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Abstract. We verify the conjecture of M.Misiurewicz and prove that for any graph
X there exists a number L=L(X) such that any continuous self-mapping of X with
cycles of periods 1,2,...,L has in fact cycles of all possible periods.

0. Introduction

Let us call one-dimensional branched manifolds graphs. We study properties
of a set P (f) of periods of cycles of a graph map f . One of the well-known and
impressive results on this topic is Sharkovskii theorem [S1] about the co-existence
of periods of cycles for maps of the real line. To formulate it let us introduce the
following Sharkovskii ordering for positive integers:

(∗) 3 ≺ 5 ≺ 7 ≺ · · · ≺ 2 · 3 ≺ 2 · 5 ≺ 2 · 7 ≺ · · · ≺ 8 ≺ 4 ≺ 2 ≺ 1

Denote by S(k) the set of all such integers m that k ≺ m or k = m and by S(2∞)
the set {1, 2, 4, 8, . . . }.
Theorem[S1]. Let g : R −→ R be a continuous map. Then either P (g) = ∅ or
there exists such k ∈ N ∪ 2∞ that P (g) = S(k). Moreover for any such k there
exists a map g : [0, 1] −→ [0, 1] with P (g) = S(k) and there exists a map g0 : R −→ R
with P (g0) = ∅.

Other information about sets of periods of cycles for one-dimensional maps is
contained in papers [AL,M] for maps of the circle, [ALM] for maps of the letter Y
and [Ba] for maps of the n-od.

Sharkovskii theorem implies that if a map f : R :−→ R has a cycle of period
3 then it has cycles of all possible periods. The following conjecture, which was
formulated by M.Misiurewicz at the Problem Session at Czecho-Slovak Summer
Mathematical School near Bratislava in 1990, seems to be closely related to the
mentioned property of maps of the real line.

Misiurewicz Conjecture. For a graph X there exists an integer L = L(X) such
that for a continuous map f : X −→ X inclusion P (f) ⊃ {1, 2, . . . , n} implies
P (f) = N.

We verify Misiurewicz conjecture in Section 2. Furthermore, using the spectral
decomposition for graph maps [B3] which is similar to that for interval maps [B1,B2]
we then prove the following
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Theorem 2.2. Let f : X −→ X be a continuous graph map. Then the following
statements are equivalent.

1) The map f has a positive entropy.
2) There exists such n that P (f) ⊃ nZ ≡ {ni : i ∈ N}.
Section 1 is devoted to the brief description of the spectral decomposition, in

Section 2 we verify Misiurewicz conjecture and prove Theorem 2.

Notations

intZ is the interior of a set Z;
∂ Z is the boundary of Z;
Z is the closure of Z;
fn is the n-fold iterate of a map f ;
orbx ≡ {fnx}∞n=0 is the orbit (trajectory) of x;
ω(x) is the limit set of orb x;
N ≡ {1, 2, 3, . . . } is the set of natural numbers;
Per f is the set of all periodic points of a map f ;
P (f) is the set of all periods of periodic points of a map f ;
h(f) is a topological entropy of a map f .

1. The Spectral Decomposition

In this section we briefly describe the spectral decomposition for one-dimensional
maps (for the proofs see [B3]). Let us begin with some historical remarks.

A.N.Sharkovskii constructed the decomposition of the set ω(f) =
⋃

x∈I ω(x)
for continuous interval maps f : I −→ I in [S2]. Then in [JR] Jonker and Rand
constructed for unimodal maps the decomposition which is in fact close to that of
Sharkovskii; however they used completely different methods based on symbolic dy-
namics. In [H] the decomposition for piecewise-monotone maps with discontinuities
was constructed by Hofbauer and then Nitecki in [N] considered the decomposition
for piecewise-monotone continuous maps from more geometrical point of view. The
author’s papers [B1,B2] were devoted to the case of arbitrary continuous inter-
val maps; they contained the different approach to the problem in question which
allowed us to obtain some new corollaries (e.g. describing generic properties of
invariant measures for interval maps). The similar approach was used in [B3] to
construct the decomposition for graph maps and now we pass to the desription of
the results of the paper [B3].

