set K containing x′ and y′ (so by First Contraction Principle K is waning)
and hence ω(x′) = ω(y′).

Proof. If x′ = y′ then there is nothing to prove. Hence, we assume that x′ 6= y′.
We can replace each In by a smaller set (we will call it also In) which is a closed
interval with endpoints f in(x) and f jn(y). Then we can replace sequences (in) and
(jn) by their subsequences (we will keep their names, too) such that the intervals
In converge to an endless interval I whose endpoints are x′ and y′. Then either
some image of I is a singleton, or I is roaming, or Second Contraction Principle
applies. As K we take the closure of I. In the first two cases diam(fn(I)) → 0, so
also diam(fn(K)) → 0.

Let us consider the third case. We have to prove that then diam(fn(K)) → 0.
To this end we consider several possibilities. First, if for infinitely many n we have
x′ ∈ In and y′ ∈ In then K ⊂ In and by the statement (b) of Second Contraction
Principle, the orbit of K converges to orb(a), so diam(fn(K)) → 0.

In the remaining case for almost all n at least one of points x′, y′ does not
belong to In. We may assume that x′ does not belong to In for infinitely many
n’s. Then, by replacing the sequence (in) by its subsequence, we get x′ /∈ In for
all n (equivalently, f in(x) ∈ I). We have in → ∞, because f in(x) → x′ /∈ In. Set
k = 0, l = i2 − i1. Then for every interval J contained in infinitely many In’s
such that f i1(x), f i2(x) ∈ J (in particular for all compact intervals J ⊂ I which
are close enough to I) we have J ∩ f l(J) 6= ∅ and thus by the statement (b) of
Second Contraction Principle the connected set J ′ =

⋃∞
i=0 f il(J) is contained in

Na and its orbit converges to orb(a) for some sink a with f l(a) = a. We may
assume that the f l-orbit of J ′ converges to a and a does not depend on the choice
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of J . In particular, for any point z ∈ I its f l-orbit converges to a, which is the
main conclusion of this paragraph we will need below.

Let us again replace the sequences (in) and (jn) by their subsequences and if
necessary, replace points x, y by their forward iterates, so that all numbers in, jn

are multiples of l. Then f in(x) → x′ = a (we have x′ = a since all f in(x) belong to
the f l-orbit of f i1(x) ∈ I). Now, if f jn(y) ∈ I for some n then similarly f jn(y) →
y′ = a, a contradiction with x′ 6= y′. Thus, we may assume that f jn(y) /∈ I for all
n and hence y′ ∈ In for almost all n.

Choose b ∈ I close to a and let J = [b, y′] be a subinterval of I. Then J ⊂ In for
almost all n. Our previous arguments apply to J , so the f l-orbit of the connected
set J ′ =

⋃∞
i=0 f il(J) converges to a. Moreover, since all in are multiples of l and

f in(x) ∈ I, we see that J ′ contains a small semineighborhood of a in I. When
we choose b̂ inside this semineighborhood then for the corresponding Ĵ = [b̂, y′] we
have Ĵ ′ =

⋃∞
i=0 f il(Ĵ) ⊃ I. As we have shown, the orbit of Ĵ ′ converges to a, and

thus the orbit of I also converges to a. This completes the proof.

3. Limit sets of followed points

In this section we establish conditions under which the limit set of a point co-
incides with one of the limit sets from some finite collection. They serve as a tool
used to get our further results and hopefully could be applied to other dynamical
systems too. Throughout the rest of this section T : X → X is a continuous map
of a metric compact space X with metric d and C ⊂ X is a finite set. In this
non-smooth situation one can still call a periodic point a of period m repelling
(topologically) if in some metric d1 equivalent to d, for some ε > 0 and any point
x 6= a which is at most ε away from a we have d1(Tm(x), a) > d1(x, a). If we use
in the proofs the fact that some point is repelling, we will assume that our metric
is already modified as above.

Now we introduce our Basic Setup. It consists of definitions and notation, and
depends on a choice of a point x ∈ X and a set C. We give it a special name since
we will have to refer to it several times.

Basic Setup. Suppose that x ∈ X and for every integer i ≥ 0 an integer mi ∈ [0, i]
and a point ci ∈ C are chosen. Then we use the following definitions and notation
(for simplicity we sometimes skip the dependence on x).

(1) Denote by Cx the set of points of C for which the sequence of numbers i
such that ci = c is infinite.

(2) Write z � y if ω(z) ⊃ ω(y); let C ′x be the set of all �-maximal elements of
Cx.

(3) For a given c ∈ Cx, if the sequence of numbers mi with ci = c does not
tend to ∞ then we call this case bounded (for c), otherwise we call the case
unbounded (for c).

(4) A pair of points (T r(x), T r−mi(ci)), mi ≤ r ≤ i, is called an i-pair. It is
called an (i, ε)-pair if d(T i(x), T i−mi(ci)) < ε.

(5) If c ∈ Cx then the set of all accumulation points of the sequence (Tmi(x)),
where ci = c, will be denoted by Lc. Clearly, Lc ⊂ orb(x). Moreover, in
the unbounded case for c we have Lc ⊂ ω(x).
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(6) A pair of points (x′, c′) which is the limit for some sequence of i-pairs with
i →∞ and ci = c ∈ C with ω(c) not minimal, is called a limiting pair. �

Note that if c ∈ Cx, ω(c) is not minimal and z ∈ Lc then (z, c) is a limiting pair.
We will also invoke often the following condition, so we call it basic.

Basic Condition. We have d(T i(x), T i−mi(ci)) → 0 as i →∞. �

With the Basic Setup, we will say that x is C-followed if Basic Condition holds
and for any limiting pair (x′, c′) we have ω(x′) = ω(c′).

Clearly, a Basic Setup for the set C gives us a Basic Setup for the set Cx. Thus,
if x is C-followed then it is Cx-followed.

The simplest Basic Setup that we will use is when x is a persistent point of a
rational map f (see Introduction). Then for any i we have a generating pair (ci,mi)
for ri and by the definition of a persistent point Basic Condition is satisfied.

We begin with a well-known result from topological dynamics, whose proof we
include for the sake of completeness.

Lemma 3.1. Let x ∈ X, M > 0, and let K ⊂ ω(x) be a compact set such that
TM (W ∩ ω(x)) ⊂ K for some open set W ⊃ K. Then ω(x) =

⋃M−1
i=0 T i(K). In

particular, if M = 1 then K = ω(x). Moreover, finite limit sets are cycles.

