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Abstract. For a closed lamination on the unit circle invariant under z 7→ zd we prove an
inequality relating the number of points in the “gaps” with infinite pairwise disjoint orbits
to the degree; in particular, this gives estimates on the cardinality of any such “gap” as
well as on the number of distinct grand orbits of such “gaps”. As a tool, we introduce and
study a dynamically defined growing tree in the quotient space. We also use our techniques
to obtain for laminations an analog of Sullivan No Wandering Domain Theorem. Then we
apply these results to Julia sets of polynomials.

Introduction

A central object of studying in holomorphic dynamics is the Julia set J of a polynomial
P (see e.g. [DH], [F], [J], [Mi1]). J is the boundary of the basin of attraction A∞
of infinity of P . It is a compact subset of the plane, and, as a rule, a fractal set.
Combinatorics, topology of the Julia set and their relations to dynamics are of main
interest (see e.g. [BH], [Do1], [DH], [H], [Th]).

Assume, for a moment, that J is a locally connected (and hence connected [Mi1]) set.
By Caratheodory theorem [CL], any point x ∈ J is then accessible from A∞ by a path,
and one can choose it to be a so-called external ray (see [DH] and Sect. 3). Denote by
N(x) the number of such external rays tending to x. (Equivalently, N(x) is equal to the
number of connected components of J \ {x}.) By the grand orbit (of x) we mean the
union of all preimages of all iterates of x. Note that the number N(x′) is the same for all
points x′ of the grand orbit of x (if it contains no critical points of P ). Also, call a point
preperiodic (precritical) if it is mapped into a periodic (critical) point by fk, k ≥ 0.
Loosely speaking, we prove that a point x ∈ J with N(x) ≥ 3 is preperiodic or precritical
provided x is outside of at most d − 2 grand orbits of P , with d = deg(P ). This is a
byproduct of the following inequality.

Theorem A. Let f be a polynomial whose Julia set is locally connected. Then we have
∑

x∈Γ(N(x) − 2) ≤ k∼ − kS − 1 ≤ d − 2, where Γ is a non-empty collection of non-
preperiodic non-precritical points x ∈ J from distinct grand orbits, such that N(x) ≥ 3,
k∼ is the number of distinct grand orbits of non-preperiodic critical points c ∈ J(P ) with
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N(P (c)) = 1 (i.e., P (c) is the landing point of exactly one external ray) and kS is the
number of periodic orbits of the Siegel discs.

An important open problem here is whether the bounds in Theorem A are sharp.
See Theorem 3.1 for more complete results. For a non-locally connected Julia set,

we consider Yoccoz puzzle impressions instead of points, and prove a similar inequality
(Theorem 3.3).

The inequality in Theorem A follows from Theorem B on laminations and is related
to a question of Thurston [Th]. In turn, Theorem A implies the following known fact.

Corollary 1. (cf. [Do1], [Po]). Let P be a polynomial such that every critical point of
P is either attracted by a periodic orbit or preperiodic. Then every x ∈ J with N(x) > 2
is either preperiodic or precritical.

Corollary 2. (cf. [Ki]). Under the condition of Theorem A, N(x) ≤ d for every not
preperiodic not precritical point x ∈ J .

See [Ki] for more details.
The essence of our proof is to construct and study a growing tree in an appropriate

space (which is either a locally connected Julia set or, more generally, a certain quotient
space of a lamination). An inspiration for us comes from the theory of Hubbard trees
[DH], [Do1] which are introduced for the polynomials whose critical points are preperiodic
(in this case our tree is reduced to the Hubbard tree). However, we make no restrictions
on the orbits of the critical points. A general growing tree is an increasing sequence of
finite trees defined dynamically. Our study could be considered as a development of both
the theory of abstract Hubbard trees [DH], [Do1], [Po] and the description of compact
sets on the plane by Douady [Do1].

To study Julia sets (including not locally connected ones), we work with laminations
in the disc. This object is defined in [Th] to describe basic rules of identification on the
unit circle S1 corresponding to connected polynomial Julia set: t1, t2 ∈ S1 are identified
iff external rays of these arguments tend to the same point of the Julia set. Such relations
have been studied before ([DH], see also [Mi1]); our definitions and approach are closer
to [Do1], see also [McM]. Polynomial Julia sets are the main source of examples of
laminations. Yet, the class of laminations we study is more general: there exist closed
invariant laminations which do not correspond to the Julia set of any polynomial, see
examples in Section 4.

We prove our main inequality (*) for laminations (see Theorem B below) and then
deduce the inequalities for Julia sets. To prove (*), we consider the quotient space of a
lamination, as in [Do1], and construct the growing tree in the quotient space.

Let us be more precise now. The lamination is an equivalence relation ∼ on the unit
circle T = R/Z (identified with S1 = {z ∈ C : |z| = 1}) such that the convex hulls in the
unit disc of distinct equivalence classes are disjoint. We assume also that ∼ is closed and
invariant under the map σ : T → T, σ(t) = d · t( mod 1) where d ≥ 2 is a fixed integer
(we identify it with the map z 7→ zd on S1). See Section 2 for more details.

Call a class g of ∼ critical iff the map σ : g → σ(g) is not 1-to-1. Let k∼ be the
maximal number of critical classes g from pairwise different orbits such that σ(g) is a
single point with infinite σ-orbit (i.e., σ(g) is an irrational point of T).

Denote by |A| the cardinality of a set A (thus 0 ≤ |A| ≤ ∞).
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Theorem B. Let Γ be a non-empty collection of classes of ∼, which are neither prepe-
riodic nor precritical, and belong to pairwise disjoint orbits. If |g| ≥ 3 for every g ∈ Γ
then

∑

g∈Γ

(|g| − 2) ≤ k∼ − 1 ≤ d− 2. (∗)

Moreover, for any non-preperiodic class g′ we have |g′| ≤ 2d.

The full version of (*) counts also so-called “Siegel components”: see Theorem 2.10.
Theorem B implies the following results.

Corollary 3. ([Th]). For quadratic laminations (i.e., d = 2), every class with at least
3 points is either preperiodic or precritical.

Corollary 4. The number of different grand orbits of non-preperiodic non-precritical
classes with at least 3 points is at most d− 2.

The question about generalizations of the statement of Corollary 3 to higher degrees
is asked in [Th]. The inequality (*) gives an answer. Also, the methods in [Th] and [Ki]
differ essentially from ours.

Remark. If J is a connected locally connected Julia set of a polynomial P , then the
quotient space S1/ ∼ of the lamination ∼ corresponding to P is homeomorphic to J .
The number N(x), for x ∈ J , equals the cardinality |g| of the corresponding equivalence
class g = p−1(x) (where p : S1 → S1/ ∼ is the factor map). Corollaries 2-4 can be
immediately rephrased in this context. For example, N(x) ≤ 2d, if x is non-preperiodic.
Note that if x ∈ J is a preperiodic point, the number N(x) is also finite (by so-called
Douady’s lemma, see e.g.[Mi1]), but may be arbitrary large (for the polynomials of a
fixed degree). �

Let D be the open unit disk, L∼ = L be the union of ∼-hulls, i.e. convex hulls (in the
Poincaré metric) of ∼-classes. The extension ' of ∼ onto D̄mentioned above is defined as
follows [Do1]: a '-class is a ∼-hull or a point of D̄\L. Call a connected component of the
complement D \L a ∼-component. For an open set Ω in D let E(Ω) = Ω̄∩S1. Denote
by J∼ the quotient space T/ ∼, and by f : J∼ → J∼ the map induced by σ : T → T.
Theorem C says that ∼-components and continua in J∼ are not wandering. Its part (1)
is similar to the fundamental Sullivan No Wandering Domain Theorem for the rational
maps [Su] (see Section 3). Part (2) generalizes a result of [Le] (cf. [BL1]).

Theorem C. The following holds for a closed invariant lamination ∼.

(1) Let Ω be a ∼-component. Then the set E(Ω) ⊂ T is σ-preperiodic in the following
sense: there exist n ≥ 0,m > 0 with σm(E(Ω)) = σm+n(E(Ω)).

(2) If M ⊂ J∼ is a non-degenerate continuum then it is non-wandering (i.e., there
exist n ≥ 0,m > 0 with fn(M) ∩ fn+m(M) 6= ∅).

The structure of the paper is the following. In Section 1 we introduce and study
growing trees in a metric space. Main result is Theorem 1.3. Then we apply these tools
to invariant laminations on the unit circle (Section 2) and prove Theorems B-C stated
above. These results find immediate applications in complex dynamics (Section 3). A
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short last Section 4 is devoted to some examples and generalizations. Notions to be used
throughout the paper are written usually in boldface.

Acknowledgments. The second author is grateful to the Institute of Mathematics,
Polish Academy of Sciences in Warsaw, where a part of this paper was written, for its
hospitality. It is also a pleasure to thank Harry Furstenberg, Jan Kiwi, Feliks Przytycki
and Benjamin Weiss for helpful discussions and suggestions. Finally, we express our
gratitude to the referee for very useful remarks.

1. Growing trees

A tree is a connected compact one-dimensional branched manifold with no subsets
homeomorphic to a circle. Let a ∈ T . If T \ {a} has n connected component, then the
order of T at a is ordT (a) = n. The point a is called an endpoint (of T ) if ordT (a) = 1,
an inner point (of T ) if ordT (a) = 2 and a vertex (of T ) if ordT (a) ≥ 3. Clearly, a tree
has finitely many vertices and endpoints. An arc (in T ) is a subset of T homeomorphic
to an interval. An edge (of T ) is an arc whose endpoints are vertices or endpoints and
whose other points are inner points of T . The absence in T of sets homeomorphic to
circles makes the arc [a, b] with endpoints a, b ∈ T well-defined. The number of edges of
T is finite. Also, a germ of a tree W is a pair (a, S), where a ∈ W and S is a small
semi-neighborhood of a in W containing no vertices/critical points of W inside. Its image
is defined as f(a, S) = (f(a), f(S)).

Let X be a metric space, T ⊂ X be a tree, f : X → X be a continuous map. Denote
the sets

⋃n
i=0 f i(T ) by Tn and the set

⋃∞
i=0 f i(T ) by T∞. If (a) f(T ) ∩ T 6= ∅, (b) Tn is

a tree for any n, and (c) there is a finite set of critical points Cf = {c1, . . . , ck} ⊂ T0

with f |T∞ injective in some neighborhood of any x ∈ T∞ \Cf , then we call the sequence
of sets T0 ⊂ T1 ⊂ · · · ⊂ T∞ (or the set T∞) a growing tree. Also, a point x ∈ T∞ is
called a vertex of T∞ if x is a vertex of some Tn.

For example, let T = T0 be a letter E ⊂ R2 with horizontal segments [(0, 1), (1, 1)],
[(0, 0), (1, 0)], [(0,−1), (1,−1)]. Let f(x, y) = (x, 2y). Then T1 = T ∪ f(T ) consists of 5
horizontal and 1 vertical segments, T1 \ T0 consists of 2 semi-open arcs and, moreover,
Tn+1 \ Tn consists of 2 semi-open arcs. This example is illustrated on Figure 1.
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Lemma 1.1 shows how trees can grow; the proof of the lemma is left to the reader.

Lemma 1.1. Let T ⊂ T ′ be trees. Then the set T ′ \ T has finitely many components
t1, . . . , tl, all ti are trees, t̄i ∩ T = {x(ti)} is a point and, moreover, ordT ′(x(ti)) ≥
ordT (x(ti)) + 1 ≥ 2 for any i.

In the situation of Lemma 1.1 for a component t of T ′ \ T we call the point x(t) the
basepoint (of t) and other endpoints of t outer endpoints of t (T ′). Let the number
of outer endpoints of t be oen(T, t) and the number of all outer endpoints of T ′ be
oen(T, T ′). Then oen(T, T ′) =

∑

i oen(T, ti); e.g., if T ′ has the shape of the letter H and
T is its “plank” then T ′ \T consists of 4 intervals {ti}4i=1, oen(ti) = 1 and oen(T, T ′) = 4.
For a growing tree T∞ Lemma 1.1 implies that Tn+1 \ Tn = ∪kn+1

j=1 tn+1
j where tn+1

j are
components of Tn+1 \ Tn with basepoints xn+1

j .
Consider how the number of outer endpoints changes for a growing tree.

Lemma 1.2. Let Tn ⊂ Tn+1 ⊂ Tn+2 come from a growing tree. Then oen(Tn, Tn+1) ≥
oen(Tn+1, Tn+2) and any outer endpoint of Tn+2 is the image of an outer endpoint of
Tn+1 (and all outer endpoints of any Tn are eventual images of outer endpoints of T1).

Proof. If a be an outer endpoint of Tn+1 then a = f(b) with b ∈ Tn+1 \ Tn. Since f on a
component of Tn+1 \ Tn is a homeomorphism then b is an outer endpoint of Tn+1.

On Figure 1 oen(T0, T1) = 2, and actually oen(Tn, Tn+1) = 2 for any n ≥ 0.
By Lemma 1.2 oen(Tn, Tn+1) is a non-increasing integer sequence, so oen(Tn, Tn+1) =

oen(T∞) for some oen(T∞) and big n (in the above example oen(T∞) = 2). We assume
that oen(Tn, Tn+1) = oen(T∞). For x ∈ T∞ let r(x) be the least number with x ∈
fr(x)(T0), defined for all x ∈ T∞ (e.g., r(x) = 0 for all points x ∈ T0). Since fs(x) ∈
fs+r(x)(T0) ⊂ Ts+r(x) then r(fs(x)) ≤ s + r(x), but r(fs(x)) < s + r(x) is possible too.
Call x ∈ T∞ slow if there is s ≥ 1 with fs(x) ∈ Tr(x)+s−1 and fast otherwise.

The (f)-orbit of a set A ⊂ X is ∪∞n=0f
n(A), and the grand (f)-orbit of A is the set

of all points x so that there are m,n ≥ 0 with fm(x) ∈ fn(A). Let k′′ be the number of
pairwise disjoint orbits of fast critical points. Clearly, a fast point has an infinite
forward orbit. Call the grand orbit of a point x non-cyclic if it contains no cycles; it
is non-cyclic iff the orbit of x is infinite. For a tree W ⊂ X or a growing tree T∞ ⊂ X
vertices with infinite orbits and their grand orbits are called (W -) or (T∞-) exceptional.

Let T∞ be a growing tree. A germ (a, S) of some Tm is called recurrent if fn(a, S)∩
T0 6= ∅ for infinitely many n’s. For every x ∈ Tm the recurrent order ord′Tm

(x) of Tm

at x is the number of recurrent germs of Tm at x. Clearly, ord′Tm
(x) ≤ ordTm(x) (the

equality holds only if all germs of Tm at a are recurrent). A growing tree is recurrent
if all non-precritical exceptional vertices have recurrent order at least 3.

Call a growing tree normal if the images of endpoints of T0 belong to T0. Then
endpoints of T0 are slow. Also, call a periodic non-precritical vertex v of T∞ irrational
iff a germ of some Tm at v is not periodic. Let pI be the number of orbits of the irrational
vertices of T∞, and let pp be the number of preperiodic critical points.

