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Abstract. This paper is a study of invariant sets that have “geometric” rotation numbers,
which we call rotational sets, for the angle-tripling map σ3 : T→ T, and more generally, the
angle-d-tupling map σd : T→ T for d ≥ 2. The precise number and location of rotational
sets for σd is determined by d − 1, 1

d
-length open intervals, called holes, that govern,

with some specifiable flexibility, the number and location of root gaps (complementary
intervals of the rotational set of length ≥ 1

d
). In contrast to σ2, the proliferation of

rotational sets with the same rotation number for σd, d > 2, is elucidated by the existence
of canonical operations allowing one to reduce σd to σd−1 and construct σd+1 from σd by,
respectively, removing or inserting “wraps” of the covering map that, respectively, destroy
or create/enlarge root gaps.

1. Introduction

Why would one study the properties of certain invariant sets, that we call rotational
sets, of the complex analytic map zd restricted to the unit circle? One reason involves the
connection between the map zd and a complex polynomial map f with connected Julia set
J . Let C denote the complex plane and C∞ = C ∪ {∞} the Riemann sphere. Suppose f
is a complex polynomial map on C. Let K denote its filled Julia set (J union its bounded
complementary domains) and U∞ = C∞ \ K. Denote the complement of the closed unit
disk D in C∞ as D∞. Then there exists a conformal isomorphism, φ : D∞ → U∞, the
Böttcher uniformization, that conjugates f on U∞ to zd on D∞. In this setting, points on
the unit circle correspond uniquely, via φ, to prime ends of U∞.

In complex dynamics prime ends are associated with external rays, φ-images of radial
rays of D∞, and the external rays are used extensively to study polynomial Julia sets. For
example, that periodic rays “land” on repelling or rationally indifferent periodic points of
the Julia set, and that every such point is a landing point of a periodic external ray, has
been a very productive tool in understanding the dynamics of polynomials on Julia sets
[3, 11, 5].

Depending on the complex polynomial map f , the Julia set may be simple or quite
complicated, locally connected or non-locally connected, with many cyclically permuted
and pre-periodic Fatou components in its complement. At one extreme, when the Julia set
is locally connected the external rays all “land” at points in the Julia set, and the Julia
set is a topological (and dynamical) quotient space of the circle. When the Julia set is not
locally connected the impressions (a kind of “super-closure”) of some of these external rays
are non-degenerate and may be used to understand the topological and dynamical structure
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of the Julia set [7, 8]. At the other extreme (though as yet unrealized), it may be that the
Julia set is an indecomposable continuum, and every external ray has as its impression the
entire Julia set [10].

Of particular interest in the non-locally connected, but not indecomposable, case are the
external rays that correspond to irrational rotational sets. This paper may be seen as the
first step in extending the results of Kiwi in [8], where irrationally indifferent points in the
dynamics are explicitly excluded in order to prove the theorems, in the direction of [7]. In
the latter, one seeks to understand the correspondence between certain irrational rotational
sets in the circle at infinity and the boundaries of Siegel disks and Cremer points in the
Julia set.

Other reasons one may want to study the properties of rotational sets are from purely
geometric and combinatorial standpoints. What do they look like? How are they situated
on the circle? What properties must they have? Can they be categorized? Parameterized?
If so, how many are in each category? How do they correspond to parameters?

This paper will be separated into three main parts. First there is an introduction to
the maps and basic definitions that are used throughout. Next, the main results, which we
divide into structural theorems and counting theorems, are presented in Section 2, inspired
by the paper by Bullet and Sentenac [2] about z2 on the unit circle. Finally, proofs of the
results are given, first in Section 3 of the structural theorems and then of applications in
Sections 4 and 5. Parameterization of rotational sets will be covered in a subsequent paper
by the second author [9].

Let us note here that for the sake of brevity some known or easy to prove statements are
not supplied with proofs.

1.1. Basic Definitions. Let T = R/Z be the unit circle coordinatized by [0, 1). We orient
the circle in the positive direction: counterclockwise. For A ⊂ T let Â denote the maximal
subset of R such that A = Â/Z. Let σd : T → T be the map given by σd(t) = dt (mod 1),
induced by the complex-valued map z → zd on the unit circle in the complex plane. Often
σ2 is called angle-doubling, σ3 angle-tripling, and so on. We will assume henceforth that
d ≥ 2. All maps are continuous functions.

Definition 1.1. A map f : T→ T is topologically exact iff given any interval I ⊂ T, there
is a positive integer n such that fn(I) = T.

The following theorem is well-known.

Theorem 1.2. A topologically exact covering map from the circle to itself is conjugate to
σd for some d ≥ 2.

Definition 1.3. A map f : X → Y is called monotone if f−1(y) is connected for all
y ∈ f(X).

Definition 1.4 (Lift). Let e : R→ T be the natural projection map defined by e(x) = e2πix.
A lift of a circle function f : T→ T is a function f̂ : R→ R such that e◦ f̂(x+m) = f(x)◦e
for all x ∈ [0, 1] and all m ∈ Z.

Definition 1.5 (Degree 1 and Order-Preserving). We say a map f : R→ R is degree 1 iff
f(x + 1) = f(x) + 1 for all x ∈ R. A map f : T → T is degree 1 iff f has a degree 1 lift
f̂ : R → R. We say a map f : T → T is order-preserving iff f is monotone and degree 1.
Let A be a closed subset of T. We say f : T → T is order-preserving on A iff f |A can be
extended to an order-preserving map F : T→ T where F |A = f |A.

Figure 1 illustrates an order-preserving function and some of its degree 1 monotone lifts.
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Figure 1. Left: “connect-the-dot” extension of the periodic orbit {1
3 , 2

3}.
Right: illustration of several lifts of that extension, including the simple lift.

Definition 1.6 (Rotational). A subset A ⊂ T is invariant under f : T → T iff f(A) = A.
A subset A ⊂ T is subinvariant under f : T → T iff f(A) ⊂ A. A closed invariant set A is
minimal iff no proper closed subset of A is invariant. An invariant set A is rotational iff A
is closed and f is order-preserving on A.

A degree 1 monotone map f : T→ T is order-preserving. Also, f is an order-preserving
map iff T is rotational with respect to f . If A is a proper subset of T, invariant under σd

(like a rotational or minimal invariant set), then A is a totally disconnected subset of T.
A rotational set may or may not be minimal. A minimal invariant set may or may not be
rotational.

Definition 1.7. A degree 1 monotone circle map f has a rotation number ρ(f) defined by

ρ(f) = lim
n→∞

(f̂)n(x̂)
n

(mod 1),

where x ∈ T, x̂ is any pre-image of x under the natural projection map e, and f̂ is any lift
of f .

Proposition 1.8. For any order-preserving map f we have that ρ(f) is well-defined.

Proof. Let f̂ be any lift of f . It can be shown, since f̂ is monotone, that limn→∞
(f̂)n(x̂)

n

(mod 1), is independent of the point x̂. This value is called the lift rotation number of f̂

and is denoted ρ(f̂). Next, it can be shown that this lift rotation number, ρ(f̂), is the same
for any lift f̂ of f . Hence, f has a well-defined rotation number ρ(f). (See [1].) ¤

The proof of the above proposition tells us that if we have an order-preserving map f

of the circle, then we can use any lift f̂ , and any point x̂ ∈ R, to compute ρ(f). However,
it will be often useful to consider a certain lift, called the simple lift, defined below (see
Figure 1).

Definition 1.9. Given a function f : T → T, then its simple lift will be the unique lift
f̂ : R→ R of f such that f̂(0) ∈ [0, 1).
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Corollary 1.10. If A ⊂ T is rotational under f : T→ T, then A has a well-defined rotation
number ρ(A) given by

ρ(A) = ρ(F̂ ) = lim
n→∞

(F̂ )n(â)
n

(mod 1) â ∈ Â,

where F̂ is any lift of an order-preserving extension F of f |A.

Proof. For any order-preserving extension of f |A, we know that its rotation number exists
and is given by the rotation number of any of its lifts by Proposition 1.8. All we need show
then is that the rotation number is the same for any order-preserving extension of f |A. This
can be easily seen by noting that, no matter which lifts of the order-preserving extensions
we choose, we can pick â ∈ Â, which, with the invariance of Â, forces the lifts, and thus the
extensions, to have the same rotation number by Definition 1.6. ¤

With the above definition we can endow any rotational subset of the circle with its well-
defined rotation number. It may seem that this applies to all periodic orbits and thus one
should be able to compute the rotation number for any periodic orbit. This is not true,
however; the periodic orbit must satisfy Definition 1.6, i.e., be rotational, in order to have
a geometric rotation number, and it is easy to give examples of periodic orbits of, say, σ2

which are not rotational. For example, the σ2-periodic orbit {1
5 , 2

5 , 4
5 , 3

5} is not rotational;
one cannot find an order-preserving extension of σ2 restricted to this set.

Theorem 1.11 (Lemma 18.8 [11]). If A is a compact set invariant under σd such that σd

is one-to-one on A, then A is finite.

A consequence of Theorem 1.11 is that any invariant set on which σd is one-to-one must
be a finite union of periodic orbits (Compare with Propositions 1.12 and 2.2).

Proposition 1.12. If A is a minimal invariant set under σd, then A is either a periodic
orbit (in which case, if A is rotational, a well-defined rational rotation number can be
associated with it) or A is a Cantor set (in which case, if A is rotational, a well-defined
irrational rotation number can be associated with it).

The notion of a gap in a set is fairly intuitive. It is just an interval in the complement
of a set. The complement of a periodic orbit is a finite union of gaps, which are just the
intervals between any two spatially adjacent points. The complement of a Cantor set is a
countably infinite union of disjoint open intervals. Gaps and root gaps are formally defined
below in Definition 1.13. This definition and the following proposition will be used later in
Sections 4 and 5.

