Special Topics in Mathematics, MA 793

Attractors

1 Basic Sets 1

We begin by developing some tools necessary for studying attractors both on the interval
and the circle. In what follows f : R — R is a map of one of the following topological
spaces: R is either a circle, or a collection of intervals (in particular, R may be an in-
terval). The arguments apply to both classes of spaces, and actually to an even more
general class of all graphs, i.e. one-dimensional branched manifolds, however we will only
work with the above listed two cases. Also, as a general remark let us observe that even
though we only deal with compact spaces some of our more general results and definitions
hold for non-compact spaces as well. Finally, occasionally we will refer the reader to the
spring course of Topological Dynamics as TD; it can be located on the Math Dept web
site and easily printed (or the referred results can be considered as useful exercises whose
solution can be discussed with the instructor anytime).

Given amap f of a compact space X into itself and a point € X, the sequence {z, f(z),...}
is said to be the trajectory (or orbit) of x (under f) and is denoted orbx (similarly one
can define the trajectory or orbit of a set S, denoted orb S). Speaking of positive orbit
we consider iterations of = (S) starting at f(x) (f(S)). Now, define the set E(f, R) of
points x € R such that there exists at least one side A of x in R with the following
property: any A-sided semi-neighborhood of x has a dense orbit in R (we call such side
A and corresponding semi-neighborhoods of x dense).

EXAMPLE 1.1. Let R =[0,1] and let f: R — R be the identity map. Then E(f, R)
is empty; moreover, for any subinterval [a, b] the set E(f,[a,b]) is empty. 0

To describe the next example we need the following definitions. The set w(x) of all limit
points of the trajectory of x is said to be the (w-)limit set of x. If there exists a point
x such that w(z) = X then the map f is said to be transitive. It is known that f is
transitive if and only if any open subset of X has a dense orbit in X (TD).

EXAMPLE 1.2. If R=1[0,1] and f: R — R is transitive then E(f, R) = R. o

To state our first lemma concerning the sets E(f, R) we need the following definition: a
set B is said to be (f-)invariant if f(B) C B. Also, a set D is said to be wandering if
sets D, f(D), ... are pairwise disjoint.



LEMMA 1.3. The set E(f, R) is invariant.

Proof. We consider the case of R = [0, 1] and leave all the necessary modifications to the
other cases to the reader. Denote E(f, R) by E. By way of contradiction suppose that
y € E while f(y) € E. Then there are small closed non-degenerate semi-neighborhoods
U,V of f(y) from either side such that their orbits are not dense in R; clearly this implies
that the same holds for any subset of U and any subset of VV. On the other hand, the
orbit of any neighborhood of f(y) (in particular of the set UUV') is dense in R because it
contains the image of a small dense semi-neighborhood of y (verification of this statement
is a good exercise!). Let us study the situation in detail in order to get a contradiction.

We claim that for some n > 0 we have f(UU V)N (UUV) # (. Indeed, suppose
otherwise. Then we can shrink U UV to a much smaller neighborhood W of f(y), and
by the assumption the positive orbit of W will never intersect the set (U U V) \ W,
a contradiction with density of its orbit. Let us show that in fact at least one of the
sets U, V is not wandering. To this end observe that if an interval [z, f(y)] is wandering
then choosing a point z’ much closer to f(y) than z we can assume that all intervals
([, f(y)]) are very small (verification of this claim is also a good exercise!). The same
applies to intervals chosen on the other side of f(y). Hence we can choose a very small
neighborhood W of f(y) whose all images are very small too.

Let us show that together with the fact that the orbit of W is dense it implies that f(y)
has a dense orbit in R. Indeed, otherwise there is an open interval D C R whose points
are e-distant from the entire orbit of f(y) with e > 0. Choose an open interval W around
y so small that all intervals f*(W) are less than £/10. Since f**!(y) € f*(W) then every
point z € orb W is at most ¢/10-distant from orb f(y). Thus f*(W) is disjoint from D
and so orb W is not dense, a contradiction. Thus, f(y) must have a dense orbit in R
which contradicts the assumption that neither U nor V' have a dense orbit.