At last, define the local degree of f as follows. Say that f : Tm−1 → Tm has degree
degf |Tm−1

(c) = q at a point c if certain q germs of Tm−1 at c map into one germ of Tm at
f(c) while no q + 1 germs do. Let maxm≥1{degf |Tm−1

(c)} = degf (c); if degf (c) is finite
and ordTm−1(c) is big enough then f(c) remains a vertex of Tm.
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Theorem 1.3. Let T∞ be a growing tree, c1, . . . , ck be critical points of f and we
have that

∑k
i=1 degf (ci) − 1 = D − 1. Let Γ be a non-empty set of exceptional non-

precritical vertices of Tm which belong to pairwise disjoint grand orbits. Then we have
that

∑

v∈Γ(ordTm(v)− 2) ≤ oen(T∞)− pI ≤ k′′ − pI .
Moreover, if T∞ is normal and recurrent then the following inequality can be proven:

∑

v∈Γ(ord′Tm
(v)− 2) ≤ oen(T∞)− pI − 1 ≤ k′′ − pI − 1.

Also, for an exceptional vertex v, ordTm(v) ≤ 3 · 2D−pp−1 ≤ 3 · 2D−1 (if pI = 0) and
ordTm(v) ≤ (pI + 2)2D−pp−pI (if pI ≥ 1) while ord′Tm

(v) ≤ (pI + 1)2D−pp−pI (∀pI).

We prove Theorem 1.3 in the rest of Section 1. Denote the number of vertices (end-
points, edges) of a tree T by V (T ) (End(T ), D(T )) and the set of vertices of T by V(T ).

Lemma 1.4. (1) For any tree W , V (W ) + 1 = End(W )− 1−
∑

v∈V(W )(ordW (v)− 3)
(equivalently, 1+

∑

v∈V(W )(ordW (v)−2) = End(W )−1), and so V (W )+1 ≤ End(W )−1.

(2)
∑kn+1

j=1 (V (tn+1
j ) + 1) ≤ oen(T∞) ≤ oen(T, T1).

Proof. (1) Induction over the number of edges.
(2) Sum up the inequality from (1) over the components of Tn+1 \ Tn.

Consider a tree W and its vertices. Call a vertex v ∈ W quasi-last if f(v) is not a
vertex of W . Denote the set of quasi-last vertices of W by QL(W ). We use this notion
in Theorem 1.5 to estimate the number of T∞-exceptional grand orbits.

Theorem 1.5. Let T∞ = T0 ⊂ T1 ⊂ . . . be a growing tree. Then the following holds.
(1) The endpoints of Tm are f i-images of endpoints of T0, 0 ≤ i ≤ m or f j-images of

critical points, 1 ≤ j ≤ m. In particular, oen(T∞) ≤ End(T0) + k′′, and if all endpoints
of T0 are slow then oen(T∞) ≤ k′′.

(2) Quasi-last vertices of Tm are critical points which are vertices of T∞, or vertices of
components of Tm\Tm−1, or their basepoints which are not vertices of Tm−1. The images
of quasi-last vertices of Tm of the second and third type are either vertices of components
of Tm+1 \ Tm, or basepoints of such components which are not vertices of Tm.

(3) |QL(Tm)| ≤ k + oen(T∞) ≤ k + oen(T0, T1) and among points of QL(Tm) there
are at most oen(T∞) vertices which are not critical points.

(4) The infinite orbit of a vertex x of Tm contains a unique dx ∈ QL(Tm) such that
f i(dx) is not a vertex of Tm for all i > 0. The number of T∞-exceptional grand orbits
is at most k + oen(T∞) and the number of them containing no critical points is at most
oen(T∞).

Proof. (1) If x ∈ Tm is not one of the described images of critical points/endpoints of
T0 then x = fs(y)(s ≤ m), y is not an endpoint of T0, fs is a local homeomorphism at y
and so x is not an endpoint of Tm. If x is a slow critical point/slow endpoint of T0 then
fs(x) ∈ Ts−1 for big s. Hence fs(x) cannot be an endpoint of Tm+1 not belonging to
Tm. The rest easily follows.

(2) A vertex a of Tm−1 which is not a critical point is not a quasi-last vertex of Tm

because f(a) is a vertex of Tm. So, quasi-last vertices of Tm are either critical points
which are vertices of T∞ or vertices of Tm but not vertices of Tm−1, i.e. vertices of
components of Tm+1 \ Tm or their basepoints which are not vertices of Tm.

Let v′ be a quasi-last vertex of Tm but not a critical point. Consider two cases.
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(i) u = f(v′) /∈ Tm. Then u is a vertex of a component of Tm+1 \ Tm.
(ii) u = f(v′) ∈ Tm. Suppose that u is not a basepoint of a component of Tm+1 \ Tm.

Then a small neighborhood of v′ in Tm maps onto a small neighborhood of u in Tm, and
so u is a vertex of Tm, a contradiction.

(3) Immediately follows from (2) and Lemma 1.4(2).
(4) The former part of the claim is obvious; the latter follows from (3) because quasi-

last vertices dx corresponding to vertices from distinct grand orbits are distinct.

Corollary 1.6. Let T∞ be a growing tree, A be a finite set, and M ⊂ T∞ be a non-
degenerate connected set such that eventual preimages of vertices of T∞ or of points of
A are dense in M . Then M is non-wandering.

Proof. Assume that M is wandering. Then M cannot contain preperiodic points. By
our assumptions this implies that points of T∞-exceptional grand orbits or grand orbits
of points of A are dense in M . Hence there are two points y, z ∈ M from the same
grand orbit and thus f i(y) = f j(z) for some i, j. If i 6= j then f i(M) is not disjoint from
f j(M), a contradiction. Thus i = j and so for some s < j the set fs(M) covers a critical
point. Repeating this argument for a subinterval of fs(M) disjoint from critical points
we will find a critical point covered twice by different images of M , a contradiction.

We need a new construction. As we noticed above, for a growing tree T∞ Lemma
1.1 implies that Tn+1 \ Tn = ∪kn+1

j=1 tn+1
j where tn+1

j are components of Tn+1 \ Tn with
basepoints xn+1

j . We call the germ of t̄n+1
j at xn+1

j the base germ (of t̄n+1
j ). Also,

germs at vertices of T∞ are called v-germs.
Let u ∈ Tm+1 be a non-preperiodic point for which there are points v ∈ Tm and num-

bers kv with v, f(v), . . . , fk(v)(v) vertices of Tm but not critical points and fk(v)+1(v) = u
not a vertex of Tm. Thus, v gets mapped through vertices of Tm which are not criti-
cal points until fk(v)(v) is a quasi-last vertex of Tm (and so fk(v)+1(v) = u is a vertex
of Tm+1). Let the set of all such v be Om(u) and the set of all points u with non-
empty Om(u) be Πm. The union Om of sets Om(u) over all u ∈ Πm consists of all
non-preperiodic points v such that v, f(v), . . . , fk(v)(v) are vertices of Tm but not critical
points of f while fk(v)+1(v) is not a vertex of Tm.

Define the set OGm(u) of germs as follows: if x ∈ Om(u), (x,A) is a germ of Tm at
x, i ≤ k(x) + 1 and f i(x,A) is a germ of Tm+1 but not a germ of Tm then we include
f i(x, A) in OGm(u). The union of sets OGm(u) over all u ∈ Πm is denoted by OGm.
Also, for a germ (v, A) of Tm at v ∈ Om(u) we count how many times along the way
to u its images will be germs of Tm+1 but not germs of Tm and denote this number by
ψ(v,A). In other words, ψ(v, A) counts the number of times f i(v, A) is in Tm+1 \Tm for
i = 1, dots, k(v) + 1. Then we sum up ψ(v, A) over all germs of Tm at v and denote this
sum by ϕ(v). Define ξ(u) for u ∈ Πm as 2 if u /∈ Tm and 0 if u ∈ Tm.

Lemma 1.7. (1) |Πm| ≤ oen(T∞) and every point u ∈ Πm is either a vertex of a
component of Tm+1 \ Tm, or a basepoint u of such a component with ordTm(u) ≤ 2.

(2) For u 6= u′ ∈ Πm the sets OGm(u), OGm(u′) are disjoint.
(3) A germ of OGm is either a v-germ or a base germ of a component of Tm+1 \ Tm.
(4) Let u ∈ Πm, v ∈ Om(u). If u is a vertex of a component of Tm+1 \ Tm then

ψ(v, A) ≥ 1 for any germ (v, A) of Tm at v while if u is a basepoint of a component
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of Tm+1 \ Tm then ψ(v, A) ≥ 1 for all germs (v, A) of Tm at v except for at most
ordTm(u) ≤ 2 germs whose all images under f, . . . , fk(v)+1 are germs of Tm.

(5) |OGm(u)| − ξ(u) ≥ ϕ(v)− ξ(u) ≥ ordTm(v)− 2 where u ∈ Πm and v ∈ Om(u).
(6) If in the above situation ψ(v,A) ≥ 2 for some germ at v, or if ψ(v, A) ≥ 1 for

some germ at v mapped by fk(v)+1 into a germ of Tm at u, or ordTm(u) = 1 (the last
two conditions may take place only if u ∈ Tm is a basepoint) then |OGm(u)| − ξ(u) ≥
ϕ(v)− ξ(u) ≥ ordTm(v)− 1.

Proof. (1) Follows from Theorem 1.5(2) and Theorem 1.5(3).
(2) Let u 6= u′ ∈ Πm but (v, A) is a common germ of OGm(u) and OGm(u′). Then

u, u′ are not vertices of Tm. Since fk(v)+1 is the first power of f mapping v into a point
which is not a vertex of Tm then u = u′ = fk(v)+1(v), a contradiction.

(3) Let u ∈ Πm, v ∈ Om(u). By the definition points v, f(v), . . . , fk(v) are vertices
of Tm. Germs of Tm+1 but not of Tm at these points are base germs of components of
Tm+1 \ Tm. Now, by (1) the point u = fk(v)+1(v) is a vertex/basepoint of a component
of Tm+1 \ Tm, so a germ of Tm+1 but not of Tm at u is a v-germ/a base germ of Tm+1.

(4) Let u ∈ Πm be a vertex of a component of Tm+1 \ Tm, v ∈ Om(u), and (v, A) be a
germ of Tm at v. Then fk(v)+1(v, A) is not a germ of Tm, thus there is the minimal power
f i, i ≤ k(v) + 1 of f such that f i(v, A) is not a germ of Tm but a germ of Tm+1, which
has to be counted in ψ(v, A). Hence, ψ(v, A) ≥ 1. The second claim follows similarly.

(5) The function ψ(v, A) counts the number of images of the germ (v, A) under f i, 1 ≤
i ≤ k(v)+1 which are germs of Tm+1 but not of Tm. Since points f i(v), 0 ≤ i ≤ k(v) are
not critical then the sets of germs initiated by distinct germs at v are disjoint. By the
definition these germs are germs from OGm(u). The former inequality |OGm(u)|−ξ(u) ≥
ϕ(v) − ξ(u) follows. To prove the latter consider two cases. If u ∈ Πm is a vertex of a
component of Tm+1 \ Tm then by (4) ψ(v, A) ≥ 1 for any germ (v, A) of Tm at v, hence
ϕ(v) ≥ ordTm(v) and so ϕ(v) − ξ(u) ≥ ordTm(v) − 2. If u ∈ Πm is the basepoint of a
component of Tm+1 \ Tm then by (4) ψ(v, A) ≥ 1 for all germs (v, A) of Tm at v except
for at most ordTm(u) ≤ 2. Thus ϕ(v)− ξ(u) ≥ ordTm(v)− 2.

(6) Conditions of the claim imply ϕ(v) ≥ ordTm(v)+1 (if u /∈ Tm) or ϕ(v) ≥ ordTm(v)−
1 (if u ∈ Tm). So, they imply ϕ(v) − ξ(u) ≥ ordTm(v) − 1. By (5) we get the required
inequality.

Theorem 1.8 relies upon Lemma 1.7 and Lemma 1.4(1).

Theorem 1.8. Let Γ be a non-empty set of exceptional vertices of Tm which are non-
precritical and belong to pairwise disjoint grand orbits. Then the following holds.

(1)
∑

v∈Γ(ordTm(v)− 2) ≤
∑

u∈Πm
(|OGm(u)| − ξ(u)) ≤ oen(T∞).

(2) ordTm(v) ≤ oen(T∞)+2 for any exceptional vertex v of Tn and, moreover, if there
are s different grand orbits of such vertices then ordTm(v) ≤ oen(T∞)− s + 3.

(3) If
∑

v∈Γ(ordTm(v)− 2) = oen(T∞) then:
(a) the set OGm coincides with the set of all v-germs/base germs of components of

Tm+1 \ Tm and for any germ (v, A) we have ψ(v, A) ≤ 1;
(b) the set Πm is exactly the set of all vertices of components of Tm+1 \ Tm united

with the set of all basepoints of such components which are not vertices of Tm;
(c) all points of Πm belong to distinct grand orbits, a vertex/basepoint v of a component

of Tm+1 \ Tm may belong to the grand orbit of u ∈ Πm, u 6= v only if v is a basepoint
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which is a vertex of Tm with fk(v)+1(v) = u, and no point of Πm is ever mapped into a
vertex of Tm+1 by a positive iterate of f ;

(d) no condition from Lemma 1.7(6) takes place (in particular no basepoint of a com-
ponent of Tm+1 \ Tm is an endpoint of Tm);

(e) no germ of OGm maps into a v-germ of Tm+1 by a positive iterate of f .

Proof. (1) By the definition in the sum U =
∑

u∈Πm
(|OGm(u)|−ξ(u)) every v-germ/base

germ of a component of Tm+1 \ Tm is counted at most once. Assume that Tm+1 \ Tm =
∪km+1

j=1 tm+1
j where tm+1

j are components of Tm+1 \ Tm. Then moving from U to the sum

V =
∑km+1

j=1 (1 +
∑

u∈V(tm+1
j )(ordtm+1

j
(u) − 2)) we in fact add some v-germs/base germs

of some components of Tm+1 \ Tm but also subtract numbers 2 taken over all vertices of
components of Tm+1 \ Tm which do not belong to Πm. Now, if x /∈ Πm is a vertex of a
component of Tm+1\Tm then germs of Tm+1 at x do not belong to OGm and therefore are
added when we move from U to V . This proves that U ≤ V , and by Lemma 1.4(1) we get
U ≤ V =

∑km+1
j=1 oen(tm+1

j ) = oen(T∞). It remains to notice that since all v ∈ Γ belong
to disjoint grand orbits then points fk(v)+1(v), v ∈ Γ are all distinct which together with
the estimate from Lemma 1.7(5) implies

∑

v∈Γ(ordTm(v)−2) ≤
∑

u∈Πm
(|OGm(u)|−ξ(u))

and completes the proof of the claim.
(2) Follows from (1).
(3) (a) If

∑

v∈Γ(ordTm(v) − 2) = oen(T∞) then all inequalities from above become
equalities. In particular this means that the set of germs OGm is the set of all v-
germs/base germs of components of Tm+1 \ Tm. Also, by Lemma 1.7(6) if ψ(v,A) ≥ 2
for a germ (v, A) then for the point u = fk(v)+1(v) ∈ Πm we have ordTm(v) − 2 ≤
|OGm(u)| − ξ(u)− 1 and by the above inequalities

∑

v∈Γ(ordTm(v)− 2) ≤ oen(T∞)− 1,
a contradiction. This proves the claim (a).