Proof. By continuity of T and compactness of X, for every ε > 0 there exists
δ ∈ (0, ε) such that if d(a, b) < δ then d(TM (a), TM (b)) < ε. If ε is sufficiently
small then the 2ε-neighborhood of K is contained in W . Take N such that if n > N
then Tn(x) is in the δ-neighborhood of ω(x).

Denote by Kε the ε-neighborhood of K. Assume that n > N and Tn(x) ∈ Kε.
There is z ∈ ω(x) such that d(Tn(x), z) < δ, and since δ < ε, this z is in W . By the
assumptions, TM (z) ∈ K, so Tn+M (x) ∈ Kε. By induction, Tn+iM (x) ∈ Kε for all
i ≥ 0, so the ω-limit set of x for TM is contained in Kε. Since ε can be arbitrarily
small, the ω-limit set of x for TM is contained in K. Thus, ω(x) ⊂

⋃M−1
i=0 T i(K).

The reverse inequality follows from the assumption that K ⊂ ω(x).
By applying the above results to the case of a finite ω(x) (with K consisting of

one point), we see that it is a cycle.

In the next lemma we establish easy facts from the theory of dynamical systems
and make conclusions related to points for which Basic Condition holds. For a set
D denote by orb(D) the union of the orbits of all points of D and by ω(D) the
union of limit sets of all points of the set D.

Lemma 3.2. The following properties hold.
(1) If ω(z) = P is a topologically repelling cycle then z is eventually mapped

into P .
(2) If orb(z) is infinite and periodic points in X are topologically repelling then

ω(z) is infinite.
(3) Suppose that Basic Condition holds for a set C and a point x ∈ X. Then:

(a) ω(x) ⊂ ω(Cx),
(b) if ω(x) is infinite then it is contained in the union of all infinite limit

sets of points of Cx,
(c) if c ∈ Cx and ω(c) is minimal then ω(c) ⊂ ω(x), and if c ∈ C ′x then

ω(c) = ω(x).
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Proof. (1) If we replace T by its power then we may assume P = {a} to be a fixed
point. Suppose that z is not eventually mapped into a. Then the orbit of z is
infinite. Choose ε so that for any point x 6= a which is at most ε away from a
we have d(T (x), a) > d(x, a). Since the orbit of z is infinite, there are arbitrarily
large n such that 0 < d(Tn(z), a) < ε. For any such n there exists m > n such that
d(Tm(z), a) ≥ ε. Thus, there exists a sequence mi →∞ such that d(fmi(z), a) ≥ ε,
a contradiction with ω(z) = {a}.

(2) Follows from (1) and Lemma 3.1.
(3) (a) We have ω(x) ⊂

⋃

c∈C orb(c). Hence all points of ω(x) not belonging to
ω(C) must belong to the orbits of points of C. Let y ∈ ω(x) \ ω(C). Since f maps
ω(x) onto itself, for any i there exists a point yi ∈ ω(x) with T i(yi) = y. Then
yi /∈ ω(C) and hence yi belongs to the orbit of a point of C for any i. Since C is
finite, yj is periodic for some j and thus yj ∈ ω(C), a contradiction. Since Basic
Condition holds for the set Cx as well, we get the desired conclusion.

(3) (b) Let ω(x) be infinite. Denote by A the union of all infinite limit sets of
points of Cx and by B the union of all finite limit sets ω(c), c ∈ Cx, non-disjoint
from ω(x) (and hence such that ω(c) ⊂ ω(x)). Then by (3)(a) ω(x) ⊂ A ∪ B. By
Lemma 3.1, all periodic points which belong to ω(x) are not isolated in ω(x), and
hence all points of B are not isolated in ω(x) \B ⊂ A. Since A is closed, it implies
that ω(x) ⊂ A.

(3) (c) If c ∈ Cx then by Basic Condition the intersection orb(c) ∩ ω(x) is non-
empty. If y belongs to this intersection then ω(y) = ω(c) because of the minimality
of ω(c), while ω(y) ⊂ ω(x) because y ∈ ω(x). Thus, ω(c) ⊂ ω(x) as desired.

Let now c ∈ C ′x and let ω(c) be minimal. Then for any d ∈ Cx either ω(c)
and ω(d) are disjoint or ω(c) = ω(d). Thus by the claim (a) if ω(c) 6= ω(x) then
ω(c) is an open and closed (in the subspace topology) non-trivial subset of ω(x)
whose image is contained in it; however by Lemma 3.1 this is impossible. Hence,
ω(x) = ω(c).

The next lemma lists some useful properties of C-followed points and partially
relies upon Lemma 3.2(3).

Lemma 3.3. Suppose that x is C-followed. Then the following holds.

(1) We have ω(x) = ω(Cx) = ω(C ′x), so that the collection of possible limit sets
of C-followed points consists of at most 2card C−1 sets {ω(D) : D ⊂ C, D 6=
∅}.

(2) For any point z ∈ ω(x) if ω(z) ⊃ ω(c) for some c ∈ C ′x then z ∈ ω(z) = ω(c).
(3) For any c ∈ C ′x we have orb(c) ∩ ω(x) = ω(c).
(4) If for c ∈ C ′x an unbounded case holds and if z ∈ Lc then z ∈ ω(z) = ω(c)

(so that in particular Lc ⊂ ω(c)).

Proof. (1) By Lemma 3.2(3)(a) ω(x) ⊂ ω(Cx). On the other hand, ω(Cx) ⊂
ω(x) because for any c ∈ Cx either ω(c) is minimal and then ω(c) ⊂ ω(x) by
Lemma 3.2(3)(c), or ω(c) is not minimal and then ω(c) = ω(z) ⊂ ω(x) for any
z ∈ Lc ⊂ orb(x). Hence, ω(x) = ω(Cx). The second part of the statement immedi-
ately follows.

(2) Suppose that z ∈ ω(x) and ω(z) ⊃ ω(c) for some c ∈ C ′x. Then (1) implies
that z ∈ ω(u) for some u ∈ Cx and so ω(u) ⊃ ω(z) ⊃ ω(c). Thus, u � c. Since c is
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�-maximal we see that ω(c) = ω(u) = ω(z) 3 z.
(3) By (1) ω(c) ⊂ ω(x) and so orb(c) ∩ ω(x) ⊃ ω(c). If T k(c) ∈ ω(x) for some k

then by (2) T k(c) ∈ ω(c) and hence orb(c) ∩ ω(x) = ω(c).
(4) Clearly, in the unbounded case Lc ⊂ ω(x). Consider now two cases. First, let

ω(c) be minimal. Then by Lemma 3.2(3)(c) we have ω(x) = ω(c), so ω(x) is minimal
too, and thus z ∈ ω(z) = ω(c). Now, let ω(c) be non-minimal. Then for any z ∈ Lc

(z, c) is a limiting pair, so ω(z) = ω(c). Thus by (2) we get z ∈ ω(z) = ω(c).

