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Abstract. These notes are based upon the results by G. Levin from Hebrew University of
Jerusalem and the author which appeared under the title An inequality for laminations,
Julia sets and ‘growing trees’ in Erg. Th. and Dyn. Syst., 22 (2002), pp. 63-97 [BL3]
(see also [BL1, BL2] for preliminary versions).

Introduction

Dear readers! These are the handouts for the Laminations Seminar at the University
of Alabama at Birmingham. Please carefully read these introductory comments before
you begin studying the notes.1

Motivation. The dynamical systems theory started by studying invertible maps.
There is a well-developed theory of diffeomorphisms of two-dimensional manifolds.
However this theory cannot be fully extended onto non-invertible maps (endomor-
phisms) because it heavily relies upon invertibility. One of the classes of endomorphisms
onto which the theory of dynamical systems is being currently extended is the class of
polynomials which has extra-analytical properties simplifying the study and to some
extent replacing invertibility.

The main tool in working with polynomials with connected Julia set is related to
the Riemann map between the basin of infinity A∞ and the unit disk D. This map
establishes the correspondence between the radii of D and their preimages in A∞ called
rays. If the Julia set J is locally connected then all rays land at points of the Julia
set which allows one to introduce a map p : S1 → J associating to every argument the
landing point of the ray corresponding to this argument.

Say that two angles a and b are equivalent (a ∼ b) if p(a) = p(b). This equivalence
relation on S1 is called a lamination of the circle. It serves as a main combinatorial-
topological tool in studying polynomials which justifies our interest in laminations.

Text. The results proven in these notes are very recent (in fact they have been only
published in the beginning of 2002). In order to make these notes easier to read and
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more available to students I spent a lot of time rewriting the above mentioned paper.
Essentially, as a source for studying at a seminar, this is yet a work in progress, and for
that reason the material is far from being as polished as it is in usual textbooks devoted
to the results obtained 100 years ago, studied by generations of students, and taught
by generations of teachers. Therefore I would suggest that you apply the appropriate
criteria judging the text. I would also appreciate your remarks concerning possible errors
which will be promptly corrected.

Level of difficulty. The material studied in the handouts is complicated and difficult.
Sometimes it makes clear explanation of the material hard, specially within limited time
when the seminar meets. However, all efforts will be made to have the material worked
out as thoroughly as possible. If you need extra time in class to discuss some results,
you are encouraged to ask us to slow down and ask as many questions as you need. You
are also encouraged to talk to me or to your advisor about difficulties you encounter.
My aim as a teacher has always been to have all students understand the material, and
I want to achieve this goal in this seminar too.

All the above inevitably means that significant attention will be paid to the details,
the seminar might have to consider certain problems for longer than it was originally
planned, etc. However this does not mean that the time is not used effectively, it means
that effectiveness is measured not in terms of the number of theorems proved or pages
of very dense material covered, rather it is measured in terms of your understanding and
being able to use these methods in the future. Keep in mind that looking the notes
through at home will help your understanding a lot!

Grading. All students who actively participate in the seminar and give at least one
talk will get the grade A.

Aim of the notes. Our aim is to develop the necessary tools and then to prove
a combinatorial version of Sullivan No Wandering Domain Theorem [Su] and several
related results. The theme of wandering sets is present in a variety of different dynamical
system. In my view, this interest can be explained as follows. An important question
of the dynamical systems theory is that of the behavior of the majority of points. In
the topological setting majority means a massive set, that is a countable intersections
of open dense subsets. E.g., if a map has a dense orbit then actually there is a massive
subset of points with dense orbits, so in this case the typical behavior is dense.

Similarly, the fact that there are no wandering Fatou domains of polynomials allows
us to study the typical behavior on the filled Julia set: if a wandering domain existed we
could not predict its behavior. However since such domains do not exist we know that
the typical point of a Fatou set eventually maps inside a periodic Fatou domain, and in
this case it is well-known that it converges to a periodic orbit or has the limit set which
is a simple Jordan curve on which the map is acting like an irrational rotation.

All this justifies our interest in wandering sets and also to a question as to what sets
cannot be wandering . Intuitively, big sets have less chance to be wandering, and to
some extent this is confirmed by No Wandering Domain Theorem. “Next in size” after
Fatou domains come continua, and so we prove in the notes that all continua in J are
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non-wandering. Yet next in size are vertices of J for which the problem is not solved yet!
Thus our methods can serve as the basis for individual future research of the participants
of the seminar.

1. Growing trees

A tree is a connected compact one-dimensional branched manifold T with no subsets
homeomorphic to a circle. Let a ∈ T . If T \ {a} has n connected components, then the
order of T at a is ordT (a) = n. The point a is called an endpoint (of T ) if ordT (a) = 1,
an inner point (of T ) if ordT (a) = 2 and a vertex (of T ) if ordT (a) ≥ 3. Clearly, a tree
has finitely many vertices and endpoints. An arc (in T ) is a subset of T homeomorphic
to an interval. An edge (of T ) is an arc whose endpoints are vertices or endpoints and
whose other points are inner points of T . The absence in T of sets homeomorphic to
circles makes the arc [a, b] with endpoints a, b ∈ T well-defined. The number of edges of
T is finite.

Let X be a metric space, T ⊂ X be a tree, f : X → X be a continuous map. Denote
the sets

⋃n
i=0 f i(T ) by Tn and the set

⋃∞
i=0 f i(T ) by T∞. If (a) f(T ) ∩ T 6= ∅, (b) Tn is

a tree for any n, and (c) there is a finite set of critical points Cf = {c1, . . . , ck} ⊂ T0

with f |T∞ injective in some neighborhood of any x ∈ T∞ \Cf , then we call the sequence
of sets T0 ⊂ T1 ⊂ · · · ⊂ T∞ (or the set T∞) a growing tree. Also, a point x ∈ T∞ is
called a vertex of T∞ if x is a vertex of some Tn.

For example, let T = T0 be a letter E ⊂ R2 with horizontal segments [(0, 1), (1, 1)],
[(0, 0), (1, 0)], [(0,−1), (1,−1)]. Let f(x, y) = (x, 2y). Then T1 = T ∪ f(T ) consists of 5
horizontal and 1 vertical segments, T1 \ T0 consists of 2 semi-open arcs and, moreover,
Tn+1 \ Tn consists of 2 semi-open arcs. This example is illustrated on Figure 1.
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Lemma 1.1 shows how trees can grow; its proof of is left to the reader.

Lemma 1.1. Let T ⊂ T ′ be trees. Then the set T ′ \ T has finitely many components
t1, . . . , tl, all ti are trees, t̄i ∩ T = {x(ti)} is a point and, moreover, ordT ′(x(ti)) ≥
ordT (x(ti)) + 1 ≥ 2 for any i.

In the situation of Lemma 1.1 for a component t of T ′ \ T we call the point x(t) the
basepoint (of t) and other endpoints of t outer endpoints of t (T ′). Let the number
of outer endpoints of t be oen(T, t) and the number of all outer endpoints of T ′ be
oen(T, T ′). Then oen(T, T ′) =

∑

i oen(T, ti); e.g., if T ′ has the shape of the letter H and
T is its “plank” then T ′ \T consists of 4 intervals {ti}4i=1, oen(ti) = 1 and oen(T, T ′) = 4.
For a growing tree T∞ Lemma 1.1 implies that Tn+1 \ Tn = ∪kn+1

j=1 tn+1
j where tn+1

j are
components of Tn+1 \ Tn with basepoints xn+1

j .

Lemma 1.2. Let Tn ⊂ Tn+1 ⊂ Tn+2 come from a growing tree. Then oen(Tn, Tn+1) ≥
oen(Tn+1, Tn+2) and any outer endpoint of Tn+2 is the image of an outer endpoint of
Tn+1 (and all outer endpoints of any Tn are eventual images of outer endpoints of T1).

Proof. If a be an outer endpoint of Tn+1 then a = f(b) with b ∈ Tn+1 \ Tn. Since f on a
component of Tn+1 \ Tn is a homeomorphism then b is an outer endpoint of Tn+1.

On Figure 1 oen(T0, T1) = 2, and actually oen(Tn, Tn+1) = 2 for any n ≥ 0.

By Lemma 1.2 oen(Tn, Tn+1) is a non-increasing integer sequence, so oen(Tn, Tn+1) =
oen(T∞) for some oen(T∞) and big n (in the above example oen(T∞) = 2). We assume
that oen(Tn, Tn+1) = oen(T∞).

The (f)-orbit of a set A ⊂ X is ∪∞n=0f
n(A), and the grand (f)-orbit of A is the

set of all points x so that there are m,n ≥ 0 with fm(x) ∈ fn(A).