We may assume now that U is not wandering, i.e. that there exist numbers k£ > 0 and
[ > 0 such that f*(U) N f*(U) # 0. It is not very hard to show [TD] that then the
orbit B of U is the union of finitely many intervals of some type (verification of this claim
is a good exercise!). Also, B is invariant. Since B is not dense in R we conclude that
there exists a small dense semi-neighborhood S of y which is disjoint from B (otherwise
B would cover a small dense semi-neighborhood of y and will therefore be dense itself, a
contradiction with non-density of B). For the sake of definiteness assume that S = (z,y).
Let us show that then the orbit of V' must contain a left semi-neighborhood of y. Indeed,
images of V are “attached” to intervals from the orbit of U. If there is no interval f*(V)
containing y and its small left semi-neighborhood then whenever images of V' “reach out”
to points of S, they must do it from the left. This and the fact that B is disjoint from
S implies that the orbit of V' covers some left semi-neighborhood of y and hence V' has
a dense orbit, a contradiction. Hence f(y) € E and E is invariant. n



2 Basic Sets 2

Some of the facts established in the proof of Lemma 1.3 are useful by themselves, so
without proving them again we will simply state them below as corollaries.

COROLLARY 2.1. Ifx € E(f, R) then for any dense semi-neighborhood V' of x the
following holds:

1. there exists a number n such that f"(V)NV # 0;

2. the set R\ orbV is finite.

Let us continue studying properties of sets E(f, R). First we need a technical result
dealing with continuous interval maps.

LEMMA 2.2. Let x € f(I) where I is a closed interval. Suppose that S is a side of
x such that a small S-semi-neighborhood of x is contained in f(I). Then there exists a
point y € I and its side T such that any T-semi-neighborhood of x has the image which
contains an S-semi-neighborhood of y.

Proof. The preimage f~'(z) NI of z in I is non-empty. Let us show that there exists
a point y € f~1(x) N I such that any neighborhood of y in I has the image containing
an S-semi-neighborhood of . Indeed, by way of contradiction suppose that this is not
true. Then every point of f~!(z) NI can be covered by a small neighborhood whose
image does not contain some S-semi-neighborhood of x. Since f~1(x) NI is compact, we
can choose a finite subcover; the union of all its elements is an open set U D f~'(z) N T
such that f(U) does not contain some small S-semi-neighborhood of x. On the other
hand, the set 7\ U is a compact set whose image is disjoint from z, so f(I\ U) does not
contain a small S-semi-neighborhood of = either. Hence, f(I) does not contain a small
S-semi-neighborhood of x, a contradiction with the assumption.

By way of contradiction suppose now that for either side of y there exists a corresponding
semi-neighborhood whose image does not contain an S-semi-neighborhood of x. Denote
these semi-neighborhoods by U,V. Then U UV is a neighborhood of y whose image
does not contain an S-semi-neighborhood of x, a contradiction. Hence there exists a
side T of y such that any T-semi-neighborhood of y has the image which contains an
S-semi-neighborhood of z. n

COROLLARY 2.3. Let x € f(I) where I is a closed interval. Suppose that S is a
dense side of x such that a small S-semi-neighborhood of x is contained in f(I). Then I
contains a point of E(f, R) mapped into x by f.



Proof. Apply Lemma 2.2 to S and x; this shows that there is a point y € J and its
side T' such that any T-semi-neighborhood W of y has the image which contains an S-
semi-neighborhood of . Thus the orbit W is dense and hence T is a dense side of y and

y € E(f, R) as desired. "

LEMMA 2.4. If E(f,R) is infinite then it has no isolated points.

Proof. We prove that if x € E(f, R) and S is a dense side of x, then yx is not isolated
in E(f, R) from the side S. Indeed, for the sake of definiteness let S be the right side.
By way of contradiction assume that there exists an interval I = [z, z] such that (z, 2]
contains no points of E(f, R). First consider the case when there is a number n such that
U of*(I) = R. Then there exists a number ¢ such that f(I) contains infinitely many
points of E(f, R). By Lemma 2.2 there are points t € E(f, R) N (x, z], a contradiction.
Now, assume that U, f/(I) # R for any n. Consider different possibilities for the im-
ages of I. By Corollary 2.1 there exists k such that f*(I) NI # (). This implies that
FHR() N fUT) # O for any i. Consider the sets A, = UX,f™ *(I),0 < m < k. By
Corollary 2.1 the union of A;’s covers all but finitely many points of R, and it is easy to
see that these points can only be the endpoints of the closures of the sets A;.

Consider the case when x is preperiodic. Since E(f, R) is infinite, then there exists a
point y € E(f, R) which belongs neither to the set of endpoints of sets A; nor to the orbit
of . Then y must belong to the interior of some A; which implies that there is a small
dense semi-neighborhood of y, covered by some iteration of I. By Corollary 2.3 it implies
that there is a point z € F(f, R) NI mapped into y by the appropriate power of f. Since
z # x (remember that y does not belong to the orbit of x) we get a contradiction again.