Definition 1.13 (Gaps). Let A be a closed, invariant set under σd. The components of
T \ A are called gaps. A gap G of A is a root gap iff the length of G satisfies l(G) ≥ 1

d . A
root gap G is loose iff n

d < l(G) < n+1
d for some n ∈ N, whereas, G is taut iff l(G) = n

d for
some n ∈ N. The number n is called the root number of G.

Proposition 1.14. All root gaps of a finite rotational set are loose.

1.2. Rotational Sets for σ2. This paper is inspired by what Bullett and Sentenac [2]
proved about σ2-rotational sets.

In their paper, Bullett and Sentenac completely characterize minimal rotational sets
under σ2. Not only does their work shed some new light on the topic of rotational sets
under σ2, it serves as a source in which many previously known results on the topic have
been pulled together and discussed in a cohesive manner. These results include the fact that
all σ2-rotational sets must be contained in a semicircle, and that no semicircle contains more
than one minimal rotational set. Consequently, they parameterize the minimal rotational
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sets by the semicircles that contain them. Thus, a minimal rotational set must contain
an open semicircle in its complement. This concept of an interval in the complement of
a rotational set is fundamental to the characterization of rotational sets under σd for any
d ≥ 2. Therefore, the following definition is now introduced.

Definition 1.15. Given arbitrary d ≥ 2, and a σd-rotational set A, define a hole of A as
an open interval of length 1

d in T \A. A co-existing set of holes will be any set of intervals
of length 1

d in T \A that are disjoint.

It will be seen later in Theorem 2.1 why the disjoint requirement is included in the
definition of a set of holes. From now on, any reference to a set of holes will mean a set of
holes as defined above.

Below is a list of some of the results found in Bullett and Sentenac [2]; observe that
remarks made in parentheses are made exclusively in the context of the map σ2.

(1) Each σ2-rotational set is contained in some closed semicircle. (Note that this is
equivalent to the rotational set having a hole, whether it be unique or not.)

(2) Each closed semicircle contains exactly one minimal rotational set.
(3) Given the starting point µ of any closed semicircle, there is a combinatorial algorithm

allowing one to determine the minimal rotational set in that semicircle.
(4) For each rotation number in [0, 1) there exists exactly one minimal rotational set

with that rotation number.
(5) For any rotational Cantor set one, and only one, semicircle contains it (see Propo-

sition 1.11). (Note this is equivalent to containing one unique hole.)
(6) For any rotational periodic orbit there is an interval of semicircles containing it (see

Proposition 1.14). (Note that this is equivalent to having more than one hole.)
(7) Rotational sets can be parameterized by µ, where µ is the starting point of any

semicircle in the circle.
(8) The parameter µ leads to the definition of a rotation function ρ2 : [0, 1

2 ] → [0, 1]
(we consider only the semicircles whose starting point belongs to ∆2 = [0, 1

2 ]. The
graph of this function is a topological and measure theoretic Devil’s staircase (see
Definition 1.16, Definition 1.17, and Figure 2).

The following examples are given to connect some of the above results to the previous
definitions. As mentioned earlier, the periodic orbit {1

5 , 2
5 , 4

5 , 3
5} is minimal invariant, but

not rotational. Note that it is not contained in a semicircle and fails to satisfy the last part
of Definition 1.6. The set {1

2 , 1
4 , 1

8 , 1
16 , ..., 1

2n , ..., 0} is rotational, because it is contained in a
semicircle, but not minimal.

Definition 1.16. A map f : X → [0, 1] is said to be a Devil’s staircase in topology if f is
onto, monotone, and there exists a dense open set U ⊂ X such that f is locally constant
on U .

Definition 1.17. A map f : X ⊂ Rn → [0, 1] is said to be a Devil’s staircase in measure if
it satisfies Definition 1.16, there exists a set A ⊂ [0, 1] such that λ(A) = 1, f−1(A) ⊂ X \U ,
and λ∗(f−1(A)) = 0, where λ is one-dimensional Lebesgue measure and λ∗ is the appropriate
Lebesgue measure in Rn.

1.3. Motivating Questions. The purpose of this paper is to determine the aspects of
Bullett and Sentenac’s work that can be generalized to σd for d > 2. Some specific questions
that arise include:

• How are the rotational sets situated on the circle?
• How do minimal rotational sets correspond to rotation number?
• How many minimal rotational sets are there per rotation number?
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Figure 2. Partial construction of the Devil’s staircase ρ2 : ∆2 → [0, 1].

• Is there a suitable parameter space for the minimal rotational sets under σd?

In this paper we focus on the dynamics of rotational sets. In a subsequent paper, the second
author will focus on the parameter space for σd, d > 2, and measure-theoretic aspects of
rotational sets.

When considering the above questions it becomes clear that the picture for the rotational
sets under σd for d > 2 is markedly different from that for d = 2. For example, under simple
inspection of σ3 one can find three periodic orbits with rotation number 1

2 , whereas under
σ2 every rotation number had only one corresponding rotational set (see Theorems 2.8
and 2.11). In addition, one of these periodic orbits, {1

4 , 3
4}, quickly dismisses the notion

that all σd-rotational sets are contained in an arc of the circle of length 1
d , hence our focus on

the holes of the complement of the rotational sets, as mentioned above (see Theorem 2.1).
Another interesting feature of σd when d > 2 is that one can prove the existence of loose
Cantor sets (see Definition 2.10) using Theorem 2.6. This result is stated in Theorem 5.7.

2. Main Theorems

In this section, we state, explain, and exemplify the main theorems of this paper without
proof. The proofs of the main theorems are contained in Sections 3, 4, and 5.

2.1. Structural Theorems. With the notion that rotational sets under σd must be con-
tained in a 1

d -arc dismissed (recall that we assume that d > 2), another approach must
be taken to determine how they are located on the circle. It was noted earlier that the
existence of holes in the set would be an important approach to this question. The precise
number and location of minimal rotational sets for σd are determined by the d−1, 1

d -length
holes that govern, with some specifiable flexibility, the number and location of root gaps.
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The proliferation of rotational sets for σd, d > 2 is elucidated by the existence of canonical
operations allowing one to reduce σd to σd−1 and construct σd+1 from σd by, respectively, re-
moving or inserting “wraps” of the covering map that, respectively, destroy or create/enlarge
root gaps. A σd-rotational set reduces to a σd−1-rotational set with the same rotation num-
ber. Similarly, from a σd-rotational set we can construct a σd+1-rotational set with the
same rotation number. Usually these operations do not produce unique rotational sets, and
where the operations of reduction and construction are carried out within a rotational set
determines what the resulting rotational set is. We address reduction and construction in
Theorems 2.3 and 2.6.

Theorem 2.1 (Hole Theorem). Let A be a closed subset of T. σd is order-preserving on A
iff T \ A contains d − 1 pairwise disjoint open intervals, each of length 1

d , called holes (of
A).

Theorem 2.1 for the specific case d = 3: σ3 is order-preserving on A ⊂ T iff T\A contains
two disjoint open intervals (holes) each of length 1

3 .
If an invariant set A satisfies the hypotheses of Theorem 2.1 then it must be rotational.

Proposition 2.2. At least one root gap of any rotational Cantor set must be taut.

Theorem 2.3 (Reduction Theorem). Let J = (a, a + 1
d (mod 1)) be any open interval of

length 1
d on the circle (i.e., a hole). Then X = T\⋃∞

i=0 σ−i
d (J) contains a maximal invariant

Cantor set C. Moreover, there exists a monotone map m : T→ T that at most two-to-one
semi-conjugates σd|C to σd−1.

Corollary 2.4. Let A be a σd-rotational set. Then for any J ⊂ T \ A, the corresponding
set m(A) is a σd−1-rotational set and ρ(m(A)) = ρ(A).

Theorem 2.5. Any σd-rotational Cantor set is minimal.

Theorem 2.6 (Construction Theorem). Let A be a rotational set for σd. Let x0
1 be a point

of T. Then there is a rotational set Ã for σd+1, determined by x0
1, such that σd+1|Ã is at

most two-to-one semi-conjugate to σd|A. The semi-conjugacy is actually a conjugacy if and
only if x0

1 ∈ T \A.

Corollary 2.7. With the hypotheses of Theorem 2.6, ρ(Ã) = ρ(A).

2.2. Counting Theorems. For σ2, there is exactly one minimal rotational set for each
rotation number. In contrast, for σd, d > 2, the situation is remarkably otherwise. For
example, there are d − 1 fixed points for σd. For σ3 there are three period 2 rotational
orbits and eight period 3 rotational orbits (of those eight orbits of period 3 there are four
with rotation number 1

3 , and four with rotation number 2
3).

Theorem 2.8 (Counting Rotational Periodic Orbits, Goldberg [4]). Under the map σd, the
number of periodic orbits with rotation number p

q (in lowest terms) is Cd−2+q
q .

Theorem 2.9 (Goldberg [4]). A rotational set for σd with a given rational rotation number
contains at most d− 1 periodic orbits.

Theorem 2.8 for σ3: the number of periodic orbits with rotation number p
q is q + 1.

Theorems 2.8 and 2.9 were proved by Goldberg [4]. We include them here for completeness.
Our proofs are different and more direct. Moreover, our rational rotational sets do not have
to be finite (that is, a finite union of periodic rotational orbits).

Definition 2.10 (Taut and Loose Cantor sets). A rotational Cantor set is taut iff all of its
root gaps are taut. Otherwise, it is loose.
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A σd-rotational Cantor set is taut if there exists exactly one choice for the d− 1 holes it
must have by Theorem 2.1.

By c we denote the cardinality of the continuum, that is, the cardinality of the reals R.

Theorem 2.11 (Counting Rotational Cantor sets). For each σd-rotational Cantor set Cα

with rotation number α, there are c-many rotational Cantor sets under σd+1 which corre-
spond to Cα in the sense of Construction Theorem 2.6. Moreover, if Cα had n taut root
gaps, then countably many of these corresponding σd+1 rotational Cantor sets have n taut
root gaps, while uncountably many of them have n + 1 taut root gaps.