Theorem 3.4. If x is C-followed then ω(x) = ω(c) for some c ∈ C. Moreover, this
c can be chosen in such a way that if the bounded case holds for it then Tm(x) ∈ Lc

for some m ∈ N, while in the unbounded case Lc ⊂ ω(x), each point of Lc is
recurrent and has limit set ω(x).

Proof. Suppose that for some c ∈ C ′x the bounded case holds. Then there exists a
number m and a sequence of i →∞ such that ci = c and mi = m for all elements
of this sequence. This implies that Tm(x) ∈ Lc and hence ω(x) = ω(c) (by the
definition of C-following if ω(c) is not minimal, or by Lemma 3.2(3)(c) if ω(c) is
minimal). This proves the theorem in the case when for some c ∈ C ′x the bounded
case holds.

For the rest of the proof we assume that for any c ∈ C ′x the unbounded case
holds. If for some c ∈ C ′x the set ω(c) is minimal then by Lemma 3.2(3)(c) we have
ω(x) = ω(c) and all the claims of the theorem about unbounded case immediately
follow. Hence, for the rest of the proof we assume also that for any c ∈ C ′x the set
ω(c) is not minimal.

Fix u ∈ C ′x. By Lemma 3.3(4), Lu ⊂ ω(u) ⊂ ω(x) and ω(z) = ω(u) for any
z ∈ Lu (so in particular, if ω(u) = ω(x) then the claims of the theorem about
the unbounded case hold). If ω(u) 6= ω(x) then for some γ > 0 there exists an
arbitrarily large n with d(Tn(x), ω(u)) > 2γ. We may assume that γ satisfies
additionally the following conditions. By d(A,B) we denote the infimum of d(a, b)
for a ∈ A, b ∈ B.

(1) for any c ∈ C ′x and any set Lw disjoint from ω(c) we have d(ω(c), Lw) > 2γ;
(2) for any c, c′ ∈ C if ω(c) ∩ ω(c′) = ∅ then d(orb(c), orb(c′)) > 2γ;
(3) if c, c′ ∈ C and c /∈ ω(c′) then d(c, ω(c′)) > 2γ.

We draw a contradiction from this. Choose ν < γ such that d(y, z) ≤ ν implies
d(T (y), T (z)) < γ.

Step 1. There exist sequences i →∞ and ri →∞ with ri > mi such that:
(1) ci = u, Tmi(x) → a ∈ Lu ⊂ ω(u) and T ri(x) → b ∈ ω(x) \ ω(u) (which

always implies ri −mi →∞);
(2) d(T j(x), ω(u)) ≤ γ for all mi ≤ j ≤ ri, and so d(b, ω(u)) ≤ γ.

Indeed, the infinite sequence of numbers i with ci = u contains a subsequence
along which Tmi(x) → a for some a. Since we deal with the unbounded case,
mi →∞, and then by the definition and Lemma 3.3(4) a ∈ Lu ⊂ ω(u). Thus, the
first part of claim (1) of Step 1 holds.

We may assume that d(Tmi(x), a) < ν. First let us show that for any sequence
ri > mi with T ri(x) → b /∈ ω(u) we must have ri −mi → ∞. Indeed, otherwise
by continuity and because Tmi(x) → a ∈ ω(u) we conclude that b ∈ ω(u), a
contradiction. Also, this implies that ri →∞ and so b ∈ ω(x).
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Let us now choose a sequence ri with the required properties. By the properties
of γ there exists the minimal ri > mi such that d(T ri(x), ω(u)) > ν. By passing to
a subsequence we may assume that T ri(x) → b /∈ ω(u). By the choice of ri we have
d(T ri−1(x), ω(u)) ≤ ν and hence d(T ri(x), ω(u)) < γ. Hence, d(T j(x), ω(u)) ≤ γ
for mi ≤ j ≤ ri. This completes the proof of Step 1.

Step 2. By refining our sequences we may get new sequences i and ri such that
cri = v /∈ ω(u) for all i, T ri(x) → b ∈ (ω(x)∩orb(v))\ω(u) and Tmri (x) → s ∈ Lv.

We can refine our sequences so that cri = v for all i and Tmri (x) → s ∈ Lv (since
ri → ∞, we have v ∈ Cx). Since d(T ri(x), T ri−mri (v)) → 0, we get b ∈ orb(v).
Hence, b ∈ (ω(x) ∩ orb(v)) \ ω(u). Clearly, v /∈ ω(u). This completes the proof of
Step 2.

Step 3. The point v is not recurrent, ω(v) ⊂ ω(u) and so b = T l(v) ∈ orb(v)\ω(v)
where l > 0 is well-defined. We may refine our sequences further so that ri =
mri + l, b = T l(s) = T l(v) and s ∈ ω(x) \ ω(u).

Let us show that ω(v) ⊂ ω(u). First suppose that ω(v) is minimal. If ω(v) 6⊂ ω(u)
then ω(v) and ω(u) are disjoint and so d(orb(v), orb(u)) > 2γ by the choice of γ.
On the other hand b ∈ orb(v) and d(b, ω(u)) ≤ γ. This contradiction shows that in
this case ω(v) ⊂ ω(u). Now suppose that ω(v) is not minimal. We begin by showing
that eventually mri ≥ mi. Indeed, assume that there exist sequences from Step 2
with mri < mi for all i. We may assume that Tmi−mri (v) → d. Since mi < ri,
we see that (a = lim Tmi(x), d = lim Tmi−mri (v)) is a limiting pair. Then by the
definition of C-following ω(d) = ω(a), and since a ∈ Lu, ω(a) = ω(u). Therefore
ω(v) ⊃ ω(d) = ω(u). By �-maximality of u we conclude that ω(v) = ω(u) and so
v is also �-maximal. Now, by Lemma 3.3(3) orb(v) ∩ ω(x) = ω(v). Since by Step
2 b ∈ (ω(x) ∩ orb(v)) \ ω(u) we conclude that b ∈ ω(v) \ ω(u), a contradiction.

Since ri ≥ mri ≥ mi, by Step 1(2) we have d(s, ω(u)) ≤ γ. Since s ∈ Lv, the
distance between Lv and ω(u) is at most γ. By the choice of γ then ω(u) and Lv are
non-disjoint, i.e. there exists z ∈ ω(u) ∩ Lv. Since by the definition of C-following
ω(v) = ω(z), we get ω(v) ⊂ ω(u).