Consider the case when x is not preperiodic and has an infinite orbit. Let us show
that then if 7 # j then f/(z) & int f*(I); indeed, otherwise f7(z) belongs to f'(I) with
a small dense semi-neighborhood, so by Corollary 2.3 there are points of E(f, R) in I
mapped into f7(z) and since z is not preperiodic they are distinct from z, a contradic-
tion. In particular, the orbit of x never enters (x, z). Also, f"([z, z]) does not contain a
right semi-neighborhood of x for any r because otherwise by Corollary 2.3 there exists
an f"-preimage y of x in INE(f, R), and y # x because z is not periodic, a contradiction.

It is clear now, that f?(I)NI # () for infinitely many i. Indeed, otherwise by the previous
paragraph a small right semi-neighborhood of x is disjoint from orb I, a contradiction.
Hence we can choose numbers ¢ < j such that f(I) and f7(I) are non-disjoint from
(z, 2] and do not contain a right semi-neighborhood of z. Of the points f*(z), f/(z) one
is closer to = from the right than the other; assume that f7(z) is closer. Then f*(I)
contains f7(z) in its interior, a contradiction. n



3 Basic Sets 3

Let us continue our study of sets E(f, R).

LEMMA 3.1. The map f restricted onto E(f, R) is onto.

Proof. It is enough to consider the case when E' = E(f, R) is non-empty. Observe that
in this case f|R is onto (otherwise F is empty). Consider a point = € E; we need to show
that there exists a point y € E such that f(y) = . Indeed, = belongs to the interior of
f(R) = R with a dense semi-neighborhood, hence by Corollary 2.3 there exists a point
ye E(f,R)NR=E(f,R). n

LEMMA 3.2. The set E(f, R) is closed.

Proof. If a sequence of points xz; € E(f, R) converges to a point = then taking a sub-
sequence we may assume that points converge to x from the same side. Clearly, any
semi-neighborhood of x from this side has a dense orbit in R and so z € E(f, R). n

Now we are finally ready to introduce the central notion of the first lectures of the course:
a basic set is a set E(f, R) provided it is infinite.

COROLLARY 3.3. A basic set is perfect; more precisely, it is either a Cantor set, or
coincides with R.

Proof. By Lemma 3.2 a basic set is closed, and by Lemma 2.4 it has no isolated points.
Hence it is perfect. Now suppose that E(f, R) is not a Cantor set. Then there exists
at least one non-degenerate component K of E(f, R). Pick a point z € int K; then
there exists a small dense semi-neighborhood U of x contained in K. By Corollary 2.1
it follows that for some n > 0 we have f™(U) N U # (); hence the same applies to K,
and so f*(K)N K # (. Now, since K is a component of E(f, R) and E(f, R) is forward
invariant by Lemma 1.3 we see that f"(K) C K. On the other hand, K contains U and
so the orbit of K must be dense in R. Since orb K = U} f{(K) is closed, we see that
orb K = R as desired. [

LEMMA 3.4. If E(f, R) is basic then there exists a monotone map h : R — R which
semi-conjugates f|R and a transitive map g : R — R.

Proof. Consider the case when E(f, R) = R. In this case it is enough to show that f
is transitive. To do so observe that every open set U contains at least one point with
its dense semi-neighborhood, and hence every open set U has a dense orbit. It is known
[TD] that this implies the transitivity of the map f (i.e. the existence of a point whose



orbit is dense).

Suppose now that E(f, R) is a Cantor set. Consider an interval U = (a, b) complementary
to E(f, R). Let us show that then U is mapped into V where V is another complemen-
tary to F(f, R) interval. Indeed, otherwise there are points of E(f, R) which belong to
the interior of f(U). By Corollary 2.3 this implies that there are points of E(f, R) in U,
a contradiction.

Consider a monotone map ¢ : R — R which collapses all intervals complementary to
E(f, R) into points. We claim that this map ¢ semi-conjugates f|R with another con-
tinuous map g|R. The fact that g is well-defined follows from the preceding paragraph.
Indeed, given a point y of R-range we see that o~!(y) is a complementary to E(f, R)
interval I or a point z. In any case we define g(y) as ©(f(¢p *(y))). In general, this
expression defines a set, and to show that g(y) is well-defined we need to show that this
set is a singleton. If p~!(z) is a point, the claim is obvious. If however p~!(z) = I is
an interval, then by the construction I is complementary to E(f, R), and by the proven
in the preceding paragraph f(I) is contained in the closure of another interval, comple-
mentary to E(f, R). Clearly this implies that ¢(f(/)) is a singleton as desired.

