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Abstract. We study C2-structural stability of interval maps with negative Schwarz-
ian. It turns out that for a dense set of maps critical points either have trajectories
attracted to attracting periodic orbits or are persistently recurrent. It follows that for
any structurally stable unimodal map the ω-limit set of the critical point is minimal.

0. Introduction

One of the main open questions in one-dimensional dynamics is to identify the
Cr structurally stable interval maps for r ≥ 2. For r = 1 this has been done by
Jakobson in [J]. The reader can find a good account of this problem in [MS]. The
purpose of this paper is to narrow down the possible set of structurally stable maps
for the case of r = 2. The class of maps we find is dense in the space of all C2

interval maps with negative Schwarzian. Thus, every structurally stable map with
negative Schwarzian belongs to this class. The assumption of negative Schwarzian
is not very restrictive, since the main examples of interval maps satisfy it (see e.g.
[M]). Moreover, many important results proved first for such maps have been later
generalized to all maps, so there is a good chance that results similar to ours hold
for all C2 maps.

Our dense class of maps consists of the C2 interval maps with finitely many
critical points, all of them nondegenerate, none of them being an endpoint of the
interval, and each critical point being either attracted to an attracting periodic
orbit or persistently recurrent. The definition of persistent recurrence is given in
Section 4. For unimodal maps this implies that the ω-limit set of the critical point
is minimal (in the dynamical sense) and thus nowhere dense.

As in our previous paper on the similar subject [BM], the perturbations we make
are localized in a small neighborhood of the critical points. This approach works
since we can make such perturbations that whenever the new trajectory returns to
the neighborhood on which the map was modified, the perturbation is enhanced
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rather than damped. There are unimodal maps for which this is automatic, so
called long branched maps. For these maps it was proved by Bruin [Br] that they
are not structurally stable. However, in our case the perturbation has to be carefully
chosen to have this property.

Local perturbation have been also used by Contreras [C], who proved that there
exists a dense set of interval maps of class C2+α for which there exists an ergodic
invariant measure with Lyapunov exponent non-positive.

We also prove that if a map has all critical points non-recurrent then it is unstable
in Cr for all r. In fact, we prove even more: this map can be arbitrarily well Cr

approximated by maps with all critical points attracted to periodic sinks. This fact
is not too difficult to prove. However, we could not find it in the literature and it
is related to our main results.

The paper is organized as follows. In Section 1 we introduce notation and pre-
liminary results. In Sections 2-4 we prove some technical lemmas that serve as
“bricks” with which we build the proofs of the main results in Section 5.

1. Preliminaries

Let us explain some terminology that we will be using.
By the limit set of a point we will mean its ω-limit set.
When we speak of perturbations, our terminology will be perhaps not perfectly

logical, but commonly used. Thus, a map g which is close to a map f (in some
specified topology) will be called a perturbation of f . However, when we say that g
is a small perturbation of f , we mean that g − f (not g) is small. Moreover, when
we say that a bump perturbation (see Section 2) g is small, we mean that both the
(appropriate) norm and the support of g − f are small.

Let f be a smooth interval map. A point x is called a periodic sink (from
one side) if there exists n > 0 and a (one-sided) neighborhood U of x such that
fn(x) = x, fn(U) ⊂ U and the diameter of fk(U) tends to 0 as k →∞. The basin of
attraction of x is then the set

⋃∞
k=0 f−k(U). In this situation the number (fn)′(x),

called multiplier, has absolute value less than or equal to 1. If the multiplier has
the absolute value strictly less than 1 then x is called an attracting periodic point
and its orbit is also called attracting. Finally, if the multiplier at a periodic point
x has the absolute value 1 then the point x and its entire orbit are called neutral.

Let us note the following well known fact (by a (pre)periodic point we mean a
periodic or preperiodic point).

Lemma 1.1. Any point from the boundary of the basin of attraction of a periodic
sink is either a (pre)periodic point or an endpoint of the domain of f .

A point whose limit set is an attracting periodic orbit will be called sinking. If
its limit set is a neutral periodic orbit, it will be called weakly sinking. If its limit
set is a repelling periodic orbit which belongs to the boundary of a periodic sink,
it will be called almost sinking. Otherwise, it will be called floating.

There are further useful well known facts. We still assume that f is smooth.

Lemma 1.2. Suppose that x has finite limit set P . Then P is a periodic orbit.
Moreover, either fn(x) ∈ P , so x is (pre)periodic, or the orbit P is attracting or
neutral and x is in its basin of attraction, so x is sinking or weakly sinking.

A point c ∈ [0, 1] is critical for a smooth map f : [0, 1] → [0, 1] if f ′(c) = 0. If
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there is n ≥ 1 such that fn(x) is critical then x will be called precritical. A point
contained in its limit set is called recurrent.

Normally, one defines Schwarzian (or Schwarzian derivative) of a function f of
class C3 as Sf = f ′′′/f ′ − (3/2)(f ′′/f ′)2. It is defined at all non-critical points of
f . Thus, usually negative Schwarzian means Sf < 0 at all non-critical points. As
can be easily checked, this property implies strict convexity of the function 1/

√
|f ′|

on each component of the complement of the set of critical points. This requires
only C1 smoothness, and we will adopt it as a definition of negative Schwarzian.
Thus, a function f is said to have negative Schwarzian if it is of class C1 and the
function 1/

√
|f ′| is strictly convex on each component of the complement of the set

of critical points. It is almost equivalent to the classical definition if f is C3, and
it is well known that it yields the same useful properties of interval maps.

For simplicity, we assume that our interval is [0, 1], but of course every closed
interval would do. By Nr we denote the subspace of the space Cr([0, 1], [0, 1])
consisting of maps with finitely many critical points, all of them non-degenerate,
and none of them 0 or 1. It is well known (see e.g. [MS], Chapter III) that the space
of Cr maps with finitely many critical points, all of which are non-degenerate, is
open and dense in Cr([0, 1], [0, 1]). The set of Cr maps for which 0 and 1 are not
critical points is also open and dense, so Nr is open and dense in Cr([0, 1], [0, 1]).

We will write [a; b] for the interval [a, b] if a < b and [b, a] if b < a.
Next basic properties of limit sets that will be used in this paper are summarized

in the following theorem. An interval J is called wandering if its images fn(J),
n ≥ 0, are pairwise disjoint and do not converge to a periodic orbit.

Theorem 1.3. For f ∈ N2 the following properties hold.
(1) There are no wandering intervals.
(2) Points with finite limit sets are dense in [0, 1].
(3) If there are no critical and no precritical points in (x, y) then the limit set

of every z ∈ [x, y] is a periodic orbit.
(4) Any floating point is the limit from both sides (one side for 0 and 1) of both

(pre)periodic and precritical points.

Proof. For property (1), see e.g. [MS], Chapter IV, Theorem A. Property (2) follows
immediately from (1) and Lemma 6.1 of [Bl]. Property (3) follows immediately from
(1) and Lemma 3.1 of Chapter II of [MS].

To prove (4), assume that x is a floating point. Suppose that there is y 6= x such
that there are no precritical points in (x; y). We may assume that there are also
no critical points in (x; y) (if there is a critical point in (x; y) then we may replace
y by the closest to x critical point in (x; y)). By (3) the limit set of x is a periodic
orbit. Since x is floating, by Lemma 1.2 x is preperiodic.