Clearly, b ∈ ω(v) is then impossible because by Step 2 b /∈ ω(u). Since by Step
2 b ∈ orb(v), we conclude that b = T l(v) ∈ orb(v) \ ω(v) and for some ε > 0 and
any k 6= l we have d(b, T k(v)) > ε. Also, since v /∈ ω(u), we get d(v, ω(u)) > γ
by the choice of γ, while d(b, ω(u)) ≤ γ. Thus b 6= v and hence l > 0. On the
other hand, clearly T ri−mri (v) → b. We conclude that for a sufficiently large i from
our sequence ri = mri + l. By continuity, b = T l(v) = T l(s). If now s ∈ ω(u)
then b ∈ ω(u), a contradiction. Hence, s /∈ ω(u), while obviously s ∈ ω(x). The
existence of b ∈ orb(v) \ ω(v) shows that v is not recurrent. This completes the
proof of Step 3.

Thus, starting with sequences from Step 1 we can after a few refinements obtain
sequences i (refined) and mri . It is easy to see that they satisfy properties from
Step 1 with the sequence mri playing the role of the sequence ri and the point s
playing the role of b. Indeed, by Step 1 we have ri −mi → ∞, and by Step 3 we
have mri = ri − l, so we may assume that mri > mi. Now, the properties from
Step 1 obviously hold. However, there is an important difference between the initial
sequences and the new ones: now for some number l > 0 we have b = T l(s) = T l(v)
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with v ∈ Cx. Making Steps 2 and 3 again we obtain a new number l′ and find new
points s′, v′ for which we have s = T l′(s′) = T l′(v′), and so on by induction.

Now, there are only finitely many points in the set C, hence at some moment
after finitely many (no more than card C) steps in the process of refinements of
the original sequence the same point from C will appear twice in the sequence of
points v, v′, . . . . This implies that the point b is periodic and cannot belong to
orb(v) \ ω(v), a contradiction which completes the proof.

The next results show that under certain circumstances, modeling the situation
of graph critical maps, a point is C-followed, which allows us to apply Theorem 3.4.
The verification of the fact that a point is C-followed relies upon both Contraction
Principles from Section 2.

We say that two orbit segments (x, . . . , Tn(x)) and (y, . . . , Tn(y)) ε-approximate
each other if d(T i(x), T i(y)) ≤ ε, 0 ≤ i ≤ n. Suppose now that a graph G ⊂ X is
T -invariant, there is a finite set C ⊂ X, a point x ∈ X such that orb(x) ∩ C = ∅,
and the sequences mi ∈ N and ci ∈ C, di ∈ orb(C ∩ G) such that the following
properties hold:

(1) ω(c) is minimal for any c ∈ C \G such that c = ci for infinitely many i’s;
(2) for every i, mi ≤ i and d(T i(x), T i−mi(ci)) → 0;
(3) for any i such that ci ∈ C ∩ G the orbit segment (di, . . . , T i−mi(di)) ηi-

approximates the segment (Tmi(x), . . . , T i(x)), where ηi → 0 and for some
connected set Ji ⊂ G we have di, ci ∈ Ji and diam(T i−mi(Ji)) → 0.

Although this situation looks specific, it is important for us since under certain
circumstances it represents dynamics of almost every point with respect to a con-
formal measure for a graph critical map. Therefore we give it a special name: if
the point x has the above properties then we say that x nicely approaches G.

One should understand the phrase “nicely approaches G” as a short of “ap-
proaches G nicely if at all”. In particular, if the orbit of x converges to a minimal
limit set of a point c ∈ C and ω(c) is disjoint from G, this is also counted as a nice
approach to G (in this case (3) is void).

Now we can state the most important for applications result of this section.

Theorem 3.5. Suppose that a point x nicely approaches G. Then x is C-followed,
and therefore there exists c(x) ∈ Cx such that ω(x) = ω(c(x)). In addition, the
following holds.

(1) If ω(x) is not minimal then c(x) ∈ C ∩ G, for any z ∈ Lc(x) we have
ω(z) = ω(x) = ω(c(x)) and there exists an roaming set J ⊂ G containing z
and c(x). Moreover, if for c(x) the unbounded case holds then z is recurrent.

(2) If all points Tn(x) nicely approach G and ω(x) is not minimal then we can
choose c(x) in such a way that c(x) ∈ C ∩ G and there is an roaming set
J ⊂ G containing c(x) and a recurrent point.

Proof. We have all necessary components of Basic Setup for x. To prove that
x is C-followed we consider limiting pairs. For a given limiting pair (x′, c′), by
passing to a subsequence {ij} we may assume that dij = T kj (s) for all ij and for
some s ∈ D. Thus, we may assume that T lj (x) → x′, T lj−mlj (c) → c′, where
(T lj (x), T lj−mlj (c)) is an ij-pair with c ∈ Cx ∩ G, mij ≤ lj ≤ ij and ij → ∞ as
j → ∞. By property (3) of nice approaching, d(T lj (x), T lj−mlj +kj (s)) ≤ ηij → 0
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and hence T lj−mlj +kj (s) → x′ ∈ G. Moreover, the connected set T lj−mij (Jij )
contains both T lj−mlj (c) and T lj−mlj +kj (s) and has T ij−lj -images with converging
to 0 diameters. Therefore, by Proposition 2.6 ω(x′) = ω(c′). Hence, x is C-
followed (and thus Cx-followed), and then ω(x) = ω(c(x)) for some c(x) ∈ Cx by
Theorem 3.4.

Assume that the set ω(x) is not minimal and z ∈ Lc(x). Then (z, c(x)) is a
limiting pair. From the definition of nice approaching, c(x) ∈ C ∩ G (otherwise
ω(x) would be minimal) and there is a sequence of connected sets Ji ⊂ G such that
di, c(x) ∈ Ji, di → z and diam(T i−mi(Ji)) → 0. By Proposition 2.6 there exists a
waning set J ⊃ {z, c(x)}. Now, if for c(x) the unbounded case holds then z ∈ ω(x)
is a recurrent point by Theorem 3.4.

Recall that if a set is waning then it is either roaming, or its image under some
iterate of f is a periodic point, or its orbit converges to the orbit of a sink. Since
c(x) ∈ J , in the last two cases ω(c(x)) is minimal. However, ω(c(x)) = ω(x) and
we assumed that ω(x) is not minimal. Therefore J is roaming. This completes the
proof of (1).