(b) If a vertex of a component of Tm+1 \ Tm or a basepoint of such component which
is not a vertex of Tm does not belong to Πm then the germs at this point do not be-
long to OGm because by the definition such point cannot appear in any orbit segment
v, . . . , fk(v)+1(v) for v ∈ Om, a contradiction with (a).

(c) By (a), all points u ∈ Πm appear as fk(v)+1(v) for various v ∈ Γ. Since points
of Γ belong to distinct grand orbits we see that so do all points of Πm. This proves the
first part of the claim (c). Let us show that a point u ∈ Πm and a vertex/basepoint
v 6= u of a component of Tm+1 \Tm may belong to the same grand orbit only in one way:
u = fk(v)+1(v). Indeed, if v ∈ Πm then we get two points u 6= v in Πm which belong to
the same grand orbit, a contradiction with the first statement of (c). So, v /∈ Πm.

By (b) this means that v is a basepoint of a component of Tm+1 \ Tm which is also
a vertex of Tm. Then fk(v)+1(v) = u′ ∈ Πm. If u′ 6= u then u′ and u will be points
of Πm which belong to the same grand orbit, a contradiction. Hence u′ = u as desired.
Finally, assume that for a point u ∈ Πm there exists n > 0 such that fn(u) is a vertex
of Tm+1. By what we have already proven in (c), fn(u) cannot be a vertex/basepoint of
a component of Tm+1 \ Tm which is not a vertex of Tm. Thus it is a vertex of Tm. On
the other hand, if fn(u) is a vertex of Tm then since its orbit avoids critical points and
is infinite we can find the first quasi-last vertex of Tm in the orbit of fn(u) which must
be a vertex/basepoint of a component of Tm+1 \ Tm, a contradiction.
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(d) If a condition from Lemma 1.7(6) takes place then |OGm(u)| − ξ(u) ≥ ϕ(v) −
ξ(u) ≥ ordTm(v) − 1 for appropriate points v ∈ Om(u). By (1) this would imply that
∑

v∈Γ(ordTm(v)− 2) ≤ oen(T∞)− 1, a contradiction with the standing assumption.
(e) Let (x,A) ∈ OGm. If x ∈ Πm then by (c) its orbit avoids vertices of Tm+1 and we

are done. Let x /∈ Πm. By (a) and (b) then (x,A) is the base germ of a component of
Tm+1 \ Tm at a vertex x of Tm. So, x maps into a point u ∈ Πm by fk(x)+1 and for all
i, 0 ≤ i ≤ k(x) the points f i(x) are vertices of Tm. Hence, f i(x,A), 0 ≤ i ≤ k(x) cannot
be a v-germ of a component of Tm+1 \ Tm. However, fk(x)+1(x, A) cannot be a germ of
Tm+1 \Tm since then ψ(x, A) would be greater than 1 while by (a) we have ψ(x,A) = 1.
Finally, if j > k(x) + 1 then f j(x) is not a vertex of Tm+1 by (c). Thus, f i(x,A) is not
a v-germ of Tm+1 for any i which completes the proof.

Let kf be the number of fast critical points. Then k′′ ≤ kf (the definitions of k′′ and
other constants can be found before the statement of Theorem 1.3).

Corollary 1.9. Let T∞ be a growing tree, c1, . . . , ck be critical points of f, degf (ci) =
di, 1 ≤ i ≤ k and x be an exceptional vertex of T∞. Then the following holds.

(1) ordTm(x) ≤ (oen(T∞) + 2)
∏k

i=1 di for any m.
(2) If

∑k
i=1(di − 1) = D − 1 and all endpoints of T0 are slow then k′′ = 0 implies

ordTm(x) ≤ 2D−pp , k′′ ≥ 1 implies ordTm ≤ 2D−pp−kf (k′′ + 2) ≤ 2D−pp−kf (kf + 2) ≤
2D−pp−k′′(k′′ + 2), so always ordTm(x) ≤ 3 · 2D−pp−1 ≤ 3 · 2D−1.

Proof. (1) We may assume that x is a vertex of Tm with big m. Since the orbit of x is
infinite there exists a number l such that the orbit of f l(x) is disjoint from the set of
critical points of f . Then ordTm+l(x) ≤ oen(T∞)+2 by Theorem 1.8(2) applied to f l(x).
By the definition of the degree this implies that ordTm(x) ≤ (oen(T∞) + 2)

∏n
i=1 di.

(2) For our vertex x ∈ Tm there exists a finite collection of numbers i1 < i2 < · · · < il
with f ij (x), 1 ≤ j ≤ l being all critical points of f in the orbit of x. If k′′ = 0 then the
maximal value of l is k and by Theorem 1.8(2) we have ordTm(f il+1(x)) ≤ oen(T∞)+2 ≤
2. Applying the arguments from (1) to the map f il+1 at x we get then that ordTm(x) ≤
2

∏k−pp
j=1 dij where the product is taken over all non-preperiodic critical points. Since

every preperiodic critical point has degree at least 2 we see that
∑k−pp

j=1 (dij − 1) ≤
D − pp − 1. Hence

∏k−pp
j=1 dij ≤ 2D−pp−1 and ordTm(x) ≤ 2

∏k−pp
j=1 dij ≤ 2D−pp ≤ 2D.

Assume that k′′ ≥ 1. Then points f i1(x), . . . , f il−1(x) are slow, so fast critical points
come from the set of other critical points from which pp preperiodic critical points must
be excluded. Hence kf ≤ k−pp− l+1 and so l ≤ k−pp−kf +1. Since by the assumption
all endpoints of T0 are slow, by Lemma 1.5(1) oen(T∞) ≤ k′′ and by Theorem 1.8(2)
ordTm(f il+1(x)) ≤ oen(T∞) + 2 ≤ k′′ + 2. Applying the arguments from (1) to the
map f il+1 at x we get that ordTm(x) ≤ (k′′ + 2)

∏l
j=1 dij , and the maximal value of

the expression on the right is achieved when l is maximal, i.e. for l = k − pp − kf + 1.
Observe that in the sum

∑l
j=1(dij −1) at least kf +pp−1 critical points are not involved,

hence this sum cannot exceed D − 1 − (pp + kf − 1) = D − pp − kf and we get that
∏l

j=1 dij ≤ 2D−pp−kf . Thus ordTm(x) ≤ (k′′+2)2D−pp−kf and the rest easily follows.

It is useful to consider the “letter E” example described right before Lemma 1.1 and
illustrated on Figure 1 in terms of Theorem 1.8. Indeed, for the growing tree T0 from that
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example oen(T∞) = 2. There are two grand orbits of exceptional vertices of T∞, namely
the grand orbit of (0, 1) and the grand orbit of (0,−1). A non-empty set Γ of exceptional
vertices of Tm which are non-precritical and belong to pairwise disjoint grand orbits can at
most consist of two points v1, v2 from these orbits. Then ordTm(v1) = ordTm(v2) = 3, and
we have

∑

v∈Γ(ordTm(v)−2) = (ordTm(v1)−2)+(ordTm(v2)−2) = 1+1 = 2 = oen(T∞)
(compare with Theorem 1.8(1)). Moreover, since there are s = 2 distinct grand orbits by
Theorem 1.8(2) we get ordTm(vi) ≤ oen(T∞) − s + 3 = 3, i = 1, 2 as indeed is the case.
The reader can easily verify the rest of Theorem 1.8 in this case.

The “letter E” example is naturally non-recurrent. We strengthen our estimates by
making mild recurrent assumptions. Let (a, A) be a germ of a tree W and W (a,A) be
the component W (a,A) of W \ {a} containing (a,A) : a is an endpoint of W (a,A) and
(a,A) is the unique germ of W (a,A) at a. Call W (a, A) the grape of W generated
by (a,A). If T∞ is a growing tree and (a,A) is a germ of Tm for m ≥ 0, the set
∪m≥0Tm(a,A) = T∞(a,A) is called the grape of T∞ generated by (a,A). A germ (a,A)
and the grape T∞(a,A) are recurrent if fn(T∞(a,A)) ∩ T0 6= ∅ for infinitely many n.
For any x ∈ Tm the recurrent order ord′Tm

(x) of Tm at x is the number of recurrent
germs of Tm at x. Then ord′Tm

(x) ≤ ordTm(x) (the equality holds only if all germs of Tm

at a are recurrent). Lemma 1.10 classifies behaviors of base germs and their grapes.

Lemma 1.10. Let t be a component of Tm+1 \ Tm, (x,A) be its base germ and D =
T∞(x,A). Then the following are possible behaviors of D.

(1) For all n ≥ 0 we have fn(x) ∈ Tm and the set fn(D) is disjoint from Tm.
(2) There exists a number j such that x, f(x), . . . , f j(x) ∈ Tm, j is the minimal such

number that f j(D) ∩ Tm 6= ∅ and then f j(x,A) is a germ of Tm.
(3) There exists the minimal number s < ∞ such that fs(x) /∈ Tm and all D, f(D)

. . . , fs−1(D) are disjoint from Tm. Denote by τ the component of Tm+1 \ Tm such that
fs(x) ∈ τ and let (y′, B) be the base germ of τ . Then fs(D) ⊂ T∞(y′, B).

Proof. If (1) does not hold consider the orbit of D until one of the following takes
place: either f j(x) ∈ Tm and f j(D) ∩ Tm 6= ∅ or f j(x) /∈ Tm. The first possibility
corresponds to the case (2) of the lemma, and it remains to prove then that f j(x, A)
is a germ of Tm. Indeed, by the minimality of j the sets D, f(D), . . . , f j−1(D) are
disjoint from Tm and thus contain no critical points inside. Let y ∈ D be such that
f j(y) ∈ Tm; by the definition of the grape the germ of [x, y] at x is (x,A). Then
[x, y] ⊂ D, f [x, y] ⊂ f(D), . . . , f j−1[x, y] ⊂ f j−1(D) contain no critical points of f .
Hence f j [x, y] = [f j(x), f j(y)] ⊂ Tm is a homeomorphic image of [x, y], and so the
f j-image of the germ (x,A) of [x, y] at x is a germ of Tm at f j(x) as desired.

Suppose now that x, f(x), . . . , fs−1(x) ∈ Tm, fs(x) /∈ Tm for some s < ∞ and all
D, f(D), . . . , fs−1(D) are disjoint from Tm (case (3)). We show that then fs(D) cannot
contain y′. Consider the maximal component K ⊂ Tm of the f−1-preimage of τ contain-
ing fs−1x and show that y′ ∈ f(K̄). Indeed, if not then we extend K further until y′ is
reached by the image of K̄, a contradiction. Moreover, critical points do not belong to
K because otherwise their images would belong to Tm+1 \ Tm while they all belong to
T1 and m is greater than 1. Hence f |K̄ is a homeomorphism, just like f |fs−1(D) (recall
that all f i(D) are disjoint from Tm for 0 ≤ i < s and hence do not contain critical points
of f).
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Choose z ∈ K̄ with f(z) = y′. Since f |K̄ is a homeomorphism then f [fs−1(x), z] =
[fs(x), y]. Now, if y ∈ fs(D) then similarly we can find a point ζ ∈ fs−1(D) such
that f [fs−1(x), ζ] = [fs(x), y]. However this implies that fs−1(x) is a critical point and
f(fs−1(x)) ∈ Tm+1 \Tm which is impossible because m is big. The contradiction implies
that y /∈ fs(D). Clearly, this in turn implies that fs(D) ⊂ T∞(y, B) as desired.

Theorem 1.11 strengthens Theorem 1.8 for the recurrent order. A growing tree is
recurrent if all non-precritical exceptional vertices have recurrent order at least 3.

Theorem 1.11. Let Γ be a non-empty set of exceptional vertices of Tm which are non-
precritical and belong to pairwise disjoint grand orbits. Then

∑

v∈Γ(ord′Tm
(v) − 2) ≤

oen(T∞) − 1. In particular, if T∞ is recurrent then an exceptional vertex is either pre-
critical or belongs to one of at most oen(T∞) − 1 grand orbits, and overall there are at
most k + oen(T∞)− 1 exceptional grand orbits.

Proof. If the inequality in question does not hold then since ord′Tm
(x) ≤ ordTm(x) we

get by Theorem 1.8(1) that
∑

v∈Γ(ord′Tm
(v)− 2) =

∑

v∈Γ(ordTm(v)− 2) = oen(T∞) and
all germs in OGm (by Theorem 1.8 these are all germs of components of Tm+1 \ Tm at
their vertices/basepoint) are recurrent. Also, all vertices of components of Tm+1\Tm and
their basepoints belong to various orbits of points of Γ, thus they all are non-precritical.
Our aim is to draw a contradiction from these facts (cf. [Le]).

We consider the cases from Lemma 1.10 which may realize for the base germ (x,A)
of a component t of Tm+1 \ Tm. Let T∞(x,A) = D. Clearly, case (1) does not realize
since (x,A) is recurrent and hence fn(D) cannot be disjoint from Tm for all n. If case
(2) realizes then for some j > 0 we have x, f(x), . . . , f j(x) ∈ Tm, j is the minimal
such number that f j(D) ∩ Tm 6= ∅ and f j(x,A) is a germ of Tm. Now, by Theorem
1.8(3)(d) the conditions from Lemma 1.7(6) cannot take place, so in particular basepoints
of components of Tm+1 \ Tm are not endpoints of Tm and hence are vertices of Tm+1.

Consider the segment x, f(x), . . . , f j(x) of the orbit of x. Observe that by Theorem
1.8(3)(e) (x,A) is never mapped into a v-germ of Tm+1, hence f j(x) is not a vertex of
Tm+1, in particular f j(x) is not a basepoint of a component of Tm+1 \ Tm. Let i be the
maximal number no greater than j such that f i(x) is the basepoint of a component of
Tm+1 \ Tm; by what we have just proven i < j and all points f i+1(x), . . . , f j(x) are not
basepoints of components of Tm+1 \ Tm. Therefore the germs (f i(x), U) and (f i(x), V )
of Tm at f i(x) (there are at least two of them since such basepoints are not endpoints
of Tm) are mapped by f, f2, . . . , f j−i into germs of Tm. In particular, f j−i(f i(x), U)
and f j−i(f i(x), V ) are germs of Tm. If two of the germs f j(x, A), f j(f i(x), U) and
f j(f i(x), V ) coincide then there must be a critical point among points f i(x), . . . , f j(x).
However, this is impossible as we saw in the first paragraph of the proof. Hence f j(x) is
a vertex of Tm+1 and so f j(x,A) is a v-germ of Tm+1 which is impossible by Theorem
1.8(3)(e). Thus the case (2) of Lemma 1.10 does not take place.

So, the remaining possibility for a base germ of a component Tm+1 \ Tm is (3) from
Lemma 1.13. Let Tm+1 \ Tm = ∪km+1

j=1 tm+1
j where tm+1

j are components of Tm+1 \ Tm.
Denote by Dj the grape of T∞ generated by the base germ of tm+1

j . Then by what we have
proven for any j there exists s and i such that Dj , f(Dj), . . . , fs−1(Dj) are disjoint from
Tm and fs(Dj) ⊂ Di. This implies that for some r and l we have Dr, f(Dr), . . . , f l−1(Dr)
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are disjoint from Tm while f l(Dr) ⊂ Dr. Clearly, this implies, that the base germ (and
actually all germs) of Dr are not recurrent, a contradiction which proves the claim.