Suppose now that there is y 6= x such that there are no (pre)periodic points in
(x; y). By (2), there is z ∈ (x; y) with a finite limit set. By Lemma 1.2, z is a in the
basin of attraction of a periodic sink. By Lemma 1.1, the whole interval (x; z) is
contained in this basin of attraction. Thus, x cannot be floating, a contradiction.
This completes the proof of (4).

2. Perturbations and negative Schwarzian

Before we start perturbing maps with negative Schwarzian derivative to get
maps with some special behavior of the trajectories of the critical points, we have
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to make these critical points “manageable”. To this end, we introduce the space S̃
of the maps from N2 with negative Schwarzian, that are C3 in a neighborhood of
critical points. Let S2 be the space of all C2 maps from [0, 1] to itself with negative
Schwarzian. We consider the spaces S̃ and S2 with C2 topology.

Theorem 2.1. The space S̃ is dense in S2.

To prove this theorem, we need some auxiliary lemmas.

Lemma 2.2. Let ϕ : [0, 1] → R be a continuous function and let ε > 0. Then there
exists a set A ⊂ [0, 1] such that ϕ(x) < ε for x ∈ A, ϕ(x) > ε/2 for x /∈ A, and A
is the union of finitely many closed intervals.

Proof. Set B = {x ∈ [0, 1] : ϕ(x) < ε} and C = {x ∈ [0, 1] : ϕ(x) ≤ ε/2}. Then B is
open, C is compact and C ⊂ B. Let E be the union of these connected components
of B that contain elements of C. Clearly, C ⊂ E ⊂ B. We claim that E has finitely
many components. Suppose that it has infinitely many components Ei. Choose
one point xi ∈ C from each of them. The sequence (xi) has an accumulation point
x ∈ C. Since C ⊂ B, this point belongs to some component D of B. The set D is
open, so infinitely many xi’s belong to it. However, different xi’s belong to different
components of B, a contradiction. This proves the claim.

Now for each component Ei of E we choose a closed interval Ai such that Ei∩C ⊂
Ai ⊂ Ei. Clearly, the set A =

⋃
Ai satisfies the conditions of the lemma.

We will sometimes replace our function f by a quadratic function on some in-
terval. Namely, for a given C2 function f and a point x such that f ′′(x) 6= 0
there is the unique quadratic function f̃ such that f̃(x) = f(x), f̃ ′(x) = f ′(x) and
f̃ ′′(x) = f ′′(x). We will denote this function by Φf,x, its critical point by ξ(f, x),
and Φf,x(ξ(f, x)) by ζ(f, x).

Lemma 2.3. Let f : [a, c] → R be a C2 function such that f ′(x) 6= 0 for x < c but
f ′(c) = 0.

(1) If f ′′(c) 6= 0 then ξ(f, x) > x for every point x < c sufficiently close to c,
limx→c ξ(f, x) = c, and limx→c ζ(f, x) = f(c).

(2) If f ′′(c) = 0 then there is a sequence of points xn ↗ c such that f ′′(xn) 6= 0,
ξ(f, xn) > xn, limn→∞ ξ(f, xn) = c, and limn→∞ ζ(f, xn) = f(c).

Proof. Elementary calculations show that

ξ(f, x) = x− f ′(x)
f ′′(x)

. (2.1)

and

ζ(f, x) = f(x)− (f ′(x))2

2f ′′(x)
. (2.2)

If f ′′(c) 6= 0 then close to c to the left of it, f ′ has the opposite sign to f ′′, so by (2.1)
ξ(f, x) > x. Also by (2.1), ξ(f, x) is a continuous function of x in a neighborhood
of c, that attains value c at c. Moreover, by (2.2), ζ(f, x) is a continuous function
of x in a neighborhood of c, that attains value f(c) at c. This proves (1).

Assume now that f ′′(c) = 0. We can rewrite (2.1) as

ξ(f, x) = x− 1
(ln |f ′(x)|)′ . (2.3)
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and (2.2) as

ζ(f, x) = f(x)− f ′(x)
2(ln |f ′(x)|)′ (2.4)

respectively. Since limx→c ln |f ′(x)| = −∞, there is a sequence xn ↗ c such that

lim
n→∞

(ln |f ′(x)|)′ = −∞.

We have f ′′(xn) = f ′(x)(ln |f ′(x)|)′ 6= 0. By (2.3), ξ(f, xn) > xn. Again by (2.3),
limn→∞ ξ(f, xn) = c, and by (2.4) limn→∞ ζ(f, xn) = f(c). This proves (2).

Lemma 2.4. Let 0 ≤ a′ < b′ ≤ 1 and let ϕ(a′), ϕ′(a′), ϕ′′(a′), ϕ(b′), ϕ′(b′), ϕ′′(b′)
be given, such that ϕ(a′) = ϕ(b′), ϕ′(a′) = ϕ′(b′) = 0 and 0 < |ϕ′′(a′)| < ε,
0 < |ϕ′′(b′)| < ε. Then there exists a polynomial f : [a′, b′] → R with negative
Schwarzian, such that f and ϕ agree up to second derivatives at a′ and b′ and the
C2 norm of f − ϕ(a′) is smaller than 60ε.

Proof. Suppose first that the signs of ϕ′′(a′) and ϕ′′(b′) are the same. Then we set

f(x) = α(x− a′)2(x− b′)2(x− d)2 + ϕ(a′)

for suitably chosen α ∈ R and d ∈ (a′, b′). We have

f ′(x) = 2α(x− a′)(x− b′)(x− d)[(x− a′)(x− b′) + (x− a′)(x− d) + (x− b′)(x− d)]

and

f ′′(x) = 2α[(x− a′)(x− b′) + (x− a′)(x− d) + (x− b′)(x− d)]2

+ 4α(x− a′)(x− b′)(x− d)[(x− a′) + (x− b′) + (x− d)].

In particular,

f ′′(a′) = 2α(a′ − b′)2(a′ − d)2; f ′′(b′) = 2α(a′ − b′)2(b′ − d)2.

From this we can determine d (by dividing the first equation by the second one and
relying upon the assumption that f ′′(a′) = ϕ′′(a′), f ′′(b′) = ϕ(b′)), and then α.

For the sake of definiteness let us assume that d is closer to b′ than to a′. Then
|a′ − d| ≥ (b′ − a′)/2. Therefore |α| ≤ 2|f ′′(a′)|/(b − a)4 < 2ε/(b′ − a′)4. Thus for
any x ∈ [a′, b′] we get |f(x)−ϕ(a′)| < 2ε(b′−a′)2 ≤ 2ε, |f ′(x)| < 4ε ·3(b′−a′) ≤ 12ε
and |f ′′(x)| < 4ε · 32 + 8ε · 3 = 60ε.

Assume now that the signs of ϕ′′(a′) and ϕ′′(b′) are different. Then we set

f(x) = α(x− a′)2(x− b′)2(x− d) + ϕ(a′).

Similar computations as above yield

f ′′(a′) = 2α(a′ − b′)2(a′ − d); f ′′(b′) = 2α(a′ − b′)2(b′ − d).

This allows us to find d ∈ (a′, b′) and α ∈ R. Applying the same method as in the
first case, we get |f(x)− ϕ(a′)| < ε, |f ′(x)| < 5ε and |f ′′(x)| < 20ε for x ∈ [a′, b′].
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It remains to check that the polynomials we used have negative Schwarzian.
However, for each of them the number of critical points is by 1 less than the degree.
Therefore their derivatives have all zeros real, and according to [S] or [M], they
have negative Schwarzian.