Suppose now that in addition all points Tn(x) nicely approach G. This means
that for every n and the point Tn(x) the choice of sequences and points from the
definition on nice approaching is made. For every n this provides us with the
corresponding point c(n)(x) such that ω(x) = ω(Tn(x)) = ω(c(n)(x)), and since the
set C does not depend on n we may find a sequence of n with c(n)(x) = c for some
point c ∈ C and as before, c ∈ C ∩G because ω(x) = ω(c) is not minimal.

Apply (1) to a point zn ∈ Lc,n, where n comes from the sequence chosen above
and Lc,n is like Lc, but constructed for Tn(x) instead of x (clearly, it is non-empty);
in particular, then there is a roaming set Jn 3 c, zn. If the unbounded case holds
for c and some Tn(x), by (1) zn is recurrent and we are done setting J = Jn.
Otherwise, for any n from our sequence we have zn = T kn(x) with kn ≥ n and
we may assume that zn → z ∈ ω(x). By Proposition 2.6 there exists a waning
set J ⊃ {c, z}, so ω(c) = ω(z). By the same argument as in the proof of (1), we
see that J is roaming. Since ω(c) = ω(x), we get that z is recurrent. This proves
(2).

Remark 3.6. In the situation from Theorem 3.5(2), since the set J is roaming
and contains a recurrent point y, it is either a wandering set or a singleton. Thus,
if it is not wandering, it is equal to {y} and y is recurrent and (pre)periodic, so it
must be periodic. In particular, in this case ω(y) is minimal. �

4. C-persistent points for graph critical rational maps

In this section we apply results of Section 3 and study C-persistent points of a
graph critical map f : ̂C → ̂C, where C is the set of critical points of f . Recall
that the definitions of a graph critical map, conformal measure µ with exponent
α, of various kinds of disks, of sets Prs(f) of persistent points and Rlc(f) of reluc-
tant points and other more traditional sets related to rational maps were given in
Introduction.

Let us start with two lemmas that are not related to graphs. Let us denote by 0
the origin and by D the unit disk. The first lemma is well-known, but for the sake
of completeness we include its proof. Recall that we are using the spherical metric
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on ̂C, induced by the embedding of ̂C into the three-dimensional Euclidean space.
The diameter of a set A in this metric will be denoted by diam(A).

Lemma 4.1. For any ε > 0 and ζ < diam(̂C) = 2 there exist δ > 0 and N ≥ 0
such that if x ∈ J(f), η > 0, n > 0, Jordan disks Vn ⊃ V ′

n around x satisfy the
following conditions:

(1) Vn is a component of f−1(f(Vn)) and V ′
n is a component of f−1(f(V ′

n)),
(2) fn−1|f(Vn) : f(Vn) → B(fn(x), η) and fn−1|f(V ′n) : f(V ′

n) → B(fn(x), η/2)
are univalent and onto,

and either η < δ or n > N and η < ζ then diam(V ′
n) < ε.

Proof. Let us call a pair of Jordan disks Vn ⊃ V ′
n around x satisfying (1) and (2) an

(x, n, η)-pair. If the assertion of lemma does not hold then we can find sequences
(xn), (in), (ηn) and a sequence of (xn, in, ηn)-pairs of Jordan disks (Vn, V ′

n) such
that diam(V ′

n) ≥ ε and xn ∈ J(f) for each n and either ηn → 0 or in → ∞ and
ηn < ζ.

If (in) is bounded then (diam(f in(V ′
n))) is bounded away from 0, so (ηn) is also

bounded away from 0. Therefore we may assume that in →∞. We can also assume
that ηn < ζ for all n. Moreover, there is ε′ > 0 such that diam(f(V ′

n)) ≥ ε′ for all
n.

Let γn : B(f in(xn), ηn) → D be a conformal map such that γn(f in(xn)) = 0.
It is unique up to composition with rotations and can be realized geometrically as
the projection from the point antipodal to f in(xn) to a plane perpendicular to the
radius through this point, followed by the isometry from this plane to C. Then
γn(B(f in(xn), ηn/2)) is also a disk. A simple computation shows that its radius
is equal to

√

(4− η2
n)/(16− η2

n). Thus it is bounded from below by a positive
constant ξ depending only on ζ and from above by 1/2. Consider the sequence of
maps ϕn = f−in+1 ◦ γ−1

n : D → f(Vn), where branches of inverse maps are chosen
appropriately.

By (2) and since in → ∞, critical points of fk for a given k do not belong to
f(Vn) for sufficiently large n. Thus we may assume that all sets f(Vn) miss two
given points and therefore by the Montel’s Theorem the family {ϕn} is normal.
Thus we may assume that ϕn → ϕ. Since diam(ϕn(B(0, 1/2))) > ε′, and the
sequence (ϕn) converges uniformly on B(0, 1/2), the map ϕ is not constant. Thus
we may assume that ϕn(0) = f(xn) → z ∈ J(f) and that for some ε′′ > 0 we
have B(z, ε′′) ⊂ ϕn(B(0, ξ)) ⊂ f(V ′

n). However, the f in−1-images of a given ball
centered at z ∈ J(f) have to approach the whole sphere. This means that ηn/2 → 2,
a contradiction.

Next lemma is an introduction to our study of C-persistent points. Denote by
P ′(f) the union of all infinite limit set of critical points of f .

Lemma 4.2. (1) The set Prs′(f) = Prs(f) \
⋃∞

i=0 f−i(C) is invariant.
(2) If x ∈ Prs(f) then ω(x) ⊂ ω(C); moreover, if the orbit of x ∈ Prs′(f) is not

attracted to a neutral cycle then ω(x) is infinite and is contained in P ′(f).

Proof. (1) Clearly, Prs′(f) is the set of points x ∈ J(f) such that rl(x) → 0
and rl(x) 6= 0. Assume that x ∈ Prs′(f), but f(x) /∈ Prs′(f). Then for some
δ > 0 there exists a sequence nk → ∞ and Jordan disks Wk around f(x) such
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that fnk |Wk : Wk → B(fnk+1(x), δ) is univalent and onto. Choose Jordan disks
W ′

k ⊂ Wk around x so that fnk |W ′
k

: W ′
k → B(fnk+1(x), δ/2) is univalent and onto.