Call the grand orbit of a point x non-cyclic if it contains no cycles; it is non-cyclic
iff the orbit of x is infinite. For a tree W ⊂ X or a growing tree T∞ ⊂ X vertices with
infinite orbits are called (W -) or (T∞-) exceptional. Call a growing tree normal if
the images of endpoints of T0 belong to T0. Denote the number of vertices (endpoints,
edges) of a tree T by V (T ) (End(T ), D(T )) and the set of vertices of T by V(T ).

Lemma 1.3. (1) For any tree W , V (W ) + 1 = End(W )− 1−
∑

v∈V(W )(ordW (v)− 3)
(equivalently, 1+

∑

v∈V(W )(ordW (v)−2) = End(W )−1), and so V (W )+1 ≤ End(W )−1.

(2)
∑kn+1

j=1 (V (tn+1
j ) + 1) ≤ oen(T∞) ≤ oen(T, T1).

Proof. (1) Induction over the number of edges.

(2) Sum up the inequality from (1) over the components of Tn+1 \ Tn.

Consider a tree W and its vertices. Call a vertex v ∈ W quasi-last if f(v) is not a
vertex of W . Denote the set of quasi-last vertices of W by QL(W ). We use this notion
in Theorem 1.4 to estimate the number of T∞-exceptional grand orbits.
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Theorem 1.4. Let T∞ = T0 ⊂ T1 ⊂ . . . be a normal growing tree. Then:

(1) The outer endpoints of Tm are fm-images of critical points; thus, oen(T∞) ≤ k.

(2) Quasi-last vertices of Tm are critical points which are vertices of T∞, or vertices of
components of Tm\Tm−1, or their basepoints which are not vertices of Tm−1. The images
of quasi-last vertices of Tm of the second and third type are either vertices of components
of Tm+1 \ Tm, or basepoints of such components which are not vertices of Tm.

(3) |QL(Tm)| ≤ k + oen(T∞) ≤ k + oen(T0, T1) and among points of QL(Tm) there
are at most oen(T∞) vertices which are not critical points.

(4) The infinite orbit of a vertex x of Tm contains a unique dx ∈ QL(Tm) such that
f i(dx) is not a vertex of Tm for all i > 0. The number of T∞-exceptional grand orbits
is at most k + oen(T∞) and the number of them containing no critical points is at most
oen(T∞) ≤ k.

Proof. (1) If x ∈ Tm \ Tm−1 then x = fm(y) for some y ∈ T0 and there are no j <
m, z ∈ T0 such that x = f j(z). If y is not a critical point/endpoint of T0 then x is not
an endpoint of Tm. However, if y is an endpoint of T0 then f(y) ∈ T0, hence we can
pick j = m − 1, z = f(y) which will satisfy the above conditions and therefore are not
supposed to exist. Hence, y is a critical point as desired.

(2) A vertex a of Tm−1 which is not a critical point is not a quasi-last vertex of Tm

because f(a) is a vertex of Tm. So, quasi-last vertices of Tm are either a) critical points
which are vertices of T∞ or b) vertices of Tm but not vertices of Tm−1, i.e. vertices of
components of Tm \ Tm−1 or their basepoints which are not vertices of Tm−1.

Let v′ be a quasi-last vertex of Tm but not a critical point. Consider two cases.

(i) u = f(v′) /∈ Tm. Then u is a vertex of a component of Tm+1 \ Tm.

(ii) u = f(v′) ∈ Tm. If u is not a basepoint of a component of Tm+1 \ Tm then there
are no new branches which appear at u in Tm+1 compare to Tm. In other words, u is a
vertex of Tm which contradicts the assumption that v′ is a quasi-last vertex of Tm.

(3) Immediately follows from (2) and Lemma 1.3(2).

(4) The former part of the claim is obvious; the latter follows from (3) because quasi-
last vertices dx corresponding to vertices from distinct grand orbits are distinct.

In the next theorem we apply a bit more sophisticated arguments to the situation of
Theorem 1.4 to estimate from above the order of T∞- exceptional vertices. The arguments
below depend heavily on Theorem 1.4. We need another notion. Given a tree W and a
point a ∈ W , consider arcs [a, b] ⊂ W such that (a, b) contains no vertices/critical points
of W . Call arcs [a, b] and [a, b′] equivalent if (a, b) ∩ (a, b′) 6= ∅; clearly, equivalent arcs
are ordered by inclusion. Classes of equivalence of arcs [a, b] of W are called germs of
W at a. One can say that a germ of a tree W at a ∈ W is a pair (a, S), where S is an
infinitesimal interval in W with one endpoint at a containing no vertices/critical points
of W inside. Its image is defined as f(a, S) = (f(a), f(S)), so we may speak of the image
of a germ contained in a tree.
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Theorem 1.5. If x is a T∞-exceptional non-precritical vertex then ordT∞(x) ≤ 2k + 1.

Proof. Suppose that ordT∞(x) > 2k + 1. Then for some big N we have that ordTN (x) >
2k + 1. Let us consider the orbit of x and study the behavior of germs of TN at x along
this orbit. Let us show that each germ except for at most 2 will have to leave TN at some
moment. Indeed, if 3 or more germs of TN at x are kept in TN then all the images of x are
vertices of TN . Hence x will be eventually mapped into a periodic point, a contradiction
with x being exceptional.

Now, for each germ which leaves TN (thus, for each germ of TN at x with the possible
exception of two) there is the first time when it does it. The idea of the proof is to study
these times, sum up all the germs “cast” at these moments, and estimate this sum from
above. More precisely, let i be the least number such that some germ (x, S) of TN leaves
TN at this moment (we call this an important event). This can happen in two ways.

1. f i+1(x) is a basepoint of a component (or components) of TN+1 \ TN , and germs
which used to be germs of TN at f i(x) are mapped onto basegerm(s) of those components.

2. f i+1(x) is outside TN , and is therefore a vertex of a component of TN+1 \ TN .

In any case, all but at most two germs of TN are eventually mapped outside of TN ,
and for each such germ there is the first moment when it escapes TN . Let us put these
moments in order. Since the important event of type 2. above implies that all germs
of TN are mapped outside TN we see that in this sequence of important events it can
only appear at the last moment. Therefore, the sequence of important events which we
construct consists of several important events of type 1. and then the last important
event which could be of type 1. or 2.

Suppose that the last important event takes place at the moment when f maps f j(x)
into f j+1(x). Clearly, the number of germs of TN at x equals the number of germs of
TN lost along the way to f j+1(x) plus the number of those which were not lost. All the
germs of TN lost before j, are basegerms of various components of TN+1 \TN because all
these important events are of type 1. Since x is not preperiodic, the point x cannot pass
through the same basepoint of such a component twice. Hence the number of germs of
TN at x mapped along the way outside TN is no more than the number of components
of TN+ \ TN , i.e. k.

Now, if the last important event is of type 1. then the germs of TN mapped outside
TN at this moment together with the previously lost germs form a set of no more than k
elements by the previous paragraph. On the other hand, at most two germs of TN will
not be mapped outside TN even at this moment. Hence to begin with we had no more
than k + 2 germs of TN at x.

However, if the last important event is of type 2. then all germs of TN will be lost
at this point and will become germs of some component of TN+1 \ TN . The number of
such germs is at most k + 1 (the number of endpoints of any component of TN+1 \ TN is
at most the number of all outer endpoints of TN+1 with respect to TN plus one). Since
before that at most k germs of TN were mapped outside of TN , we see that the overall
number of germs of TN at x was at most k + k + 1 = 2k + 1.
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2. Laminations

Let us start with precise definitions. Consider an equivalence relation ∼ on the unit
circle T = R/Z (identified with S1 = {z ∈ C : |z| = 1}) with the following properties
([Do], [McM], cf. [Th]):

(E1) ∼ is closed: the graph of ∼ is a closed set in T× T;

(E2) ∼ defines a lamination, i.e. it is unlinked: if t1 ∼ t2 ∈ S1 and t3 ∼ t4 ∈ S1,
but t2 6∼ t3, then the open intervals in C with the endpoints t1, t2 and t3, t4 are disjoint;

(E3) each class of equivalence ∼ is totally disconnected.

Call ∼ a closed lamination. We always assume that it is non-degenerate, i.e.
has a class of more than one point. Equivalence classes of ∼ are called (∼-)classes; for
x ∈ S1 let Cl(x) be its class. A ∼-class that consists of exactly two (2) points is called
a leaf while a ∼-class that consists of at least three (3) points is called a gap (cf. [Th]).
Note that laminations in [Th] do not always arise from an equivalence relation on T.
Also, a gap in [Th] is defined as a component of D\{the union of convex hulls of leaves}.
Our definitions are closer to [Do], [McM].