Proof of Theorem 2.1. We want to show that if f ∈ S2 then we can find its small
(in C2 topology) perturbation that belongs to S̃. We will “improve” the behavior
of f step by step. Formally, after each step we get a different function, so we should
use a different name for it. However, this would lead to cumbersome notation, so
the function we are working with will be called f all the time.

Note that the adjustments can be made separately on various intervals. If f has
negative Schwarzian on [0, x] and on [x, 1] (and is C2 on the whole [0, 1]) then it
has negative Schwarzian on the whole [0, 1].

One of the elements of our construction will consist of moving around pieces of
the graph of our map. Suppose that we want to make a perturbation smaller than
ε. Then we may move the graph up or down by less than ε. We may also move the
graph left or right by less than some δ, depending on ε and f (since the functions
f, f ′, f ′′ are uniformly continuous). Moreover, we may apply affine transformations
sufficiently close to the identity to the x and y axes (that is, expand or contract
a little the graph in the horizontal or vertical directions). All these operations
preserve negative Schwarzian.

The first thing we take care of are the endpoints of [0, 1]. Suppose 0 is a critical
point of f . We extend f to the left of 0 to a C2 function by a quadratic polynomial
if f ′′(0) 6= 0 and by x 7→ x4 +x3 if f ′′(0) = 0. In both cases the map we obtain has
negative Schwarzian. Now we rescale our map from an interval slightly larger than
[0, 1] back to [0, 1]. We deal with f ′′(1) = 0 in a similar way.

Now we want to improve the behavior of f in the regions where the first and
the second derivatives are small. Fix some ε > 0 and let ϕ = max(|f ′|, |f ′′|). By
Lemma 2.2, we can find a set A which is the union of finitely many closed intervals,
and such that ϕ < ε on A, while outside A the function ϕ is bounded away from 0.
We may assume that f ′ 6= 0 on the boundary of A. Let [a, b] be one of the intervals
constituting A.

If f has no critical points in [a, b] then we do not change f on [a, b]. Otherwise,
let c be the leftmost critical point of f in [a, b]. By our construction, c > a. By
Lemma 2.3, there is x < c such that ξ(f, x) > x, the points x and ξ(f, x) are as close
to c as we want and ζ(f, x) is as close to f(c) as we want. Then we replace f |[x,c] by
Φf,x|[x,ξ(f,x)]. If ξ(f, x) < c, we set a′ = ξ(f, x); if ξ(f, x) ≥ c, we move the graph of
our function restricted to [0, ξ(f, x)] to the left in order to make its domain disjoint
from [c, 1] and denote the new position of ξ(f, x) by a′. The whole perturbation is
as small as we want, independently of ε. Then we make an analogous construction
to the right of the point c′ which is the rightmost critical point of f in [a, b], and
denote the point analogous to a′ by b′. To complete this step we need to fill in the
gap between a′ and b′.

Our gap is [a′, b′], and the values of f, f ′, f ′′ at a′, b′ are given. We have f ′(a′) =
f ′(b′) = 0 and 0 < |f ′′(a′)| < ε, 0 < |f ′′(b′)| < ε. Moreover, for our original function
f we had |f ′| < ε on [a, b], so |f(y)− f(z)| < ε(b− a) for every y, z ∈ [a, b]. After
the perturbation, this changed as little as we wanted, so we have |f(a′)− f(b′)| <
ε(b − a). To prepare for filling the gap we move the left or the right part of the
graph of f up or down to get f(a′) = f(b′). This perturbation is smaller than
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ε(b − a). Now we fill the gap [a′, b′] with a polynomial, using Lemma 2.4. This
perturbation has norm less than 61ε.

We repeat this construction for every component of A. In such a way we make
some perturbations that are arbitrarily small (independently of ε), some perturba-
tions smaller than 61ε that have disjoint supports, and some global perturbations
(moving parts of the graph up or down), each of them smaller than ε times the
length of the corresponding component of A. Thus the total size of the latter per-
turbations is smaller than ε. Hence, the total size of all perturbations we made is
smaller than 63ε. During our construction we could change the size of the domain
and the range of f , but not more than by ε.

The map we got has no points where both the first and the second derivative
vanish. Therefore it has finitely many critical points, all of them nondegenerate.
Now we will make the map C3 (even quadratic) in a neighborhood of these points.

With the tools we developed, this is fairly easy. If c is a critical point then f ′′(c) 6=
0 and we choose x1 and x2 very close to c from the left and right respectively and
we replace f on [x1, c] and [c, x2] by Φf,x1 on [x1, ξ(f, x1)] and Φf,x2 on [ξ(f, x2), x2]
respectively. Then we move the right and the left parts of the graph a little (up
or down and left or right) so that they fit together and the point at which the two
parts of the graph are glued has the x-coordinate c. By Lemma 2.3, this is a small
perturbation. The values of f and f ′ at c are the same from both sides. However,
the second derivatives may not agree; we have Φ′′f,x1

≡ f ′′(x1) and Φ′′f,x2
≡ f ′′(x2).

They are nevertheless very close to each other, so we can make them identical by
affine rescaling of one of the parts of the graph in the vertical direction. This will
be again as small perturbation as we want, provided x1 and x2 are sufficiently
close to c. After all this, the function we get will be quadratic in a neighborhood
of its critical point corresponding to c. We have to make only finitely many such
adjustments, so the total perturbation is small (say, smaller than ε).

At this moment the function f we have, satisfies all conditions for belonging to
S, except that its domain and range may be slightly wrong (up to 2ε). Then a
suitable horizontal and/or vertical rescaling takes care of it. Since ε is as small as
we want, this rescaling is as small perturbation as we want, at least on the “old”
parts of f . For the “new” parts of f we have to have some estimate, since how
these parts look may depend on ε.

We want to know that small vertical and horizontal rescaling have small effect
on the values of f, f ′ and f ′′ on these “new” parts. In the regions where |f ′| and
|f ′′| were small it follows precisely from this smallness. Close to the nondegenerate
critical points, where we were gluing in pieces of parabolas, this follows from the
fact that |f ′′| is commonly bounded. This completes the proof.

We can work with maps from S̃, but it is more convenient to impose more
restrictions on them. Let us call the critical points of a map f and the endpoints
of the interval [0, 1] exceptional points of f . Consider the function ρ : S̃ → N such
that ρ(f) is the number of sinking exceptional points of f . Let S be the subspace
of S̃ consisting of all maps f such that ρ has a local maximum at f and no critical
point of f is mapped into 0 or 1.

Theorem 2.5. The space S is open and dense in S̃.

Proof. The set of these elements of S̃ for which no critical point is mapped to 0 or
1 is obviously open and dense.
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If f ∈ S̃ then all critical points of f are non-degenerate and none of them is 0 or
1. Therefore for maps from some neighborhood of f the number of all exceptional
points is the same as for f . Thus, ρ is bounded in this neighborhood, so the number
lim supg→f ρ(g) = k is finite. In every neighborhood of f there are maps g for which
ρ(g) = k, and if this neighborhood is sufficiently small then g ∈ S. This proves
that the set of those elements of S̃ at which ρ has a local maximum is dense.