Now we need to show that g is continuous and transitive. The fact that it is continuous
follows from the upper semi-continuity of ¢ ~'(y) a function of y. Indeed, if y, — y then
© ' (y,) converge either to a point or to two endpoints of an interval ¢~1(y). Either way,
the f-image of this one or those two points belongs to the p-preimage of the same point in
R-range, namely of the point g(y). By continuity of f we see that g(y,) — ¢g(y) as desired.

It remains to show that ¢ is transitive. Indeed, take an open set U in R-range. Then
its preimage V' is an open set in R-domain which must contain some points with their
dense semi-neighborhoods. Hence the orbit of V' is dense, and so is the orbit of U which
proves that f is transitive. [

We have not considered examples for a while, so it is s good time to do it now. To
begin with observe that if an interval map is transitive then the interval R is a unique
basic set of our map. Now, consider a full tent map which is transitive, and do the
following procedure. First, insert an interval I instead of the point 0, then instead of its
preimage 1, then instead of its second preimage 1/2, etc. Now, define our map on new
intervals in such a way that the map is continuous and the intervals are mapped one onto
another as prescribed by the original map. This can be done in such a way that no new
turning points are created anywhere inside the inserted intervals except for the interval
I on which we can define the map almost as we please (the only exception is the right
endpoint of I which must be fixed to guarantee continuity). Then the former interval
[0, 1] becomes a Cantor basic set of the new map. The described process is the inverse
of the process of collapsing of complementary to basic sets intervals described in Lemma
3.4.



4 Circle maps without periodic points 1

The first applications of the tools we have developed is to the circle maps without pe-
riodic points. In fact, similar results hold for graph maps without periodic points, but
this requires the construction of basic sets for graph maps which strictly speaking has
not been done. We will also need some tools very close to those developed in [TD]. From
now on let us assume that f: S' — S! is a continuous circle map such that Per(f) = 0
where Per(f) is the set of all periodic points of f.

LEMMA 4.1. The set E(f, R) is infinite.

Proof. Let us show that it is enough to prove that E(f, R) is non-empty. Indeed, by
Lemma 1.3 the set E(f, R) is invariant. Therefore, if it is finite then there exist periodic
points, a contradiction.

Now, consider any point = and its limit set w(x). Choose a point y € w(x) and show
that y € E(f, R). In order to do so we may assume that there exists a sequence {ny} of
iterations of f such that along this sequence x approaches y “clockwise” (i.e. the points
f™(z) are very close to x and such that to get from a point in this sequence to the next
point one needs to move clockwise). This means that the points f" (z) approach x from
the “counter-clockwise” side which we denote C. Take a (C-semi-neighborhood U of y
and consider its orbit.

As follows from the choices made above, there exists n such that f*(U)NU # (). Then
as we have seen before a number of times, the set A = U2, f™(U) is a connected set. We
want to show that A = S'. By way of contradiction assume that this is not so. Then
A is a closed interval, and since f"(A) C A (follows easily from the definition of A), we
see that f"(A) C A, and hence there are periodic points, a contradiction. Thus, any C-
semi-neighborhood of y has a dense orbit and y € E(f, R) which shows that E(f, R) # 0
and proves the lemma. [

Now we can use Lemma 3.4 according to which f|S! is monotonically semiconjugate to
a transitive map ¢ : S' — S'. In fact, in our situation we can say a little bit more.

LEMMA 4.2. The map f : St — S' is monotonically semi-conjugate to a transitive
map g : St — ST such that g has no periodic points.

Proof. By Lemma 3.4 the semi-conjugacy ¢ of f to some transitive circle map g exists
and it is enough to show that ¢ has no periodic points. Indeed suppose it does. Assume
that x is such a point that ¢"(z) = x for some n. The set I = ¢~ () is a closed
interval because ¢ is monotone, hence the fact that ¢"(x) = x implies that f™(/) C I
and therefore that f has periodic points, a contradiction. [

7



Now we need to study transitive circle maps without periodic points. Our first aim is to
show that these maps are all homeomorphisms. To this end we will need some general
tools close to those developed in [TD]; we will cover them here in full for the sake of com-
pleteness. First we need the following definition: a map f : X — X of a compact metric
space into itself is said to be e-sensitively dependent on initial conditions at a point x if
and only if for any open U containing = there exists n > 0 such that diam(f"(U)) > ¢;
in this case the point z is called e-sensitive.