Fix an integer d > 1, denote by σd = σ : T → T the map σ(t) = d · t( mod 1) and
identify it with the map z 7→ zd on S1. Say that a subset of S1 is split into classes if it
contains a class of each its element. The relation ∼ is called (σ-)invariant iff:

(D1) ∼ is forward invariant: for a class g, the set σ(g) is a class too

which implies that

(D2) ∼ is backward invariant: for a class g, its preimage σ−1(g) = {x ∈ T : σ(x) ∈
g} is split into classes;

(D3) for any gap g, the map σ : g → σ(g) is a covering map with positive orientation.

Call a class g critical iff the map σ : g → σ(g) is not 1-to-1. Let k∼ be the maximal
number of critical classes g such that σ(g) is a single point with the infinite σ-orbit (i.e.,
σ(g) is an irrational point of T) and the orbits of g are pairwise disjoint.

Let D be the open disk bounded by S1, L∼ = L be the union of ∼-hulls, i.e. convex
hulls (in the Poincaré metric) of ∼-classes; by the definition ∼-hulls are contained in D̄
but not in D. Define an extension ' of ∼ onto D̄ as follows [Do]: a '-class is a ∼-hull
or a point of D̄ \ L. Extend ' onto C by declaring that a point in C \ D̄ is equivalent
only to itself. Call a connected component of the complement D \L a (∼-)component.
Given an open set Ω in D, denote by E(Ω) the set Ω̄ ∩ S1. Below Ω is usually bounded
by geodesics intersecting each other only at their endpoints on the circle, and then Ω̄ is
the convex hull of the set E(Ω).

However first we need to develop the language which allows us to new definitions.
Let (x, y) be the Poincaré geodesic in D joining x, y ∈ S1. Call (x, y) a (∼-)geodesic
if x ∼ y. We identify the ∼-geodesic (x, y) with the pair of points {x, y} and speak of
these two objects interchangeably. If (x, y) is a ∼-geodesic we say that σ maps (x, y)
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onto (x′, y′) if σ(x) = x′ and σ(y) = y′. By < x, y > we mean one of two arcs in S1 with
endpoints x, y.

Lemma 2.1. Let Ω be a ∼-component. Then E(Ω) = E is a Cantor set and σ(E) =
E(Ω′), where Ω′ is a ∼-component. Moreover, let x1, x2 ∈ E be the endpoints of a
component I of S1 \ E = E′. Then x1 ∼ x2, Cl(x1) ⊂ Ī , and if x′1 ∈ E is such that
σ(x′1) = σ(x1) then one of the following cases holds:

(1) σ(x1) 6= σ(x2) and there is x′2 ∈ E such that σ(x′2) = σ(x2) and x′1, x
′
2 are

endpoints of another component of E′;
(2) σ(x1) = σ(x2) and there is x′2 ∈ E such that σ(x′2) = σ(x1) and x′1, x

′
2 are

endpoints of a component of E′;
(3) σ(x1) = σ(x2) and there is no x′2 ∈ E such that x′1, x

′
2 are endpoints of a compo-

nent of E′.

Proof. For the sake of definiteness we assume that a point which runs within I from x1

to x2 has to run counterclockwise.

First we show that x1 ∼ x2 and Cl(x1) ⊂ Ī. Let l be a component of ∂Ω \ {x1, x2},
which is disjoint with S1. Any point x ∈ l is then the limit of a sequence of points xn

so that each xn lies in a boundary of a ∼ hull. Hence, xn ∈ ln where ln are pairwise
disjoint ∼-geodesics. Consider two possibilities.

(i) The sequence {ln} is finite. Then x belongs to one of them, l(x).

(ii) The sequence {ln} is infinite. Then x belongs to a geodesic l(x) which is the limit
of ln.

Since the geodesics l(x) for different x ∈ l are either disjoint or coincide, we see that
l(x) = (x1, x2) for every x ∈ l. Thus l = (x1, x2). Moreover, the endpoints of ln are ∼
equivalent and the lamination is closed, therefore, x1 ∼ x2. Also, Ω is disjoint with the
' classes, therefore Cl(x1) ⊂ Ī. Denote Cl(x1) by K.

Let us show that E is a Cantor set. The fact that Cl(x1) ⊂ Ī implies that x1 is not an
isolated point in E. Indeed, otherwise there is another complementary to E arc < z, x1 >
and by the above proven z ∼ x1, a contradiction to Cl(x1) ⊂ Ī. Clearly, this means that
there are no isolated points in E at all. To prove that E is a Cantor set it remains to
prove that E contains no subintervals. This follows from the fact that some σ-iterate of
any interval covers S1.

Let I ′ = S1\I. Let J ′ be the arc running clockwise from σ(x1) to σ(x2) and J = S1\J ′.
Then J ′ contains σ-images of small semi-neighborhoods of x1, x2 non-disjoint from E.
We show that J is disjoint from σ(E). It is clear if σ(x1) = σ(x2), so we assume
that σ(x1) 6= σ(x2). By (D3) for every class-preimage of σ(K) we can find two points
x′1, x

′
2 with σ(x′1) = σ(x1), σ(x′2) = σ(x2) such that the closure of the arc T running

counterclockwise from x′1 to x′2 contains Cl(x′1). Moreover, T is disjoint from E because
there are points of E in a small counterclockwise semi-neighborhood of, say, x1 and the
geodesic (x′1, x

′
2) separates T from those points. Thus, the union A of all such arcs T is

disjoint from E too. On the other hand by the construction A covers all preimages of J .
Therefore, σ(E) is disjoint from J as claimed which implies that σ(E) ⊂ J̄ ′.
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Let us show that σ(K) ⊂ J . Let x′′1 be the counterclockwise closest to x2 point such
that σ(x1) = σ(x′′1) (i.e., x′′2 is of the form x1 + j/d for some j). Let R be the arc running
counterclockwise from x2 to x′′1 . If σ(K) 6=⊂ J then inside R there must be points of a
class K ′ such that σ(K ′) = σ(K) which is impossible because A contains K ′ and is on
the other hand disjoint from R.

Let us show that the alternative (1)-(3) follows. Assume that x′1 ∈ E is such a point
that σ(x′1) = σ(x1); let Cl(x′1) = K ′. If σ(x1) 6= σ(x2) then by the proven above x′1
is an endpoint of a maximal arc < x′1, x

′
2 >= Aj which is complementary to E. If

σ(x1) = σ(x2) then by (D3) we see that u = σ(K) is a one-point set. Hence K ′ consists
of a few points from σ−1(u). If K ′ = {x′1} then the case (3) holds. Otherwise by the
above analysis the case (2) holds.

This completes the proof.

Let us introduce some maps and spaces. First, K = D̄/ ' is the quotient space, called
the pinched disc defined by ∼ ([Do]). Denote the interior of K by F . The factor
space C/ ' is called the pinched plane; K is imbedded in C/ '. Let p : C→ C/ ' be
the factor map. Then p : C \ D̄→ (C/ ') \K and p : D \ L → F are homeomorphisms.
The set J = p(S1) = p(L) is the boundary of K in C/ '. Also, call A∞ = (C/ ') \K
the basin of infinity of a map f defined as follows. Since the map σ(z) = zd acts on S1

and on C \ D̄ and the relation ∼ is σ-invariant, we can introduce a map f : J → J ; also,
since p : C\ D̄→ A∞ is a homeomorphism, f : J → J extends to the map f : A∞ → A∞
as f = p ◦ σ ◦ p−1. Observe, that K, J are compact, connected and locally connected
because p : D̄ → K is continuous. Finally, J and A∞ are completely f -invariant, and
f |J∪A∞ is continuous. We fix a metric on C/ ' compatible with the topology which
makes C/ ' a Hausdorff metric space.

According to a theorem of Moore [Mo], the pinched plane C/ ' is homeomorphic to
the plane.

Proposition 2.2. Let U be a connected component of the interior F of K. Then its
closure is a topological disc. In particular, the boundary ∂U is a Jordan curve.

Proof. Ū is the quotient of the closure of a ∼-component Ω by a closed equivalence
relation on ∂Ω whose classes are points of S1 and closed arcs in D̄ with the endpoints in
S1. Therefore, it is homeomorphic to D̄.

Our next aim is to extend f to F 6= ∅ (no extension is necessary if F = ∅).

Lemma 2.3. If U is a component of F , then f(∂U) is a boundary of some component
U ′ of F , the map f : ∂U → ∂U ′ preserves orientation and is an unbranched degree l
covering map with l ≥ 1 finite.