Since sinking critical points remain sinking under small perturbations, we have
ρ(g) ≥ ρ(f) for all g sufficiently close to f . Hence, if f ∈ S then ρ is constant in
some neighborhood of f . This proves that the set of those elements of S̃ at which
ρ has a local maximum is open. Hence, S is open and dense in S̃.

The special property of elements of S that we will be using is given in the next
proposition.

Proposition 2.6. If f ∈ S then f has no neutral periodic points.

To prove this proposition, we will have to perturb maps from S in neighborhoods
of neutral periodic points. We will do these perturbations in two stages. Therefore
we start with some definitions and a lemma.

We will say that f has strongly negative Schwarzian on an interval J if it is
piecewise C3 on J and there is ε > 0 such that 2f ′′′f ′ − 3(f ′′)2 < −ε on J .

As we mentioned earlier, our definition of negative Schwarzian of f is strict
convexity of 1/

√
|f ′| on intervals without critical points of f . On any such interval

we can think of the function Tf = 1/
√
|f ′| as a transform of f . The inverse

transform is defined up to an additive constant. To specify a concrete transform,
we have to add an initial condition (a value of f at one point).

A simple calculation shows that

(Tf)′ = − f ′′

2f ′
Tf (2.5)

and

(Tf)′′ = − Tf

4(f ′)2
(
2f ′′′f ′ − 3(f ′′)2

)
. (2.6)

If f has strongly negative Schwarzian on J and s is sufficiently small in C3 topology,
the function g = f + s has also strongly negative Schwarzian on J . By (2.6),
strongly negative Schwarzian implies negative Schwarzian. Hence, our terminology
is consistent.

Lemma 2.7. Let x be an interior point of a closed interval J . Let f : J → R be
a function of class C2 with negative Schwarzian and without critical points. Then
for every ε > 0 and every side of x (left or right) there exists a point a on that side
of x and a function g : [x; a] → R such that

(1) g(x) = f(x), g(a) = f(a);
(2) g′(x) = f ′(x), g′(a) = f ′(a);
(3) g′′(x) = f ′′(x), g′′(a) = f ′′(a);
(4) g is of class C3;
(5) (Tg)′′ > 0;
(6) The C2 norm of g − f |[x;a] is smaller than ε.
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Proof. We may assume without loss of generality that we want a to be to the right
of x. We start by choosing any a > x such that a ∈ J .

Consider the function h = Tf . By the assumption, it is strictly convex and
positive. If a is sufficiently close to x then h is monotone on [x, a]. Draw the
tangent lines to the graph of h at x and a. They intersect at some point P . Set
Q = (x, h(x)) and R = (a, h(a)). Let h0 be the function whose graph consists of
the segments QP and PR and let h1 be the function whose graph consists of the
segment QR. Clearly, h0 < h < h1 on (x, a).

The function |f ′| is continuous and positive on a closed interval, so it is bounded
away from zero. Hence, if g is a small C2 perturbation of f then k = Tg is a small
C1 perturbation of h. Moreover, the conditions (2)-(5) are satisfied if and only if
the following conditions are satisfied:

(2’) k(x) = h(x), k(a) = h(a);
(3’) k′(x) = h′(x), k′(a) = h′(a);
(4’) k is of class C2;
(5’) k′′ > 0.
There exist functions satisfying (2’)-(5’) that are arbitrarily C0 close to h0 and

h1. Since h0 < h < h1 on (x, a), we have
∫ a

x

(h0(y))−2 dy >

∫ a

x

(h(y))−2 dy >

∫ a

x

(h1(y))−2 dy.

Therefore there exist functions k0 and k1 satisfying (2’)-(5’) and such that
∫ a

x

(k0(y))−2 dy >

∫ a

x

(h(y))−2 dy >

∫ a

x

(k1(y))−2 dy.

We can join them by a one-parameter family of functions satisfying (2’)-(5’), for
instance affinely: kt = (1− t)k1 + tk2. Then there exists t such that for k = kt we
have ∫ a

x

(k(y))−2 dy =
∫ a

x

(h(y))−2 dy.

Then the corresponding function g for which Tg = k and g(x) = f(x), satisfies
(1)-(5).

We get property (6) automatically if a is sufficiently close to x. Indeed, take
δ > 0. The values of k and h|[x,a] are between h(x) and h(a), and if a is sufficiently
close to x then |h(x) − h(a)| < δ. Thus k and h|[x,a] are at most δ-apart at any
point of [x, a]. Similarly, the values of k′ and h′|[x,a] are between h′(x) and h′(a),
and if a is sufficiently close to x then |h′(x) − h′(a)| < δ. Thus k′ and h′|[x,a] are
at most δ-apart at any point of [x, a]. We have

f ′ = ±1/h2, g′ = ±1/k2, f ′′ = ±2h′/h3, g′′ = ±2k′/k3

and h, k are bounded away from 0. Hence, if δ is sufficiently small, then |f ′(y) −
g′(y)| < ε and |f ′′(y)−g′′(y)| < ε for every y ∈ [x, a]. Since f(x) = g(x), if a−x < 1
then we get by integration also |f(y)− g(y)| < ε for y ∈ [x, a]. This completes the
proof.

Proof of Proposition 2.6. Suppose that a map f ∈ S has a neutral periodic point
a. It is well known that then a is attracting (topologically) at least from one side
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and there exists an exceptional point c whose orbit is attracted by a. Without
changing orbits of sinking exceptional points we can make a small perturbation
of f in the left and right neighborhoods of a, as in Lemma 2.7. The new map
has strongly negative Schwarzian (by property (5) of Lemma 2.7 and (2.6)) in a
neighborhood of a. Now by a small C3 perturbation in a neighborhood of a we can
make a attracting. If these perturbations are sufficiently small (the first one in C2

and the second one in C3) then the resulting map g is in S and ρ(g) > ρ(f). This
contradicts the definition of S.

Now we address the problem of how to perturb maps from S in neighborhoods
of critical points.

Lemma 2.8. For any δ, ε > 0 there exists an even function sδ,ε = s : R → R of
class C3 such that

(1) s(x) = 0 for any x /∈ [−ε, ε], while s(0) = ε2δ/1000,
(2) s is strictly increasing on [−ε, 0] and strictly decreasing on [0, ε],
(3) |s′(x)| < εδ, |s′′(x)| ≤ δ and |s′′′(x)| ≤ δ/ε for any x.

If ε < 1 then the C2-norm of s is smaller than or equal to δ.

Proof. Set h(x) = (x2 − 1)4 for x ∈ [−1, 1] and h(x) = 0 otherwise. This function
satisfies the conditions of the lemma with ε = 1 and δ = 1000. Now the function
s(x) = δε2h(x/ε)/1000 has all the required properties.

In the typical situation both ε and δ are small, which guarantees that s is small
in C2 topology (yet to see whether s is small in C3 topology, we need to know also
how δ and ε are related). Since our main focus is C2 topology, this allows us to
perturb our maps by adding or subtracting functions similar to s.

Let c ∈ R; we call the function sc(x) = sδ,ε(x− c) the (ε, δ)-bump function at c.
If both ε and δ are small then we say that the (ε, δ)-bump function is small too. If
c is a critical point of f , we can consider a map g = f + sc or g = f − sc where
sc is an (ε, δ)-bump function at c. Moreover, if ε is smaller than half the minimal
distance between critical points of f then intervals supporting functions sc for
different critical points c are pairwise disjoint. From now on we consider functions
sc only for ε smaller than half the minimal distance between critical points of f . An
(ε, δ)-bump perturbation of f is the result of adding to or subtracting from f some
of maps sc corresponding to different critical points c (the maps f + sc and f − sc

are called (ε, δ)-bump perturbations at c). Notice that by choosing small ε and δ
we can get (ε, δ)-bump perturbations of f arbitrarily close to f in C2 topology.