By Lemma 4.1, diam(W ′
k) → 0. Since x /∈ C, for sufficiently big k we can find a

Jordan disk W ′′
k around x such that the map f |W ′′

k
: W ′′

k → W ′
k is univalent and

onto. This shows that rnk+1(x) 6→ 0, a contradiction.
(2) By Lemma 3.2(3)(a) we have ω(x) ⊂ ω(C). Suppose that the orbit of x ∈

Prs′(f) is not attracted by a neutral cycle and prove that then ω(x) is infinite.
Indeed, if ω(x) is finite, it has to be a cycle, and then the orbit of x is attracted
to it, by the definition of attraction. Thus, this cycle is not neutral, and since it
is contained in the Julia set, it is repelling. By Lemma 3.2(1) this implies that
fn(x) = a, where a is a repelling periodic point of f of period m for some m. Since
x is not an eventual preimage of a critical point of f , there is an r-disk W around
a and a Jordan disk V around x such that fm(W ) ⊃ W = fn(V ) and fm+n|V is
univalent. This implies that rl(x) > r for all l = n + mi, i ≥ 0, a contradiction.
Hence ω(x) is infinite and by Lemma 3.2(3)(b) ω(x) ⊂ P ′(f).

Now we prove some lemmas related to graphs. We will use intersections of disks
with the graph G and their preimages. Since G is not necessarily smooth, for x ∈ G
and ε > 0 the intersection B(x, ε)∩G can be complicated. Therefore we use Jordan
disks rather than the usual round disks. We will call an open Jordan disk U a (G)-
elementary neighborhood if U ∩G is homeomorphic to the open n-od for some n and
U ∩G is equal to U ∩G, is homeomorphic to the closed n-od, and contains at most
one branching point. Clearly, every point of G has an elementary neighborhood.

Lemma 4.3. There exists an invariant graph H ⊃ G such that fk(H) ⊂ G for
some k, each critical point of f either belongs to H or has orbit disjoint from H,
and the following property holds: if W is an H-elementary neighborhood and U is
a component of f−i(W ) such that

(1) f j(U) is an H-elementary neighborhood for 1 ≤ j ≤ i, and
(2) fr(U) contains no critical points not belonging to H for 0 ≤ r < i,

then U ∩H is connected.

Proof. We will construct H in several steps. During each step the new graph will
contain the old graph and will be contained in the inverse image of the old graph
under some iterate of f . This will give us H ⊃ G and fk(H) ⊂ G. We will also
keep our graph at each stage invariant.

In the first step we replace G by its inverse image G1 under a sufficiently high
iterate of f , so that each critical point of f either belongs to G1 or has orbit disjoint
from G1. Now we look at the valence of a given critical point from G1 in f−j(G1)
for j = 0, 1, . . . . It either stabilizes or goes to infinity. Thus, we can replace G1 by
its inverse image G2 under a sufficiently high iterate of f , so that for each critical
point c ∈ G2 of f either its valence in f−1(G2) is the same as in G2 or its valence
in G2 is larger than 2 times the order of this point, so f(c) is a branching point of
G2.

Now as H we choose an invariant graph such that G2 ⊂ H ⊂ f−j(G2) for some
j ≥ 1 and H has the minimal possible number of endpoints among such graphs.
Since H contains G1, each critical point of f either belongs to H or has orbit
disjoint from H.
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Let us prove the other property claimed in the lemma. We can use induction, so
we need to prove it only for i = 1. Suppose that it does not hold for an H-elementary
neighborhood W and a component U of f−1(W ). Note that f(U) = W . The set
U ∩H is disconnected, but since by (2) there are no critical points in U \H, the set
U∩f−1(H) is connected. Therefore there is a closed interval I ⊂ U∩f−1(H), whose
interior is disjoint from U ∩ H, and whose endpoints a, b belong to two different
components of U ∩H.

Set H ′ = H ∪ I. If a or b is an endpoint of H then G2 ⊂ H ′ ⊂ f−k−1(G2) and
H ′ has less endpoints than H, a contradiction. Therefore a and b are branching
points of H ′. Let us show that f(a) is a branching point of H. This is clear if a is
not critical. If a is critical, then by the construction of G2 either the valence of a
in H and f−1(H) is the same or f(a) is a branching point of G2. The first case is
impossible since the valence of a in H ′ is larger than in H, so the second case holds,
and since G2 ⊂ H, the point f(a) is branching in H. Similarly, f(b) is a branching
point of H. Since they both belong to W , we see that f(a) = f(b) is the only
branching point of H in W . This implies that I contains a critical point eventually
mapped into G, while all such critical points belong to G1 by our construction.
This contradiction completes the proof.

Remark 4.4. In the situation from Lemma 4.3 the following holds.

(1) If U contains more than one branching point of H then it contains a critical
point of f because f(U) is an elementary neighborhood.

(2) If f i−1|f(U) is univalent then the condition (2) holds automatically for r > 0,
while the condition (1) follows from the fact that f i−1(f(U)) is an ele-
mentary neighborhood and from Lemma 4.3 applied to the neighborhoods
f j(U), 1 ≤ j ≤ i, step by step. �

Throughout the rest of this section we assume that our initial graph G is already
extended (so H = G) and has the properties from Lemma 4.3 and Remark 4.4.

The following lemma establishes a simple property of continuous graph maps.

Lemma 4.5. Let f : G → G be a continuous graph map and let I ⊂ G be an open
connected set such that the orbits of all points of I converge to cycles. Then the
orbits of the endpoints of I also converge to cycles.

Proof. If the diameter of fn(I) tends to 0 then the claim is obvious. Otherwise the
images of I eventually intersect. Replacing f by its iterate we may assume that
f(I)∩ I 6= ∅. Then the union A of all images of I is a connected set and the orbits
of all points of A converge to cycles. Since the endpoints of I belong to the closure
of A, it is enough to prove our claim for A instead of I.

There are finitely many endpoints of A. Those of them which are eventually
mapped into A have orbits converging to cycles by the assumptions. Those of them
which are not eventually mapped into A form a finite invariant set, so they are
(pre)periodic. This completes the proof.

As a consequence, we get the next lemma.

Lemma 4.6. If R is a component of G \ J(f) then the orbits of all its points
converge to cycles and its endpoints are (pre)periodic.
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Proof. Clearly, R is contained in a Fatou domain, and by [Su2] certain image fr(R)
of R is contained in a periodic Fatou domain U . Replacing f by its iterate, we may
assume that U is forward invariant. There are the following possibilities.

(a) The domain U is a Siegel disc or a Herman ring. Then the closure of the
orbit of fr(R) contains a topological annulus, a contradiction.