Corollary 1.12 is similar to Corollary 1.9 but deals with the recurrent order at vertices.

Corollary 1.12. Let T∞ be a growing tree, c1, . . . , ck be critical points of f, degf (ci) =
di, 1 ≤ i ≤ k and x be an exceptional vertex of T∞. Then the following holds.

(1) ord′Tm
(y) ≤ (oen(T∞) + 1)

∏n
i=1 di for any m.

(2) If
∑k

i=1(di − 1) = D − 1 and all endpoints of T0 are slow then we have that
ordTm ≤ 2D−pp−kf (k′′ + 1) ≤ 2D−pp−kf (kf + 1) ≤ 2D−pp−k′′(k′′ + 1) ≤ 2D−pp ≤ 2D.

Proof. The proof almost literally repeats that of Corollary 1.9. The only exception is
that instead of the estimate ordTm(v) ≤ oen(T∞)+2 taken from Theorem 1.8(2) we now
rely upon the estimate ord′Tm

(v) ≤ oen(T∞) + 1 from Theorem 1.11.

Proof of Theorem 1.3. It suffices to prove the theorem for m large enough. Let v be
an irrational vertex of period p. Fix Tm with big m so that a non-periodic germ at
v has already appeared. If points v, . . . , fp−1(v) are not basepoints of a component of
Tm+1 \Tm then the germs of Tm at them are mapped in each other and form an invariant
set of germs. By the assumption points v, . . . , fp−1(v) are not critical, so the set of germs
in question is the union of several periodic orbits of germs, a contradiction.

Hence, for any periodic orbit of an irrational vertex from some time on there is a germ
at one of its points v′ which is a base germ of a component t′ of Tm+1 \ Tm, and there
are at least pI such germs. By the definitions, a point u ∈ Πm is not the base point of
t′, and a germ of OGm is not the base germ of t′. Thus in the estimate from Theorem
1.8(1) in the sum

∑km+1
j=1 (1+

∑

u∈V(tm+1
j )(ordtm+1

j
(u)−2)) =

∑km+1
j=1 oen(tm+1

j ) the above
mentioned pI germs must be excluded, and we obtain

∑

v∈Γ

(ordTm(v)− 2) ≤
∑

u∈Πm

(|OGm(u)| − ξ(u)) ≤ oen(T∞)− pI .

If we suppose that the second inequality from the theorem does not hold, then

∑

v∈Γ

(ord′Tm
(v)− 2) =

∑

v∈Γ

(ordTm(v)− 2) = oen(T∞)− pI

and all germs in OGm are recurrent. Also, all vertices of components of Tm+1 \ Tm and
their basepoints which are not irrational belong to orbits of points of Γ, so they are not
precritical. Repeating arguments from Theorem 1.11 we get a contradiction.

To prove the remaining estimates for ordTm(v) and ord′Tm
(v) observe that by the first

part of the theorem we have k′′ ≥ pI and then apply Corollaries 1.9 and 1.12.

Call a growing tree T∞ strongly recurrent if for any x ∈ Tm which is not an endpoint
of Tm there exists k with fk(x) ∈ T0. Strongly recurrent trees are recurrent; for them
the order and the recurrent order at points of T∞ are the same and all recurrent order
estimates apply. In fact, all growing trees arising below in our study of laminations and
polynomials are strongly recurrent. The following Proposition 1.13 will be used later on.
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Proposition 1.13. Let T∞ be a strongly recurrent normal growing tree with s critical
points of degree 2. Then the following two cases may take place:

(1) if T∞ is not a finite tree then the number of all grand orbits of exceptional vertices
of T∞ is at most 2k − s− 1;

(2) if T∞ is a finite tree then all exceptional vertices of T∞ are precritical and the
number of their grand orbits is at most k.

In particular, if all turning points are of degree 2 (that is, s = k) then the number of
all exceptional orbits of vertices of T∞ is at most k − 1 if T∞ is infinite and k if T∞ is
finite, and in the latter case exceptional vertices are all precritical.

Proof. (1) Assume that T∞ is not finite. Then by the definition there are fast critical
points. Consider now a few cases.

Assume that there exist exceptional non-precritical vertices of T∞ with non-cyclic
grand orbits. Denote the set of all turning points of degree 2 by S2. Suppose that there
are r points c ∈ S2 which become vertices of Tm for big m, and s − r points c ∈ S2

which never become vertices of Tm. Let us show that oen(T∞) ≤ k − r. Indeed, if
c ∈ S2 is a vertex of Tm for some m then f(c) cannot be an endpoint of Tm+1 because
ordTm+1(f(c)) ≥ 2. Since T∞ is strongly recurrent we see that f(c) is mapped back
into T0 by some power of f , hence c is slow. So, the number of fast turning points of
T0 is at most k − r. By Lemma 1.5(1) this implies that oen(T∞) ≤ k − r and so by
Theorem 1.3 the number of all non-cyclic grand orbits of non-precritical vertices is at
most k − r − pI − 1 ≤ k − r − 1.

On the other hand, a turning point which never becomes a vertex of Tm cannot
contribute to the list of non-cyclic grand orbits of vertices of T∞. Since there are s − r
such critical points of degree 2 we conclude that the number of non-cyclic grand orbits
of critical points is at most k− (s− r). Therefore the overall number of non-cyclic grand
orbits of vertices of T∞ is at most k − r − 1 + k − (s− r) = 2k − s− 1.

Now, assume that there are no exceptional non-precritical vertices of T∞. In this case
the only source of exceptional vertices are critical points, and so the number of their
grand orbits is at most k. Hence if s < k we are done. If k = s (i.e., all critical points are
of degree 2) then the fact that there exist fast critical points implies that at least one of
them is not a vertex of T∞ (vertices of a strongly recurrent growing tree are slow), and
so the estimate from above is k − 1 = k − s− 1.

(2) If T∞ is finite then the infinite orbit of a vertex must contain a critical point, so
the number of all their grand orbits is at most k.

2. Laminations

Here we construct a growing tree in the quotient space of a closed invariant lami-
nation motivated by some ideas of holomorphic dynamics [DH], [Do1], [Le]. Then we
apply results of Section 1 and prove Theorem B and the full version of Theorem A of
Introduction (see Theorem 2.10).

Let us start with precise definitions. Consider an equivalence relation ∼ on the unit
circle T = R/Z (identified with S1 = {z ∈ C : |z| = 1}) with the following properties
([Do1], [McM], cf. [Th]):

(E1) ∼ is closed: the graph of ∼ is a closed set in T× T;
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(E2) ∼ defines a lamination, i.e. it is unlinked: if t1 ∼ t2 ∈ S1 and t3 ∼ t4 ∈ S1,
but t2 6∼ t3, then the open intervals in C with the endpoints t1, t2 and t3, t4 are disjoint;

(E3) each class of equivalence ∼ is totally disconnected.
Call ∼ a closed lamination. We always assume that it is non-degenerate, i.e.

has a class of more than one point. Equivalence classes of ∼ are called (∼-)classes; for
x ∈ S1 let Cl(x) be its class. A ∼-class that consists of exactly two (2) points is called
a leaf while a ∼-class that consists of at least three (3) points is called a gap (cf. [Th]).
Note that laminations in [Th] do not always arise from an equivalence relation on T.
Also, a gap in [Th] is defined as a component of D\{the union of convex hulls of leaves}.
Our definitions are closer to [Do1], [McM].

Fix an integer d > 1, denote by σd = σ : T → T the map σ(t) = d · t( mod 1) and
identify it with the map z 7→ zd on S1. Say that a subset of S1 is split into classes if it
contains a class of each its element. The relation ∼ is called (σ-)invariant iff:

(D1) ∼ is forward invariant: for a class g, the set σ(g) is a class too
which implies that
(D2) ∼ is backward invariant: for a class g, its preimage σ−1(g) = {x ∈ T : σ(x) ∈

g} is split into classes;
(D3) for any gap g, the map σ : g → σ(g) is a covering map with positive orientation.
Call a class g critical iff the map σ : g → σ(g) is not 1-to-1. Let k∼ be the maximal

number of critical classes g such that σ(g) is a single point with the infinite σ-orbit (i.e.,
σ(g) is an irrational point of T) and the orbits of g are pairwise disjoint.

Let D be the open disk bounded by S1, L∼ = L be the union of ∼-hulls, i.e. convex
hulls (in the Poincaré metric) of ∼-classes; by the definition ∼-hulls are contained in D̄
but not in D. Define an extension ' of ∼ onto D̄ as follows [Do1]: a '-class is a ∼-hull
or a point of D̄ \ L. Extend ' onto C by declaring that a point in C \ D̄ is equivalent
only to itself. Call a connected component of the complement D \L a (∼-)component.
Given an open set Ω in D, denote by E(Ω) the set Ω̄ ∩ S1. Below Ω is usually bounded
by geodesics intersecting each other only at their endpoints on the circle, and then Ω̄ is
the convex hull of the set E(Ω).

We construct a growing tree in the quotient space of ' and apply results of Section 1.
First we need new definitions. Let (x, y) be the Poincaré geodesic in D joining x, y ∈ S1.
Call (x, y) a (∼-)geodesic if x ∼ y. We identify the ∼-geodesic (x, y) with the pair of
points {x, y} and speak of these two objects interchangeably. If (x, y) is a ∼-geodesic we
say that σ maps (x, y) onto (x′, y′) if σ(x) = x′ and σ(y) = y′. By < x, y > we mean
one of two arcs in S1 with endpoints x, y.

Lemma 2.1. Let Ω be a ∼-component. Then E(Ω) = E is a Cantor set and σ(E) =
E(Ω′), where Ω′ is a ∼-component. Moreover, let x1, x2 ∈ E be the endpoints of a
component I of S1 \ E = E′. Then x1 ∼ x2, Cl(x1) ⊂ Ī , and if x′1 ∈ E is such that
σ(x′1) = σ(x1) then one of the following cases holds:

(1) σ(x1) 6= σ(x2) and there is x′2 ∈ E such that σ(x′2) = σ(x2) and x′1, x
′
2 are

endpoints of another component of E′;
(2) σ(x1) = σ(x2) and there is x′2 ∈ E such that σ(x′2) = σ(x1) and x′1, x

′
2 are

endpoints of a component of E′;
(3) σ(x1) = σ(x2) and there is no x′2 ∈ E such that x′1, x

′
2 are endpoints of a compo-

nent of E′.
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Proof. For the sake of definiteness we assume that a point which runs within I from x1

to x2 has to run counterclockwise.
First we show that x1 ∼ x2 and Cl(x1) ⊂ Ī. Let l be a component of ∂Ω \ {x1, x2},

which is disjoint with S1. Any point x ∈ l is then the limit of a sequence of points xn

so that each xn lies in a boundary of a ∼ hull. Hence, xn ∈ ln where ln are pairwise
disjoint ∼-geodesics. Consider two possibilities.

(i) The sequence {ln} is finite. Then x belongs to one of them, l(x).
(ii) The sequence {ln} is infinite. Then x belongs to a geodesic l(x) which is the limit

of ln.
Since the geodesics l(x) for different x ∈ l are either disjoint or coincide, we see that

l(x) = (x1, x2) for every x ∈ l. Thus l = (x1, x2). Moreover, the endpoints of ln are ∼
equivalent and the lamination is closed, therefore, x1 ∼ x2. Also, Ω is disjoint with the
' classes, therefore Cl(x1) ⊂ Ī. Denote Cl(x1) by K.

Let us show that E is a Cantor set. The fact that Cl(x1) ⊂ Ī implies that x1 is not an
isolated point in E. Indeed, otherwise there is another complementary to E arc < z, x1 >
and by the above proven z ∼ x1, a contradiction to Cl(x1) ⊂ Ī. Clearly, this means that
there are no isolated points in E at all. To prove that E is a Cantor set it remains to
prove that E contains no subintervals. This follows from the fact that some σ-iterate of
any interval covers S1.

Let I ′ = S1\I. Let J ′ be the arc running clockwise from σ(x1) to σ(x2) and J = S1\J ′.
Then J ′ contains σ-images of small semi-neighborhoods of x1, x2 non-disjoint from E.
We show that J is disjoint from σ(E). It is clear if σ(x1) = σ(x2), so we assume
that σ(x1) 6= σ(x2). By (D3) for every class-preimage of σ(K) we can find two points
x′1, x

′
2 with σ(x′1) = σ(x1), σ(x′2) = σ(x2) such that the closure of the arc T running

counterclockwise from x′1 to x′2 contains Cl(x′1). Moreover, T is disjoint from E because
there are points of E in a small counterclockwise semi-neighborhood of, say, x′1 and the
geodesic (x′1, x

′
2) separates T from those points. Thus, the union A of all such arcs T is

disjoint from E too. On the other hand by the construction A covers all preimages of J .
Therefore, σ(E) is disjoint from J as claimed which implies that σ(E) ⊂ J̄ ′.

Since ∼ is a lamination (i.e., by (E2)) any two arcs T from the previous paragraph are
either disjoint or contain one another. Choose a maximal by inclusion arc T =< x′1, x

′
2 >

from the family of arcs chosen in the previous paragraph; we may assume that it is running
counterclockwise from x′1 to x′2. Let us show that it is complementary to E. Indeed,
otherwise there is another complementary to E arc S ⊃ T such that the endpoints of S
and T do not intersect. Applying the arguments from above to S instead of I we can find
an open arc containing I which is disjoint from E, a contradiction with x1 ∈ E, x2 ∈ E.
Thus, all maximal arcs from the family of arcs chosen in the previous paragraph are
complementary to E. Denote them T1, . . . , Tr.

Let us show that σ(K) ⊂ J . Let x′′1 be the counterclockwise closest to x2 point such
that σ(x1) = σ(x′′1) (i.e., x′′2 is of the form x1 + j/d for some j). Let R be the arc running
counterclockwise from x2 to x′′1 . If σ(K) 6=⊂ J then inside R there must be points of a
class K ′ such that σ(K ′) = σ(K) which is impossible because A contains K ′ and is on
the other hand disjoint from R.

Let us show that the alternative (1)-(3) follows. Assume that x′1 ∈ E is such a point
that σ(x′1) = σ(x1); let Cl(x′1) = K ′. If σ(x1) 6= σ(x2) then by the proven above x′1
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is an endpoint of a maximal arc < x′1, x
′
2 >= Aj which is complementary to E. If

σ(x1) = σ(x2) then by (D3) we see that u = σ(K) is a one-point set. Hence K ′ consists
of a few points from σ−1(u). If K ′ = {x′1} then the case (3) holds. Otherwise by the
above analysis the case (2) holds.

This completes the proof.