An interesting consequence of the above theorem, and of previously known results, is
that for any fixed irrational rotation number α, there are no loose Cantor sets under σ2,
countably many under σ3, and uncountably many under σd for d > 3 with rotation number
α. On the other hand, for any irrational rotation number α, there is one taut Cantor set
under σ2, and uncountably many under σd for d > 2 with rotation number α.

Corollary 2.12. For each irrational rotation number α, there are c-many rotational Cantor
sets under σd, d > 2, with rotation number α.

In fact, we prove a bit more in Section 5.4: For each σd-rotational Cantor set Cα with
rotation number α, there is a circularly ordered collection Sα of σd+1-rotational Cantor sets
with rotation number α, arising from inserting a wrap at each point or gap of Cα. The
induced order on the set Sα corresponds to the order of the points (and gaps) of Cα on the
circle T.

Our approach is different than that of Goldberg and Tresser in [6]. They show that
rotational Cantor sets of σd with a given (irrational) rotation number are in one-to-one
correspondence with a (d−2)-dimensional simplex; indeed, rotational sets of a given rotation
number are characterized by the proportion of their points between any two successive fixed
points of σd.

3. Proof of Structural Theorems

Here we prove the three main structural theorems of Section 2.1 that are the foundation
for the proofs of more specific results counting and categorizing rotational sets in Sections 4
and 5.

3.1. Proof of Hole Theorem 2.1.

Definition 3.1 (Algorithm for Detecting that σd is Order-Preserving on A). We first note
that σd is not order-preserving on T and, as a consequence, fails this algorithm. So let A be
a proper closed subset of T. Start with a point x0 such that x0 is the starting endpoint of
any gap of T \A (with the usual counterclockwise positive direction on the circle). We will
start to construct our extension, F of σd|A from A to the entire circle. Our initial point on
the graph of F is obviously (x0, σd(x0)).

¿From x0 look for points of A in the interval I = (x0, x0 + 1
d).

(1) If there is no point of A in I then construct the extension by crossing horizontally
to the point (x0 + 1

d , σd(x0)). Thus we are defining F to be constant on I. Our new
point for the next iteration of the construction is x1 = x0 + 1

d .
(2) If there is a point of A in (x0, x0 + 1

d) then we climb the σd graph until we reach the
right-most point of A in (x0, x0 + 1

d ] (i.e., on the interval from x0 to the rightmost
point of A in (x0, x0 + 1

d ] we are defining our extension as F = σd). Let x1 be this
rightmost point, and define F |[x0,x1] = σd. Then x1 becomes the starting point for
the next iteration of the process.
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Figure 3. Two attempts at applying order-preserving algorithm to the pe-
riodic orbit { 1

20 , 3
20 , 9

20 , 7
20} of σ3.

Note we are guaranteed on the second iteration to get past the point x0+ 1
d in the domain

of our extension. We keep repeating the process, and the above remark tells us we can keep
the process finite. The resulting map F coincides with σd in A. In fact, it differs from σd

exactly on gaps in A of length greater than or equal to 1
d .

Clearly the process described above realizes the following more explicit algorithm:

(1) fix a root gap I = (a, b);
(2) consider the root number i = i(I) of I and define F |I as a constant σd(a) on the

arc (a, a + i
d) and as σd on the rest of I;

(3) repeat this construction for all root gaps of f .

We will be using one approach or the other depending on the situation. In any case, it
is clear that the process leads to a new map F in which all wraps around the circle and
realized on root gaps of A are “taken out”. Of course this can be done for any set A, so the
construction always goes through, but it does not always leads to an orientation preserving
map F of the circle. We say that the process succeeds if at some point we will traverse
the entire circle in the domain and get back to our starting point x0, having successfully
constructed an order-preserving extension of σd|A. Otherwise the process fails. The way
our algorithm works (and fails) is illustrated in Figure 3.

Let us now prove Hole Theorem 2.1.

Proof. First, it will be shown that if σd is order-preserving on A, then T \ A must contain
d−1 holes. Indeed, suppose that there is an order-preserving extension, G, of σd|A. Consider
the lengths of images of arcs in more detail now (they are computed as the lengths of the
curves parameterized by points of arcs). If we compute the length of the image of T under
G it is going to be equal to 1 while for the map σd the length of the image of T is d. The
difference between the two equals d − 1 and is generated by the root gaps. Indeed, if J is
a gap which is not a root gap then the fact that G is monotone implies that the length of
G(J) and the length of σd(J) are equal. Moreover, on A both G and σd coincide. On the
other hand for each root gap I of A its G-image is a proper arc in T. Hence the difference
between the length of σd(I) and the length of G(I) equals exactly the root number i(I).
Thus, the fact that G is monotone means that the sum of numbers i(I) taken over all root
gaps must be d− 1 and therefore T \A contains d− 1 pairwise disjoint open intervals, each
of length 1

d (they are called holes (of A)).
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a b

Figure 4. Illustration of extension of σd restricted on the complement to
the union of holes.

On the other hand if T\A contains d−1 pairwise disjoint open intervals, each of length 1
d ,

then the process of constructing standard extension of σd|A succeeds because in this process
d− 1 “full wraps” of the circle will be taken out leaving the length of the image of T under
F equal to 1 and thus implying that F is not just locally monotone (which it always is),
but also globally monotone (as a map of T onto itself) and so σd|A is order preserving. (See
Figure 4.) ¤

3.2. Proof of Proposition 2.2. We now show that any rotational Cantor set must have
a taut root gap.

Proof. Given a rotational Cantor set C, we know from Theorem 1.11 that there exist two
points x, y ∈ C such that σd(x) = σd(y). Since C is rotational, it satisfies the Hole Theo-
rem 2.1. From the proof of that theorem, we know that there is a monotone degree 1 map
m : T → T that agrees with σd on C and is flat on the d − 1 holes in T \ C. Let I and
J denote the complementary arcs to {x, y} in T. If there are points of C in both I and
J , then m must be increasing on some points of both I and J . Hence, σd(x) 6= σd(y), a
contradiction. We conclude that either I or J (not both) is a taut root gap of C. ¤

3.3. Proof of Reduction Theorem 2.3. We now prove that σd can be reduced to σd−1

by removing a wrap, J , and all its pre-images.

Proof. To show that X must contain a Cantor set we show that there must exist a binary
tree (in the sense of subset containment) of intervals in the construction of X. Since X
must be totally disconnected because every interval is eventually onto, it then follows that
this binary tree of intervals limits to a Cantor set contained in X. In the case d ≥ 4 it is
easy to show that this binary tree exists.

For all d > 2, σ−1
d (J) contains d evenly spaced pre-image intervals, at least d − 2 of

which must be completely contained in T \ J and therefore “break” T \ J into at least
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(d − 2) + 1 ≥ 2 non-degenerate components. When d > 3, at least two of these are nice
components, meaning that they map homeomorphically onto X \J . (The only components
which may not are those adjacent to J .) In turn, each of theses nice pieces contains at
least two more nice subpieces, components of T \ σ−2

d (J) and T \ ⋃2
i=0 σ−i

d (J), that map
homeomorphically onto one of the nice pieces at the previous stage. This process repeats,
always with two nice subpieces in each nice piece of the previous stage, as we consider higher
order pre-images of J . Therefore, we know that X must contain a Cantor set C0.

For the case d = 3 the above proof holds for certain arrangements of the first pre-images
of J . However, if the components of the first pre-image of J are situated on the circle such
that one component is properly contained in J , and does not share an endpoint with J , the
above proof does not follow through directly. For this arrangement the idea of the proof is
the same. One component of T \⋃2

i=0 σ−i
d (J) is nice, but the two components of T \σ−1

d (J)
which are adjacent to J that do not map homeomorphically onto T \ J must combine to
substitute for the lacking nice piece. Our intersection in this case is not a binary tree of
intervals, but a binary tree of sets where at each branch point the set at one sub-branch
contains at least one interval, and the set along the other sub-branch contains at least one
interval. This binary tree of sets must therefore contain a binary tree of intervals, and
consequently a Cantor set.

It now follows by a standard maximum principle argument that X, which is totally
disconnected and contains a Cantor set, contains a unique maximal Cantor set C.

The unique maximal Cantor set C found above is also invariant, as we now show using
the fact that it is maximal. Indeed, σd(C) ⊂ C because otherwise C ∪σd(C) is a Cantor set
properly containing C while, since X is subinvariant, we have that C ∪ σd(C) is contained
in X, a contradiction of the maximality of C.

On the other hand, suppose that σd(C) is a proper subset of C. Choose a small compact
neighborhood V in C \ (σd(C)∪{σd(a)} (recall that J = (a, a+ 1

d)). Then V is a Cantor set
itself, and since it is disjoint from σd(a) it has Cantor set pre-images disjoint from J . Each
such pre-image is contained in X (indeed, by the construction they are disjoint from J and
their images are contained in X). Hence, they must be contained in the unique maximal
Cantor subset of X, i.e. in C, a contradiction. So, we have shown that C is invariant.

Definition 3.2 (σd). Given J = (a, a + 1
d (mod 1)), we define the map σd : T→ T by

σd(x) =

{
σd(a) = σd(a + 1

d) = b, if x ∈ J ;
σd(x), if x /∈ J .

The map σd basically collapses an interval, which would have mapped onto the circle,
to a single point while allowing σd to act normally on the rest of the circle. Although we
do not have a special notation for the map defined by any particular interval (like J in this
case), it will be clear in context which interval we are referring to. Note that J ⊂ T \ C.

Lemma 3.3. σd maps complementary gaps of C to complementary gaps of C unless the
gap is equal to J , in which case σd carries the gap to a single point in C.

Proof. It is clear by definition of σd that if the gap is equal to J , then its image is a point.
Also, since J is the gap, then its endpoints are in C. Thus, by invariance of C under σd,
the image of these endpoints, and thus the image of J , is a point in C.