Denote the set of all e-sensitive points by S.. Also, a point is sensitive if it is e-sensitive
for some € > 0; the set U.~oS. of all sensitive points is denoted by S. If there exists € > 0
such that S, = X then we say that the map f is sensitive.

LEMMA 4.3. The set S, is invariant and closed. The set S is invariant.

Proof. Let x € S. and prove that f(z) € S.. Suppose that f(x) ¢ S.. Then there
exists a neighborhood U of f(z) such that diam(f™"(U)) < ¢ for any n > 0. We can
choose a ball W of radius § < ¢ centered at x so that f(W) C U. This implies that
diam(f"™(W)) < e for any n > 0, a contradiction with the fact that x € S..

Let us prove that S. is closed. Indeed, if € S. then any neighborhood of z is a
neighborhood of a point of S., hence some image of this neighborhood will have the
diameter at least € and therefore x € S, by the definition. [

Consider some examples. Let us recall that a saw interval map is a map f : [0,1] — [0, 1]
such that for some n > 1 the map has n intervals of monotonicity each of which is mapped
onto the entire interval linearly, and n — 1 turning points at 1/n,2/n,...,(n—1)/n. For
example, the unimodal saw map is the full tent map, and other examples are just as easy
to come up with as this one.

LEMMA 4.4. A saw map is sensitive.

Proof. Assume that f is a saw map with n > 1 intervals of monotonicity. Let us prove
that f is topologically exact. Indeed, any interval I which does not contain a turning
point of f has the property that |f(I)| = n|I|. Hence any interval after a while contains a
fixed point which is an endpoint of the interval [0, 1]. For the sake of definiteness assume
that 0 € f"(I). Consider a small subinterval J = [0,n~™] C f"(I); clearly, m such that
this holds can be chosen. Then under f, f2,... the interval J grows until its f™ !-image
covers [0, 1/n] which is the leftmost interval of monotonicity of f. Clearly, the next image
of J (that is, f™(J)) covers the entire [0, 1] which proves that f is topologically exact
because we have found n + m with the property that f"*™(J) = [0,1]. Hence, f is
sensitive. [



5 Circle maps without periodic points 2

Let us introduce another map whose study is very important for some dynamical sys-
tems, in particular for complex dynamical systems. Namely, let S! be a circle whose
circumference equals 1. Define f : S! — S! in angle coordinates as f(a) = 2«. This
is a so-called doubling map which as we will see in the following lemma is sensitive as well.

LEMMA 5.1. The doubling map [ is sensitive.

Proof. Denote the length of an arc J by |J|. Clearly, any small arc doubles its length
under f. Moreover, the definition implies that if I is an arc such that f(I) # S* then
|f(I)| = 2|I|. This implies that f is topologically exact and so f is sensitive. [

Our list of one-dimensional sensitive maps is concluded by topologically expanding in-
terval maps. A continuous map f : [0,1] — [0, 1] is called topologically expanding if there
exists v > 1 such that for any interval I on which f is monotone we have |f(I)| > ~v|I|.
In this case 7 is called a constant of expansion or expansive constant. Obviously, v is
not uniquely defined because if 7 is a constant of expansion then so is any 4" < ~. For
example, a saw map is topologically expanding; more precisely, the saw map with d in-
tervals of monotonicity is topologically expansive with the constant of expansion d. The
next lemma shows that Lemmas 4.4 and 5.1 could be deduced from a more general result.

LEMMA 5.2. A topologically expanding interval/circle map f is sensitive.

Proof. First of all observe that for any k the map f* is also a topologically expanding
map with the expansive constant v*. Indeed, on the one hand it is easy to see that f* is
piecewise-monotone. On the other hand, if f*|I is monotone then f|7, fl¢), .. ., flps—10n)
is monotone. Hence by the properties of topologically expanding maps we conclude that

[FDF = AL 2D = [FEO)] = A = 2L )] = 7|1 as desired.