Let us introduce some maps and spaces. First, K = D̄/ ' is the quotient space, called
the pinched disc defined by ∼ ([Do1]). Denote the interior of K by F . The factor
space C/ ' is called the pinched plane; K is imbedded in C/ '. Let p : C→ C/ ' be
the factor map. Then p : C \ D̄→ (C/ ') \K and p : D \ L → F are homeomorphisms.
The set J = p(S1) = p(L) is the boundary of K in C/ '. Also, call A∞ = (C/ ') \K
the basin of infinity of a map f defined as follows. Since the map σ(z) = zd acts on S1

and on C \ D̄ and the relation ∼ is σ-invariant, we can introduce a map f : J → J ; also,
since p : C \ D̄→ A∞ is a homeomorphism, f : J → J extends to the map f : A∞ → A∞
as f = p ◦ σ ◦ p−1. Observe, that K, J are compact, connected and locally connected
because p : D̄ → K is continuous. Finally, J and A∞ are completely f -invariant, and
f |J∪A∞ is continuous. We fix a metric on C/ ' compatible with the topology which
makes C/ ' a Hausdorff metric space.

According to a theorem of Moore [Mo], the pinched plane C/ ' is homeomorphic to
the plane.

Proposition 2.2. Let U be a connected component of the interior F of K. Then its
closure is a topological disc. In particular, the boundary ∂U is a Jordan curve.

Proof. Ū is the quotient of the closure of a ∼-component Ω by a closed equivalence
relation on ∂Ω whose classes are points of S1 and closed arcs in D̄ with the endpoints in
S1. Therefore, it is homeomorphic to D̄.

Our next aim is to extend f to F 6= ∅ (no extension is necessary if F = ∅).

Lemma 2.3. If U is a component of F , then f(∂U) is a boundary of some component
U ′ of F , the map f : ∂U → ∂U ′ preserves orientation and is an unbranched degree l
covering map with l ≥ 1 finite.

Proof. Follows from Lemma 2.1.

Lemma 2.4. If U is a component of F , such that fp(∂U) = ∂U , for some p ≥ 1, then
the map fp : ∂U → ∂U is topologically conjugate either to

(S) an irrational rotation on S1, or to
(A) the map z 7→ zl, for some l ≥ 2.
Moreover, if x ∈ ∂U is such that the ∼-class g = p−1(x) is not a point, then g is

either eventually mapped into a point (and thus precritical) or preperiodic; so if Ω is a
∼-component such that p(Ω) = U then σp|∂Ω is not injective.

Proof. Denote by g the map fp : ∂U → ∂U . It is enough to show that g has no wandering
intervals (i.e., non-trivial arcs I ⊂ ∂U with gk(I) ∩ gn(I) = ∅, k 6= n). Indeed, if g has
no wandering intervals then by Lemma 2.3, g : ∂U → ∂U is conjugate to the rotation
(if l = 1) or the map z 7→ zl (if l > 1), see e.g. [MS]. Moreover, the rotation has to be
irrational, because the map σ has finitely many periodic orbits of each period.
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To prove that there are no wandering intervals we find a finite non-empty set A ⊂ ∂U
and a dense set S ⊂ ∂U such that any point x ∈ S eventually hits A (i.e., there exists
k ≥ 0 s.t. gk(x) ∈ A). Let Ω be a ∼-component such that p(Ω) = U, S = {p(l)} where l
runs over the geodesics in ∂Ω. Also, let A = {p(lb)} where lb runs over the family A′ of
geodesics in ∂Ω with the radial length (the length of the shortest arc of S1 \ lb) at least
1/(2dp). By Lemma 2.1, the geodesics l are dense in ∂Ω, hence S is dense in ∂U . Also,
A is finite because the number of the geodesics lb as above in the boundary of the same
component Ω is at most 2dp. Finally, A is non-empty because any geodesic l on ∂Ω will
be eventually mapped by σp onto a geodesic of radial length at least 1/(2dp).

Note that if the case (A) holds then σp|Ω is not injective because z 7→ zl, l ≥ 2 is not.
Suppose that the case (S) holds. Then some geodesics in A′ have to map into points
since otherwise by the previous paragraph they will all be preperiodic, a contradiction
with the case (S). So again σp|Ω is not injective which completes the proof.

We call a ∼-component U for which the condition of the lemma holds periodic Siegel
iff (S) holds and periodic attractive iff (A) holds (cf. with rational maps [Mi1]).

Proposition 2.5. The following properties hold.

(1) Let g ⊂ S1 be a ∼-class or the set E(Ω) for some ∼-component Ω. Then the
number of such sets g with the additional property that σ : g → S1 is not injective,
is finite. In particular, the number of components U of F such that f : ∂U → ∂U
is an unbranched degree l covering map, l ≥ 2, is finite.

(2) The number of all periodic components of F (Siegel and attractive) is finite.

Proof. (1) Every g satisfying the assumptions, contains two points x, y ∈ S1 with σ(x) =
σ(y), and so the radial distance between x, y equals to j/d for some j = 0, 1, ..., [d/2].
The geodesic (x, y) lies in the convex hull of g and these convex hulls are pairwise disjoint,
thus these geodesics are pairwise disjoint too. However there may be only finitely many
pairwise disjoint geodesics (x, y) such that the radial distance between x, y equals to j/d
for some j = 0, 1, ..., [d/2], hence there are finitely many sets g.

(2) Follows from (1) and the last claim of Lemma 2.4.

We strengthen Proposition 2.5 later in Proposition 2.8.
To extend f from J = ∂K to components of F choose a component U of F and

consider the grand orbit of U (the components Un with the boundaries contained in
fn(∂U), n = 0,±1,±2, . . . ).

Case A. ∂U is invariant under fp for some p, and fp : ∂U → ∂U is an unbranched
degree l covering with l ≥ 1. Let U i be the component with the boundary f i(∂U),
i = 0, 1, ..., p− 1. Keeping the dynamics on f i(∂U) we extend it on all U i in two steps.

(1) Extend fp : ∂U → ∂U to fp,U : Ū → Ū as follows. Using Lemma 2.4, consider a
homeomorphism H : ∂U → S1 conjugating fp to gl (gl is an irrational rotation if l = 1,
and gl(z) = zl otherwise): gl ◦ H = H ◦ fp on ∂U . The map gl is defined on D̄ and
fixes zero. Extend H to a homeomorphism H̄ : Ū → D̄ and let aU = H̄−1(0) ∈ U . The
desired extension of fp on Ū is fp,U = H̄−1 ◦ gl ◦ H̄. Note that fp,U |∂U = fp.

Define the set GU = G0 = {Γz}z∈∂U of curves in Ū as Γz = H̄−1(rx) where x =
H(z) ∈ S1 and rx is the radius in D̄ between 0 and x ∈ S1. Then the system of curves
GU is invariant under fp,U , each Γz joins z ∈ ∂U with aU = a0 = H̄−1(0), the curves
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of GU form a foliation of Ū \ aU (i.e., fill in this set and are pairwise disjoint), and
fp,U (aU ) = aU .

(2) We set U0 = Up = U,Gp = G0, ap = a0 and define maps fi : Ū i → Ū i+1 (i =
1, ..., p− 1) so that fp,U = fp−1 ◦ fp−2 ◦ · · · ◦ f0. Simultaneously we define points aUi =
ai ∈ U i and foliations GUi = Gi = {Γz}z∈∂Ui of Ū i \ ai. We begin by defining maps
fi, i = 1, . . . , p− 1 as follows:

(a) fi is a continuous extension of f : ∂U i → ∂U i+1;
(b) fi is an unbranched degree li covering map with a unique branched point ai such

that ai+1 = fi(ai) (here li is the degree of the map f : ∂U i → ∂U i+1);
(c) ai+1 = fi(ai) and Gi+1 = fi(Gi) (that is, the foliation Gi is obtained as a pull-back

of Gi+1 under the map fi which is possible because fi(ai) = ai+1).
To begin with the foliation Gp = G0 and the point ap are defined. Let fp−1◦· · ·◦f1 = h

and r =
∏p−1

i=1 li. Then h : U1 → U is of degree r. Define a map f0 = h−1 ◦ fp,U first
along a curve Γz0 ∈ GU . As the point z moves along ∂U0, extend the germ of f0 over
the curves Γz from the map f : ∂U0 → ∂U1 to a well-defined map f0 : Ū0 → Ū1 so that
fp,U = fp−1 ◦fp−2 ◦ · · · ◦f0 and properties (a)-(c) above are satisfied for fi, 1 ≤ i ≤ p−1.

By the construction, the union of curves of families Gi, i = 0, ..., p − 1, is invariant
under the map f̄ : ∪p−1

i=0 U i → ∪p−1
i=0 U i defined as f̄ |U i = fi. Each curve Γz ∈ Gi joins the

point z ∈ ∂U i and the marked point ai, and the curves of Gi form a foliation of Ū \ ai.
Case B. U is a preimage W−m of a periodic component W , i.e. fm(∂W−m) = ∂W .

Consider all preimages W−n, n ≥ 1, other than iterates of W and introduce the dynamics
on all W−n inductively (first on all W−1, then all W−2, etc) as follows. We have done
it on each periodic W . Assume we have already defined the map fV ′ : V ′ → fV ′(V ′) on
every component V ′ which is not an iterate of W such that f i(∂V ′) = ∂W for some 0 ≤
i ≤ n−1. If now fn(∂V ) = ∂W and f : ∂V → f(∂V ) is an l-cover (l ≥ 1) we define fV on
V̄ in such a way, that fV |∂V = f , fV : V̄ → f(V̄ ) is a covering map with a chosen point
aV (which is a unique branch point if l > 1) such that ffn−1(V )(aV )◦· · ·◦ff(V )◦fV = aW .
Preimages of the curves of GW inside components V form families of curves GV which
are in fact foliations of sets V \ {aV }.

Case C. If U is a wandering domain (fk(∂U)∩ fr(∂U) = ∅, k 6= r), fix a high forward
iterate V of U , so that maps fn : ∂V → fn(∂V ), n > 0, are isomorphisms. Mark a
point aV ∈ V and choose a foliation GV = {Γx}z∈∂V of V \ {aV }, where Γz is a curve
joining aV and z ∈ ∂V . Define f on all images of V so that it becomes a homeomorphic
extension of f defined on their boundaries; for any such image U = fn(V ) also define
the point aU = fn(aV ). Now define f on all preimages of all images of V as in Case B.

We get a continuous map f̄ : C/ '→ C/ ' of the pinched plane as follows (here we
define some new notions mimicking [DH], [Do1]). First, f̄ coincides with f on (C/ ')\F
and with fU on all components of F . Every component U of F has the marked point aU
called the center of U , and af(U) = f̄(aU ). Every set Ū \aU is foliated by the curves Γx

joining aU with points x ∈ ∂U ; these curves, called internal rays, form the family GU .
The union G(K) of GU over all components U of F is f̄ -invariant. An arc l in K is called
legal if for any component U of the interior F of K, the set l ∩ Ū is contained in the
union of two internal rays. Talking of an arc defined by a map γ : [0, 1] → K we often
denote this arc (i.e. the set γ([0, 1])) by γ. Also, by a loop in K we mean a continuous
map γ : [0, 1] → K such that γ(t) 6= γ(τ), for all 0 ≤ t < τ ≤ 1, except if γ(0) = γ(1).
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It is easy to see that the map f̄ is a local homeomorphism at any point x of the
pinched plane except for a finitely many (by Proposition 2.5) critical points c1, ..., cm of
the form: either ci = p(g) ∈ J , where g is a critical ∼-class, or ci = aU , where aU is the
center of a component U of F and f : ∂U → f(∂U) is an l-cover, l ≥ 2 (note that each
critical point of the latter type is preperiodic whenever U is preperiodic).

Indeed, sets J , F , and A∞ are completely invariant under the map f̄ . Moreover, by
the construction, for every point x ∈ J there is a neighbourhood U such that f̄ is one-
to-one on every component of U \ J . Therefore, it is enough to check that f̄ |J = f is a
local homeomorphism at any non-critical point. Let us check that f is actually an open
map everywhere; we do this by way of contradiction. If f is not open at x then there is
its neighborhood U and a sequence of classes xn such that f(xn) → f(x) while no class
f(xn) has preimages in U . We can assume that xn → y and then f(y) = f(x). Then we
can choose points x′n ∈ xn which converge to a point x′ ∈ y so that σ(x′) ∈ f(y) = f(x).
By the properties of laminations we can find a point z′ ∈ x such that σ(z′) = σ(x′)
which implies that there exists a sequence of points z′n → z′ such that σ(z′n) = σ(x′n).
Choosing a subsequence, we may assume that classes zn of points z′n converge in J , and
then they can only converge to the class x. On the other hand, classes zn from some
time on belong to U which proves that classes f(zn) = f(xn) belong to f(U), contrary
to our assumption. The verification of the fact that f is 1-to-1 at a non-critical point is
just as elementary as is left to the reader as a useful exercise.

The external ray Rt of argument t ∈ T is the curve p({r exp(2πit) : r > 1}),
the external rays Rt, t ∈ T foliate the basin of infinity A∞. If r → 1 then the point
p(r exp(2πit)) of Rt tends to the point x = p(exp(2πit)) in J (Rt lands at x) and vice
versa, every point x = p(exp(2πit)) ∈ J is a landing point of the external ray Rt.

Lemma 2.6. The set K is arcwise connected and has the following properties:

(1) there is no loop γ in K which is the union of finitely many legal arcs;
(2) given points x, y ∈ K, there exists a unique legal arc in K with endpoints at x, y;
(3) if γ is a legal arc, then f̄(γ) is a finite union of the legal arcs containing no loops.

Proof. K is arcwise connected because it is the image of D̄ under a continuous map p.
(1) If γ lies in a component U of F , the statement clearly holds. Otherwise fix points

a 6= b ∈ γ who split γ into two closed arcs γ1, γ2, so that γ1 ∩ γ2 = {a, b}. Consider
subsets γ̃ = p−1(γ), γ̃i = p−1(γi), i = 1, 2 of D̄. Since p−1(x) is a connected closed subset
of the plane for any x ∈ C/ ', the sets γ̃1, γ̃2 are compact connected subsets of D̄ while
γ̃1∩ γ̃2 = p−1(a)∪p−1(b) is not connected. Hence ([Ku]) γ̃1∪ γ̃2 = γ̃ separates the plane.
Let Ã be a bounded component of C \ γ̃. Since γ̃ consists of ' classes, Ã consists of '
classes as well. Also, Ã is open. Then Ã ⊂ D because γ̃ ⊂ D̄ and so if Ã hits C \ D it
must be unbounded. Hence, Ã is disjoint from any ∼-class because otherwise it would
contain points of D̄ (every ∼-class contains points of D̄ by definition), and so Ã contains
an interior point x̃ of a ∼-component Ω. Thus, the point x = p(x̃) lies in the component
U = p(Ω) of F .

Now, Ã ⊂ D implies Ω∩ γ̃ 6= ∅. Hence γ∩U 6= ∅ too. By the definition of a loop, γ∩U
is a finite union of internal rays. Moreover, since γ has no points of self-intersection,
x ∈ γ ∩ Ū = Γx1 ∪ Γx2 where x1, x2 ∈ ∂U and Γx1 ,Γx2 are the corresponding internal
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rays. Let A = p(Ã); clearly, A is an open and connected subset of a pinched disk. Then
one of two open arcs of ∂U \ {x1, x2} lies in A, a contradiction with A ⊂ U .