So now let our gap G not be equal to J . By way of contradiction, suppose that σd(G) is
not a gap of C. Then there exists a point of C in σd(G). In fact, there also exists a small
clopen neighborhood U ⊂ C in σd(G), and we may assume that U does not contain σd(a).
Then we can take the σd-pre-image V of U in G (observe that since U does not contain a
then σd and σd coincide on the entire pre-image of U , in particular on V ). Then V has to
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be a part of C: a) it is disjoint from J (because a 6∈ U) and all its images are disjoint from
J (because U ⊂ C). However this contradicts the assumption that V ⊂ G because G is a
gap in C. ¤
Definition 3.4. We define m′ : T → T′ as the monotone map which shrinks endpoints of
the complementary gaps of the Cantor set C found above to points.

The quotient space T′ that remains, once the complementary gaps of C are shrunk to
points, is a circle with a natural local order inherited from T.

Definition 3.5. Define the map σ′d−1 : T′ → T′ by σ′d−1 = m′ ◦ σd ◦ (m′)−1

Note that σ′d−1 is well-defined by Lemma 3.3.

Lemma 3.6. σ′d−1 is conjugate to σd−1

Proof. By Theorem 1.2, we need to show is that σ′d−1 is a (d − 1)-to-one covering map of
the circle that is topologically exact. First we will show that σ′d−1 is an (d − 1)-to-one
covering map of the circle. Observe that if x ∈ T′ then its m′-pre-image is either a point
of C or the closure of a gap in C. Then by Lemma 3.3 there are d − 1 components of
σ−1

d ((m′)−1(x)) each of which is the closure of a gap in C or a point of C. Finally, all these
components project by m′ onto d− 1 points which are σ′d−1-pre-images of x. On the other
hand, by the construction it follows that σ′d−1 is a local homeomorphism. Therefore σ′d−1

is a (d− 1)-to-one covering map.
To prove that σ′d−1 is topologically exact we first note the fact that (σ′d−1)

k = m′ ◦ σk
n ◦

(m′)−1 by the semi-conjugacy. Note also that σd|C = σd|C since C meets J at most at
the endpoints of J . Let U be any open interval of T′ intersected with C. Then (m′)−1(U)
must contain an open subset, V , of the Cantor set C. Without loss of generality, we
may assume U does not meet J . Consider the “sisters” of J , that is, the intervals of
the form J + k

d , each of which maps onto T. Evidently, pre-images of C under successive
iterates of σ−1

d become as small as we want them and are evenly spaced on the circle.
Hence, we can see that there must exist some k such that σk

d(V ) = C. We also have that
σk

d((m
′)−1(U)) ⊃ σk

d(V ) = C, and therefore that m′ ◦ σk
d ◦ (m′)−1(U) = T′. Thus we have

found k such that (σ′d−1)
k(U) = T′. ¤

Proposition 3.7. There are exactly d − 1 different homeomorphisms that conjugate σ′d−1

on T′ to σd−1 on T.

Proof. Since σ′d is a topologically exact (d− 1)-to-one covering map, σ′d is conjugate to σd.
If h and h′ are two homeomorphisms which conjugate σ′d−1 on T′ to σd−1 on T, then they
can differ only by multiplication by a d − 1 root of unity. In other words, they can differ
only in the way in which they label the d−1 fixed points. Therefore, since these fixed points
have a circular order to them, there are d − 1 different homeomorphisms which conjugate
σ′d−1 on T′ to σd−1 on T. ¤

Let h : T′ → T be a homeomorphism which conjugates σ′d−1 on T′ to σd−1 on T.

Definition 3.8. Define the map m : T→ T by m = h ◦m′.

Proposition 3.9. The map m semi-conjugates σd and σd−1. Moreover, m at most two-to-
one semi-conjugates σd|C and σd−1.

This concludes the proof of Reduction Theorem 2.3. ¤
We will need the second of the following two lemmas in order to prove Corollary 2.4. The

first lemma will be used in the proof of the second.
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Lemma 3.10. If a, b : T → T are degree 1 circle maps then for any lift â ◦ b of the map
a ◦ b : T→ T there exists lifts â and b̂ of a and b such that â ◦ b = â ◦ b̂.

Proof. We take the rather odd approach, on the face of it, of first showing that for any lifts
â, b̂ of a, and b, respectively, there exists a lift â ◦ b of a ◦ b such that â ◦ b̂ = â ◦ b. To this
end note that it is easy to prove that for any degree 1 lifts â and b̂ that â ◦ b̂ is a degree
1 map and that â ◦ b̂ = a ◦ b (mod 1) for all x ∈ [0, 1). These two facts show that â ◦ b̂ is
some lift of a ◦ b; i.e., there exists a lift â ◦ b such that â ◦ b = â ◦ b̂.

To prove the lemma let â ◦ b be any lift of a ◦ b. Pick any lifts â′ and b̂′ of a and b.
The previous claim then shows that there exists some lift of a ◦ b, call it â ◦ b

′
, such that

â ◦ b
′
= â′◦ b̂′. There then exists an integer m such that â′◦ b̂′ = â ◦ b

′
= â ◦ b+m. Therefore,

among many options, we can define lifts â and b̂ by â = â′ and b̂ = b̂′ −m. Then we have
that

â ◦ b̂ = â′ ◦ (̂b′ −m) = â′ ◦ b̂′ −m = â ◦ b,

and our lemma is proven. ¤

Lemma 3.11. Let f and g be monotone degree 1 circle maps. Suppose there exists a degree
1 circle map φ and a set A ⊂ T such that φ◦f |A = g◦φ|A and f(A) ⊂ A. Then ρ(g) = ρ(f).

Proof. First, we note that ρ(f) and ρ(g) exist by Proposition 1.8. Since φ ◦ f |A = g ◦ φ|A
we can fix lifts such that φ̂ ◦ f |

Â
= ĝ ◦ φ|

Â
. Applying Lemma 3.10 to these lifts, we then

know there exists lifts f̂ , ĝ, φ̂1, and φ̂2 such that φ̂1 ◦ f̂ |
Â

= ĝ ◦ φ̂2|Â. Since φ̂2 = φ̂1 + m, for
some integer m, we have that φ̂1 ◦ f̂ |

Â
−m = ĝ ◦ φ̂1|Â. Now consider ĝn ◦ φ̂1 for arbitrary

n. We have that

ĝn ◦ φ̂1|Â = ĝn−1 ◦ ĝ ◦ φ̂1|Â
= ĝn−1(φ̂1 ◦ f̂ |

Â
−m)

= ĝn−1 ◦ φ̂1 ◦ f̂ |
Â
−m

= ĝn−2 ◦ ĝ ◦ φ̂1 ◦ f̂ |
Â
−m

= ĝn−2 ◦ (φ̂1 ◦ f̂ −m) ◦ f̂ |
Â
−m

= ĝn−2 ◦ φ̂1 ◦ f̂ ◦ f̂ |
Â
− 2m

...

= φ̂1 ◦ f̂n|
Â
− nm.

Note that we required the subinvariance of A under f , and thus of Â under f̂ , in the
above step from the substitution in the fifth to sixth equality and in all such subsequent
substitutions.

Before we get to the actual computing of the rotation number of g we state one more
important fact that we will use in the proof. Since φ̂1 is a degree 1 map of the reals, we have
that there exists an integer M such that |φ̂1(x)−x| ≤ M for all x ∈ R. Moreover, since f̂n(x)
is a real number for all n and all x ∈ R we can further say that |φ̂1 ◦ f̂n(x) − f̂n(x)| ≤ M
for all x ∈ R and all positive integers n.

We now would like to calculate ρ(g). Let â ∈ Â and consider φ̂(â). We have already
shown that

ĝn ◦ φ̂1(â) = φ̂1 ◦ f̂n(â)− nm.



14 A. BLOKH, J.M. MALAUGH, J.C. MAYER, L.G. OVERSTEEGEN, AND D.K. PARRIS

This is equivalent to

ĝn ◦ φ̂1(â) = φ̂1 ◦ f̂n(â)− f̂n(â) + f̂n(â)− nm.

Therefore
ĝn ◦ φ̂1(â)

n
=

φ̂1 ◦ f̂n(â)− f̂n(â)
n

+
f̂n(â)

n
− nm

n
.

Recalling that |φ̂1 ◦ f̂n(x) − f̂n(x)| ≤ M for all x ∈ R and all integers n, and taking the
limit as n →∞, we get that

lim
n→∞

ĝn ◦ φ̂1(â)
n

= lim
n→∞

f̂n(â)
n

−m.

Therefore, since we can pick any point to compute the rotation numbers of f and g,

ρ(g) = lim
n→∞

ĝn ◦ φ̂1(â)
n

= lim
n→∞

f̂n(â)
n

= ρ(f) (mod 1).

¤

3.4. Proof of Corollary 2.4. We now show that the rotation number is preserved when
reducing A to m(A).

Proof. Suppose we have a σd-rotational set A. Let J be any hole of A and C the maximal
invariant Cantor set in X as shown above. We will now show that m(A) is a σd−1-rotational
set and that ρ(m(A)) = ρ(A). Clearly, m(A) is invariant and closed.

To show that m(A) is rotational, we pick a particular extension f of σd|A = σd|A. Let
{H1, H2, ..., Hd−1} be any d − 1 disjoint holes of A. We want to change the holes so that
they project, under m, to d − 2 holes of m(A). If only one of the holes, Hi, picked above
intersects J then we replace that hole with J itself and we still have d−1 holes of A. If two
of the above holes intersect J then we wish to adjust one of them so that it abuts the other
one in J , which is certainly possible if it was a hole in the first place. In the above two
cases keep in mind that A ∩ J = ∅. The only other case is when none of the holes intersect
J , and this can only happen when A is a fixed point together with any subset of its first
pre-images. Here we can easily replace one of these holes with J . Now the reader may
check that under m the projection of these modified d− 1 holes of A under σd is d− 2 holes
of m(A) under σd−1. (The only non-trivial case is when two holes abut in J .) Thus, from
Hole Theorem 2.1, σd−1 is order-preserving on m(A). Since we earlier showed that m(A) is
closed and invariant, it now satisfies all the conditions of Definition 1.6 and is rotational.