Proof. Follows from Lemma 2.1.
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Lemma 2.4. If U is a component of F , such that fp(∂U) = ∂U , for some p ≥ 1, then
the map fp : ∂U → ∂U is topologically conjugate either to

(S) an irrational rotation on S1, or to

(A) the map z 7→ zl, for some l ≥ 2.

Moreover, if x ∈ ∂U is such that the ∼-class g = p−1(x) is not a point, then g is
either eventually mapped into a point (and thus precritical) or preperiodic; so if Ω is a
∼-component such that p(Ω) = U then σp|∂Ω is not injective.

Proof. Denote by g the map fp : ∂U → ∂U . It is enough to show that g has no wandering
intervals (i.e., non-trivial arcs I ⊂ ∂U with gk(I) ∩ gn(I) = ∅, k 6= n). Indeed, if g has
no wandering intervals then by Lemma 2.3, g : ∂U → ∂U is conjugate to the rotation
(if l = 1) or the map z 7→ zl (if l > 1), see e.g. [MS]. Moreover, the rotation has to be
irrational, because the map σ has finitely many periodic orbits of each period.

To prove that there are no wandering intervals we find a finite non-empty set A ⊂ ∂U
and a dense set S ⊂ ∂U such that any point x ∈ S eventually hits A (i.e., there exists
k ≥ 0 s.t. gk(x) ∈ A). Let Ω be a ∼-component such that p(Ω) = U, S = {p(l)} where l
runs over the geodesics in ∂Ω. Also, let A = {p(lb)} where lb runs over the family A′ of
geodesics in ∂Ω with the radial length (the length of the shortest arc of S1 \ lb) at least
1/(2dp). By Lemma 2.1, the geodesics l are dense in ∂Ω, hence S is dense in ∂U . Also,
A is finite because the number of the geodesics lb as above in the boundary of the same
component Ω is at most 2dp. Finally, A is non-empty because any geodesic l on ∂Ω will
be eventually mapped by σp onto a geodesic of radial length at least 1/(2dp).

Note that if the case (A) holds then σp|Ω is not injective because z 7→ zl, l ≥ 2 is not.
Suppose that the case (S) holds. Then some geodesics in A′ have to map into points
since otherwise by the previous paragraph they will all be preperiodic, a contradiction
with the case (S). So again σp|Ω is not injective which completes the proof.

We call a ∼-component U for which the condition of the lemma holds periodic Siegel
iff (S) holds and periodic attractive iff (A) holds (cf. with rational maps [Mi]).

Proposition 2.5. The following properties hold.
(1) Let g ⊂ S1 be a ∼-class or the set E(Ω) for some ∼-component Ω. Then the

number of such sets g with the additional property that σ : g → S1 is not injective,
is finite. In particular, the number of components U of F such that f : ∂U → ∂U
is an unbranched degree l covering map, l ≥ 2, is finite.

(2) The number of all periodic components of F (Siegel and attractive) is finite.

Proof. (1) Every g satisfying the assumptions, contains two points x, y ∈ S1 with σ(x) =
σ(y), and so the radial distance between x, y equals to j/d for some j = 0, 1, ..., [d/2].
The geodesic (x, y) lies in the convex hull of g and these convex hulls are pairwise disjoint,
thus these geodesics are pairwise disjoint too. However there may be only finitely many
pairwise disjoint geodesics (x, y) such that the radial distance between x, y equals to j/d
for some j = 0, 1, ..., [d/2], hence there are finitely many sets g.

(2) Follows from (1) and the last claim of Lemma 2.4.
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We strengthen Proposition 2.5 later in Proposition 2.8.

To extend f from J = ∂K to components of F choose a component U of F and
consider the grand orbit of U (the components Un with the boundaries contained in
fn(∂U), n = 0,±1,±2, . . . ).

Case A. ∂U is invariant under fp for some p, and fp : ∂U → ∂U is an unbranched
degree l covering with l ≥ 1. Let U i be the component with the boundary f i(∂U),
i = 0, 1, ..., p− 1. Keeping the dynamics on f i(∂U) we extend it on all U i in two steps.

(1) Extend fp : ∂U → ∂U to fp,U : Ū → Ū as follows. Using Lemma 2.4, consider a
homeomorphism H : ∂U → S1 conjugating fp to gl (gl is an irrational rotation if l = 1,
and gl(z) = zl otherwise): gl ◦ H = H ◦ fp on ∂U . The map gl is defined on D̄ and
fixes zero. Extend H to a homeomorphism H̄ : Ū → D̄ and let aU = H̄−1(0) ∈ U . The
desired extension of fp on Ū is fp,U = H̄−1 ◦ gl ◦ H̄. Note that fp,U |∂U = fp.

Define the set GU = G0 = {Γz}z∈∂U of curves in Ū as Γz = H̄−1(rx) where x =
H(z) ∈ S1 and rx is the radius in D̄ between 0 and x ∈ S1. Then the system of curves
GU is invariant under fp,U , each Γz joins z ∈ ∂U with aU = a0 = H̄−1(0), the curves
of GU form a foliation of Ū \ aU (i.e., fill in this set and are pairwise disjoint), and
fp,U (aU ) = aU .

(2) We set U0 = Up = U,Gp = G0, ap = a0 and define maps fi : Ū i → Ū i+1 (i =
1, ..., p− 1) so that fp,U = fp−1 ◦ fp−2 ◦ · · · ◦ f0. Simultaneously we define points aUi =
ai ∈ U i and foliations GUi = Gi = {Γz}z∈∂Ui of Ū i \ ai. We begin by defining maps
fi, i = 1, . . . , p− 1 as follows:

(a) fi is a continuous extension of f : ∂U i → ∂U i+1;

(b) fi is an unbranched degree li covering map with a unique branched point ai such
that ai+1 = fi(ai) (here li is the degree of the map f : ∂U i → ∂U i+1);

(c) ai+1 = fi(ai) and Gi+1 = fi(Gi) (that is, the foliation Gi is obtained as a pull-back
of Gi+1 under the map fi which is possible because fi(ai) = ai+1).

To begin with the foliation Gp = G0 and the point ap are defined. Let fp−1◦· · ·◦f1 = h
and r =

∏p−1
i=1 li. Then h : U1 → U is of degree r. Define a map f0 = h−1 ◦ fp,U first

along a curve Γz0 ∈ GU . As the point z moves along ∂U0, extend the germ of f0 over
the curves Γz from the map f : ∂U0 → ∂U1 to a well-defined map f0 : Ū0 → Ū1 so that
fp,U = fp−1 ◦fp−2 ◦ · · · ◦f0 and properties (a)-(c) above are satisfied for fi, 1 ≤ i ≤ p−1.

By the construction, the union of curves of families Gi, i = 0, ..., p − 1, is invariant
under the map f̄ : ∪p−1

i=0 U i → ∪p−1
i=0 U i defined as f̄ |U i = fi. Each curve Γz ∈ Gi joins the

point z ∈ ∂U i and the marked point ai, and the curves of Gi form a foliation of Ū \ ai.

Case B. U is a preimage W−m of a periodic component W , i.e. fm(∂W−m) = ∂W .
Consider all preimages W−n, n ≥ 1, other than iterates of W and introduce the dynamics
on all W−n inductively (first on all W−1, then all W−2, etc) as follows. We have done
it on each periodic W . Assume we have already defined the map fV ′ : V ′ → fV ′(V ′) on
every component V ′ which is not an iterate of W such that f i(∂V ′) = ∂W for some 0 ≤
i ≤ n−1. If now fn(∂V ) = ∂W and f : ∂V → f(∂V ) is an l-cover (l ≥ 1) we define fV on
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V̄ in such a way, that fV |∂V = f , fV : V̄ → f(V̄ ) is a covering map with a chosen point
aV (which is a unique branch point if l > 1) such that ffn−1(V )(aV )◦· · ·◦ff(V )◦fV = aW .
Preimages of the curves of GW inside components V form families of curves GV which
are in fact foliations of sets V \ {aV }.

Case C. If U is a wandering domain (fk(∂U)∩ fr(∂U) = ∅, k 6= r), fix a high forward
iterate V of U , so that maps fn : ∂V → fn(∂V ), n > 0, are isomorphisms. Mark a
point aV ∈ V and choose a foliation GV = {Γx}z∈∂V of V \ {aV }, where Γz is a curve
joining aV and z ∈ ∂V . Define f on all images of V so that it becomes a homeomorphic
extension of f defined on their boundaries; for any such image U = fn(V ) also define
the point aU = fn(aV ). Now define f on all preimages of all images of V as in Case B.