(2) Let γ : [0, 1] → K be a curve, connecting x = γ(0) with y = γ(1). Then the set
γ ∩ Ū is closed for any component U of F . Let αU , βU be the least and the greatest
numbers with γ(α) ∈ Ū , γ(β) ∈ Ū . For every U , we can redefine γ on [αU , βU ] so that
γ maps the interval [αU , βU ] onto Γγ(αU ) ∪ Γγ(βU ). We proceed this way, applying the
construction on every step to the current map γ. It is easy to see that the sequence
of maps γ (and corresponding curves) converges to a legal arc with endpoints x, y as
desired. By (1) this arc is unique.

(3) Follows immediately from (1).

Given x, y ∈ K, denote by [x, y] a unique well-defined by Lemma 2.6 legal arc in K
with ends at x, y. Now we step by step define a growing tree T0 ⊂ T1 ⊂ . . . in K for the
map f̄ . Let β = p(0) (0 ∈ S1 is a fixed point of the map σ(z) = zd of S1). Then β is
also a fixed point of f̄ . By (D2) any ∼-class in σ−1(Cl(0)) contains at least one point of
σ−1(0). Hence there are no more than d preimages of β; denote them by {γi} and then
define the initial tree T0 = ∪i[γi, β].

Let Tn = ∪n
i=0f̄

i(T0). By Lemma 2.6 all Tn are trees. Given x ∈ J , denote by N(x)
the number of the external rays landing at x. In the next proposition we study the trees
Tn and the orbits of the points x ∈ J with N(x) ≥ 2. We say that two external rays
Rt1 and Rt2 are separated (by the tree T0) if t1 and t2 lie in different components of
T \ {0, 1/d, 2/d, ..., 1− 1/d}. Recall, that k∼ is the maximal number of critical ∼-classes
g with infinite and pairwise disjoint orbits, and such that σ(g) is a point.

Proposition 2.7. The following properties hold.

(1) If separated external rays Rt1 , Rt2 land at the same point x then x ∈ T0.
(2) All critical points of f̄ belong to T0 and T0 ⊂ T1 ⊂ . . . is a growing tree.
(3) If x ∈ J then N(x) = |p−1(x)|.
(4) If M ⊂ J is a continuum or M = {x} with N(x) ≥ 2 then there exists i with

f i(M) ∩ T0 6= ∅. Moreover, the following holds:
(a) in the case of continuum there are infinitely many i such that f̄ i(M) ∩ T0 6= ∅

and the set of points eventually mapped into T0 is dense in M .
(b) if x ∈ J is not an f̄ -preimage of a critical point or of β then N(x) ≥ 2 if and

only if there are infinitely many i such that f̄ i(x) is an inner point of the tree T0.
(c) if N(x) ≥ 3, then, for every finite n ≤ N(x), and for some i,m the point f̄ i(x)

is a vertex of Tm with ordTm(x) ≥ n.
(5) For every component U of F , some iterate V = f̄ i(U) intersects T0; moreover,

the center aV of V lies in T0, and V̄ ∩ T0 is homeomorphic to the n-od with the
branching point at aV .

(6) oen(T∞) ≤ k∼.

Proof. (1) Since β and all its f -preimages γi belong to T0 we see that ∼-classes cor-
responding to γi include points 0, 1/d, . . . , (d − 1)/d. Since g = p−1(x) is a ∼-class
containing t1, t2 then the convex hull of g intersects p−1(T0) and hence x ∈ T0.

(2) If g contains i/d for some i then p(g) ∈ T0 by the definition of T0. Otherwise
suppose that p(g) /∈ T0. Then by (1) all rays with arguments from g are not separated.
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On the other hand, since g is critical there must be two points x and x+j/d, 1 ≤ j ≤ d−1
in g, a contradiction. Similarly, if c is a critical point which is the center of a Fatou domain
U , then there are external rays landing on the boundary of U which are mapped into
one ray. These rays are separated, hence there are two angles of the form i/d, j/d such
that the legal arc connecting i/d with j/d must cross U and thus must pass through c
showing that in this case c ∈ T0 too. Together with Lemma 2.6 this implies that indeed
T0 ⊂ T1 ⊂ . . . is a growing tree.

(3) Follows from the definition of the external rays.
(4) In our situation we can find two external rays Rt1 , Rt2 landing at points of M so

that for some i either one of the rays f̄ i(Rt1), f̄ i(Rt2) has the argument j/d (and lands
at a point of T0) or the rays f̄ i(Rt1), f̄ i(Rt2) are separated in which case by connectivity
the continuum f̄ i(M) must intersect T0. This proves the main claim of (4).

To prove (a) observe that subcontinua of arbitrarily small diameters are dense in M
and that the image of a continuum under a power of f is a continuum itself.

To prove (b) observe that under the assumptions of the proposition the first claim can
applied to x infinitely many times, so f̄ i(x) ∈ T0 for infinitely many i. Since x is not a
preimage of β then f̄ i(x) is not an endpoint of T0. If on the other hand fk(x) is not an
endpoint of T0 then there are at least two external rays landing at fk(x) and so there
are at least two external rays landing at x implying N(x) ≥ 2.

Consider claim (c). First we show that any non-critical x ∈ J has a neighborhood U
such that for any y ∈ J ∩U the cyclic order on the set p−1(x)∪p−1(y) is preserved by σ.
Indeed, ' is a closed equivalence relation on the plane such that every equivalence class is
closed, connected and nonseparating. Hence, there is an arbitrarily small neighborhood
Ũ of p−1(x) such that Ũ consists of '-classes. We can set U = p(Ũ), and by (D2) the
property is satisfied.

Let N(x) ≥ 3. Fix n, 3 ≤ n ≤ N(x). Let Rti , i = 0, . . . , n− 1 be external rays landing
at x in the cyclic order of their arguments t0, ..., tn−1. By (D2) this order will not change
under iterations of σ. For each i = 0, ..., n − 1, find the minimal ri = r > 0 so that
f̄r(Rti), f̄

r(Rti+1) are separated. By (D2) the arc Ii =< σr(ti), σr(ti+1) > containing no
σr-images of other tj is well-defined. Also, by the first part of claim (4) f̄r(x) is an inner
point of T0, so there are points y ∈ T0 arbitrarily close to x such that p−1(y) ⊂ Ii.

Repeating this we find numbers ri, i = 0, . . . , n− 1. Let R be their maximum. Pick a
small neighborhood U of x so that for all y ∈ U all the iterates σj , 0 ≤ j ≤ R preserve
the cyclic order on p−1(x)∪ p−1(y). Then choose points yi ∈ U so that σri(p−1(yi)) ⊂ Ii

and f̄ri(yi) ∈ T0. Since σR preserves the cyclic order on p−1(x), the cyclic order of
points {σR(ti)} is the same as that of points {ti}. Thus the pairwise disjoint arcs <
σR(ti), σR(ti+1) > are well-defined. By the choice of U each set σR(p−1(yi)) is contained
in < σR(ti), σR(ti+1) >. Since f̄R(yi) = f̄R−ri(f̄ri(yi)) ⊂ TR−ri we get the desired
estimate ordTm(x) ≥ n for a sufficiently big m.

(5) Let Ω be the corresponding to U component of D̄ \L. Take any two t1, t2 ∈ E(Ω),
which are non-precritical, non-preperiodic, and whose σ-images are not ∼-equivalent (it
is possible since E(Ω) is a Cantor set). Then f̄ i-iterates of external rays Rt1 and Rt2 land
at distinct points of ∂f i(U) and are separated for some i. Let Ω′ be the ∼-component
with E(Ω′) = σi(E(Ω)). Then p−1(T0) intersects ∂Ω′ at least at two points. Since T0

consists of legal arcs and by Lemma 2.6 we conclude that f̄ i(Ū) is of the desired form.
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(6) By Lemma 1.4(5), oen(T∞) ≤ k′′ where k′′ is the number of distinct grand orbits of
fast critical points of f̄ : T∞ → T∞. We estimate the number of fast critical points. Each
critical point which maps into T0 by a positive iterate of f̄ is slow. So, by (5) critical points
of f̄ in the interior F of K are slow. Also, each preperiodic critical point is slow. Let
c ∈ J be a non-preperiodic critical point whose forward iterates do not hit other critical
points. Let g = p−1(c) be the corresponding critical class. If N(f̄(c)) = |σ(g)| ≥ 2, then,
by (4), some iterate of c is a point of T0, i.e. c is slow. Therefore, k′′ ≤ k∼.

Proof of Theorem C. (1). Assume to the contrary that for a component Ω, the set E(Ω)
is not preperiodic under σ. Replacing Ω by its sufficiently high iterate we may assume
that no iterate of U = p(Ω) contains a critical point of f̄ .

As in the proof of Proposition 2.7(4c), we show that for any s we can find high iterate
of U whose boundary intersects Tm for some m at least at s points.

Now, the only vertex of Tm which an iterate of U may contain must be the center of
this iterate. Thus, by the above proven we can find high iterates of U which contain a
vertex v of Tm with ordTm(v) = s for any s. By Theorem 1.10(1) this implies that the
vertex in question is preperiodic and thus U is also preperiodic.

(2) Suppose that a continuum M is wandering and so all its iterates are pairwise
disjoint. We may assume that all iterates of M avoid critical points. First we show that
M ⊂ T∞ is impossible. To this end let us prove that preimages of the endpoints of T0
and of vertices of T∞ are dense in M . Choose a point x ∈ M which is not an endpoint of
T0, a small interval I ⊂ M containing x and a component V of S1 \ {j/d}d−1

j=0 such that
for any point y ∈ I there exists an external rays landing at y with the argument from
V . Denote the set of all such rays by A. Then there exists the minimal k > 0 such that
two rays from the set fk(A) have the arguments which belong to different components
of S1 \ {j/d}d−1

j=0 . Since M contains no preperiodic points this can only happen if fk(I)
contains either a vertex of T∞ or an endpoint of T0 and the claim about the density of
preimages of the endpoints of T0 and of vertices of T∞ in M is proven. By Corollary 1.6
this implies that M is non-wandering, a contradiction.

Let us now consider the general case when M ⊂ J . By (1) and Lemma 2.4 M cannot
contain a subcontinuum of the boundary ∂U of a Fatou component. Let us use this to
prove that if x 6= y ∈ M then the legal arc I connecting x, y must be contained in M .
Indeed, otherwise we may assume that I ∩ M = {x, y} and consider closed connected
sets p−1(M) and p−1(I). Since their intersection p−1(x) ∪ p−1(y) is not connected we
conclude by [Ku] (cf. Lemma 2.6(1)) that the set A = p−1(M) ∪ p−1(I) separates the
plane. Denote by B a bounded component of C\A; then as in the proof of Lemma 2.6(1)
we can show that B consists of '-classes, is open and contained in D. Therefore p(B)
contains no points of J (otherwise B would contain points of S1) and so p(B) must be
a subset of a Fatou component. This implies that M contains a connected subset of the
boundary of this Fatou component, a contradiction.

So, the legal arc I is a subset of M . Since I never covers a critical point then all the
images of I are all legal arcs. Moreover, by Proposition 2.7(4)(a) we can find two points
x 6= y ∈ I eventually mapped into T0, hence we can find a subarc L ⊂ I which is mapped
into Tm for big enough m. However, by the first paragraph of the proof this image of L
is non-wandering, a contradiction.
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Example. Consider the filled-in Julia set K(f) (see e.g. [Mi1] and next Section) of a
polynomial f(z) = z2 + exp(2πit)z, where t = (51/2 − 1)/2. Then 0 is the Siegel fixed
point, which is the “center” of the Siegel disc U . By [Pe1], the Julia set J of f is locally
connected. Because the critical point c of f lies in J , we do not need to change the
dynamics, so that f̄ = f . The initial tree T0 is the arc [γ, β], where β is the repelling
fixed point of f , and f(γ) = β, γ 6= β. Since c ∈ ∂U (see [He]), the tree Tn consists of
T0 and n internal rays in U , f i(Γ), i = 1, ..., n, where Γ is one of the two internal rays of
U ∩T0, which joins the fixed point 0 and the critical point c. Note that all iterates f i(Γ),
i = 0, 1, 2, ..., are pairwise disjoint (except at 0) and form a dense subset in Ū . Thus, Tn
has the only vertex at 0, and ordTn(0) = n + 2, in particular, tends to ∞. Note that in
this example no germ of the (periodic) vertex at 0 is recurrent. �

Denote by kc the total number of all critical classes of ∼ and by kA the number of
different orbits of all components of ∼ on whose boundaries f is not 1-to-1 (clearly, then
kA is less than or equal to the number of the periodic orbits of attracting components of
∼). Obviously, k∼ ≤ kc. Now, let g be a ∼-critical class. Define degree d(g) of g as the
degree of the cover σ : g → σ(g); if |g| is finite, then d(g) = |g|/|σ(g)| (cf. [Th]). Let Ω
be a component of ∼. Then f : ∂U → f(∂U) is a covering map, where U = p(Ω) is the
corresponding component of F . Define degree d(Ω) as the degree of this map and call Ω
critical iff d(Ω) ≥ 2.

Proposition 2.8 (cf. [Th]).
∑

(d(g) − 1) +
∑

(d(Ω) − 1) = d − 1 where g and Ω run
over the critical classes and components respectively. In particular, k∼ ≤ d − 1, and,
moreover, k∼ + kA ≤ kc + kA ≤ d− 1.

Proof. We follow an idea of [Th, Proposition: total critical degree of a lamination].
Actually, we prove the following more general statement. Let D0 and D1 be two copies of
the unit disc, and∼0, ∼1 be closed laminations on their boundaries ∂D0, ∂D1 respectively.
Let τ be any orientation preserving endomorphism of degree d ≥ 1 (if d = 1, τ is a
homeomorphism), such that τ satisfies (D1)-(D3) (with obvious changes of notations).
The definition of ∼0 critical class g and its degree (to be the degree of the map τ :
g → τ(g)) is unchanged. To define the degree of a ∼0 component, let us consider the
natural extensions '0, '1, and the quotient spaces K0 = D0/ '0, J0 = ∂D0/ ∼0 and
K1 = D1/ '1, J1 = ∂D1/ ∼1 together with projections p0, p1. Let fτ : J0 → J1 be
the induced map. Observe that Lemmas 2.1, Proposition 2.2, and Lemma 2.3 still hold
(with obvious changes of notations) since we don’t use iterates of the map τ in the proofs.
It allows us to define the degree d(Ω) of a ∼0 component Ω as the degree of the map
fτ : ∂U → ∂U ′ where U = p0(Ω) (and U ′ defined similarly). It is convenient to set
d(g) = d(Ω) = 1 for any not critical ∼0 class g and component Ω. Now we prove the
formula

Σ(∼0;∼1) = d− 1 (∗∗)

where Σ(∼0;∼1) =
∑

(d(g) − 1) +
∑

(d(Ω) − 1) and g and Ω run over ALL ∼0 classes
and components respectively. It is clear that (**) implies the statement. We prove it
by induction over the degree d of τ . If d = 1, (**) holds (both sides of (**) vanish).
Assume that (**) holds for the degrees 1, ..., d− 1, and prove it for d ≥ 2. First, assume
that each critical ∼0 class g as well as its ∼1 image τ(g) are gaps. Notice that then if
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(x1, x2) is a ∼0 geodesic in a boundary of a gap g, then τ((x1, x2)) is a ∼1 geodesic in the
boundary of the gap τ(g). Hence, in Lemma 2.1 only alternative (1) holds. In particular,
τ : E(Ω) → τ(E(Ω)) is a covering map (and its degree is d(Ω)). Therefore, one can extend
τ : ∂D0 → ∂D1 to a covering map Ψ of D0 onto D1 in such a way, that it preserves the
relations '0,'1. In this case, the equality (**) expresses the Riemann-Hurwitz formula
for the cover Ψ.