Now let f and g be any monotone extensions of σd|A and σd−1|m(A), respectively. Since
A and m(A) are rotational we have that ρ(f) = ρ(A) and ρ(g) = ρ(m(A)). Recall that
m ◦σd = σd−1 ◦m. Since f |A = σd|A = σd|A (not needed but true) and g|m(A) = σd−1|m(A),
we get that m ◦ f |A = g ◦m|A. We can apply Lemma 3.11 to get that ρ(m(A)) = ρ(A). ¤

3.5. Proof of Construction Theorem 2.6. We show that σd+1 can be constructed from
σd by inserting a wrap and its appropriate pre-images.

Proof. We label our initial point as x0
1 for reasons we will see shortly. Let orb−(x0

1) = {x ∈
T | σk

d(x) = x0
1 for some k ≥ 0}. Now the points in orb−(x0

1) are labelled as follows: x−i
j

where i is the minimal power such that σi
d(x

−i
j ) = x0

1 and 1 ≤ j ≤ di. For fixed i there may
be exactly di pre-images x−i

j , or fewer, depending on the initial x0
1, and they are labelled

with subscripts from 1 up to di in no particular order.
We now want to construct a new space from our circle T using the set orb−(x0

1). Insert an
interval I−i

j = [a−i
j , b−i

j ] into the circle T at all x−k
j ∈ orb−(x0

1). This insertion of intervals
gives rise to another circle T∗ and a natural monotone map M∗ : T∗ → T, which collapses
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our inserted intervals back to the points they came from. Note that T∗ has a natural local
order inherited from T.

Now we define a metric d∗ on T∗. The reason we define a metric is to force the map
we define below to be topologically exact. The metric d∗ induces the order topology on
T∗. In this new metric, we consider each interval I−i

j to be an isometric copy of the
interval [0, 1

(2d)i+1 ]. Hence, d∗(a−i
j , b−i

j ) is the length of the interval I−i
j in T∗, denoted

l(I−i
j ) = 1

(2d)i+1 . Let l′(B) denote the length of an interval B ⊂ T. Let A = [a, b] ⊂ T∗,
where a < b. We now define d∗(a, b). We start with a, b ∈ I−i

j for the same i and j. We
simply define d∗(a, b) to be the inherited isometric distance between the two.

For all other cases we define the values J(a) and J(b). If a ∈ [a−i1
j , b−i1

j ] = I−i1
j for some

i1, then J(a) = d∗(a, b−i
j ), else J(a) = 0. If b ∈ [a−i2

j , b−i2
j ] = I−i2

j for some i2 6= i1, then
J(b) = d∗(b, a−i

j ), else J(b) = 0. Let

l(A) = l′(M∗(A)) + J(a) + J(b) +
∑

y∈orb−(x0
1)∩M∗(A)

l((M∗)−1(y)).

Let A1 and A2 be the two intervals in T∗ with endpoints a and b and define d∗(a, b) =
min{l(A1), l(A2)}. Note that the summation of length in the above definition is finite.
Even if we inserted the maximum number of intervals, di, for each i, their total length
would be

∞∑

i=0

di 1
(2d)i+1

< 1.

Now define a new map σ∗d+1 : T∗ → T∗ as follows: Let x ∈ T∗. If x 6∈ I−i
j for any i, j ≥ 0

then σ∗d+1(x) = (M∗)−1(σd(M∗(x))).
If x ∈ I−i

j for some i, j ≥ 0 then we define σ∗d+1(x) more carefully. If x ∈ I0
1 = (M∗)−1(x0

1)
and σd(x0

1) 6∈ orb−(x0
1), then the value (M∗)−1(σd(x0

1)) is well-defined, but we do not define
σ∗d+1(x) to be this value because then the whole interval I0

1 = [a0
1, b

0
1] would have this value

under σ∗d+1 and we do not want this. We define

σ∗d+1(a
0
1) = σ∗d+1(b

0
1) = (M∗)−1(σd(x0

1))

and let σ∗d+1 map Int(I0
1 ) linearly around the circle T∗, in order, with respect to the metric

d∗ (i.e., σ∗d+1 is really mapping the interval I0
1 around the circle exactly once starting and

stopping at (M∗)−1(σd(x0
1))).

If x ∈ I0
1 and σd(x0

1) = x−i
j ∈ orb−(x0

1) for some i, j ≥ 0 then

(M∗)−1(σd(x0
1)) = (M∗)−1(x−i

j ) = [a−i
j , b−i

j ]

for some i and 1 ≤ j ≤ di. In this case we define

σ∗d+1(a
0
1) = a−i

j , σ∗d+1(b
0
1) = b−i

j

and let σ∗d+1 map Int(I0
1 ) linearly around the circle T∗ in order, with respect to the metric

d∗. That is, σ∗d+1 maps the interval I0
1 around the circle a little more than once, starting at

a−i
j , passing b−i

j and a−i
j again, and finally stopping at b−i

j . We say I0
1 overlaps the interval

I−i
j .
In the final case that x ∈ I−i

j for i > 0, we have that σd(M∗(x)) = x−i+1
j′ ∈ orb−(x0

1) for
some j′. Here we define σ∗d+1 to send the interval [a−i

j , b−i
j ] linearly onto [a−i+1

j′ , b−i+1
j′ ] in

order.
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Note that M∗◦σ∗d+1 = σd◦M∗. Also note that we have shown that σ∗d+1 takes endpoints of
inserted intervals to endpoints of inserted intervals, and in fact takes all inserted intervals to
inserted intervals except I0

1 , which is mapped completely around the circle while overlapping
an inserted interval as defined above.

Lemma 3.12. σ∗d+1 is conjugate to σd+1

Proof. By Theorem 1.2, it suffices to show that σ∗d+1 is a (d+1)-to-one covering map of the
circle that is topologically exact. The proof that σ∗d+1 is a covering map (locally one-to-one,
locally order-preserving, and locally onto) is straightforward and left to the reader.

To show σ∗d+1 is a (d + 1)-to-one map it suffices to find one point in the range with
exactly d + 1 pre-images. Pick x 6∈ orb−(x0

1) ∪ {σd(x0
1)}. Then (M∗)−1(x) is one point,

call it y, and y /∈ I−i
j for any i and j. We will show that y has d + 1 pre-images under

σ∗d+1. Let {x1, . . . , xd} be the d distinct pre-images of x under σd. Since x /∈ orb−(x0
1) then

x1, . . . , xd /∈ orb−(x0
1) as well. Thus {(M∗)−1(x1), . . . , (M∗)−1(xd)} are d distinct points

in T∗ and, by definition, σ∗d+1((M
∗)−1(xi)) = y for i = 1, . . . , d. Where could any other

pre-images of y under σ∗d+1 come from? All possible candidates from outside an I−i
j have

been found above because by the definition of σ∗d+1 on T∗ \ ⋃
i,j I−i

j , the image of such
candidates under M∗ must be in the set {x1, . . . , xd}. Now consider the inserted intervals,
I−i
j ’s. We know that for I−i

j 6= I0
1 , σ∗d+1 carries it to another I−i′

j′ . Since y /∈ I−i
j for any i, j,

that leaves I0
1 as the only remaining source of possible pre-images of y. I0

1 contains at least
one pre-image of y because it always wraps. It contains no more than one pre-image of y
due to the fact that if it does double cover anything at all it is one of the inserted intervals
that y is not in. Thus we have found a point with exactly d + 1 pre-images under σ∗d+1.

Finally we show that σ∗d+1 is topologically exact. With our metric defined on T∗ we have
that l(σ∗d+1(A)) ≥ d · l(A) for any A ⊂ T∗.

This can be seen by thinking of A as being a union of intervals that are either part of
an I−i

j or not. By the definition of σ∗d+1, it multiplies the length of intervals outside any
I−i
j by a factor of d, intervals a part of any I−i

j 6= I0
1 by a factor of 1

(2d)i+1 / 1
(2d)i+2 = 2d,

and intervals a part of I0
1 by a factor of at least 2d (more so if it overlaps). Hence, it is

topologically exact.
We have shown σ∗d+1 is conjugate to σd+1. ¤

We proceed to define the σd+1-rotational set Ã constructed from the σd-rotational set A.
Let h : T→ T∗ be the homeomorphism conjugating σ∗d+1 and σd+1. Define a monotone map
M : T→ T by M = M∗ ◦ h. We now want to consider the set Ã = M−1(A) \ Int(M−1(A))
where A is our rotational set under σd.

First we claim that Ã is a rotational set under σd+1. We need to show first that it is
invariant. It follows from the semi-conjugacy, and the fact that A is invariant under σd, that
if x ∈ Ã then σd+1(x) ∈ M−1(A). We need to show that σd+1(x) /∈ Int(M−1(A)). To do
this we note that M−1(A) \ Int(M−1(A)) is homeomorphic to (M∗)−1(A) \ Int((M∗)−1(A))
and consider how σ∗d+1 acts on h(x). As we have already shown in the proof of Theorem 2.6,
σ∗d+1 takes endpoints of inserted intervals to endpoints of inserted intervals. Based on this,
and the fact that σ∗d+1 maps only inserted intervals into inserted intervals, we can see
that σ∗d+1 cannot take points of (M∗)−1(A) \ Int((M∗)−1(A)) into Int((M∗)−1(A)). Thus,
σd+1(x) = h−1 ◦M∗ ◦ h(x) cannot be in Int(M)−1(A), and we have shown σd+1(Ã) ⊂ Ã.

Now we need to show that Ã ⊂ σd+1(Ã). Let x ∈ Ã. If h(x) /∈ I−i
j for any pair i, j then it

will follow from the diagram, the invariance of A, and the one-to-one properties of the maps
on such x, that x ∈ σd+1(Ã). On the other hand, for such x that h(x) ∈ I−i

j , consider how
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h(x) must be an endpoint of an I−i
j because x ∈ Ã. Then recall that σ∗d+1 carries endpoints

of all I−i+1
j ’s for i ≥ 0 onto the endpoints of all I−i

j ’s. Therefore, since h(x) is an endpoint
of an I−i

j , we know there exists some endpoint, call it y, of an I−i
j which maps to it under

σ∗d+1. It then follows from the invariance of A, and the commutativity of the diagram, that
in fact y ∈ h(Ã) and, again by the diagram, that x ∈ σd+1(Ã).