We get a continuous map f̄ : C/ '→ C/ ' of the pinched plane as follows (here we
define some new notions mimicking [DH], [Do]). First, f̄ coincides with f on (C/ ') \F
and with fU on all components of F . Every component U of F has the marked point aU

called the center of U , and af(U) = f̄(aU ). Every set Ū \aU is foliated by the curves Γx

joining aU with points x ∈ ∂U ; these curves, called internal rays, form the family GU .
The union G(K) of GU over all components U of F is f̄ -invariant. An arc l in K is called
legal if for any component U of the interior F of K, the set l ∩ Ū is contained in the
union of two internal rays. Talking of an arc defined by a map γ : [0, 1] → K we often
denote this arc (i.e. the set γ([0, 1])) by γ. Also, by a loop in K we mean a continuous
map γ : [0, 1] → K such that γ(t) 6= γ(τ), for all 0 ≤ t < τ ≤ 1, except if γ(0) = γ(1).

It is easy to see that the map f̄ is a local homeomorphism at any point x of the
pinched plane except for a finitely many (by Proposition 2.5) critical points c1, ..., cm of
the form: either ci = p(g) ∈ J , where g is a critical ∼-class, or ci = aU , where aU is the
center of a component U of F and f : ∂U → f(∂U) is an l-cover, l ≥ 2 (note that each
critical point of the latter type is preperiodic whenever U is preperiodic).

Indeed, sets J , F , and A∞ are completely invariant under the map f̄ . Moreover, by
the construction, for every point x ∈ J there is a neighborhood U such that f̄ is one-
to-one on every component of U \ J . Therefore, it is enough to check that f̄ |J = f is a
local homeomorphism at any non-critical point. Let us check that f is actually an open
map everywhere; we do this by way of contradiction. If f is not open at x then there is
its neighborhood U and a sequence of classes xn such that f(xn) → f(x) while no class
f(xn) has preimages in U . We can assume that xn → y and then f(y) = f(x). Then we
can choose points x′n ∈ xn which converge to a point x′ ∈ y so that σ(x′) ∈ f(y) = f(x).
By the properties of laminations we can find a point z′ ∈ x such that σ(z′) = σ(x′)
which implies that there exists a sequence of points z′n → z′ such that σ(z′n) = σ(x′n).
Choosing a subsequence, we may assume that classes zn of points z′n converge in J , and
then they can only converge to the class x. On the other hand, classes zn from some
time on belong to U which proves that classes f(zn) = f(xn) belong to f(U), contrary
to our assumption. The verification of the fact that f is 1-to-1 at a non-critical point is
just as elementary as is left to the reader as a useful exercise.

The external ray Rt of argument t ∈ T is the curve p({r exp(2πit) : r > 1}),
the external rays Rt, t ∈ T foliate the basin of infinity A∞. If r → 1 then the point
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p(r exp(2πit)) of Rt tends to the point x = p(exp(2πit)) in J (Rt lands at x) and vice
versa, every point x = p(exp(2πit)) ∈ J is a landing point of the external ray Rt.

Lemma 2.6. The set K is arcwise connected and has the following properties:

(1) there is no loop γ in K which is the union of finitely many legal arcs;
(2) given points x, y ∈ K, there exists a unique legal arc in K with endpoints at x, y;
(3) if γ is a legal arc, then f̄(γ) is a finite union of the legal arcs containing no loops.

Proof. K is arcwise connected because it is the image of D̄ under a continuous map p.

(1) If γ lies in a component U of F , the statement clearly holds. Otherwise fix points
a 6= b ∈ γ who split γ into two closed arcs γ1, γ2, so that γ1 ∩ γ2 = {a, b}. Consider
subsets γ̃ = p−1(γ), γ̃i = p−1(γi), i = 1, 2 of D̄. Since p−1(x) is a connected closed subset
of the plane for any x ∈ C/ ', the sets γ̃1, γ̃2 are compact connected subsets of D̄ while
γ̃1∩ γ̃2 = p−1(a)∪p−1(b) is not connected. Hence ([Ku]) γ̃1∪ γ̃2 = γ̃ separates the plane.
Let Ã be a bounded component of C \ γ̃. Since γ̃ consists of ' classes, Ã consists of '
classes as well. Also, Ã is open. Then Ã ⊂ D because γ̃ ⊂ D̄ and so if Ã hits C \ D it
must be unbounded. Hence, Ã is disjoint from any ∼-class because otherwise it would
contain points of D̄ (every ∼-class contains points of D̄ by definition), and so Ã contains
an interior point x̃ of a ∼-component Ω. Thus, the point x = p(x̃) lies in the component
U = p(Ω) of F .

Now, Ã ⊂ D implies Ω∩ γ̃ 6= ∅. Hence γ∩U 6= ∅ too. By the definition of a loop, γ∩U
is a finite union of internal rays. Moreover, since γ has no points of self-intersection,
x ∈ γ ∩ Ū = Γx1 ∪ Γx2 where x1, x2 ∈ ∂U and Γx1 ,Γx2 are the corresponding internal
rays. Let A = p(Ã); clearly, A is an open and connected subset of a pinched disk. Then
one of two open arcs of ∂U \ {x1, x2} lies in A, a contradiction with A ⊂ U .

(2) Let γ : [0, 1] → K be a curve, connecting x = γ(0) with y = γ(1). Then the set
γ ∩ Ū is closed for any component U of F . Let αU , βU be the least and the greatest
numbers with γ(α) ∈ Ū , γ(β) ∈ Ū . For every U , we can redefine γ on [αU , βU ] so that
γ maps the interval [αU , βU ] onto Γγ(αU ) ∪ Γγ(βU ). We proceed this way, applying the
construction on every step to the current map γ.

It is easy to see that the sequence of maps γ (and corresponding curves) converges to
a legal arc with endpoints x, y as desired. By (1) this arc is unique.

(3) Follows immediately from (1).

In the next section we construct a growing tree in the quotient space of ' and apply
results of Section 1 in order to study the dynamics of Fatou domains in this quotient
space. This will provide alternative proof of Sullivan’s famous No Wandering Fatou
Domain Theorem [Su] (which he proved in a much more general situation of rational
functions). In fact in the case of laminations one can prove that there are no wandering
continua, and an interesting question is in what way this combinatorial result can be
extended onto rational functions. In other words, for what kinds of continua other than
Fatou domains can one prove that there are wandering continua of this kind?
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3. Combinatorial version of Sullivan’s
No Wandering Fatou Domain Theorem

A set A is called wandering if all its iterates are pairwise disjoint. The main aim of
this section is to prove the following theorem.

Theorem 3.1. Let ∼ be a closed invariant lamination ∼. Let Ω be a ∼-component.
Then the set E(Ω) ⊂ T is σ-preperiodic in the following sense: there exist n ≥ 0,m > 0
with σm(E(Ω)) = σm+n(E(Ω)).

To prove Theorem 3.1 we need several lemmas. Given x, y ∈ K, denote by [x, y] a
unique well-defined by Lemma 2.6 legal arc in K with ends at x, y. Now we step by step
define a growing tree T0 ⊂ T1 ⊂ . . . in K for the map f̄ . Let β = p(0) (0 ∈ S1 is a fixed
point of the map σ(z) = zd of S1). Then β is also a fixed point of f̄ . By (D2) from
Section 2 any ∼-class in σ−1(Cl(0)) contains at least one point of σ−1(0). Hence there
are no more than d preimages of β; denote them by {γi} and then define the initial tree
T0 = ∪i[γi, β].

Let Tn = ∪n
i=0f̄

i(T0). By Lemma 2.6 all Tn are trees. Given x ∈ J , denote by N(x) the
number of the external rays landing at x (in other words, N(x) is the number of elements
in the ∼-class p−1(x)). In the next proposition we study the trees Tn and the orbits of the
points x ∈ J with N(x) ≥ 2. We say that two external rays Rt1 and Rt2 are separated
(by the tree T0) if t1 and t2 lie in different components of T \ {0, 1/d, 2/d, ..., 1− 1/d}.
Denote by k∼ is the maximal number of critical ∼-classes g with infinite and pairwise
disjoint orbits, and such that σ(g) is a point.

Proposition 3.2. The following properties hold.
(1) If separated external rays Rt1 , Rt2 land at the same point x then x ∈ T0.
(2) All critical points of f̄ belong to T0 and T0 ⊂ T1 ⊂ . . . is a growing tree.
(3) If x ∈ J then N(x) = |p−1(x)|.
(4) If M ⊂ J is a continuum or M = {x} with N(x) ≥ 2 then there exists i with

f i(M) ∩ T0 6= ∅. Moreover, the following holds:
(a) in the case of continuum there are infinitely many i such that f̄ i(M) ∩ T0 6= ∅

and the set of points eventually mapped into T0 is dense in M .
(b) if x ∈ J is not an f̄ -preimage of a critical point or of β then N(x) ≥ 2 if and

only if there are infinitely many i such that f̄ i(x) ∈ T0 is not an endpoint of the
tree T0.