Let X be a graph, f : X −→ X be a continuous map. We use terms edge, vertex,
endpoint in the usual sense; the numbers of edges and endpoints of X are denoted
by Edg(X), End(X). If necessary we add some ”artificial” vertices to make all
edges of a graph homeomorphic to an interval. We construct the decomposition of
the set ω(f), which is defined similar to that for interval maps. First we need some
definitions. A closed connected set Y ⊂ X is called subgraph. A subgraph Y is
called periodic (of period k) if Y, fY, . . . , fk−1Y are pairwise disjoint and fkY = Y ;
the union of all iterations of Y is denoted by orb Y and called a cycle of subgraphs.
Let Y0 ⊃ Y1 ⊃ . . . be periodic subgraphs of periods m0,m1, . . . ; then mi+1 is
divided by mi (∀i). If mi −→ ∞ then the subgraphs Yi, i = 1, 2, . . . are said to be
generating. We call any invariant closed set S ⊂ Q = ∩(orb Yi) a solenoidal set
and denote the solenoidal set Q∩ω(f) by Sω(Q) (note that ω(f) is closed for graph
maps, see [B3]).
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One can use a transitive shift in an Abelian zero-dimensional infinite group as
a model for the map on a solenoidal set. Namely, let D = {ni} be a sequence
of integers, ni+1 is divided by ni (∀i) and ni → ∞. Let us consider a subgroup
H(D) ⊂ Zn0 × Zn1 × . . . , defined in the following way:

H(D) ≡ {(ro, r1, . . . ) : ri+1 ≡ ri (mod mi) (∀i)}.

Denote by τ the minimal shift in H(D) by the element (1, 1, . . . ).

Theorem 1.1[B3]. Suppose that {Yi} are generating subgraphs and that they have
periods {mi}. Let Q =

⋂

i≥0 orbYi. Then there exists a continuous surjective map
ϕ : Q −→ H(D) with the following properties:

1) τ ◦ ϕ = ϕ ◦ f (i.e.ϕ semiconjugates f |Q to τ);
2) there exists the unique set S ⊂ Q ∩ Per f such that ω(x) = S for any x ∈ Q

and if ω(z) ∩Q 6= ∅ then S ⊂ ω(z) ⊂ Sω;
3) for any r̄ ∈ H(D) the set J = ϕ−1(r̄) is a connected component of Q and

ϕ|Sω is at most 2-to-1;
4) h(f |Q) = 0.

Let us turn to another type of an infinite limit set. Let {Yi}l
i=1 be a collection

of connected graphs, K =
⋃l

i=1 Yi. A continuous map ψ : K −→ K which permutes
these graphs cyclically is called non-strictly periodic or non-strictly l-periodic; for
example if Y is a periodic subgraph then f |orb Y is non-strictly periodic. In what
follows we will consider monotone semiconjugations between non-strictly periodic
graph maps (a continuous map g : X −→ Y is monotone provided g−1(Y ) is
connected for any y ∈ Y ). We need the following

Lemma 1.1. Let X be a graph. Then there exists a number r = r(X) such that
if M ⊂ X is a cycle of subgraphs and g : M −→ Y is monotone then the following
property holds for any y ∈ M : card {∂(g−1(y))} ≤ r(X) (∀y ∈ M).

Lemma 1.1 makes natural the following definition. If ϕ : K −→ M is continuous,
monotone, semiconjugates a non-strictly periodic map f : K −→ K to a non-strictly
periodic map g : M −→ M and there is a closed f -invariant set F ⊂ K such that
ϕ(F ) = M and ϕ−1(y) ∩ F ⊂ ∂(ϕ−1(y)) (∀y ∈ M) then we say that ϕ almost
conjugates f |F to g.

Let Y be an n-periodic subgraph, orb Y = M . Denote by E(M,f) the following
set:

E(M, f) ≡ {x ∈ M : for any open U 3 x,U ⊂ M we have orb U = M}

provided it is infinite. We call the set E(M,F) a basic set and denote it by B(M,f)
provided Per (f |M) 6= ∅; otherwise we denote E(M,f) by C(M, f) and call it a
circle-like set.