Now, pick k so that v*| > 4 and consider the map g = f*. Suppose that the length of
the shortest interval of monotonicity of g is €. Let us prove that for any interval J there
exists m such that |¢"(J)| > €. To this end we prove that for any interval I if [I| < ¢
then |g(1)| > 2|1|. Indeed, if |I| < € then I cannot contain two turning points of ¢ (the
minimal distance between two turning points of g is ). Therefore it either contains one
or no turning points of g which implies that at least half of I is contained in some interval
of monotonicity of g. The length of the g-image of this half of J is at least 4(|1])/2 = 2|I|
as desired. Clearly, this implies our claim and thus completes the proof of the lemma. m

Now that we have received some experience in dealing with sensitive maps, let us continue
our study of transitive circle maps without periodic points. First consider a general
transitive map f : X — X of a compact metric space X into itself. The map f can be

9



either sensitive or not. The next lemma considers non-sensitive maps and connects them
with so-called recurrent maps (let us recall that a map ¢g : X — X is said to be recurrent
if there exists a sequence of powers ¢g"* such that ¢"* — idx, see [TD], Lecture 17).

LEMMA 5.3. If f is not-sensitive then it is recurrent.

Proof. Let x be a point such that w(z) = X. If = is e-sensitive for some € > 0 then
Se = X. Indeed, S. is closed and invariant by Lemma 4.3, so it has to contain w(x) = X
as desired. However by the assumption f is not sensitive, hence x is not sensitive either.
By the definition it implies that for every e there exists 0 > 0 such that for any point y
with d(z,y) < § we have that for any n > 0 the distance d(f™(z), f"(y)) is less than e.
Now, since x has a dense orbit there exists m such that d(f™(x),x) < J. If we let f(z)
play the role of the point y above we will have to conclude that d(f™*"(x), f"(z)) < €
for any non-negative n. Since the orbit of x is dense, this implies that in fact for any
z € X we have d(f™(z),z) < e. Clearly this implies that f is recurrent. "

There are some properties of recurrent maps proven in [TD], Lecture 17. For the sake of
completeness we will reprove the following one.

LEMMA 5.4. Recurrent maps are homeomorphisms.

Proof. Let a map f be such that for some sequence {n;} we have f™ — idyx. Let us
show now that must be a homeomorphism. Indeed, if f is not onto then for z ¢ f(X)
the convergence f™(z) — z is impossible, a contradiction. On the other hand, if f(y) =
f(z) = u then f™~'(u) must converge to both y and z, which is impossible. So f is a
continuous bijection and therefore any recurrent map is a homeomorphism. [

So, either a transitive map is recurrent (and therefore a homeomorphism) or sensitive.
We will now concentrate upon sensitive transitive maps of the circle; our aim is to show
that they must have periodic points.

LEMMA 5.5. If a map f: S' — St is sensitive then it has periodic points.

Proof. Let f be e-sensitive. Partition S* into & adjacent arcs Ii,..., I, so that each
arc is of diameter less than /4. Then for each arc I, there exists a number n, such
that diam(f™(I,) > e. At this moment by the choice of the sizes of the arcs we see
that f" contains completely at least one other arc. Construct an oriented graph with k
vertices such that its vertex s is connected with an arrow to the vertex t if and only if
f™(Is) D I;. This graph G is such that there is at least one arrow coming out of every
vertex. It is easy to see then that there are loops in the graph. The existence of such
loops immediately implies that there are associated with them periodic points (this sort
of argument was applied a number of times in [TD]) and completes the proof. n

It remains to study transitive recurrent circle homeomorphisms without periodic points.
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6 The rest of the course

In the rest of the course we use hand outs based on fragments of various sources. First, we
cover the remaining questions about circle maps without periodic points relying upon the
first chapter of the book “Differentiable dynamics; an introduction to the orbit structure
of diffeomorphisms” by Z. Nitecki, published by M.I.T. Press Cambridge, Mass., in 1971.
Then we studied interval maps with the negative Schwarzian derivative. The introductory
part of this topic was covered by the Section 1.11 from the textbook “An Introduction
into Chaotic Dynamical Systems”, 2nd edition, by B. Devaney, published by Addison-
Wesley in 1989. Then we studied the first 3 sections of the paper “Attractors of Maps
of the Interval” by A. Blokh and M. Lyubich published in Banach Center Publications
of the Semester on Dynamical Systems held in Warsaw, 23 (1989), pp. 427-442. The
students gave talks devoted to the claims proven in this paper, sometimes rewriting them
in a more appropriate for a graduate course style, clarifying certain claims etc etc. The
writing of their own proofs of important claims from this paper was actually one of the
requirements of the course, and in fact the files with their proofs are available. However,
having thought about this for a while I decided not to post their proofs here because they
all continue and rely upon a number of initial statements of the above quoted paper which
is only available to me in the form of manuscript and does not exist in the tex-format.
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