(c) if x ∈ J is not an f̄ -preimage of a critical point and N(x) ≥ 3, then, for ev-
ery finite n ≤ N(x), and for some i,m the point f̄ i(x) is a vertex of Tm with
ordTm(f i(x)) ≥ n.

(5) For every component U of F , some iterate V = f̄ i(U) intersects T0; moreover,
the center aV of V lies in T0, and V̄ ∩ T0 is homeomorphic to the n-od with the
branching point at aV .

(6) oen(T∞) ≤ k∼.

Proof. (1) Since β and all its f -preimages γi belong to T0 we see that ∼-classes cor-
responding to γi include points 0, 1/d, . . . , (d − 1)/d. Since g = p−1(x) is a ∼-class
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containing t1, t2 then the convex hull of g intersects a connected set p−1(T0) and hence
x ∈ T0.

(2) Suppose that g is a critical class. If g contains i/d for some i then p(g) ∈ T0 by the
definition of T0. Otherwise suppose that p(g) /∈ T0. Then by (1) all rays with arguments
from g are not separated. On the other hand, since g is critical there must be two points
x and x + j/d, 1 ≤ j ≤ d− 1 in g, a contradiction.

Similarly, if c is a critical point which is the center of a Fatou domain U , then there
are external rays landing on the boundary of U which are mapped into one ray. If these
rays are of the form i/d, j/d then the legal arc connecting i/d with j/d must cross U
and thus must pass through c. On the other hand, this arc is contained in T0. Hence in
this case c ∈ T0. If these rays are not of the form i/d, j/d then they rays are separated.
Hence there are two angles of the form i/d, j/d such that the legal arc connecting i/d
with j/d must cross U and the same argument implies that c ∈ T0 again. Together with
Lemma 2.6 this implies that indeed T0 ⊂ T1 ⊂ . . . is a growing tree.

(3) Follows from the definition of the external rays.

(4) In our situation we can find two external rays Rt1 , Rt2 landing at points of M so
that for some i either one of the rays f̄ i(Rt1), f̄ i(Rt2) has the argument j/d (and lands
at a point of T0) or the rays f̄ i(Rt1), f̄ i(Rt2) are separated in which case by connectivity
the continuum f̄ i(M) must intersect T0. This proves the main claim of (4).

To prove (a) observe that subcontinua of arbitrarily small diameters are dense in M
and that the image of a continuum under a power of f is a continuum itself.

To prove (b) observe that if x ∈ J is not an f̄ -preimage of a critical point or of β then
the claim (4)(a) can be applied to x infinitely many times, so f̄ i(x) ∈ T0 for infinitely
many i. Since x is not a preimage of β then f̄ i(x) is not an endpoint of T0. Therefore,
for infinitely many i we have that f̄ i(x) ∈ T0 is an inner point of T0.

On the other hand, suppose that there are infinitely many i such that f̄ i(x) ∈ T0 is
an inner point of T0. Then for some k we have that f̄k(x) is not an endpoint of T0 and
there are at least two external rays landing at f̄k(x) which by the assumptions implies
that there are at least two external rays landing at x and so N(x) ≥ 2.

Consider claim (c). First we show that any non-critical x ∈ J has a neighborhood
U such that for any y ∈ J ∩ U the cyclic order on the set p−1(x) ∪ p−1(y) ∩ S1 is
preserved by σ. Indeed, ' is a closed equivalence relation on the plane such that every
equivalence class is closed, connected and non-separating. Hence, there is an arbitrarily
small neighborhood Ũ of p−1(x) such that Ũ consists of '-classes. We can set U = p(Ũ),
and by (D3) the property is satisfied.

Let N(x) ≥ 3. Fix n, 3 ≤ n ≤ N(x). Let Rti , i = 0, . . . , n− 1 be external rays landing
at x in the cyclic order of their arguments t0, ..., tn−1. By (D3) this order will not change
under iterations of σ. For each i = 0, ..., n − 1, find the minimal ri = r > 0 so that
f̄r(Rti), f̄

r(Rti+1) are separated. By (D3) the arc Ii =< σr(ti), σr(ti+1) > containing
no σr-images of other tj is well-defined. Also, by the first part of claim (4) f̄r(x) is
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not an endpoint of T0, so there are points y ∈ T0 arbitrarily close to f̄r(x) such that
p−1(y ∩ S1) ⊂ Ii.

Repeating this we find numbers ri, i = 0, . . . , n− 1. Let R be their maximum. Pick a
small neighborhood U of x so that for all y ∈ U all the iterates σj , 0 ≤ j ≤ R preserve the
cyclic order on p−1(x)∪p−1(y)∩S1. Then choose points yi ∈ U so that σri(p−1(yi)) ⊂ Ii

and f̄ri(yi) ∈ T0. Since σR preserves the cyclic order on p−1(x) ∩ S1, the cyclic order of
points {σR(ti)} is the same as that of points {ti}. Thus the pairwise disjoint arcs
< σR(ti), σR(ti+1) > are well-defined.

By the choice of U each set σR(p−1(yi)) is contained in < σR(ti), σR(ti+1) >. Since
f̄R(yi) = f̄R−ri(f̄ri(yi)) ⊂ TR−ri ⊂ TR we see that in fact all points f̄R(x), f̄R(yi)
belong to TR and that n rays f̄R(Rti), i ≤ 0 ≤ n − 1 land at f̄R(x) and divide the disk
into n components containing distinct points f̄R(yi) and therefore non-disjoint from TR.
Thus, the number of components of TR \ {fR(x)} is at least n as desired. Since x is not
pre-critical we conclude that for any m ≥ R we have ordTm(f̄R(x)) ≥ n.

(5) Let Ω be the corresponding to U component of D̄ \L. Take any two t1, t2 ∈ E(Ω),
which are non-precritical, non-preperiodic, and whose σ-images are not ∼-equivalent (it
is possible since E(Ω) is a Cantor set). Then f̄ i-iterates of external rays Rt1 and Rt2 land
at distinct points of ∂f i(U) and are separated for some i. Let Ω′ be the ∼-component
with E(Ω′) = σi(E(Ω)). Then p−1(T0) intersects ∂Ω′ at least at two points. Since T0

consists of legal arcs and by Lemma 2.6 we conclude that f̄ i(Ū) is of the desired form.

(6) Clearly, oen(T∞) ≤ k′′ where k′′ is the number of critical points c of f̄ : T∞ → T∞
such that for any m, f̄m(c) ∈ Tm \ Tm−1 (call such critical points fast and others slow).
Let us show that a fast critical point c is such that N(fn(c)) = 1 for every n. Indeed, if
N(fn(c)) ≥ 2 then by (4) some forward image of fn(c) maps into T0 and it is not fast.
Also, if c is in the interior of Fatou component U then by the construction it coincides
with aU and maps into afk(U) by any fk. By (5) there exists k such that fk(U) intersects
T0. At this point we would have fk(c) = afk(U) ∈ T0, a contradiction with the fact that
c is fast. Finally, all preperiodic critical points are slow.

We conclude that fast critical points are non-preperiodic, belong to J and such that
N(f j(c)) = 1 for every j. Let us denote the set of all such critical points by A. Then
there exists the maximal number M such that if two critical points from A are mapped
into the same point y by the same power of f then this power is less than M . Therefore
the set of points fM (A) = B consists of points with disjoint grand orbits. Moreover,
let us also assume that all other critical points which as we saw above are not fast are
mapped into Tm−1 by some fm with m < M (in other words, the fact that they are slow
can be observed before the time M). Then the only outer endpoints of TM are the points
of B and so oen(T∞) ≤ |B|. Since |B| ≤ k∼ (all points of B have disjoint grand orbits)
we see that oen(T∼) ≤ k∼ as desired.

Proof of Theorem 3.1. Assume to the contrary that for a component Ω, the set E(Ω) is
wandering under σ. Replacing Ω by its sufficiently high iterate we may assume that no
iterate of U = p(Ω) contains a critical point of f̄ . Moreover, by Proposition 2.5 there are



LAMINATIONS SEMINAR 17

only finitely many Fatou components U such that f̄ |∂U is not injective. Hence we may
assume that f̄ |f̄n(Ū) is injective for every n ≥ 0.