Theorem 1.2[B3]. Let Y be an n-periodic subgraph, M = orb Y and E(M, f) 6=
∅. Then there exist a transitive non-strictly n-periodic map g : K −→ K and a
monotone continuous surjection ϕ : M −→ K which almost conjugates f |E(M, f)
to g. Furthermore, the following properties hold:

1) E(M, f) is a perfect set;
2) f |E(M,f) is transitive;
3) if ω(z) ⊃ E(M, f) then ω(z) = E(M, f);
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4) if E(M,f) = C(M,f) is a circle-like set then K is a union of n circles, g per-
mutes them, gn on any of them is an irrational rotation and h(g) = h(f |E(M, f)) =
0;

5) if E(M,f) = B(M, f) is a basic set then h(f |B(M, f)) > 0, B(M, f) ⊂ Per f
and there exist a number k and a closed subset D ⊂ B(M, f) such that ϕ(D) is con-
nected,
sets f iD ∩ f jD and ϕ(f iD) ∩ ϕ(f jD) (0 ≤ i < j < kn) are finite, fknD = D,
⋃kn−1

i=0 f iD = B(M,f) and fkn|D, gkn|ϕD are topologically mixing.

A number kn from the statement 5) of Theorem 1.2 is called a period of B(M, f).
To formulate the decomposition theorem denote by Zf the set of all cycles max-

imal by inclusion among all limit sets of f .

Theorem 1.3[B3]. Let f : X −→ X be a continuous graph map. Then there exist a
finite number of circle-like sets {C(Ki, f)}k

i=1, an at most countable family of basic
sets {B(Lj , f)} and a family of solenoidal sets {Sω(Qα)} such that

ω(f) = Zf

⋃

(
k

⋃

i=1

C(Ki))
⋃

(
⋃

j

B(Lj))
⋃

(
⋃

α

(Sω(Qα)).

Moreover, there exist numbers γ(X) and ν(X) such that k ≤ γ(X), the only possible
intersections in the decomposition are between basic sets and at most ν(X) basic
sets can intersect.

Theorem 1.3 shows that one can consider mixing graph maps as models for
graph maps on basic sets. The following theorem seems to be important in this
connection; to formulate it we need the definition of maps with the specification
property (see, for example, [DGS]).

Theorem 1.4[B3]. Let f : X −→ X be a continuous mixing graph map. Then f
has the specification property.

It is well-known [DGS] that maps with the specification have nice properties
concerning the set of invariant measures. Using them and Theorems 1.1 - 1.4 we
can describe generic properties of invariant measures for graph maps. First we need
some definitions. Let T : X −→ X be a map of a compact metric space into itself.
The set of all T-invariant Borel normalized measures is denoted by DT . A measure
µ ∈ DT with suppµ containing in one cycle is said to be a CO −measure. The
set of all CO-measures concentrated on cycles with minimal period p is denoted by
PT (p). Let V (x) be the set of accumulation points of time-averages of iterations of
the point x. A point x ∈ X is said to have maximal oscillation if VT (x) = DT .

Theorem 1.5[B3]. Let B be a basic set. Then:
1) for any l the set

⋃

p≥l Pf |B(p) is dense in Df |B;
2) the set of all ergodic non-atomic invariant measures µ with suppµ = B is a

residual subset of Df |B;
3) if V ⊂ Df |B is a non-empty closed connected set then the set of all such points

x that V (x) = V is dense in X (in particular every measure µ ∈ Df |B has a generic
point);

4) points with maximal oscillation are residual in B.
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Theorem 1.6[B3]. Let µ be an invariant measure. Then the following properties
of µ are equivalent:

1) there exists such a point x that suppµ ⊂ ω(x);
2) µ has generic points;
3) µ is concentrated on a circle-like set or can be approximated by CO-measures.
In particular, CO-measures are dense in all ergodic neasures which are not con-

centrated on circle-like sets.

Let us denote by nZ the set nZ ≡ {in : i ≥ 1}. Now we can formulate an easy
property of maps with the specification which we need in Lemma 1.2.

Property 1.1. If T is a map with the specification then P (T ) almost coincides
with N.

Property 1.1 and Theorem 1.2 easily imply the following

Lemma 1.2. Let f : X −→ X be a graph map, B be a basic set of f, m be a period
of B. Then both sets P (f |B) \mZ and mZ \ P (f |B) are finite and so there exists
such n that P (f |B) ⊃ nZ.

2. Misiurewicz Conjecture

During the Problem Session at Czecho-Slovak Summer Mathematical School near
Bratislava in 1990 M.Misiurewicz formulated the following

Conjecture. For a graph X there exists an integer L = L(X) such that for a
continuous map f : X −→ X inclusion P (f) ⊃ {1, 2, . . . , n} implies P (f) = N.