Observe that we can vary δ and then our bump perturbations depend contin-
uously on it. We will use this fact in the proof of Lemma 4.2. Observe also that
since for f ∈ S no critical point is mapped into 0, 1 then all sufficiently small bump
perturbations at any critical point map [0, 1] to itself.

Any bump perturbation has the same set of critical points as the original map,
provided that ε and δ are sufficiently small and all the critical points of the original
map are non-degenerate. Moreover, in the circumstances we will be using it, it
preserves negative Schwarzian. The next lemma shows it. It explains why we
needed extra smoothness close to critical points.

Lemma 2.9. Let f : [−a, a] → R be a function of class C3 with a non-degenerate
critical point 0. Then there exist positive numbers ε and δ such that for any C3
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function s : [−a, a] → R whose support is contained in [−ε, ε] and such that

|s(x)| ≤ δ, |s′(x)| ≤ εδ, |s′′(x)| ≤ δ, |s′′′(x)| ≤ δ

ε
(2.7)

for all x, the function g = f + s has strongly negative Schwarzian and a unique
critical point in [−ε, ε]. In particular, this applies to any (ε, δ)-bump perturbation
of f at 0. In this case, the critical point in [−ε, ε] is 0.

Proof. Set
b = |f ′′(0)|, d = max

x∈[0,1]
|f ′′′(x)|. (2.8)

Since 0 is a non-degenerate critical point, we have b > 0. Choose ε ∈ (0, a) such
that

|f ′(x)| < min
(

1.3 b|x|, 0.2
b2

d

)
, |f ′′(x)| > 0.8 b (2.9)

for x ∈ [−ε, ε]. Then choose δ > 0 such that

δ < min
(

0.1 b, 0.2
b2

dε

)
(2.10)

for x ∈ [−ε, ε].
Let us check that these numbers have the required property. Let s be a function

with the properties from the statement of the lemma and consider the function
g = f +s. For x ∈ [−ε, ε] we have |g′′(x)| ≥ |f ′′(x)|− |s′′(x)| ≥ 0.8b−0.1b 6= 0, so g
has at most one critical point in [−ε, ε]. It has to have one, since g′(−ε) = f ′(−ε)
and g′(ε) = f ′(ε) have opposite signs. If s is a bump function, it is even, so
s′(0) = 0. Hence, g′(0) = f ′(0)+s′(0) = 0 and 0 is the only critical point of g|[−ε,ε].

Now we will check whether g|[−ε,ε] has strongly negative Schwarzian. To this
end we show that

2(f ′′′(x) + s′′′(x))(f ′(x) + s′(x)) < 3(f ′′(x) + s′′(x))2 − 0.39 b2 (2.11)

for x ∈ [−ε, ε]. In order to do this let us estimate both parts of the inequality (2.11)
step by step. We will use all the time inequalities (2.7)-(2.10). We get

3(f ′′(x) + s′′(x))2 > 3(0.8 b− 0.1 b)2 = 1.47 b2, (2.12)

|f ′′′(x)| · |f ′(x) + s′(x)| < d

(
0.2

b2

d
+ ε · 0.2

b2

dε

)
= 0.4 b2, (2.13)

|s′′′(x)| · |f ′(x) + s′(x)| < 0.1 b

ε
· (1.3 bε + ε · 0.1 b) = 0.14 b2. (2.14)

From (2.12)-(2.14) we get

2(f ′′′(x) + s′′′(x))(f ′(x) + s′(x)) < 2(0.4 b2 + 0.14 b2)

= 1.08 b2 = 1.47 b2 − 0.39 b2 < 3(f ′′(x) + s′′(x))2 − 0.39 b2

for x ∈ [−ε, ε]. This proves (2.11) and completes the proof.
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Note that due to Lemma 2.9, a map which is C3 in a neighborhood of a non-
degenerate critical point has strongly negative Schwarzian in a sufficiently small
neighborhood of this point.

One more tool that will be useful in our considerations is so called Koebe Lemma
for negative Schwarzian maps (known also as Koebe Principle, etc.). It is not
only called, but also stated differently in different places. It has a part about the
distortion and a part about lengths of intervals (that follows from the first one).
We need only the second one. Therefore we state the second part in the form most
useful for us and the first one in the form good for the proof of the second part. The
first part in essentially the same form can be found for instance in [Br]. Moreover,
it can be obtained easily from the convexity of the function 1/

√
|h′| by way of

integration. We supply a proof of the second part, since we could not find it stated
anywhere in this form.

Koebe Lemma. Let h : [a, b] → R be a function with negative Schwarzian and
such that h′ 6= 0 on (a, b).

(1) Let a < a′ < b′ < b. Assume that |h(a′) − h(a)| ≥ δ|h(b′) − h(a′)| and
|h(b)−h(b′)| ≥ δ|h(a′)−h(b′)|. Then for every x, y ∈ [a′, b′] we have |h′(x)|/|h′(y)| ≤
((1 + δ)/δ)2.

(2) Let a < a′′ < b′′ < b. Assume that |h(b′′) − h(a′′)| ≤ ω|h(a′′) − h(a)|
and |h(b′′) − h(a′′)| ≤ ω|h(b) − h(b′′)|. Then b′′ − a′′ < 2ω(3 + 2ω)2(a′′ − a) and
b′′ − a′′ < 2ω(3 + 2ω)2(b− b′′). In particular, if ω ≤ 1, then b′′ − a′′ < 50ω(a′′ − a)
and b′′ − a′′ < 50ω(b− b′′).

Proof of (2). Without loss of generality, we may assume that h is increasing. Set
ã = h(a′′) − (h(b′′) − h(a′′))/(2ω) and b̃ = h(b′′) + (h(b′′) − h(a′′))/(2ω), and
then a′ = h−1(ã), b′ = h−1(̃b). Then the assumptions of (1) are satisfied with
δ = 1/(2 + 2ω). By (1) and Mean Value Theorem we get

(h(a′′)− h(a′))/(a′′ − a′)
(h(b′′)− h(a′′))/(b′′ − a′′)

≤
(

1 + δ

δ

)2

= (3 + 2ω)2.

Since h(b′′) − h(a′′) = 2ω(h(a′′) − h(a′)) and a′′ − a′ < a′′ − a, we get b′′ − a′′ <
2ω(3 + 2ω)2(a′′ − a). Similarly, b′′ − a′′ < 2ω(3 + 2ω)2(b − b′′). If ω ≤ 1 then
3 + 2ω ≤ 5, and we get the required estimates.

3. Non-recurrent critical points

In this and the next section we will describe the small steps we need to make
our map “better and better”. We start with the case when a critical point c of our
map f is non-recurrent. We will assume that f ∈ Nr and the perturbations will be
Cr small (r ≥ 2).

The simplest non-recurrent critical points are those with finite limit set. Then
this limit set is a periodic orbit. We should exclude the case when our critical
point is periodic itself, since then it is recurrent. However, since then no action is
necessary (this is a very good critical point), it does not matter whether formally
we assign this case to this or to the next section.