Let us show that for any n we can find high iterate R of U whose boundary intersects
TR at least at n points. This is done similar to Proposition 3.2(4)(c). Choose n ≥ 3
external rays Rti , i = 0, . . . , n−1 landing at points xi ∈ ∂U = S in the cyclic order of their
arguments t0, ..., tn−1. Since Ū is wandering by the assumption, these angles t0, . . . , tn−1
are not preperiodic, in particular they are not eventual preimages of β. Since locally
the cyclic order is not changed under σ because images of U contain no critical points
and because all iterates of f̄ on Ū are 1-to-1, we conclude that the cyclic order among
t0, ..., tn−1 will not change under iterations of σ.

For each i = 0, ..., n − 1, find the minimal ri = r > 0 so that f̄r(Rti), f̄
r(Rti+1) are

separated. Then the arc Ii =< σr(ti), σr(ti+1) > containing no σr-images of other tj
is well-defined and its p-image must intersect T0. Hence the subarc Ĩi of the boundary
f̄r(S) of the Fatou component f̄ i(U) corresponding to Ii (in fact Ĩi ⊂ p(Ii)) contains
points of T0. A useful point of view here is to look at all this downstairs, that after the
quotient map p has been applied.

Let R be the maximum of numbers ri. Then by the previous paragraph the set f̄R(S)
is divided into subarcs p < σR(ti), σR(ti+1) >, to each of these arcs we associate the
appropriate subarc of the boundary of f̄R(Ū), and each such piece of the boundary of
f̄R(Ū) intersects TR. Hence f̄R(Ū) intersects TR over at least n points where n is chosen
arbitrarily. By Proposition 3.2(5) and properties of T∞ the center af̄N (U) is a vertex of
TR with the order at least n. By Proposition 2.5 the number k of all critical points of f̄
is finite, and if we choose n > 2k + 1 then by Theorem 1.5 we see that af̄N (U) must be a
periodic point, a contradiction with the assumption that Ū is wandering.

Now, if U itself is non-wandering then it is preperiodic. Theoretically it is possible
that U is a wandering Fatou domain while its boundary is not wandering. To exclude
this situation assume by way of contradiction that ∂U is non-wandering. Then passing
to the appropriate iterate of U and power of f̄ we can assume that f̄(S) ∩ S 6= ∅.

This implies that actually for any n we have f̄n(S) ∩ f̄n+1(S) 6= ∅. Let us show that
this implies that for any n and i such that i ≥ 2 we have f̄n(S) ∩ f̄n+i(S) 6= ∅. We
need the following definition: if any point of a continuum JK can be reached from the
infinity by a ray then such plane continuum is called unshielded. Our Julia set J is indeed
unshielded and we will rely upon this below. Let us make the following observation: two
iterations of S cannot intersect at more than one point. Indeed, otherwise there will be
points shielded from infinity, a contradiction.

Now, let us prove the above made claim. Suppose that contrary to what we want to
show we have a chain of boundaries f̄n(S), f̄n+1(S), . . . , f̄n+i(S) such that every next
boundary is non-disjoint from the previous one while the last one (f̄n+i(S)) intersects
the first one (f̄n(S)). This can happen in two ways and we will now prove that either
way it leads to a contradiction.

One of the ways is as follows: f̄n+2(S), f̄n+1(S) and f̄n(S) all intersect in one point.
Let us show that this is impossible. Indeed, if so then the point a of their intersection



18 ALEXANDER BLOKH

is fixed for f̄ . Moreover, since the domains f̄n(U), f̄n+1(U) and f̄n+2(U) are disjoint we
see that there are at least three rays landing at a. If so, then by Proposition 3.2(4) some
iterate of a must belong to T0, and since a is fixed then a ∈ T0.

Therefore there are finitely many germs of T0 at a. Now, the intersection of any set
f̄n+i(Ū) with T0 is homeomorphic to an n-od with some n. Therefore a is an endpoint
of such intersection for any i ≥ 0, and the germs of T0 at a are actually also germs of
intersection f̄n+i(Ū) at a. Since there are finitely many germs of T0 at a, the intersec-
tions f̄n+i(Ū) will have to be non-disjoint at some moment, a contradiction with the
assumption that U is wandering.

It remains to consider the case when there are no three consecutive iterations of S
having a common point. That is, we can assume that f̄n(S)∩ f̄n+1(S) 6= ∅ for any n and
study this case with the above assumption. We want to prove that for any i ≥ 2 we have
then f̄n(S) ∩ f̄n+i(S) = ∅. Indeed, otherwise we may assume that there are numbers n
and i ≥ 2 such that f̄n(s), . . . , f̄n+i−1(S) are disjoint other than one-point intersections
between consecutive iterations of S while f̄n+i(S) ∩ S 6= ∅. In this case it is easy to see
that there will be points shielded from infinity which is again a contradiction.

Let us show that Ū is wandering under the map ḡ = f̄2. Indeed, any two sets ḡk(S)
and ḡl(S) with k 6= l are disjoint by the previous paragraph, and U is wandering as we
showed before, therefore the entire Ū is wandering. However, this contradicts the proven
above because ∼ is a lamination invariant under a power of the original circle map σ and
therefore all proven above applies. This contradiction completes the proof.

Next we prove a similar result which extends the No Wandering Domain Theorem:
we prove that there are no wandering continua subsets of J . However before that let
us motivate our interest to wandering sets. To do so let us point out that one of the
central questions of the dynamical systems theory is that of the typical behavior of points.
In other words, one wants to know what happens with the majority of points. In the
topological setting majority means a massive set, that is a countable intersections of
open dense subsets. As we know, if a map has a dense orbit then actually there is a
massive subset of points with dense orbits, so in this case the typical behavior is dense.

Similarly, the absence of wandering Fatou domains of polynomials allows us to study
the typical behavior on the filled-in Julia set K. Indeed, if a wandering domain existed
we could not predict its behavior. However since such domains do not exist we know
that the typical point of a Fatou set eventually maps inside a periodic Fatou domain,
and in this case it is well-known that it converges to a periodic orbit or has the limit set
which is a simple Jordan curve on which the map is acting like an irrational rotation.

All this justifies our interest to wandering sets and also to a question as to what sets
cannot be wandering for the dynamical system which we study. Intuitively, big sets have
less chance to be wandering, and to some extent this is confirmed by No Wandering
Domain Theorem. “Next in size” after Fatou domains come continua, and so a question
as to whether there are a wandering subcontinua of the Julia set is very natural. Below
we prove that all continua in J are non-wandering, however before that we need to prove
a useful lemma.
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Lemma 3.3. Suppose that K ⊂ J is a continuum that meets the boundary of any Fatou
domain in at most 1 point. Then K is uniquely arcwise connected, and moreover there
is a unique subarc of J connecting any two points of K.

Proof. Let x 6= y ∈ K. Since J is arcwise connected, there exists an arc A ⊂ J joining x
and y. Assume that K 6⊃ A. Choose a point z ∈ A\K and let I be the component of A\K
containing z. Then it is easy to see that Ī ∪K bounds a Fatou domain, a contradiction.
So any arc connecting two points of K must be contained in K. Let us now show that K
is uniquely arcwise connected. Indeed, by way of contradiction assume that A1 and A2

are arcs in K joining x and y. If A1 6= A2 then arguing similar to the previous paragraph
we can show that A1 and A2 bound a Fatou domain, a contradiction.

Theorem 3.4. There are no wandering continua K ⊂ J .

Proof. Suppose that K ⊂ J is wandering. We may assume that its orbit does not contain
critical points (there are finitely many critical points of f and infinitely many pairwise
disjoint images of K). To show that K cannot intersect the boundary of a Fatou domain
over more than one point suppose otherwise and choose points x, y ∈ K ∩∂U where U is
a Fatou domain. There are two disjoint arcs in ∂U which connect x and y. Let us first
show that at least one of them is contained in K. Indeed, otherwise we may assume that
there points of the complement of K in either arc. This easily implies that one of them
must be shielded from infinity by the other arc and K, a contradiction.

We may assume that an arc I ⊂ ∂U is contained in K (U is a Fatou domain). Since U
is non-wandering, I is eventually mapped onto a subarc I ′ of the boundary S of a periodic
Fatou domain V . By Lemma 2.4 fn|S is conjugate to an irrational rotation or the map
z → zd on S1 for the appropriate n, and in either case I ′ (and I) is non-wandering.
Hence the intersection of K with the boundary of a Fatou domain consists of no more
than 1 point. By Lemma 3.3 this implies that K is uniquely arcwise connected.

Choose points a, b ∈ K and consider the unique arc I = [a, b] ⊂ J ; as we know
I intersects boundaries of Fatou domains at no more than one points each, and I is
wandering. Let us show that I contains a dense subset of vertices of J . To this end let
us introduce the following notion: an arc M ⊂ J such that M contains no vertices of J
and intersects the boundary of any Fatou domain at no more than one point is said to
be interval-like. We study properties of interval-like arcs in a series of claims.