We verify this conjecrure and give a sketch of the proof. First let us formulate
the following

Lemma 2.1. Let R be a positive integer. Then one can find such N = N(R) > R
that for any M ≥ N there exist positive integers 0 = a0 < a1 < a2 < · · · < al = M
with the following properties:

1) ai+1 − ai ≥ R (0 ≤ i < l);
2) for any proper divisor s of M there exists j, 1 ≤ j < l such that aj is divided

by s.

Proof. Let M = pb1
1 · . . . pbk

k , where p1, . . . , pk are prime integers. Set mi =
M
pi

, 1 ≤

i ≤ k. Clearly numbers {mi} have the required property 2). So it is sufficient to
find numbers a0 = 1 < a1 < · · · < al = M such that ai+1 − ai ≥ R, 0 ≤ i < l
and for any j there exists such i that ai is divided by mj . To this end suppose
that {q1 < q2 < · · · < qr} is the set of all prime integers less that R + 1 and set

α = min(
1

qi+1
− 1

qi
)r−1
i=1 , N = max(

R
α

, 3qr).

Now if
M

pkpk−1
≥ R then

M
pi
− M

pi+1
≥ M

pkpk−1
≥ R . If

M
pkpk−1

< R

then p1, p2, · · · < pk−2 ≤ R and so

mi −mi+1 =
M
pi
− M

p i+1
≥ αM ≥ αN ≥ R (1 ≤ i ≤ k − 2).
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Thus it remains to consider the differences
M

pk−1
− M

pk−2
,

M
pk
− M

pk−1
which is left

to the reader. Clearly we may assume that N(R) increases with R. �

Let us call a subset of a graph an interval if it is homeomorphic to the interval
[0,1]; we use for intervals standart notations [a, b], [a, b), (a, b], (a, b). Let us fix for
the rest of this section a graph X and a continuous map f : X −→ X.

Lemma 2.2. There exists a number m = m(X) such that if a ∈ X and [a, b1], [a, b2], . . . ,
[a, bm+1] are intervals then one of them contains some of others.

Proof. Left to the reader. �

Suppose that there exist an edge I = [a, b] ⊂ X and two periodic points, P ∈ I
of prime period p > m(X) and Q ∈ X of prime period q > m(x), p 6= q such that
if [P, Q] ⊂ I then (P,Q) ∩ (orb Q ∪ orb P ) = ∅ ; fix them for Lemmas 2.3 - 2.7.

Lemma 2.3. We have fp(q−1)m(X)[P, Q] ⊃ orbQ, fq(p−1)m(X)[P,Q] ⊃ orbP
and so f t[P,Q] ⊃ orbQ ∪ orbP for t ≥ pqm(X)−min(p, q) ·m(X).

Proof. Consider all the intervals of type {Ti = [P, ci]}k
i=1, where ci ∈ orb Q, con-

taining no points of orb Q but ci (some of points {ci} may coincide with each
other). Then k ≤ m(X) and we may assume Q = c1, [P,Q] = T1. On the other
hand for any i there exists j = j(i) such that fpTi ⊃ Tj . Hence there exist such
numbers l and n that l + n ≤ k and, say, fplT1 ⊃ T2, fpnT2 ⊃ T2 which implies
that fpnjT2 ⊃ {fpnic2}j

i=0. But p, q are prime numbers and n ≤ m(X) < q; thus
{f ipnc2}q−1

i=0 = orb Q and fpn(q−1)+lp[P, Q] ⊃ orb Q (recall that T1 = [P, Q]). It
implies that fp(q−1)m(X)[P, Q] ⊃ orb Q. Similarly fq(p−1)m(X)[P, Q] ⊃ orb P and
we are done. �

Let us call subintervals of I with endpoints from orb Q or orb P basical intervals
provided their interiors contain no points from orb P or orb Q. In what follows
basical interval will be called P-interval, Q-interval or PQ-interval depending on
periodic orbits containing its endpoints. Furthermore, suppose that there are two
intervals G ⊂ X and H ⊂ X and a continuous map ϕ : X −→ X such that
ϕ(G) ⊃ H and there is a subinterval K ⊂ G such that ϕ(K) = H; then say
that G ϕ − covers H. Note the following property: if G ϕ-covers H and
H ψ-covers M then G ψ ◦ ϕ-covers M .