“Improvements” that we will try to make in this section are of two types. If
possible, we will try to make c sinking. This is a good step in the direction of
making our map hyperbolic. The second best choice is to make c precritical. If the
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orbit of c falls into c itself, then c is sinking. Otherwise, it falls into another critical
point d. Then we can continue to try to improve the behavior of the orbit of d. If
we succeed, the orbit of c will be as good as the orbit of d.

The first lemma will be applied when dealing with a weakly sinking critical point.
It is trivial, but we state it in order to unify the proof of Theorem 5.1. In fact, we
used it already in the proof of Proposition 2.6.

Lemma 3.1. Let x be a neutral periodic point of f ∈ Nr. Then for every neigh-
borhood U of f in Nr and every ε > 0 there exists g ∈ U such that the support of
g − f is contained in the ε-neighborhood of x and x is an attracting periodic point
for g. Moreover, if x is topologically attracting for f from one or both sides and
[x, x + ε] or/and [x − ε, x] is contained in the basin of attraction, then the same
holds for g (and the basin of attraction of x from that side remains the same).

The next lemma deals with the case of an almost sinking critical point and is
equally trivial. A small bump perturbation at c will push the orbit of c into the
basin of attraction of a periodic sink. If this sink is attracting, we get c sinking. If
it is neutral, we get c weakly sinking.

Lemma 3.2. Let c be an almost sinking critical point of f ∈ Nr. Then for any
sufficiently small Cr bump perturbation g of f at c in the right direction (up or
down), c is either sinking or weakly sinking.

The third possibility we have to take into account is when c is floating. Since
we assumed that the limit set of c is a periodic orbit, this means that this periodic
orbit is repelling. Moreover, by Lemma 1.2, the orbit of c falls into this orbit.

Lemma 3.3. Let c be a floating critical point of f ∈ Nr with finite limit set.
Then there are arbitrarily small Cr bump perturbations g of f at c for which c is
precritical.

Proof. Let x be a point from the limit set of c. Then x is a periodic repelling point.
Denote the period of x by n. We claim that f j(c) = x for some j. To see that,
let us fix a small interval J containing x, such that fn(J) contains J , but no point
from the orbit of x, other than x itself, belongs to fn(J). If the orbit of c does not
contain x then it passes through J infinitely many times, each time escaping from
it after a while. Then it passes infinitely many times through fn(J) \ J , so there is
a point from the limit set of c there, a contradiction. This proves our claim.

By Theorem 1.3 (4), there are (pre)periodic points arbitrarily close to x. There
is a small neighborhood U of x such that a suitable branch of h = (f |U )−n is
a contraction and x is its fixed point. Choose a precritical point y ∈ U . Then
limk→∞ hk(y) = x. There is an arbitrarily small bump perturbation g of f at c
such that gj(c) = hk(y) for some k. If it is sufficiently small, the orbits of gj(c)
under f and g coincide until they get to a critical point. Therefore c is precritical
for g.

At last we have to consider the case when c is non-recurrent, but its limit set is
infinite. Then we just make a step that reduces this case to the previous ones.

Lemma 3.4. Let c be a non-recurrent critical point of f ∈ Nr with infinite limit
set. Then there are arbitrarily small Cr bump perturbations g of f at c for which c
is precritical.
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Proof. By Theorem 1.3 (3), we can find a precritical point y so close to c that
y′ = τc(y) is well defined and the orbit of f(c) is disjoint from [y; y′]. There is a
neighborhood of U of c, contained in [y; y′], and such that the orbit of y misses U
before it gets to a critical point.

Let V be a small neighborhood of f(c). We want to prove that there is a
precritical point z ∈ V whose orbit misses U before it hits a critical point. If the
union of images of V is disjoint from [y; y′] then this follows from Theorem 1.3 (3).
If the union of images of V is not disjoint from [y; y′] then there is the smallest k
such that fk(V ) intersects [y; y′]. We have fk(f(c)) /∈ [y; y′], so there is z ∈ V such
that either fk(z) = y or fk(z) = y′. Then z is precritical and f i(z) /∈ [y; y′] for
i < k. Thus, z is the point we were looking for.

Now, for every bump perturbation g of f at c such that the support of g − f
is contained in U , the point z found above is also precritical for g. Since V is
arbitrarily small, we can choose g so that g(c) = z. This completes the proof.

4. Reluctantly recurrent critical points

In this section we will show what can be done if a critical point is recurrent.
This is a much more difficult case than in the preceding section, so we will need
some additional assumptions. Namely, we assume that f ∈ S. We consider this
space with C2 topology.

Moreover, we do not know how to deal with all recurrent critical points, but only
with so called reluctantly recurrent ones. To define them, we have to introduce new
notation.

Let f : [0, 1] → [0, 1] be a piecewise monotone map. For x ∈ [0, 1] let us denote
by Hn(x) the maximal interval containing x on which fn is monotone and let
fn(Hn(x)) = Mn(x). Let rn(x) be the minimal distance between fn(x) and the
endpoints of Mn(x). If fn has a local extremum at x, there is an ambiguity in the
choice of Hn(x) and Mn(x), but rn(x) = 0 independently of this choice. Moreover,
in that case rm(x) = 0 for all m ≥ n. Also if x = 0 or 1, then rn(x) = 0 for
all n. Thus either for some m we have rm(x) = 0 (and then rn(x) = 0 for all
n ≥ m) or rn(x) 6= 0 for any n, in which case x is neither a precritical point nor
0, 1. In fact, we will be interested mainly in the asymptotic behavior of rn(x), i.e.
in whether it converges to 0 or not. Following Yoccoz we call a recurrent critical
point c reluctantly recurrent if rn(f(c)) 6→ 0 and persistently recurrent otherwise.
Note that since f ∈ S then f(c) 6= 0, 1.

We start by proving a technical lemma. Apart from topological considerations,
it relies upon Koebe Lemma for negative Schwarzian maps (see Section 2).

Lemma 4.1. Let c be a reluctantly recurrent critical point of a map f ∈ S. Then c
has infinite limit set and for any β, ε0 > 0 there exist points a (close to c), b (close
to f(c)), and a number n such that:

(1) if f has local maximum at c then f(a) < f(c) < b, whereas if f has local
minimum at c then f(a) > f(c) > b;

(2) |a− c| < ε0 and |τc(a)− c| < ε0;
(3) |b− f(c)| < β|f(c)− f(a)|;
(4) fn|[f(a);b] is monotone;
(5) the orbit of fn(b) misses the interval [a; τc(a)];
(6) if f i(b) ∈ [a; τc(a)] for some i then f i(f(c)) lies on the same side of c as

f i(b), but farther away from c.
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Proof. Since c is recurrent, it either has infinite limit set or is periodic. If it is
periodic then it is precritical, so rn(f(c)) = 0 for all sufficiently large n. This
contradicts the assumption that c is reluctantly recurrent. Therefore the limit set
of c is infinite.

For the sake of definiteness we may assume that f has local maximum at c.
Reluctant recurrence of c means that there is a number ε > 0 and a sequence
(ni) such that rni

(f(c)) > ε for any i. Set Hi = Hni
(f(c)) and Mi = Mni

(f(c)).
We may assume that the maps fni |Hi

are either all increasing or all decreasing,
fni(f(c)) → y for some y and [y − ε/2, y + ε/2] ⊂ Mi for every i (replace the
sequence (ni) by its subsequence if necessary).