Now that we have shown that Ã is invariant, we need to show that it is closed and that
σd+1|Ã is order-preserving for it to be rotational. It is closed because A is closed and M

is continuous. If a is a limit point of Ã one can show that M(a) ∈ A by considering the
image, under M , of a sequence of points in Ã that limits to a and by using the fact that
A is closed. With a little additional argument concerning the removal of the interior of
inserted intervals, one can show that a must have been in Ã, showing that Ã is closed. To
show that σd+1|Ã is order-preserving we use the Hole Theorem 2.1 in conjunction with the
easily proven facts that any d− 1 holes of A lift to d− 1 holes of Ã, and that another hole
is contained in the interior of I0

1 . Hence Ã is rotational.
To finish the proof of Construction Theorem 2.6 it is enough to note that if x0

1 ∈ A then
M∗ maps

(M∗)−1(orb−(x0
1) ∩A) \ Int((M∗)−1(orb−(x0

1) ∩A))

two-to-one onto orb−(x0
1)∩A. Points in A∩ orb−(x0

1) will be mapped onto in a two-to-one
manner while points of A not in orb−(x0

1) will be mapped onto in a one-to-one fashion.
M behaves the same way on Ã. Hence, σd+1|Ã is at most two-to-one semi-conjugate to
σd|A. Now, in the other case, if x0

1 6∈ A, then no insertions are done at any points of A and
everything is kept one-to-one, hence σd+1|Ã is conjugate to σd|A. ¤

We now prove Corollary 2.7.

Proof. Let f and g be any monotone extensions of σd+1|Ã and σd|A, respectively. Since Ã

and A are rotational we have that ρ(f) = ρ(Ã) and ρ(g) = ρ(A). Recall that M ◦ σd+1 =
σd ◦M . Since f |

Ã
= σd+1|Ã and g|A = σd|A we get that M ◦ f |

Ã
= g ◦M |

Ã
. We can apply

Lemma 3.11 to get that ρ(Ã) = ρ(A). ¤

4. Rotational Periodic Orbits for σd

How many periodic orbits are there under σd with rotation number p
q (in lowest terms)?

We know from Bullett and Sentenac [2] that under σ2 there is only one periodic orbit with
any given rational rotation number. Upon brief inspection of σ3, however, one finds that
there are two fixed points and three periodic orbits with rotation number 1

2 . After looking
at a few other rotation numbers one may conjecture that, under σ3, any rational rotation
number p

q has q + 1 periodic orbits with that rotation number. When d ≥ 4, however, such
inspection and conjecturing is not so easy, as no pattern presents itself so quickly when
looking at the number of periodic orbits with any given rational rotation number under σd.

The main results of this section have been obtained previously by Goldberg [4]. We
provide proofs for three reasons: completeness, our approach is distinctly different, and our
proofs suggest generalizations to non-rotational orbits.

4.1. Distinguishing Rotational Periodic Orbits by the Placement of Pre-images
of 0. Before we get to the proof of Theorem 2.8 we will discuss some preliminaries that will
make the proof more efficient. First, given any rational rotation number p

q in lowest terms
we know that any rotational periodic orbit of rotation number p

q must have q points, and
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0

p5

p1p2

p3

p4

Figure 5. Illustration of a periodic orbit with rotation number 2
5 . The

point p1 maps to p2 skipping p4. In turn, p2 maps to p3 skipping p5, and so
on.

that each time the map is applied to any point in the orbit, it skips over p− 1 points of the
orbit spatially on the circle (see Figure 5).

We will also use what we know about the d-ary expansion of a periodic orbit. We can
“read-off” the d-ary expansion of a periodic orbit by its placement with relation to the d−1
pre-images of 0. The circle is split into d sectors by 0 and its pre-images: the 0th, 1st,
..., (d-1)-th sectors. Label the trajectory of a periodic orbit as p1 → p2 → ... → pq. Note
that these are not arranged consecutively counterclockwise on the circle unless p = 1. The
expansion of p1 is the repeating string of q digits where the i-th digit is whatever sector pi

is in. The expansion of p2 will contain the same repeating pattern just shifted one place
to the left, i.e., starting with the second digit of p1’s expansion. In fact, the expansion of
any point in a periodic orbit is the same repeating pattern starting in different places. We
therefore refer to the d-ary expansion of a periodic orbit, or the periodic expansion, as the
class of expansions of p1 through pq (i.e., when we say two expansions are different, we mean
that the repeating pattern that defines those expansions is different and one is not just the
shift of the other, which would be an equivalent expansion). We also note here that the
only points which can have ambiguous expansions are pre-images of 0. We do not worry
about this, however, because we will only be referring to the expansions of periodic orbits,
and these do not contain any pre-images of 0.

Easily established facts about the expansions of periodic orbits are that different peri-
odic orbits have different expansions and two different periodic expansions must arise from
different periodic orbits.

4.2. Proof of Counting Theorem 2.8 for rotational periodic orbits. The idea of
our proof is that for any given rational rotation number p

q we can place the trajectory
of the periodic orbit on the circle spatially in only one way (in other words, for any two
such orbits an orientation preserving homeomorphism of the circle conjugates the maps on
these orbits). We then place 0 arbitrarily on the circle. It remains to determine how many
different ways there are to place the pre-images of 0 on the circle with one necessary yet
simple restriction that will be discussed in the proof. Each different way of placing these
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pre-images gives rise to a different periodic expansion, and thus a different periodic orbit
with rotation number p

q .

Proof. Fix d. Let p
q be in reduced form. Place q points on a circle to denote a periodic

orbit with q points. Place 0 somewhere on the circle between two points of the periodic
orbit. Label the first point counterclockwise from 0 as p1. The rest of the points are labelled
temporally, or as they are arrived at in the trajectory of p1; i.e., p2 = σd(p1), p3 = σd(p2),
etc... Since we have already placed p1 , there is only one way to do this temporal labelling.
Let the first point clockwise from 0 be pk so that 0 is in the gap between the points pk

and p1 of the periodic orbit. We will be placing the pre-images of 0 between points of the
periodic orbit, between 0 and p1 and between pk and 0. Since there are q points in the
orbit, the periodic orbit and 0 give us q + 1 complementary intervals, called gaps from here
on, in which to place the pre-images of 0.

We are now ready to begin the process of placing the pre-images of 0 on the circle in as
many ways as possible. We will unite the pre-images of 0 into groups; a group consists of
all pre-images of 0 belonging to the same gap. Therefore groups are ordered on the circle
and unlinked in the sense that their convex hulls are disjoint. We can say that groups are
finite intervals of points. Some groups may be empty (this corresponds to the fact that
there are no pre-images of 0 in a certain gap). In this way we partition all d− 1 pre-images
of 0 into q + 1 disjoint and pairwise unlinked finite intervals of points which themselves are
ordered on the circle.

Since the order of gaps is defined, it may seem that the number of ways one can divide
d − 1 pre-images of 0 into q + 1 ordered among themselves finite intervals of points would
answer the question. However there is one more necessary condition which must be satisfied
here. Namely, since 0 is between pk and p1 then there must be at least one pre-image of
0 between pk−1 and pq. This is because the gap (pk−1, pq) maps over the gap (pk, p1) (not
necessarily one-to-one). Now, given p/q and the choice of p1, the gap (pk−1, pq) is well-
defined. So what we need to count is the number of partitions of d− 1 pre-images of 0 into
q + 1 ordered among themselves finite intervals of points (groups) such that a particular
group is non-empty.

It is easy to see that this is equivalent to dividing d− 2 ordered points into q + 1 groups
because then we can always add one more element to exactly the group which must be
non-empty to make sure that it is non-empty. Now, to divide d − 2 ordered points into
q + 1 groups we first add q fictitious points (“dividers”) to the set of d− 2 points and then
choose q points out of the just created collection of d−2+ q points. This yields the number
Cd−2+q

q . We need to show that this is the number of rotational periodic orbits of zd of
rotation number p/q.

In fact one way it has already been shown: every rotational orbit of rotation number p/q

of zd must give rise to one of the Cd−2+q
q itineraries listed in the arguments above. Moreover,

by the construction distinct itineraries correspond to distinct periodic orbits. What remains
to show is that each such itinerary gives rise to a (rotational) orbit. To observe this let us
consider a given “abstract” rotational periodic orbit P of rotation number p/q and follow
the construction from above inserting points which will play the roles of 0 and its pre-
images. This provides us with an abstract itinerary which is rotational, but which we must
show can be realized by σd.

Having done this, construct a map of the circle into itself as follows. On the rotational
periodic orbit it acts exactly as the corresponding rotation. On the arcs connecting points
of the periodic orbit it acts as a version of “connect-the-dots” map except that the dots are
connected on the circle. In other words, let a, b belong to the periodic orbit P and a′, b′
be their images. Moreover, let (a, b) be the arc in S1 containing no points of P , and the
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direction from a to b is counterclockwise. Then we define our map so that it maps (a, b)
onto a counterclockwise arc connecting a′ and b′. Moreover, if in the above construction
we assume that there are several pre-images of 0 in (a, b) then the map we construct will
have to wrap around the circle exactly this number of times before b gets mapped into b′.
Clearly, by the construction the map which we get will be of degree d, and the initially
chosen orbit P will be its periodic orbit.

By arguments standard in one-dimensional theory one can show now that this map can
actually be monotonically semi-conjugated to zd so that the orbit in question will map onto
a rotational orbit of zd of the same rotation number, and moreover, the same itinerary as the
one corresponding to the construction. Since the correspondence between periodic orbits
and itineraries is one-to-one, there exists a unique rotational periodic orbit corresponding
to each of Cd−2+q

q itineraries constructed above. This completes the proof. ¤
We now prove Theorem 2.9, that A rotational set for σd with a given rational rotation

number contains at most d − 1 periodic orbits. The following lemma is the heart of the
proof of Theorem 2.9. The theorem’s proof immediately follows the proof of the lemma.