Lemma 2.4. Let Z ⊂ X be an interval, Y = [α, β] ⊂ X be an edge and g : X −→ X
be a continuous map; suppose that α, β ∈ g(Z). Then there are points γ, δ ∈ Y such
that g(Z) ∩ Y = [α, γ] ∪ [δ, β] and Z g-covers [α, γ] and [δ, β].

Proof. Left to the reader. �

Lemma 2.5. Let A be a PQ-interval. Then for any i ≥ pqm(X) this interval
f i-covers all basical intervals except at most one.

Proof. Follows from Lemmas 2.3 and 2.4. �

Lemma 2.6. Suppose that card (orb P ∩ I) ≥ 4, card (orbQ ∩ I) ≥ 4. Then the
following statements are true.

1) Either for any P-interval M there exists i < p2 such that f iM contains a PQ-
interval or there exist two P-intervals Y and Z such that each of them f i-covers
both of them for i ≥ (p− 1)2.
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2) Either for any Q-interval N there exists i < q2 such that f iN contains a PQ-
interval or there exist two Q-intervals Y ′ and Z ′ such that each of them f i-covers
both of them for i ≥ (p− 1)2.

Proof. We will prove only statement 1). Consider a P-interval [c, d] which has a
neighbouring PQ-interval, say, [d, e]. Let the point c be closer to the point a than
the point d (recall that I = [a, b] ⊃ [c, d] ∪ [d, e]). Divide the proof by steps.

Step 1. If f i[c, d] contains a PQ-interval then for any P-interval M there exists
such j ≤ p− 1 + i that f jM contains a PQ-interval.

Indeed, for any P-interval M one can find such m < p that either fmM ⊃ [c, d]
or fmM ⊃ [d, e] which implies the required.

Step 2. Suppose there exists such i < (p− 1)2 that f i[c, d] contains a PQ-interval.
Then for any P-interval M there exists an integer j < (p− 1)2 + p such that f jM
contains a PQ-interval.

Step 2 easily follows from Step 1.
Denote by x the closest to e point from orb P lying to the other side of e than

d; clearly x may not exist.

Step 3. Suppose that f i[c, d] does not contain PQ-intervals for i < (p− 1)2. Then
for i ≥ (p−1)(p−2) the interval [c, d] f i-covers [a, d] (and [x, b] provided x exists).

Let l < p be such that f lc = d. Then f l[c, d] ⊃ [c, d] and moreover [c, d] f l-
covers [c, d]. But p is a prime integer which as in Lemma 2.3 implies that f i[c, d] ⊃
orb P for every
i ≥ l(p − 2). Since f i[c, d] does not contain [d, e] for l(p − 2) ≤ i < l(p − 1)
we have by Lemma 2.4 that [c, d] f i-covers [a, d] (and [x, b] provided x exists).
But [c, d] f i-covers [c, d] which easily implies that for any i ≥ l(p− 2) the interval
[c, d] f l-covers [a, d] (and [x, b] provided x exists).

Step 4. Suppose that f i[c, d] does not contain PQ-intervals for i < (p − 1)2 + p.
Then for any P-interval M and i ≥ (p − 1)2 we have that M f i-covers [a, d] (and
[x, b] provided x exists).

Clearly there exists l < p such that either M f l-covers [c, d] or M f l-covers
[d, e]. Now by Step 3 f (p−1)(p−2)[c, d] ⊃ M ; so if M f l-covers [d, e] then f (p−1)(p−2)+l[c, d] ⊃
[d, e] which is a contradiction. Thus M f l-covers [c, d] and by Step 3 we get the
required.

Now suppose there exists a P-interval M such that f iM contains no PQ-intervals
for i < p2. Then by Step 1 f i[c, d] contains no PQ-intervals for i < p2 − (p− 1) =
(p − 1)2 + p. Applying Step 4 and using simple geometrical arguments we may
assert that there exist two P-intervals Y and Z such that Y ∩ Z = ∅ and for any
i ≥ (p− 1)2 the interval Y f i-covers intervals Y, Z and the interval Z f i-covers
intervals Y,Z which completes the proof of Lemma 2.6. �

Lemma 2.7. Suppose that card (orb P ∩ I) ≥ 4, card (orb Q ∩ I) ≥ 4. Let

T ≡ T (p, q) ≡ N(pqm(X)−min(p, q) ·m(X) + [max(p, q)]2)

(recall that function N(x) was defined in Lemma 2.1). Then P (f) ⊃ {i : i ≥ T}
and h(f) > 0.