If there is a critical class g so that τ(g) is either a point or a leaf, then we use the
induction hypothesis as follows.

(1) τ(g) is a point. Note that |g| ≤ d. Cut the disc D0 along all geodesics of the
boundary of the convex hull of g, and then glue the endpoints of the resulting arcs to
form |g| new circles ∂D0,j , 1 ≤ j ≤ |g|. The original lamination ∼0 and the map τ are then
split into closed laminations ∼0,j on ∂D0,j and the corresponding maps τj : ∂D0,j → ∂D1,
1 ≤ j ≤ |g|, which preserve the corresponding relations. If dj is the degree of τj , then
dj < d and

∑

j dj = d. By the induction hypothesis, Σ(∼0,j ;∼1) = dj − 1. Then
Σ(∼0;∼1) =

∑

j Σ(∼0,j ;∼1) + (d(g)− 1) =
∑

j dj − |g|+ |g| − 1 = d− 1.
(2) τ(g) is a leaf A = {a, b} of ∼1. Note that |g| ≤ 2d < ∞. Let x1, x2, x3 ∈ S1 be 3

adjacent points of the ∼0 class g. Then τ(x1) = τ(x3) = a and τ(x2) = b. Cut the disc D0
along the geodesic l = (x1, x3) inside the convex hull of g, and glue the endpoints of the
two resulting arcs. Then we get two circles ∂D0,j with the corresponding laminations ∼0,j

and two maps τj : ∂D0,j → ∂D1 , j = 1, 2. Then g induces classes g1 and g2: g1 is a leaf
in ∼0,1 obtained from the triangle with vertices x1, x2, x3 by gluing the edges (x1, x2) and
(x3, x2); g1 is not critical (its image by the map τ1 is the leaf A) while g2 is either a not
critical leaf of ∼0,2 (if |g| = 4) or a critical gap with less points which is mapped to the leaf
A by the second new map τ2. Moreover, d(g2) = d(g)−1. If dj is the degree of τj , j = 1, 2,
then d1 +d2 = d and, by the induction hypothesis, we have Σ(∼0,j ;∼1) = dj−1, j = 1, 2.
But Σ(∼0,1;∼1)+Σ(∼0,2;∼1) = Σ−(d(g)−1)+(d(g2)−1) = Σ−1 where Σ = Σ(∼0;∼1)
is the sum for the initial lamination. Thus Σ − 1 = (d1 − 1) + (d2 − 1) = d− 2, and we
are done.

In Lemma 2.9 we classify the growing tree T∞ using results from Section 1.

Lemma 2.9. The growing tree T∞ is normal and recurrent; moreover, for any excep-
tional non-precritical vertex v of Tm all germs of Tm at v are recurrent.

Proof. The fact that T∞ is normal follows from the definition of T0. To prove the rest it
is enough to check whether for any exceptional non-precritical vertex v of Tm all germs
of Tm at v are recurrent. Observe that the intersection of any Fatou component with
any Tm is the union of some legal arcs, thus the only vertices of T∞ which belong to F
are centers of Fatou components. By Theorem 2.8 all such points are preperiodic and
thus they are not exceptional vertices of T∞. Thus we may consider an exceptional non-
precritical vertex v of Tm such that v ∈ J . First observe that v cannot belong to the
closures of two Fatou components because any Fatou component is preperiodic and v is
not. Since v is a vertex of Tm then among sides of Tm at v there are at least two such
that the corresponding semineighborhoods of v are not contained in internal rays. Hence
there are at least two external rays landing at v. We use it in order to prove that every
germ A of Tm at v is recurrent. Consider two cases.
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(a) A is a germ of an internal ray of some preperiodic component U . By Proposition
2.7(5), one can assume Ū ∩T0 is not empty and aU ∈ T0. Moreover, passing to an iterate,
we assume that f̄(U) = U and f̄(aU ) = aU . Thus A belongs to an internal ray l of U ,
which joins aU and v ∈ ∂U . Since at least 2 external rays land at v then by Proposition
2.7(4) there are infinitely many k > 0 such that f̄k(v) ∈ T0. For any such k, f̄k(A) is
a germ of the internal ray f̄k(l), which joins points aU and f̄k(v) of T0. Thus, A is
recurrent.

(b) If A = (v, S) (where S is a side of Tm at v) is not a germ of an internal ray, then
there is a sequence xn → v such that xn ∈ A′∩J where A′ ∈ S is a semi-neighborhood of
v from the side S. Then xn as a landing point of at least two external rays of f̄ returns to
T0 under infinitely many iterates and hence A is recurrent which completes the proof.

Now we prove the full version of Theorem B of Introduction. Let kS be the number of
periodic orbits of Siegel components and let kp ≤ kS + kA be the number of all periodic
orbits of Fatou components of a lamination ∼.

Theorem 2.10. Let Γ be a non-empty collection of classes of ∼, such that:

(a) any g ∈ Γ is non-preperiodic under the map σ (i.e., each t ∈ g is irrational);
(b) the orbits of g ∈ Γ are pairwise disjoint;
(c) |g| ≥ 3 for every g ∈ Γ (i.e., g is a gap);
(d) σn is injective on g for every n = 1, 2, ... and every g ∈ Γ.

Then
∑

g∈Γ(|g| − 2) ≤ k∼ − kS − 1 ≤ d − 2 − kp ≤ d − 2 so that the number of classes
in Γ is at most k∼ − kS − 1 ≤ d − 2 − kp ≤ d − 2 and for every g ∈ Γ we have
|g| ≤ k∼−kS+1 ≤ d−kp ≤ d. Furthermore, for any non-preperiodic (not necessarily non-
precritical) ∼-class g′ we have |g′| ≤ (kS + 1)2d−kA−kS which implies both |g′| ≤ 2d−kA

and |g′| ≤ (kS + 1)2d−kp so that in any case |g′| ≤ 2d.

Proof. First we estimate the number of orbits of irrational vertices of Tm. The forward
orbit of each periodic component of F (and of its center) intersects T0 (Proposition
2.7(5)), the number of periodic components is finite (Proposition 2.5(2)), so there exists
a finite m0 > 0, such that every Siegel component intersects Tm0 , and its center lies in
Tm0 . Now, the periodic orbit of a Siegel component contains a component U non-disjoint
from T0 such that U ∩ T0 contains its center aU ∈ T0 and two internal rays l1, l2. Note
that f̄p(aU ) = aU , where p is the period of U . Since f̄p|U is conjugate to an irrational
rotation, the germs of l1, l2 at aU are not periodic and aU is an irrational vertex of T∞.
So, the number pI of orbits of irrational vertices of Tm,m ≥ m0 is at least kS (i.e.,
pI ≥ ks).

Now, let us pass to the proof of the theorem. We prove the first series of inequalities
of the theorem; obviously, they imply the rest. Choose classes g1, . . . , gr in Γ and denote
by z1 = p(g1), ..., zr = p(gr) ∈ J their projections. By (d) z1, ..., zr are non-precritical,
by (a)-(b) they belong to distinct grand orbits of non-preperiodic points, and by (c)
|gi| = N(zi) ≥ 3, 1 ≤ i ≤ r. Let us prove that

∑r
i=1(ni − 2) ≤ k∼ − 1 for any finite

3 ≤ ni ≤ N(zi), i = 1, ..., r. By Proposition 2.7(4), for a large enough l the points
vi = f l(zi) are vertices of some Tm with ordTm(vi) ≥ ni. By Lemma 2.9 T∞ is a
normal recurrent growing tree and moreover ord′Tm

(vi) = ordTm(vi). Thus by Theorem
1.3 we have

∑r
i=1(ni − 2) ≤

∑

v∈f̄ l(Γ)(ord′Tm
(v) − 2) ≤ oen(T∞) − kS − 1. Since by
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Proposition 2.7(6) oenT∞) ≤ k∼ we see that
∑r

i=1(ni − 2) ≤ k∼ − kS − 1 and therefore
∑

g∈Γ(|g|−2) ≤ k∼−kS−1. It remains to notice that by Proposition 2.8 k∼ ≤ d−1−kA,
so k∼ − kS − 1 ≤ d− 1− kA − kS − 1 = d− 2− kp. To complete the proof observe that
the number pp of preperiodic critical points is at least kA, so by Theorem 1.3 we get
|g| ≤ (pI + 1)2d−pp−pI ≤ (kS + 1)2d−kA−kS as desired.

Finally we state Proposition 2.11 which deals with the number of all non-cyclic grand
orbits of gaps (i.e., without the assumption of their non-precriticality).

Proposition 2.11. Suppose that there are k critical classes and s critical classes of
degree 2. Then the following two cases may take place:

(1) if T∞ is not a finite tree then the number of all grand orbits of non-preperiodic
gaps of ∼ is at most 2k − s− 1 ≤ d− 2;

(2) if T∞ is a finite tree then non-preperiodic gaps of ∼ are precritical and the number
of their grand orbits is at most k ≤ d− 1.

Proof. Follows from Proposition 1.13. The only inequality we need to check is 2k−s−1 ≤
d − 2. To this end denote the number of critical classes of degree greater than 2 by x.
Then by Proposition 2.8 s+2x ≤ d−1. This implies that x ≤ (d−1−s)/2 and therefore
k = s + x ≤ (d − 1 + s)/2. We conclude that 2k − s− 1 ≤ d− 1 + s− s− 1 = d− 2 as
desired.

3. Connected Julia sets of polynomials

Let K be a connected and full (i.e., C \ K is connected) compact set in C. By
the Riemann mapping theorem, one can find a unique analytic isomorphism ϕK : C \
K → C \ D̄ such that ϕK(z)/z tends to a positive constant as z → ∞ (we assume
that K is not a single point). The external ray Rt(K) of argument t ∈ T is the set
ϕ−1

K ({r exp(2πit) : r > 1}); it lands at a point x ∈ ∂K iff Rt(K) has the only limit point
in K at x. Then t is called an external argument of the point x. By the Caratheodory
theorem mentioned in the Introduction, K is locally connected if and only if the map ϕ−1

K
extends continuously to a map ϕ−1

K : S1 → ∂K which induces a closed lamination on
T : t1 ∼K t2 if and only if ϕ−1

K (t1) = ϕ−1
K (t2) (clearly, ∼ satisfies the conditions (E1)-(E3)

from Section 2). Then K is homeomorphic to the space D̄/ ' defined in Section 2, and
so ∂K is homeomorphic to the boundary ∂(D̄/ ') of D̄/ ' in C/ ' [Do1].

Below K is the filled-in Julia set K(P ) of a polynomial P of degree d ≥ 2 : K(P ) =
{z : Pn(z) 6→ ∞, n → ∞}, see e.g. [Mi1]. The classical Julia set ([F], [J]) J(P ) of P
is then ∂K(P ). The compact K(P ) is full since it contains all bounded components of
C\J(P ) (maximal principle). Its complement A∞(P ) = {z : Pn(z) →∞, n →∞} is the
basin of infinity of P . If K(P ) is connected then the Riemann map ϕK(P ) : C\K(P ) →
C\D̄ and the external rays of K(P ) (or P ) are defined. A connection with the dynamics is
then expressed by the following fact (it follows from the Schwarz reflection principle): the
Riemann map ϕK(P ) coincides with the so-called Bottcher function, a map at infinity,
which conjugates P to the map σ(z) = zd, i.e., ϕK(P ) ◦P ◦ϕ−1

K(P ) = σ on C\ D̄. (Without
loss of generality, one can assume that the polynomial P is monic: P (z) = zd + .... Then
ϕK(P ) ∼ z at infinity.)
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Assume first that K(P ) (or, equivalently, J(P )) is locally connected. Then the closed
lamination ∼K(P ) on T is defined. Also, the map ϕ−1

K(P ) and last equation extend to
S1, and we obtain a fundamental fact that ∼K(P ) is invariant under σ, i.e. satisfies
also the conditions (D1), (D2), (D3) from Section 2. Then the classical Julia set J(P ) is
homeomorphic to ∂(D̄/ 'K(P )) = J'K(P ) . If we now define the map f : J'K(P ) → J'K(P )

as in Section 2 then the map P : J(P ) → J(P ) is conjugate to the map f : J'K(P ) →
J'K(P ) and we can apply results of Section 2 to deduce dynamical properties of the
polynomial P .

Let F (P ) be the interior of K(P ). It is called Fatou set of P . If its component U
is periodic, i.e. fp(U) = U, p ≥ 1, then by the Wolff-Denjoy theorem U is attracting
or Siegel (both cases are possible) according to whether the P p-iterates of points of U
converge to a P p-fixed point in Ū , or P p|U is conjugate to an irrational rotation in D (our
definition of an attracting domain includes also what is usually called parabolic one).

Let N(x) be the number of external arguments of the point x ∈ J(P ) (i.e., the number
of points in the closed non-empty set {t ∈ S1 : ϕ−1

K(P )(t) = x}). If n is big enough then P
is a local homeomorphism at Pn(x), hence the number N(Pn(x)) does not depend on n.
Denote this number by N∞(x). By [Ki], N(x) is always finite and N∞(x) ≤ d (in [Ki] this
is proven for polynomials with connected Julia set). More information is contained in
Theorem 3.1, which follows from Theorem 2.10; in Theorem 3.1 the numbers k∼, kS , kA

and kp are defined as in Section 2 for the lamination associated with the polynomial P .
In other words, k∼ is the number of pairwise disjoint orbits of non preperiodic critical
points c ∈ J(P ) with N(P (c)) = 1 (i.e., P (c) is the landing point of exactly one external
ray), kS is the number of all Siegel periodic orbits, kA is the number of distinct orbits
of all Fatou components containing critical points and kp is the number of all periodic
orbits of the components of the Fatou set F (P ).

Theorem 3.1. Suppose that P is a polynomial with the locally connected Julia set. Let
Γ be a collection of points z ∈ J(P ), such that the points of Γ belong to pairwise disjoint
grand orbits, every z ∈ Γ is non-preperiodic and N∞(z) > 2. Then

∑

z∈Γ(N∞(z)− 2) ≤
k∼ − kS − 1 ≤ d − 2 − kp. In particular, N∞(z) ≤ k∼ − kS − 1 ≤ d − kp ≤ d for every
z ∈ J(P ) which is non-preperiodic, and the number of all grand orbits of such points is
r ≤ k∼−kS−1 ≤ d−2−kp ≤ d−2. Also, for any non-preperiodic (not necessarily non-
precritical) point y we have N(y) ≤ (kS + 1)2d−kA−kS which implies both N(y) ≤ 2d−kA

and N(y) ≤ (kS + 1)2d−kp and in any case N(y) ≤ 2d.