Denote by H−
i the part of Hi lying to the left of f(c) and set M−

i = fni(H−
i ).

The reason why we are interested in H−
i is that this set is the image of some

neighborhood of c (since f has a local maximum at c).
All sets M−

i lie on the same side of fni(f(c)) and the points fni(f(c)) approach
y. Therefore every point z on one side of y does not belong to M−

i for sufficiently
large i (if the sets M−

i lie to the left of fni(f(c)) then we look at z to the right
of y and vice versa). Let β, ε0 > 0 be given (we may assume β < 50; in fact, β is
small). Let us choose z as above, such that

|z − y| < βε/400 (4.1)

and such that its limit set is finite. This is possible by Theorem 1.3 (2). Since
βε/400 < ε/8 < ε/2, we get z ∈ [y − ε/2, y + ε/2] ⊂ Mi for every i.

Since the limit set of c is infinite, so is the limit set of f(c). Thus, f(c) is bounded
away from the limit set of z. Moreover, by Theorem 1.3 (4), the length of Hi goes
to 0 as i →∞. Thus, there exists j such that Hj is disjoint from the orbit of z, the
component of the f -preimage of Hj containing c is shorter than ε0, and

|fnj (f(c))− y| < βε/400. (4.2)

The component of the f -preimage of Hj containing c is of the form [a; τc(a)] for
some a and then H−

j = [f(a), f(c)]. Since this preimage is shorter than ε0, (2) is
satisfied. Let n = nj and let b be the fn|Hj -preimage of z. Then [f(a); b] ⊂ Hj ,
so (4) holds. Since M−

j and z lie on the opposite sides of fn(f(c)) and fn|Hj is
monotone, f(a) and b lie on the opposite sides of f(c). This proves (1). Since Hj

is disjoint from the orbit of z, (5) holds.
Since [y− ε/2, y + ε/2] ⊂ Mj and β < 100, we get from (4.1) and (4.2) that each

component of Mj \ [fn(f(c)); z] has length at least ε/4. On the other hand, from
(4.1) and (4.2) we get |fn(f(c))− z| < βε/200. Since β < 50, from Koebe Lemma
we get (3).

Suppose that for some i we have f i(b) ∈ [a, τc(a)]. By (5), since fn(b) = z, we
get i < n. By (4) and (1), the points f i(f(a)), f i(f(c)) and f i(b) lie on the same
side of c in this or reverse order. If f i(f(a)) is the closest one to c among them,
then either [a; c] or [τc(a); c] is mapped into itself by f i+1 in a monotone way. Then
the orbit of c is attracted to a periodic orbit, a contradiction. Thus, f i(b) is closer
to c than f i(f(c)), so (6) holds.

Lemma 4.2. (1) Let c be a critical point of f ∈ N2. Assume that c has an infinite
limit set. Let g be an (ε, δ)-bump perturbation of f at c. Suppose that there exist
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a number m and a point z such that the f -orbit of z misses (c − ε, c + ε), while
fm(c) 6= gm(c) lie on the opposite sides of z (non-strictly). Then the f -itinerary of
c and the g-itinerary of c are distinct.

(2) Let g be an (ε, δ)-bump perturbation of f at a critical point c, such that the
f -itinerary of c and the g-itinerary of c are distinct. Then there is δ′ ≤ δ and an
(ε, δ′)-perturbation h of f at c such that c is precritical for h.

Proof. (1) Suppose that the f -itinerary of c and the g-itinerary of c coincide. Then
fk(c) and gk(c) always belong to the same lap (the laps of f and g coincide, so
we may talk just about the laps). Let fm(c) = x and gm(c) = y. Then by the
assumption x 6= y.

We claim that for every i ≥ 0 we have f i(z) ∈ [f i(x); gi(y)] and [f i(x); gi(y)] is
non-degenerate. We prove it by induction. If i = 0, this is simply the assumption of
the lemma. Suppose that f j(z) ∈ [f j(x); gj(y)] and [f j(x); gj(y)] is non-degenerate.
Then the points f j(z), f j(x), gj(y) belong to the same lap on which either both f, g
are increasing or they are both decreasing. Thus, application of f to the points
f j(x) and f j(z) will change (or not) their order in the same way as application of
g to the points f j(z) = gj(z) and gj(y). On the other hand, f(f j(z)) = g(f j(z)),
which together with the previous remark shows that f j+1(z) ∈ [f i+j(x); gi+j(y)].
Moreover, at least one of the intervals [f j(x); f j(z)], [f j(z); gj(y)] is non-degenerate,
so at least one of the intervals [f j+1(x); f j+1(z)], [f j+1(z); gj+1(y)] is also non-
degenerate. Therefore [f i+j(x); gi+j(y)] is non-degenerate. This completes the
induction step and proves the claim.

Thus, f i|[x,z] is monotone for all i, which by Theorem 1.3 (4) implies that x is
not floating. Hence, the f -limit set of x = fm(c) (and thus the f -limit set of c) is
a periodic orbit, a contradiction. This completes the proof of (1).

(2) It is enough to consider a one-parameter family of (ε, δ′)-bump perturbations
of f , where δ′ varies from 0 to δ. Then (2) follows immediately from the definitions
by continuity arguments.

Now we can prove the main result of this section. The space we consider here is
S. Thus, g is a small bump perturbation of f at c if g − f is C2 small and has a
small support.

Lemma 4.3. Let c be a reluctantly recurrent critical point of a map f ∈ S. Then
there is an arbitrarily small bump perturbation of f at c for which c is precritical.

Proof. By Lemmas 4.2 (2) and 2.8, it is enough to show that for every ε0, δ0 > 0
there are ε < ε0 and δ < δ0 and an (ε, δ)-bump perturbation g of f at c such that
the itineraries of c for f and g are distinct.

To do this, we fix ε0, δ0 > 0 and use Lemma 4.1 with β = δ0/(500γ), where
γ = supx∈[0,1] |f ′′(x)|. Set ε = min(|a− c|, |τc(a)− c|) and U = (a; τc(a)). Then

(c− ε, c + ε) ⊂ U (4.3)

and by Lemma 4.1 (2) we have ε < ε0. Choose δ such that an (ε, δ)-bump per-
turbation g of f at c maps c to b. By (4.3), the support of g − f is contained in
U .

By Lemma 2.1 (1) we have |b − f(c)| = sε,δ(0) = ε2δ/1000. Therefore, by
Lemma 4.1 (3),

δ =
1000|b− f(c)|

ε2
<

1000β|f(c)− f(a)|
ε2

=
2δ0|f(c)− f(a)|

γε2
. (4.4)
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Since f ′(c) = 0, we have |f ′(x)| ≤ γ|x − c| for any x, so |f(c) − f(a)| ≤ γε2/2.
Together with (4.4) this gives us δ < δ0.

Suppose that the itineraries of c for f and g coincide. Set z = fn(b) and m = n+
1, where n is the number from Lemma 4.1. We want to show that the assumptions
of Lemma 4.2 (1) are satisfied. By Lemma 4.1 (5) and (4.3), the f -orbit of z misses
(c− ε, c + ε). The limit set of c is infinite by Lemma 4.1. Thus, it remains to check
whether fm(c) and gm(c) lie on the opposite sides of z (non-strictly). Note that
this would imply that they are distinct, since b 6= f(c) and by Lemma 4.1 (1) and
(4) we have z = fn(b) 6= fn(f(c)) = fm(c).