Lemma 4.1. For any σd-rotational set A (d > 2), let J be any hole in the complement of A
and the map m subsequently defined as in the proof of Reduction Theorem 2.3. Then there
cannot exist 3 (or more) periodic orbits of A taken to one by the map m. In fact, given any
n σd-periodic orbits in A, they must map to at least n− 1 σd−1-periodic orbits under m.

At first, this may seem to be a vacuous statement. Since the rotational set must be in
the complement of J and all its pre-images, and since the map m is at most two-to-one on
the maximal Cantor set C (recall proof of Reduction Theorem 2.3), the lemma may appear
to easily follow from Reduction Theorem 2.3. However, all we know is that A ⊂ X, and
not necessarily that A ⊂ C (here X is the set of all points avoiding J , and so C ⊂ X),
hence certain arguments are necessary to cover the case when periodic orbits from A are
not contained in C.

Proof. Assume, by way of contradiction, that there exists a rotational set A, and that some
J ⊂ T \ A, such that A contains three periodic orbits that are mapped to one under the
map m defined by J as in Reduction Theorem 2.3. Hence, the m-pre-image of each point
of this periodic orbit P = {p, σd−1(p), . . . , σq−1

d−1p} is non-degenerate. So m−1(p) = I is a
non-degenerate arc. Moreover, we can always choose p so that I is the smallest possible.

All arcs complementary to C contain arcs which are pre-images of J . Moreover, among
arcs complementary to C, there is only one greater than or equal in length to 1/d, namely
the arc S, complementary to C, containing J (otherwise m cannot semi-conjugate σd and
σd−1), and this complementary arc S cannot cover its image more than 2-to-1 for the same
reason. Let S = (u, v) and J = (a, a+1/d) with both arcs oriented counterclockwise. Then
I maps onto S by some power of σd, and without loss of generality, we may assume that
two points x, y from the periodic orbits we study belong to [u, a] (recall that our periodic
orbits avoid J). The arc complementary to C containing σd(a) is (σd(u), σd(v)). It is less
than 1/d in length, and will then be mapped onto its images until it gets mapped back onto
S because p is periodic. Moreover, since along the way its length grows, we conclude that
actually (u, v) = I. In any case, in the described situation we get σq

d(x) = x, σq
d(y) = y

(because x, y are periodic) which contradicts the expanding properties of σd.
The final part of the lemma follows by noting that even if we do have two σd-periodic

orbits that are mapped to one σd−1-periodic orbit, we cannot have another pair mapped
to one because they would also have to go through the big gap containing J , meaning we
would have all four orbits being taken to one under the map m, and the above argument
rules this out. ¤
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We now complete the proof of Theorem 2.9.

Proof. Suppose, by way of contradiction, there existed d or more periodic orbits in a σd-
rotational set. By applying Lemma 4.1, along with Reduction Theorem 2.3, d − 2 times
we would see that this σd-rotational set would have to project down to a σ2-rotational set
containing at least two σ2-periodic orbits, a contradiction. ¤

5. Rotational Cantor Sets for σd

5.1. Proof of Theorem 2.5. We now prove that σd-rotational Cantor sets are minimal.

Proof. We first show that any σ3-rotational Cantor set C is minimal. From the proof of
Reduction Theorem 2.3 we have that m(C) is a σ2-rotational Cantor set, where m is the
map defined as in the proof of the Reduction Theorem 2.3. Moreover, we know from the
work of Bullett and Sentenac that all σ2-rotational Cantor sets are minimal. Now take any
point c ∈ C and any point c1 ∈ C. We will show that C is minimal by showing that the
limit set of the orbit of c contains arbitrary c1 ∈ C; i.e., the orbit of c is dense. Consider
m(c) in our σ2-Cantor set. By minimality of this Cantor set, the orbit of m(c) under σ2 is
dense. Hence, there exists a subsequence of the orbit of m(c) which approaches m(c1). If c1

is the only point of C which maps to m(c1) under m, then clearly this subsequence lifts to
a subsequence of the orbit of c which converges to c1. If m carries another point of C, say
c2, to m(c1), then c1 and c2 must be endpoints of some gap of C that is shrunk to a point
by m. In this case though, m(c1) = m(c2) cannot be an endpoint of our σ2-Cantor set. One
can then show by minimality that the orbit of m(c) must approach m(c1) from both sides.
When this is lifted up to σ3, this sequence is split over the gap that was shrunk to a point,
one side converging to one endpoint c1, the other converging to c2. Thus, we have shown
that the σ3 orbit of c is dense, so C is minimal.

The general case now follows from an induction on d in which the induction step uses
the same argument as above. ¤

5.2. Root Gaps of Rotational Cantor Sets. For this section, assume C is a σd-rotational
Cantor set contained in T. Note that C is minimal by Theorem 2.5. A few lemmas proven
below are of a technical nature. A major observation which makes their proofs more straight-
forward is that Corollary 2.4 can be applied not just once but a few times. This obviously
results in the following conclusion: If C is a rotational Cantor set then there exists a map
mC which semi-conjugates σd|C with an irrational rotation τ of T. In fact, mC simply
collapses all gaps of C. However, note that a taut root gap G of C goes to a point pG

such that m−1
C (τ(pG)) is a point, while a loose gap H of C goes to a point pH such that

m−1
C (τ(pH)) is a gap of C.
For the sake of completeness let us suggest a sketch of an alternative proof of the existence

of mC which does not rely upon the developed techniques (well, almost). Even though this
is only a sketch, it presents a different way of arguing and hence may be of interest. Given a
σd-invariant rotational Cantor set C, we associate with it a well-defined rotation number ρ.
If ρ is rational then the points of C are either periodic or preperiodic, so there are no more
than countably many of them, a contradiction. Thus ρ is irrational. Take a minimal subset
C ′ of C (recall that we do not rely upon the above developed tools!). Then C ′ is a Cantor set
itself and σd|C ′ is onto, and a map φ which collapses all gaps of C ′, is well-defined. Clearly,
φ(T) is a circle. Since σd|C preserves cyclic order then σd maps the endpoints of a gap in C ′
either onto the endpoints of a gap in C ′, or onto the same point. Thus, φ semi-conjugates
σd|C′ with a map τ of the circle which does not change the cyclic order. Moreover, τ is
minimal because so is σd|C′ . This easily implies that τ is an irrational rotation. Since the
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original set C is a Cantor set, then in fact C = C ′, and the claim about the existence of a
semi-conjugacy mC between σd|C and an irrational rotation of the circle is proven.

Lemma 5.1. Let M be a monotone extension of σd|C . Then the following holds:
(1) M is one-to-one on C, except possibly at the endpoints of root gaps.
(2) M is two-to-one on endpoints of taut root gaps.
(3) M is one-to-one on endpoints of loose root gaps.

Proof. Immediately follows from the existence of mC and its action on points corresponding
to taut and loose root gaps. ¤

Lemma 5.2. If I is a complementary gap of C which is not a root gap, then σd(I) is a
complementary gap of C. Moreover, there exists a unique k such that σk

d(I) is a root gap.

Proof. The first part of the lemma follows from the existence of mC . To prove the second
part, observe that as we apply σd to non-root gaps their length grows d-fold, hence at some
moment a non-root gap will be mapped onto a root gap for the first time. Since the next
time its image is the entire circle, this is in fact the only time when the root gap is mapped
onto a root gap as desired. ¤

Lemma 5.3. Let I ′ = (a′, b′) be a loose root gap of C. Let x ∈ I ′ be maximal such that
σd(x) = σd(a′). Then σd((x, b′)) is a complementary gap of C.

Proof. Follows from the existence of mC and its action on points corresponding to loose
root gaps. ¤

Definition 5.4. Let I ′ = (a′, b′) be a loose root gap. Let x be the maximal point in I ′ such
that σd(a′) = σd(x). Then the gap (σd(x), σd(b′)) = (σd(a′), σd(b′)) is called the overshoot
interval.

Lemma 5.5. Let I ′ = (a′, b′) be a loose root gap of C. Let K = (σd(x), σd(b′)) be the
corresponding overshoot interval. Given the unique k ≥ 0 from Lemma 5.2 such that σk

d(K)
is a root gap, we have σk

d(K) ∩ I ′ = ∅.
Proof. First note that k could be equal to 0 because K may itself be a root gap. Since
σk

d(K) and I ′ are both root gaps, if σk
d(K) ∩ I ′ 6= ∅, then σk

d(K) = I ′. Moreover, σk
d |K has

not reversed the order of the points of x and b′. Therefore, σk+1(b′) = b′, a contradiction
with minimality of C. We conclude that σk

d(K) ∩ I ′ = ∅. ¤

Recall that if a root gap is such that n
d ≤ l(G) < n+1

d for some n ∈ N then the number n
is called the root number of G. Recall also that we have assumed d > 2.

Theorem 5.6 (Root Gap Length). Each root gap of C with root number k0 has length

k0

d
+

d−2∑

i=1

ki

dli
, where li > i, li+1 > li and

d−2∑

i=0

ki ≤ d− 1.

It is true that for any possible length given by the formula above there exists a Cantor set
with a gap of that length. We provide an explicit proof in the case d = 3 in Theorem 5.7.
The proof below can be utilized as a recursive recipe for σd-rotational Cantor sets, d > 3.

Proof. Note that one root gap of C must be taut by Proposition 2.2. Take a root gap
R = (a, b) of C with root number k0. If R is taut then we are done as it has length k0

d for
some k0 ≤ d− 1. So assume R is loose. Let’s track R’s overshoot interval R̃.
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As we know R̃, which is a complementary gap (Lemma 5.3), maps to a root gap R1

(Lemma 5.2) of the Cantor set C after m1 ≥ 0 steps. If R1 is taut then l(R1) = k1
d where

k1 is the root number for R1. It follows that

l(R̃) =
l(R1)
dm1

=
k1

dm1+1
.