(b) The domain U is the immediate basin for an attracting fixed point a or for
one petal of a parabolic fixed point a with multiplier 1 (cf. [M2]). Then the orbits
of all points of fr(R) converge to a and it remains to consider the endpoints of
R. By Lemma 4.5 their orbits converge to cycles. Since G ∩ J(f) is invariant,
those cycles are contained in G ∩ J(f). By Snail Lemma they are either repelling
or parabolic, and since repelling and parabolic points are topologically repelling in
J(f), the only way this convergence can take place is when the endpoints of R are
(pre)periodic.

In the case when J(f) ⊂ G let us discuss the local structure of J(f) and G.
Assume that x ∈ J(f) has valence k in G. Then there are k (short) subintervals of
G of the form (yi, x], whose interiors are pairwise disjoint. We call them spokes at x.
A spoke (yi, x] is good if there is a sequence of points zn ∈ J(f)∩ (yi, x] converging
to x; otherwise it is of course bad. Note that if there is a bad spoke at x then x is
an endpoint of a component of G \ J(f), so by Lemma 4.6 it is (pre)periodic.

Lemma 4.7. Assume that J(f) ⊂ G. Let x ∈ J(f) be not (pre)periodic. Then
valG(f(x)) ≤ valG(x). If x is a critical point of f then the inequality is strict.

Proof. Each spoke at x is mapped by f to a spoke at f(x) in a homeomorphic way,
provided it is sufficiently short. Since neither x nor f(x) is (pre)periodic, all spokes
at x and f(x) are good. Since J(f) is fully invariant and J(f) ⊂ G, every good
spoke at f(x) is the image of a good spoke at x. Thus, the number of spokes at
f(x) is not larger than the number of spokes at x, that is valG(f(x)) ≤ valG(x). If
x is a critical point of f then several spokes at x are mapped to one spoke at f(x),
so the inequality is strict.

Lemma 4.8. Assume that J(f) ⊂ G. Then any endpoint of G that belongs to J(f)
is (pre)periodic and any branching point of G that belongs to J(f) is periodic.

Proof. Let x be a vertex of G belonging to J(f). If x is an endpoint of G then
by Lemma 4.7 all points fn(x) are endpoints of G. Since G has finitely many
endpoints, x is (pre)periodic. If x is a branching point of G, then by Lemma 4.7
every element of f−n(x) is a branching point of G. The set f−n(x) is non-empty
since J(f) is fully invariant and J(f) ⊂ G. Since G has finitely many branching
points, x is periodic.

Now we can prove the following result, important for our main theorem.

Proposition 4.9. If c is a critical point of a graph critical rational function f then
ω(c) 6= J(f).

Proof. Suppose that ω(c) = J(f) for some critical point c. Then c belongs to J(f),
so it is recurrent. Moreover, J(f) is infinite and contains periodic points, so it is not
minimal, and thus ω(c) is not minimal. Therefore, by the definition of the graph
critical maps, c ∈ G. Since G is invariant, we get J(f) ⊂ G.
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If c is not a vertex of G then valG(c) = 2 and by Lemma 4.7 valG(f(c)) = 1.
Thus, either c or f(c) is a vertex of G, so by Lemma 4.8 c is (pre)periodic, a
contradiction.

Let us introduce in greater detail an important for us and a well-known tool, so-
called pulling back (we have already referred to it in Introduction). For a (closed)
Jordan disk W around fn(x) whose boundary does not contain critical images
there exists a component of f−n(W ) which is a (closed) Jordan disk around x.
One can imagine the process of taking preimages of W step by step, which is
usually referred to as pulling back: first we choose the component W ′ of f−1(W )
containing fn−1(x), then the component of f−1(W ′) containing fn−2(x) and so
on. The described sequence of preimages of W is called the pull back chain of W
along x, . . . , fn(x) or just a pull back chain (if x, . . . , fn(x) are not specified). The
number n+1 is then called the length of the chain and the Jordan disks in the chain
are called pull backs of W . The supremum of all r such that the pull backs of the
open r-disk B(fn(x), r) along x, . . . , fn(x) contain no critical points, is denoted
by rn(x). The closure of at least one of the pull-backs of B(fn(x), rn(x)) (say,
corresponding to fmn(x)(x)) has to contain a critical point. Denote it by cn(x) (if
there is more than one, choose one). The pair (cn(x),mn(x)) is said to generate
rn(x). In fact, we have already used some of these well-known notions and give
here the definitions for the sake of completeness.

Now our aim is to study the behavior of the orbit of a C-persistent point x.
Recall that by the definition x ∈ J(f). The easiest case is when the point x is
eventually mapped to a critical point c. Then ω(x) = ω(c). Assume now that
fn(x) /∈ C for n ≥ 0. The limit behavior of the orbit of x depends on the behavior
of the orbits of cn(x). As we noticed, in this case there is a natural Basic Setup.
However, our main idea is to consider other Basic Setups for x. Basically, we choose
a neighborhood W of fn(x) so that its boundary is disjoint from the orbits of all
critical points and then consider the step-by-step process of pulling W back along
x, . . . , fn(x). For us the important moment in this process is when the component
of the preimage of W for the first time contains a critical point. That is, we get
k pull backs of W which contain no critical points and then a Jordan disk which
is the component of f−k−1(W ) containing fn−k−1(x) and a critical point. At this
moment we stop the process of pulling back and call this the critical pull back of
W . The existence of such k is guaranteed if B(fn(x), rn(x)) ⊂ W .

The next lemma is useful in the proof of Proposition 4.6. Recall that Pr(f) is the
union of limit sets of recurrent critical points of f . We will call a point z precritical
if fn(z) is critical for some n > 0 and preparabolic if fn(z) is a periodic parabolic
point for some n > 0.

Lemma 4.10 [BMO]. If z ∈ Prs(f) is neither precritical nor preparabolic then
ω(z) ⊂ Pr(f).

Now our preparations are over and we can start looking at the limit sets of
persistent points.

Proposition 4.11. Assume that x is persistent, but neither precritical nor prepa-
rabolic. If ω(x) 6⊂ G then ω(x) is minimal and equal to ω(c(x)) for some c(x) ∈ C.
If ω(x) ⊂ G then x nicely approaches G and c(x) ∈ G.
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Proof. Set C \G = C \G and C ∩G = C ∩G. By Lemma 4.10, ω(x) ⊂ Pr(f).
Assume first that the set ω(x)\G is non-empty. Then it is contained in the union

of all limit sets of recurrent points of C \ G. By the definition of a graph critical
map, any such limit set is minimal. That is, there exists a recurrent point c ∈ C \G
such that ω(c) ∩ (ω(x) \G) 6= ∅. Since G is invariant, we have ω(c) ∩G = ∅. Since
any two different minimal sets are disjoint, we have W ∩ ω(x) = ω(c) ∩ ω(x) for
some neighborhood W of ω(c) ∩ ω(x). Hence, by Lemma 3.1 we get ω(x) = ω(c).
Thus the proof in the case when ω(x) 6⊂ G is complete.