Let us prove by induction that for any j ≤ n the point f j(b) lies (non-strictly)
between the points f j(f(c)) and gj(b) = gj+1(c). If j = 0 then f j(b) = gj(b) = b,
so we have the induction base. Assume now that

f i(b) ∈ [f i(f(c)); gi(b)] (4.5)

for some i < n. Since we assumed that the itineraries of c for f and g coincide, the
interval [f i(f(c)); gi(b)] belongs to one lap (the laps of f and g are the same). We
have to prove that

f i+1(b)) ∈ [f i+1(f(c)); gi+1(b)]. (4.6)

We may assume that f i(f(c)) < gi(b); the other case differs only by the direction
of inequalities.

If gi(b) /∈ U then gi+1(b) = f(gi(b)), and (4.6) follows from (4.5) and monotonic-
ity of f on [f i(f(c)), gi(b)]. Assume now that gi(b) ∈ U . Then by Lemma 4.1 (6),
c lies on the same side of f i(f(c)) as f i(b). By (4.5), we get

f i(f(c)) < f i(b) ≤ gi(b) ≤ c. (4.7)

Since f is monotone on [f i(f(c)), gi(b)] and on U , it is monotone on the whole
[f i(f(c)), c]. If it is increasing, then f has a local maximum at c, so g ≥ f by
Lemma 4.1 (1). Therefore from (4.7) we get f i+1(f(c)) < f i+1(b) ≤ f(gi(b)) ≤
gi+1(b), and (4.6) follows. If it is decreasing, then f has a local minimum at c, so
g ≤ f . Therefore from (4.7) we get f i+1(f(c)) > f i+1(b) ≥ f(gi(b)) ≥ gi+1(b), and
(4.6) also follows. This completes the induction step.

Thus, by Lemma 4.2 (1), we get a contradiction. This shows that the itineraries
of c for f and g are distinct. This completes the proof.

5. Main results

Let us start with a result on Cr maps, announced in Introduction.

Theorem 5.1. Assume that a map f ∈ Nr (r ≥ 2) has all critical points non-
recurrent. Then it can be approximated arbitrarily well in Cr topology by a map
from Nr with all critical points sinking.

Proof. We will make several small perturbations of the map. In particular, each
perturbation will be such that the set of the critical points of the map will not
change. Although after each step we get a different map, in order to keep the
notation simple we will always call it f .

Denote by A the set of critical points of f that are neither sinking nor precritical,
and by B the set of those elements of A that are almost sinking. Again, although
A and B may change after each step, we will not change their names.
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Our objective is to make A empty. If we accomplish it, every critical point of f
will be either sinking or precritical. If some image of a critical point c is a sinking
critical point then c is also sinking. If some image of c is c itself, then c is sinking,
too. Thus, all critical points will be sinking.

Each step either will make A smaller, or will make B smaller without enlarging
A. Moreover, after each step all critical points will remain non-recurrent. Thus,
after finite number of steps, A will become empty.

To perform a step, we choose c ∈ A such that its limit set is not a proper
subset of the limit set of any other element of A. Since the critical points of f are
non-recurrent, no element of A has c in its limit set.

If c ∈ B, we apply Lemma 3.2 and with a small bump perturbation at c make this
point sinking or weakly sinking, so it is no longer in B. If the bump is sufficiently
small (remember that this means also that its support is small), this can only affect
limit sets of c and of critical points with c in the limit set. Thus, the limit sets of
the elements of A \ {c} remain the same. Moreover, the critical points that are not
in A stay sinking or precritical. Thus, B gets smaller, A does not get bigger, and
all critical points remain non-recurrent.

If c does not belong to B then it is either weakly sinking or floating. In either
case it is not precritical.

If it is weakly sinking, we apply Lemma 3.1 to a point x from the neutral periodic
orbit P which is the limit set of c. If ε from that lemma is sufficiently small, after
this perturbation all critical points that were not in A stay sinking or preperiodic.
The critical points whose limit set is P (including c) become sinking with the same
limit set (the only way we can have P as the limit set for some y is that either the
orbit of y hits x or x is attracting from one or both sides and the orbit of y falls
into the basin of attraction). Therefore after the perturbation A gets smaller. All
other critical points from A retain their limit sets. Indeed, if the limit set of an
element of A contains x then by the choice of c, this limit set is equal to P . Thus,
all critical points remain non-recurrent.

If c is floating, we apply Lemma 3.3 or 3.4. A small bump perturbation at c
makes it precritical. As above, the critical points that are not in A stay sinking
or precritical, and the limit sets of the points of A other than c are not affected.
Thus, A becomes smaller and all critical points stay non-recurrent.

Hence, in all cases the step works like we prescribed. This completes the proof.

Now we derive the main results of this paper. We start with a more technical,
but stronger version.

Theorem 5.2. The set of those elements of S for which all critical points are
either sinking or persistently recurrent, is dense in S.

Proof. The idea of the proof is the same as for the preceding theorem, except that
we do not have to care about the behavior of yet unmodified orbits of the critical
points. In particular, we do not need any special ordering of critical points.

Again, we make perturbations so small that the set of critical points will not
change. Our perturbations will be exclusively bump perturbations at critical points.
They will be of class C3 (but small only in C2 topology, see Lemmas 2.8 and 2.9).
Therefore we will not leave the space S̃. Moreover, by Theorem 2.5, S is open in
S̃, so we will not leave S. Therefore by Proposition 2.6 the maps we get have no
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neutral points. Hence, their critical points cannot be weakly sinking. In particular,
an application of Lemma 3.2 makes the critical point sinking.

We apply to the critical points, one by one, Lemmas 3.2, 3.3, 3.4 and 4.3. These
perturbations can be made sufficiently small, so the critical points that are al-
ready sinking or precritical, stay like that. We leave alone sinking, precritical and
persistently recurrent points. However, a persistently recurrent point that is not
precritical may change its status while we are making a bump perturbation at an-
other point. Then we go back to it. In such a way at the end we arrive at a map g
that is a small C2 perturbation of f , belongs to S and has all critical points sink-
ing, precritical or persistently recurrent. Similarly as in the proof of the preceding
theorem, it follows that all critical points of g are either sinking or persistently
recurrent.

Remark 5.3. By the definition, each precritical recurrent point is persistently re-
current. In the above theorem (and in Corollary 5.4) these persistently recurrent
points have a stronger property that all their images are also persistently recur-
rent. ¤

From Theorems 5.2, 2.1 and 2.5 we get the following corollary.

Corollary 5.4. Every C2 interval map with negative Schwarzian can be approxi-
mated arbitrarily close in C2 topology by C2 maps with negative Schwarzian, finitely
many critical points, all of them nondegenerate and either sinking or persistently
recurrent.

It is known that for a unimodal map with negative Schwarzian, persistent recur-
rence of the unique critical point c implies that the limit set of c is nowhere dense
and minimal (in the dynamical sense) (see e.g. [BL]). Combining our results with
well known facts from the theory of unimodal maps, we get the following corollary.
Here U2 is the space of all unimodal C2 maps with negative Schwarzian, endowed
with C2 topology.

Corollary 5.5. The set of those elements of U2 for which the limit set of the
critical point is minimal and nowhere dense, is open and dense in U2.
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