Proof. Let us make use of Lemmas 2.1 and 2.6 and consider all possible cases.
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Case A. There exist such P-intervals Y and Z that each of them f i-covers both
of them for i ≥ (p− 1)2.

Let k ≥ N((p− 1)2) be an integer. By Lemma 2.1 one can easily see that there
exist integers 1 = a0 < a1 < · · · < al = k, ai+1 − ai ≥ (p − 1)2 such that for any
proper divisior s of k there exists ai which is divided by s. Properties of f i-covering
imply that there exists an interval K ⊂ Y such that faiK ⊂ Z for any 1 < i < l
and fkK = Y . Hence there exists a point ζ ∈ Y such that faiζ ∈ Z for 0 < i < l
and fkζ = ζ; by the properties of the numbers {ai} it implies that k is the minimal
period of the point ζ and so P (f) ⊃ {i : i ≥ N((p− 1)2)} ⊃ {i : i ≥ T}. Standart
one-dimensional arguments show also that h(f) > 0 (see, for example, [BGMY]).

Case B. There are such Q-intervals Y ′ and Z ′ that each of them f i-covers both of
them for i ≥ (q − 1)2.

Similarly to Case A we have P (f) ⊃ {i : i ≥ N((q − 1)2)} ⊃ {i : i ≥ T} and
h(f) > 0.

Case C. For any basical interval M there exists a number s = s(M) < [max(p, q)]2

such that fsM contains a PQ-interval.

Let for definitness p > q. Then similarly to Lemma 2.5 we can conclude by
Lemmas 2.3 and 2.4 that any basical interval M f i-covers all basical intervals
except at most one of them for i ≥ H = pqm(X)−qm(X)+p2. Choose four basical
intervals {Mj}4j=1 which are pairwise disjoint and show that for any k ≥ N(H) there
exists a periodic point ζ of minimal period k.

Let k ≥ N(H). As in Case A choose integers 1 = a0 < a1 < · · · < al = k with
the properties from Lemma 2.1. Let u = al−al−1. Then it is easy to see that there
exists such basical interval, say, M1, that at least two other basical intervals, say
M2 and M3, fu-cover M1. On the other hand one can easily show that there are
two numbers i, j ∈ {2, 3, 4} and two intervals Ki ⊂ M1 and Kj ⊂ M1 such that for
any 1 ≤ v ≤ l−2 we have fav (Ki) ⊂ Mr(v) and fav (Kj) ⊂ Mt(v) where r(v), t(v) ∈
{2, 3, 4} are appropriate integers and moreover fal−1Ki = Mi, fal−1Kj = Mj .
Clearly one of the numbers i, j belongs to the set {2, 3}; let, say, i = 2. Then
choosing correspondent subintervals and using simple properties of f-coverings one
can easily find an interval K ⊂ M1 such that favK ∩M1 = ∅, 1 ≤ v ≤ l − 1, and
fkK = M1. Thus f has a periodic point of minimal period k. Moreover, it is clear
that h(f) > 0 which completes the proof. �

Theorem 2.1. Let X be a graph, s = Edg(X) + 1 and {pi}s
i=1 be s ordered prime

integers greater than 4Edg(X). Set L = L(X) = T (ps, ps−1). If a continuous map
f : X −→ X is such that P (f) ⊃ {1, 2, . . . , L} then P (f) = N and h(f) > 0.

Proof. Clearly in the situation of Theorem 2.1 one can find two periodic points
with properties from Lemma 2.7. It completes the proof. �

Remark 1[B4]. If X is a tree then one may set L(X) = 2(p− 1)End(X) where p
is the least prime integer greater than End(X).

Theorem 2.2. Let f : X −→ X be a continuous graph map. Then the following
statements are equivalent.

1) The map f has a positive entropy.
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2) There exists such n that P (f) ⊃ nZ ≡ {ni : i ∈ N}.

Proof. By the decomposition if h(f) > 0 then f has a basic set. By Lemma 1.2 it
implies statement 2) of Theorem 2.1. On the other hand by Theorem 2.1 statement
2) of Theorem 2.2 implies that h(f) > 0 which completes the proof. �
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