Observe that if c ∈ C \ G then either ω(c) is minimal or c is not recurrent
and ω(x) is disjoint from G. This implies that if ω(c), c ∈ C \ G is not minimal
then ω(x) is bounded away from G. Hence, if ω(x) ⊂ G then sufficiently small
neighborhoods of points fn(x) contain no points from the orbits of points of C \G
with non-minimal limit sets.

We claim that to show that x nicely approaches G, it is enough for any sufficiently
small ε and all sufficiently big i to do one of the following.

(a) Find c ∈ C \G and mi ≤ i such that d(f i(x), f i−mi(c)) < ε.
(b) Find numbers li and mi ≤ i and points vi, ui ∈ C∩G such that the segment

(f li(vi), . . . , f li+i−mi(vi)) ε-approximates the segment (fmi(x), . . . , f i(x))
and diam(f i−mi(Ji)) < ε for some connected set Ji ⊂ G containing both
f li(vi) and ui.

Indeed, if (a) holds then condition (1) of nice approaching is satisfied because by
the above analysis for small ε (a) implies that ω(c) is minimal, (2) is automatic
and (3) is void. On the other hand, if (b) holds then condition (1) of the nice
approaching is void while (2) and (3) follow directly from (b).

Let us choose some constants. By Lemma 4.1 there exists δ ∈ (0, ε) such that if
z ∈ J(f), V ⊃ V ′ are Jordan disks around z, η < δ, and n is such that fn−1|f(V ) :
f(V ) → B(fn(z), η) and fn−1|f(V ′) : f(V ′) → B(fn(z), η/2) are univalent and
onto then diam(f j(V ′)) < ε for 0 ≤ j ≤ n.

Since every point of G has an elementary neighborhood of arbitrarily small di-
ameter and G is compact, there exists a finite cover W of G by elementary neigh-
borhoods of diameter less than ε. Let η ∈ (0, δ) be so small that 2η is smaller
than the Lebesgue number of this cover. Choose M such that rn(x) < η/2 for any
n ≥ M . Note that then rn(x) < η < δ < ε.

Let i ≥ M . Then ri(x) is generated by some pair (c,m). If c ∈ C \ G then
we simply set mi = m, ci(x) = c, and (a) holds. Assume that c ∈ C ∩ G.
Then ri(x) = d(f i(x), f i−m(c)) < η/2 and hence f i−m(c) belongs to the ball
B(f i(x), η/2). By the choice of η there exists an elementary neighborhood W
containing B(f i−m(x), η).

Let us pull back W along the orbit of x and consider its critical pull back
V (it exists since after i − m steps we get to c; however, it may happen that
we meet a critical point earlier). Then for some number mi < i we have that
f i−mi−1|f(V ) : f(V ) → W is univalent and onto, while V contains a critical point
ui. If ui ∈ C \ G then we choose ui as ci(x) and stop there, since (a) holds.
Otherwise, ui ∈ C ∩ G. Choose V ′ ⊂ V ′′ ⊂ V as the appropriate pull backs of
B(f i(x), η/2) ⊂ B(f i(x), η) ⊂ W respectively. Since η < δ, by our choice of δ we
get diam(f j(V ′)) < ε for all 0 ≤ j ≤ i−mi. Set vi = c and li = mi −m. Then the
segment (f li(vi), . . . , f li+i−mi(vi)) ε-approximates the segment (fmi(x), . . . , f i(x)).



22 ALEXANDER BLOKH AND MICHA L MISIUREWICZ

Moreover, since c, ui ∈ C ∩ G ⊂ G, the set G ∩ V contains f li(vi) and ui and by
Lemma 4.3 and Remark 4.4 is connected. Thus, (b) holds.

Thus, in any case either (a) or (b) holds, so we are done.

One consequence of Proposition 4.11 is the main technical result of the paper,
mentioned already in Introduction.

Theorem 4.12. For a graph critical map f and a persistent point x ∈ J(f),
ω(x) = ω(c(x)) for some critical point c(x) of f .

Proof. Let x be a persistent point of f . If x is precritical or preparabolic, it is clear
that ω(x) = ω(c(x)) for some critical point c(x) of f . Assume that x is neither
precritical nor preparabolic. By Proposition 4.11, if ω(x) 6⊂ G then ω(x) = ω(c(x))
for some critical point c(x) of f ; if ω(x) ⊂ G then x nicely approaches G and by
Theorem 3.5 we draw the same conclusion.

We are ready now to prove the main result of the paper.

Theorem 4.13. For a graph critical map f and a conformal measure exactly one
of the following holds.

(1) For almost every x ∈ J(f), ω(x) = J(f).
(2) For almost every x ∈ J(f), ω(x) = ω(c) for some critical point c of f .

Proof. By Theorems 4.12 and 1.1 we get that indeed (1) or (2) must hold. If both
(1) and (2) hold simultaneously then there exists a critical point c such that ω(c) =
J(f), which is impossible for graph critical rational maps by Proposition 4.9.

Moreover, from Proposition 4.11 we can get some additional consequences of
technical nature.

Theorem 4.14. Consider a graph critical map with graph G and a persistent point
x. Then either x is precritical, or ω(c(x)) is minimal, there is a wandering set
J ⊂ G containing c(x) and a recurrent point.

Proof. Assume that x is not precritical. If it is preparabolic then ω(c(x)) is minimal.
If ω(x) 6⊂ G then we get the same result by Proposition 4.11. Assume that ω(x) ⊂
G. By Lemma 4.2, all points fn(x) are persistent and by Proposition 4.11 we get
that fn(x) nicely approaches G for all n. If additionally ω(x) is not minimal then
by Theorem 3.5(2) we can choose c(x) ∈ C ∩G so that there exists an roaming set
J ⊂ G containing c(x) and a recurrent point. By Remark 3.6 either J is wandering
or ω(c(x)) is minimal.

To understand better the last option mentioned in the above theorem, let us
observe that although our map is as smooth as a map can be, the graph G is not
necessarily smooth. Therefore we cannot exclude existence of non-trivial wandering
sets. In this case of course the recurrent point mentioned in the theorem must be
a boundary point of J . If J is trivial, that is J = {c(x)}, then c(x) is recurrent.
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