Claim 3.5. Let L = [a, b] is interval-like. Choose the “endpoints” a′, a′′ of p−1(a) and
the “endpoints” b′, b′′ of p−1(b) so that entire circle S1 is divided by them into arcs
(a′, a′′), (a′′, b′), (b′, b′′), (b′′, a′). Then L ⊂ p([a′′, b′]) ∩ p([a′, , b′′]).

Proof of Claim 3.5. Indeed, otherwise we may assume that L 6⊂ p([a′′, b′]). Then there is
a subarc of L shielded from [a′′, b′] which therefore must be a subarc of a Fatou domain,
a contradiction with the assumption about L which completes the proof of the claim.

Claim 3.6. Let M = [a, b] is interval-like. Choose the “endpoints” a′, a′′ of p−1(a)
and the “endpoints” b′, b′′ of p−1(b) so that entire circle S1 is divided by them into arcs
(a′, a′′), (a′′, b′), (b′, b′′), (b′′, a′). Then M = p([a′′, b′]) = p([a′, , b′′]).
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Proof of Claim 3.6. By way of contradiction suppose that M 6⊃ p([a′′, b′]). Then there
exists a class g ⊂ (a′′, b′) such that p(g) /∈ I. Let us denote the “endpoints” of g by c
and d so that c is closer to a′′ and d is closer to b′. Consider the p-images of arcs [a′′, c]
and [d, b′] denoted by S = p([a′′, c]) and T = p([d, b′]). These are paths in J which enter
M at some moment. This must happen at the same point of M because otherwise the
subinterval of M is shielded from [a′′, b′] by S and T which implies that this subinterval
must be contained in the boundary of a Fatou domain, a contradiction.

So, S and T enter M at the same point e. Consider the case when e 6= a, b. Since the
path S enters M at e then there is a p-preimage of e inside (a′′, c] while the fact that
T enters M at e means that there is a p-preimage of e inside [d, b) (points a′′, b′ above
are excluded because e 6= a, b). Finally, by Claim 3.5 there must be a p-preimage of e in
(a′, b′′). All these p-preimages of e are different, so e is a vertex of J , a contradiction.

It remains to consider the case when e = a (the case when e = b can be considered
similarly). In this case observe that since T enters M at a then there are p-preimages
of a in [d.b′], a contradiction with the fact that a′, a′′ are the “endpoints” of the class
p−1(a). Hence this is impossible either, and the claim is proved.

Let us go back to the proof of Theorem 3.4. We are trying to prove that a wandering
arc I ⊂ J (which as we know intersects any Fatou domain at no more than 1 point) must
contain a dense subset of vertices of J . Indeed, otherwise I contains an interval-like
subarc M , and by Claims 3.5 and 3.6 we can find an arc [c, d] on the circle such that
p([c, d]) = M . However, this implies that M is not wandering, a contradiction.

Now, we also know that all the forward iterates of I avoid critical points. Hence by
Proposition 3.4(c) vertices of J contained in I are eventually mapped onto vertices of
Tl∞. On the other hand by Theorem 1.4(4) there are finitely many grand orbits of such
orbits. Therefore there are two points x 6= y ∈ I which belong to the same grand orbit.

Let show that this implies a contradiction. Indeed, since x, y belong to the same
grand orbit there exist numbers n,m such that fn(x) = fm(y) = z, and without loss
of generality we can assume that n ≤ m. Now, if n = m then fn|I is not 1-to-1, a
contradiction. On the other hand, if n < m then z ∈ fm(I) and also z ∈ fn(I) which
implies that fm(I) ∩ fn(I) 6= ∅, again a contradiction which finally completes the proof
of the theorem.

Continuing to investigate the question of the “size” of a set which guarantees that
the set if non-wandering one inevitably comes to the idea of measuring the “size” of a
point x of J = S1/ ∼ by counting the number of rays landing at x, that is by N(x).
The question then is whether in cases when N(x) is big we can guarantee that x is a
non-wandering point (equivalently, that x is a pre-periodic point). To avoid unnecessary
details we may well assume that x is not precritical. In this case Theorem 1.5 tells us in
the growing trees setting that N(x) must be at most 2k + 1 - that is, if we know that
N(x) > 2k + 1 then we are guaranteed that x is non-wandering.

It turns out that this kind of claim can greatly specified. Indeed, Thurston proves
in his preprint about laminations that for quadratic laminations there are no wandering
non-precritical vertices at all. Later Kiwi [Ki] proved that if the lamination is zd-invariant
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then non-precritical wandering vertex x must have N(x) ≤ d; Levin [Le] proved also that
if there is one critical point then wandering vertices do not exist.

It turns out however that even more can be said. Namely, the main result of the paper
on which these notes are based is that not only is N(x) bounded for wandering vertices
but also that the sum of N(xi) over points xi from different grand orbits of wandering
vertices is bounded which therefore gives an estimate upon the number of such grand
orbits and specifies the situations when wandering vertices may exist much further.

As an example consider the cubic maps. For them the following claim follows from the
above quoted results (recall that by a dendrite we mean a locally connected continuum
containing no subsets homeomorphic to the circle).

Corollary 3.7. Let ∼ be a cubic lamination which has wandering gaps which are not
precritical. Then the following facts hold:

(1) J is a dendrite;
(2) f |J has two wandering critical points c, d with distinct grand orbits such that no

vertex ever maps into a critical point, N(c) = N(d) = 2 and all forward images
of them are endpoints of J ;

(3) wandering vertices x′, x′′ are not precritical, have the same grand orbits, and are
such that N(x′) = N(x′′) = 3.

Let us now end this section of the handouts by stating some of the aforementioned
general results without proof and then showing how Corollary 3.7 follows from these
results. To do so we need some new notation. Namely, let kS be the number of periodic
orbits of the Siegel discs (a Fatou component is called a Siegel disc if f̄ restricted on its
boundary is an irrational rotation). Also, let kp be the number of all periodic orbits of
Fatou components of a lamination ∼. Then the following theorem holds.

Theorem 3.8. Let Γ be a non-empty collection of classes of ∼, such that:
(a) any g ∈ Γ is non-preperiodic under the map σ (i.e., each t ∈ g is irrational);
(b) the orbits of g ∈ Γ are pairwise disjoint;
(c) |g| ≥ 3 for every g ∈ Γ (i.e., g is a gap);
(d) σn is injective on g for every n = 1, 2, ... and every g ∈ Γ.

Then
∑

g∈Γ(|g| − 2) ≤ k∼ − kS − 1 ≤ d − 2 − kp ≤ d − 2 so that the number of classes
in Γ is at most k∼ − kS − 1 ≤ d − 2 − kp ≤ d − 2 and for every g ∈ Γ we have
|g| ≤ k∼ − kS + 1 ≤ d− kp ≤ d.

Let us apply this theorem to the case of cubic laminations and show how in the cubic
case Theorem 3.8 implies rather specific information about the lamination and its critical
points described in Corollary 3.7.

Corollary 3.7. Let ∼ be a cubic lamination which has wandering gaps which are not
precritical. Then the following facts hold:

(1) J is a dendrite;
(2) f |J has two wandering critical points c, d with distinct grand orbits such that no

vertex ever maps into a critical point, N(c) = N(d) = 2 and all forward images
of them are endpoints of J ;
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(3) wandering vertices x′, x′′ are not precritical, have the same grand orbits, and are
such that N(x′) = N(x′′) = 3.

Proof of Corollary 3.7. (1) If there are σ-components then by Theorem 3.1 they must be
periodic so that kp ≥ 1. However then by Theorem 3.8 we would have that d−2−kp ≤ 0
and hence wandering classes cannot exist. So we conclude that there are no σ-components
and therefore J is a dendrite.

(2) By Theorem 3.8, k∼ = 2. Therefore, f |J has two wandering critical points c, d
with distinct grand orbits. Moreover, all forward images of them are endpoints of J .
Observe that the order of J at critical points cannot be less than 2. Now, if the order
of J at a critical point is greater than 2 then, since the image of this critical point must
be an endpoint of J we see that f has to be at least 3-to-1 at this critical point which
implies that c = d, a contradiction. Hence N(c) = N(d) = 2 which in turn implies that
no vertex ever maps into a critical point.

(3) Translating the results of Theorem 3.8 into the language of f |J we see that if there
are wandering vertices x′, x′′ which are not precritical then they have the same grand
orbit and also N(x′) = N(x′′) = 3. On the other hand, if x is a precritical vertex then
the critical point which it maps onto under the least positive iteration of f is a vertex
of J too, a contradiction to (2). Hence wandering vertices of J must be non-precritical.
This completes the proof of Corollary 3.7.
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