By knowing the length of R̃, we then know that

l((x, b′)) =
l(R̃)

d
=

k1

dm1+2
,

and therefore that

l(R) = l((a′, x)) + l((x, b′)) =
k0

d
+

k1

dm1+2
.

If R1 is loose then we can inductively take the argument one more step further. Suppose
then that R′

1s overshoot interval, R̃1, maps to a root gap R2 after m2 ≥ 0 steps which
happens to be taut with root number k2. If we then apply the above case to R1 (R1 takes
the role of R above and R2 the role of R1), we see that

l(R1) =
k1

d
+

k2

dm2+2
.

This implies that

l(R̃) =
l(R1)
dm1

=
k1

dm1+1
+

k2

dm1+m2+2
.

And getting back to R we get

l(R) =
k0

d
+

l(R̃)
d

=
k0

d
+

k1

dm1+2
+

k2

dm1+m2+3
.

If R2 happens to be loose also then we need to map its overshoot interval, R̃2, to another
root gap R3, determine if it is taut or not, and apply the same inductive process as mentioned
above. We can keep repeating this process until Rn−1’s overshoot interval maps to a taut
root gap Rn in mn ≥ 0 steps. This must occur for every root gap R of C as consequence of
Lemma 5.2.

Moreover, it must occur in at most n ≤ d − 2 iterations of the above process, with the
first iteration being finding R1 (i.e. n ≤ d − 2). When the above process terminates we
would have root gaps R and {R1, .., Rn}. These root gaps must be pairwise disjoint, for
otherwise two of them coincide. That would mean that a root gap mapped back to itself,
making its endpoints, which are in the Cantor set, periodic, a contradiction. Therefore, we
have n+1 disjoint root gaps {R, R1, . . . , Rn} in the above construction. On the other hand,
by Theorem 2.1 there are no more than d− 1 root gaps. Hence n ≤ d− 2, and the number
of terms in the root gap length summation can not exceed d− 1.

Let us consider several cases. If we happen to start with a taut root gap, then n = 0. If
we do not start with a taut root gap but the first overshoot interval maps to a taut root
gap, then n = 1. Now, with {m1, ..,mn} and {k1, .., kn} defined as above, we simply let

mn+1 = mn+2 = ..... = md−1 = 0 = kn+1 = kn+2 = .. = kd−2.

Defining

li =
i∑

j=1

mi + (i + 1) for i ≥ 1
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we see that we have found li such that li > i and li+1 > li are satisfied, and that

l(R) =
k0

d
+

d−2∑

i=1

ki

dli
.

What is left to show is
∑n

i=0 ki ≤ d − 1 for each root gap. This follows easily from the
fact that the root gaps in the construction were pairwise disjoint and that each one is at
least as big as its corresponding root number, ki, divided by d. Therefore, if

∑n
i=0 ki > d−1

then our root gaps would cover the entire circle except possibly for a finite set of endpoints,
a contradiction. Hence

∑n
i=0 ki ≤ d − 1, and since

∑d−2
i=0 ki =

∑n
i=0 ki, we have that∑d−2

i=0 ki ≤ d− 1. ¤
In the theorems below we refer to the rotational Cantor sets that arise from“lifting” a

Cantor set in the Construction Theorem 2.6. We can do this because although the theorem
only guarantees us that a Cantor set lifts to some rotational set with the same irrational
rotation number, we know it must contain a Cantor set because the map M is one-to-one
except for countably many points. Moreover, it is only strictly bigger than a Cantor set
if, in the Construction Theorem 2.6, we insert intervals at endpoints of the Cantor set. If
this happens then the endpoint lifts to two points of our rotational set. Of such pairs of
points, one would be in our lifted Cantor set, while the other would be off on its own in a
gap. We can then throw away all such isolated points without affecting the fact that our
rotational set is closed and invariant. The invariance is not affected because the isolated
points of our lifted set map to each other, except at the last step, the inserted I0

1 interval.
At this stage, the isolated point and its Cantor set counterpart are mapped to the same
point in the Cantor set. Thus, after throwing away this countable set of isolated points,
invariance of the lifted set is preserved. By throwing away these points we are left with a
rotational Cantor set, which is what we will mean when we refer to the Cantor set obtained
from another Cantor set via the Construction Theorem 2.6.

Incidentally, if we do not throw away the isolated point of the lifted set, but rather
keep all points that are iterated pre-images of it and contained in the complement of the
holes, then we produce an irrational rotational set which is not minimal. No such irrational
rotational sets exist for σ2.

5.3. Rotational Cantor Set Construction. In this section we explicitly classify and
construct all rotational Cantor sets for σ3. The extension to σd, d > 3, is left to the reader.

Theorem 5.7 (Cantor Set Construction). Let α be any irrational rotation number. Then,
for each σ3-rotational Cantor set C̃α with rotation number α, exactly one of the following
conditions holds:

(1) There exists a gap of length 2
3 .

(2) There exist two disjoint gaps of length 1
3 .

(3) There exist two disjoint gaps, one of length 1
3 , the other of length 1

3 + 1
3k , for some

k ∈ {2, 3, ...}.
Moreover, for each irrational α, each of these cases is realized by some σ3-rotational Cantor
set C̃α with rotation number α.

Proof. Given a σ3-rotational Cantor set C̃α with irrational rotation number α, we can just
apply Hole Theorem 2.1 and Theorem 5.6 to prove that exactly one of the above conditions
holds.

The remaining claims of the theorem follow from careful consideration of the map σ∗3
and insertion point x0

1 defined in the proof of Construction Theorem 2.6. Consider first
the unique σ2-rotational Cantor set, Cα, with irrational rotation number α. Recall that
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Cα has a taut hole of length 1
2 . If x0

1 is inserted in this hole, or at its endpoints, then the
corresponding gap of C̃α, which we obtain by Construction Theorem 2.6, contains I0

1 and
therefore must be larger than 1

3 . (An isolated point is removed from the gap in the case
that an insertion was done at an endpoint. See above remark.) Since σ∗3 maps this gap’s
endpoints together by conjugacy, it must be of length 2

3 and we are in case 1.
If x0

1 is inserted in any other gap or endpoint of a gap, then the corresponding gap of C̃α

must be a root gap. The map σ∗3 does not map the endpoints of this gap together, so it
is a gap of length bigger than 1

3 . Moreover, the gap of Cα which was exactly 1
2 in length,

must form the corresponding gap of C̃α that is of length 1
3 , because its endpoints must

map together by the conjugacy. Hence we are in case 3. (Note that the gap in which x0
1 is

inserted - or rather the number of steps which is necessary to map this gap onto the taut
root gap of length 1

2 in Cα - determines the exact k used in the length above and hence
every k can be realized. See remark following Theorem 5.6.)

Note that in the above two cases, if we insert at an endpoint, then only one of the points
to which it pulls back under the map M will actually be in C̃α. The other one is isolated
in a gap of C̃α.

Finally, if x0
1 is inserted at a non-endpoint of Cα, then both points to which it pulls back

will be in C̃α (compare previous paragraph). This will be one gap of C̃α which is of length
1
3 . The other will be the gap corresponding to the 1

2 -gap of Cα, as above. Hence, we are in
case 2. ¤

Every σd-rotational set can be obtained by construction from a σd−1-rotational set. In
particular, every σd-rotational set arises from d− 2 consecutive appropriate applications of
Theorem 2.6 to the σ2-rotational set with the same rotation number.

5.4. Proof of Counting Theorem 2.11 for rotational Cantor sets.

Proof. Let C be any σd-rotational Cantor set for d ≥ 2. Pick any two points x and y in C,
with x < y, as long as they are not the endpoints of the same complementary gap of C.
Consider the rotational Cantor sets Cx and Cy, obtained from the Construction Theorem 2.6
when beginning the insertion at x and y respectively. To simplify the proof, we may assume
that the homeomorphism which labels the fixed points of σd+1, defined during construction
(see Proposition 3.7), is in fact the one which labels the pre-image of the fixed point 0
of σd as the 0 under σd+1. This allows us to avoid the case where construction done at
d−1 different points of C may give rise to the same σd+1-Cantor set if the homeomorphism
permutes the fixed points in the right way. Both Cx and Cy are minimal by Theorem 2.5.
We will show that Cx and Cy are different Cantor sets.

Let xl and yl be the least points of Cx and Cy, respectively, counterclockwise from 0. Then
their orbits are dense, by minimality, and follow the pattern of the orbit of the least point
of C, call it z, to which they project under the map M of the Construction Theorem 2.6
proof (note that z is the least point of C because of the particular homeomorphism chosen).
Consider the first time that z maps between x and y. Then, at the same time ‘upstairs’ we
have that xl must have jumped over the wrap inserted at x while yl has not yet jumped
over the wrap inserted at y. Since these wraps must contain a pre-image of 0 under the
map σd+1, we see that the itineraries of xl and yl differ at this time step. Thus, xl and yl

are different, and we have shown that Cx and Cy are different. The fact that they have the
same rotation number as C comes from Corollary 2.7.

Since we can do the insertion at c-many points of C which are not endpoints of gaps
to construct different Cantor sets under σd+1, we know immediately that there are c-many
σd+1-rotational Cantor sets with the same irrational rotation number as C. Moreover, we
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can imitate the proof of Theorem 5.7 to show that an insertion done at either end or inside a
complementary gap of C leads to a corresponding loose root gap in the constructed Cantor
set, and insertion at a non-endpoint leads to a taut root gap in the constructed Cantor set.
These Cantor sets formed by different insertion points are indeed different, as shown above,
and so the theorem is proven. ¤

In fact, we have proven more. Let x stand for a non-endpoint or closure of a gap of the
σd-rotational Cantor set Cα with rotation number α. We have shown that there exists a
one-to-one order-preserving correspondence between Sα = mCα(Cα) and the σd+1-rotational
Cantor sets that arise from lifting Cα by inserting in T a wrap (via the Construction
Theorem 2.6) at x.
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