Remark. Assume that every critical point of P is either preperiodic or is attracted to
an attracting orbit. Then J(P ) is locally connected [DH], and we apply the theorem
with k∼ = 0. Therefore, N∞(z) ≤ 2 for any point z ∈ J(P ) with an infinite orbit. For
such polynomials our tree coincides with the Hubbard tree [DH] and the result can be
extracted from [Do1], [Po]. �

The Sullivan No Wandering Domain Theorem [Su] states that every component of
normality of a rational function is preperiodic. In particular, every component U of the
Fatou set F (P ) is preperiodic by P . In the framework of connected locally connected
Julia sets of polynomials our approach obviously yields an alternative proof of this result
which turns out to be an immediate corollary of Theorem C. Moreover, we have
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Theorem 3.2. Suppose that P is a polynomial with the locally connected Julia set. Then
every connected component of the interior of K(P ) is preperiodic and any subcontinuum
of J(P ) is non-wandering.

We apply our results to the case of polynomials P whose (filled-in) Julia sets are
connected but not necessarily locally connected. One of the main problems here is to
actually construct the lamination. This can be done if we assume that all cycles of P
are repelling. Then the interior of K(P ) is empty and J(P ) = ∂K(P ) = K(P ). Also,
the Bottcher function ϕK(P ) : A∞ → C \ D̄ and the external rays of P are defined,
yet a priori the equivalence relation on T is not since the map ϕ−1

K(P ) does not extend
continuously to the unit circle. Still, a closed invariant lamination on T related to P can
be constructed. We briefly describe the construction as in [Ki].

By a Douady’s theorem (see e.g. [Mi1], [Pe2]), for a repelling periodic point a of P
there are 1 ≤ k < ∞ external rays landing at a. Their arguments form periodic orbit(s)
of the map σ (so, they are rational numbers). Vice versa, every external ray Rt with
a rational argument t lands, and the landing point is preperiodic. Define a rational
lamination ∼K(P ),Q on Q/Z ⊂ T as follows: t ∼K(P ),Q t′ iff t, t′ ∈ Q and the external
rays Rt, Rt′ land at the same point; every ∼K(P ),Q class is finite and preperiodic under
σ|Q/Z→Q/Z. Then ∼K(P ),Q is an non-degenerate invariant lamination on Q/Z; it satisfies
the conditions (E2), (E3), (D1), (D2), (D3); moreover, ∼K(P ),Q contains infinitely many
periodic classes with at least two points (to see this, compare the number of cycles of
σ|S1 and P |C and use the fact that all P -cycles are repelling).

Extend ∼K(P ),Q |Q/Z to an equivalence relation ∼K(P ) |T as follows: a class of ∼K(P ) is
either a class of ∼K(P ),Q or a maximal subset of T unlinked with any class of ∼K(P ),Q. To
study ∼K(P ),Q and ∼K(P ), we use the following construction of Yoccoz puzzle structure
(cf. [Le], [Mi2], [Ki]).

Denote by β1, . . . , β`, ` ≤ d− 1, the fixed points of P which are the landing points of
d− 1 external rays of P of arguments 0, 1

d−1 , 2
d−1 , . . . , d−2

d−1 (these rays are fixed by P ).
Since P has d distinct repelling fixed points, there exists at least one repelling fixed

point which is the landing point of finitely many external rays with non-zero rational
combinatorial rotation number. Let R1, R2, . . . , Rq, q ≥ 2, be all external rays landing
at all such fixed points. Fix an equipotential curve Γ, and let W0 be a bounded component
of C \ Γ. The components of W0 \ ∪q

i=1Ri are called the (open) Yoccoz puzzle pieces
of depth zero denoted Y (i)

0 , 1 ≤ i ≤ q′ where q′ ≥ 2. All components of the preimages
P−k(Y (i)

0 ), 1 ≤ i ≤ q′, are said to be the (open) pieces of depth k ≥ 0. Let Y0 ⊃ Y1 ⊃
Y2 ⊃ . . . ⊃ Yn ⊃ . . . be a sequence of nested pieces. Denote

K =
∞
⋂

n=1

Y n

a non-empty intersection of their closures. K is either a point, or a continuum. Now we
distinguish two cases.

1. Every K obtained as above is either a point or a wandering continuum. Then the
final Yoccoz structure is the union of the pieces of all depths constructed above.

2. For some continuum K as above, and for some positive integers n,m (n 6= m),
Pn(K) ∩ Pm(K) 6= ∅.
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Then for any such continuum K we associate critical point(s) of P and a renormaliza-
tion of P as follows. By the construction, either Pn(K) = Pm(K) or Pn(K) intersects
Pm(K) at a fixed point a of P with a non-zero rotation number. Because the combina-
torial rotation number of a is rational, in the latter case again Pn′(K) = Pm′

(K) (with
other n′ 6= m′). In either case, for the image J1 of K under an iterate of P , one holds
PN1(J1) = J1, for some minimal N1 ≥ 1.

Let Yn1 be a piece of the depth n1, so that J1 ⊂ Y n1 . If n1 is large enough, the
boundary of Yn1 does not contain a critical point of PN1 because otherwise there would be
a periodic critical point of P . The map PN1 : Yn1 → Yn1−N1 is a covering map. Moreover,
since the intersection of the (closed) pieces contained J1 is equal to J1, for n1 large, there
are no critical points of PN1 in Y n1 \ J1. Thickening the pieces Yn1 , Yn1−N1 if necessary
(i.e., if J1 intersects ∂Yn1 , see [Mi2]) we obtain a covering map PN1 : Ŷn1 → Ŷn1−N1 so
that Ŷn1 is compactly contained in Ŷn1−N1 . Therefore, J1 must contain a critical point of
PN1 (otherwise J1 would be a point, by a contraction principle), and PN1 : Ŷn1 → Ŷn1−N1

is a polynomial-like mapping with the Julia set J1 [DH1]. We associate to K (and to
J1) all critical points of P contained in J1 and in its forward iterates. In particular,
the number of pairwise disjoint orbits of continua as above is bounded by the number
of different critical points of P . We also have J1 = {x ∈ Y n1 : P iN1(x) ∈ Y n1 , i =
0, 1, . . . } (a renormalization of P ). Call N1 the period of this renormalization. By
the theory of polynomial-like maps [DH1] and by the beginning of the construction, J1

contains at least one fixed point of PN1 with a non-zero rotation number (w.r.t. the
map PN1 : J1 → J1). Let a1 be such a point. Looking at the uniformization plane of
PN1 : J1 → J1 we see that the rotation number of a1 as a periodic point of P is also non-
zero. Observe that this implies that the period of the renormalization N1 ≥ 2 (otherwise
a1 would be a fixed point of P with a non-zero rotation number which is impossible since
all of them are in the boundary of the pieces of zero depth).

Now repeat the procedure. Namely, let Jj
1 , 1 ≤ j ≤ r, for some r ≤ d, be all

(first) renormalizations (obtained as above) from pairwise disjoint orbits. Let N j
1 ≥ 2

be the period of Jj
1 . Choose the same depth n1 for all Jj

1 , so that, for 1 ≤ j ≤ r,
Jj

1 = {x ∈ Y
j
n1

: P iNj
1 (x) ∈ Y

j
n1

, i = 0, 1, . . . }.
Define now the Yoccoz structure of the first renormalization as the union of the previous

pieces up to the depth n1 − 1. For each Jj
1 , consider all external rays of P which land

at the fixed points of PNj
1 : Jj

1 → Jj
1 with non-zero rotation number (like a1 above).

The forward images of these rays under iterates of P divide the pieces Y j
n1

and all other
pieces of the depth n1 of the previous (first) renormalizations, which are met by the
forward trajectories of Jj

1 , into finitely many components (since the rays are periodic).
Unite these components with all remaining pieces of the depth n1 and call them the zero
depth pieces of the structure of the second renormalization. Taking all the components of
their preimages by P k, k = 1, 2, ..., we either finish the construction (like in the case 1),
or come to next renormalizations. Note that each next renormalization J2 is contained
in one of the previous renormalizations J1 chosen among Jj

1 (the one marked by the
same critical point of P as J2), and the period N2 of J2 is divisible by the period N1 of
J1. Moreover, N2/N1 ≥ 2 by the same reason as N1 ≥ 2. Then we proceed as before,
constructing the Yoccoz structure of the third renormalization, and so on. Note that on
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each step the zero depth pieces are bounded by a fixed equipotential and by a forward
invariant and a finite system of external rays of P . Therefore, on each step the Yoccoz
puzzle structure is well defined.

Define the height of a piece Y as the unique h ≥ 0 such that the boundary of Y
contains arcs of equipotential P−h(Γ). By the construction, for every point x ∈ J(P ),
the intersection Y (x) of a nested sequence Y h(x) of the closures of pieces containing x,
where h is the height of the piece Y h, is either a point, or a wandering continuum as
h → ∞ (we have proved this, if the number of renormalizations is finite; if this number
is infinite, the intersection is wandering because the periods of the renormalizations tend
to infinity growing every time by the factor at least 2). The set Y (x) is called the puzzle
impression of x.

For a puzzle impression Y denote by Λ(Y ) the set of arguments of the external rays
R of P , such that every limit point y ∈ J(P ) of R lies in Y . Then Λ(Y ) is a ∼K(P )-
class. Conversely, every ∼K(P ) class is Λ(Y ) for some puzzle impression Y . Call a puzzle
impression Yc critical if it contains a critical point of P . Since P : Yn → P (Yn) is a
covering map, for every piece Yn, σ : g → σ(g) is a cover for every ∼K(P ) class g.

The construction implies (see, e.g., [Ki]) that if g = {t1, t2, ..., tp} is a ∼K(P ),Q class
(in cyclic order), then, for every ε > 0, and every adjacent pair ti, ti+1, there exists
another ∼K(P ),Q class g′, such that g′ contains points both in < ti, ti + ε > and in
< ti+1− ε, ti+1 > where the arcs are understood in the natural way. Using this fact, one
can show that ∼K(P ) satisfies (E1), (E2), (E3), (D1), (D2), (D3) and Theorem B applies.
To state its version applicable in our case we need notation. Given a puzzle impression
Y let N(Y ) be the number of points in the set Λ(Y ) (when we worked with polynomials
with locally connected Julia sets puzzle impressions were points so our current notation
extends the previous one in a natural way; on the other hand now we cannot write N(x)
for all points, only for those which are puzzle impressions). It is easy to see that N(Y ) is
finite: if Y is preperiodic, then Y is a point (as we explain above, puzzle impressions are
either wandering or points) and N(Y ) is finite by the above quoted theorem of Douady,
otherwise N(Y ) is finite by [Ki] or by Theorem B. In the case of a non-preperiodic puzzle
impression Y for all n > 0 big enough the number N(Pn(Y )) is a constant denoted by
N∞(Y ). As always denote by k∼ the number of different grand orbits of non preperiodic
critical puzzle impressions Yc of P with N(P (Yc)) = 1.

We use also the standard notions of prime end impressions and prime ends of a con-
tinuum [CL].

Theorem 3.3. Let P be a polynomial with all periodic points repelling and connected
Julia set J(P ). Then the following holds.

(1) Let Γ be a collection of puzzle impressions Y contained in pairwise disjoint non
preperiodic grand orbits, and N∞(Y ) ≥ 3 for Y ∈ Γ. Then

∑

Y ∈Γ(N∞(Y )−2) ≤
k∼ − 1 ≤ d− 2.

(2) Let z ∈ J(P ) have an infinite orbit. Then z lies in at most 2d prime end impres-
sions of J(P ) while for n > 0 large enough Pn(z) lies in at most k∼+1 ≤ d prime
end impressions of J(P ) (cf. [Ki]) and there are at most 3(k∼ − 1) ≤ 3(d − 2)
prime ends such that if the point z lies outside the grand orbits of the impressions
of these prime ends, then Pn(z) belongs to at most 2 prime end impressions.
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Proof. (1) Clearly, N∞(Y ) = |σn(Λ(Y ))| if n > 0 is big enough, and the inequality
follows from Theorem B.

(2) Let It be the impression of a prime end corresponding to the external ray Rt of
argument t [CL]. Then It is a subset of some puzzle impression Y . Hence, N(Y ) is greater
than or equal to the number of prime end impressions contained in Y which is greater
than or equal to the number of the prime end impressions containing a point x ∈ Y .
So, the first claim follows from Theorem A while from (1) N∞(Y ) ≤ k∼ + 1 as desired.
The last inequality of the theorem follows from the fact that

∑

Y ∈Γ N∞(Y ) ≤ 3(k∼ − 1)
which in turn follows easily from the inequality of (1).

4. Concluding remarks

1. First we give a rather brief description of examples of closed invariant laminations
which are not topological models of the Julia set of any polynomial.

The first example, in degree 2, is constructed as follows1. Consider the Julia set
J (“airplane”) of a real quadratic polynomial z2 − 1.75488...; then the critical point 0
is 3-periodic and J is connected locally connected. Take a closed invariant lamination
corresponding to J . If U is a component of the basin of attraction to the superattractive
cycle containing 0, declare that the external arguments of the points of ∂U form an
equivalence class of the new lamination ∼2. Other classes are not changed. It gives the
closed invariant lamination ∼2 with an infinite periodic critical class (note that it contains
a dense subset of rational points). Therefore, there is no Julia set of a polynomial that
corresponds to ∼2.

Another (simple) example exists in degree 3. Take σ(z) = z3, divide S1 into arcs
I1 = [0, 1/3], I2 = [1/3, 2/3], I3 = [2/3, 1], then pick the fixed point a = 1/2 of σ in I2

and also its preimage b = 1/6 in I1, and consider J = [0, b] and K = [1/3, a]. Let A be
the set of all points staying forever in J∪K under the forward iterates of σ (clearly, σ|A is
homeomorphic to the 2-shift). Declare A and all its preimages classes of the lamination
we are constructing (a subset B of S1 is said to be a preimage of A iff there exists
n ≥ 0 such that if l is a minimal closed arc in S1 containing B then σn : l → [0, 1/2] is a
one-to-one map, and σn(B) = A). Also, any point of S1 outside all preimages of A is a
class of the lamination. Since the first preimage of A other than A itself is disjoint with
A and the length of the minimal arc containing n-preimage of A tends to zero as n →∞,
we obtain a closed σ-invariant lamination ∼3. Now, A is an infinite critical class of ∼3,
such that σ(A) = A. Rational points are dense in A.

2. In a very recent preprint [Ki1] the rational laminations that correspond to polyno-
mials with connected Julia set are characterized. This opens a way to generalize some
results of Section 3 to all polynomials with connected Julia set. Namely, given such
polynomial P , consider corresponding to P rational lamination and take its closure as in
[Ki1]. Then we obtain a closed invariant lamination to whom our results can be applied.
Note however that the topological Julia set (the quotient space of such lamination) is
not always homeomorphic to the original Julia set even if the original one is locally con-
nected. For instance, the rational lamination of the quadratic polynomial with Siegel
fixed point (see Example of Section 2) is trivial (each rational point of T is a class).

1The example appeared during a discussion of the first author with Jan Kiwi
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Hence, its closure is also trivial, i.e. the corresponding topological Julia set is a circle.
See [Ki1] for a general statement.

3. For Cantor Julia sets, see [BL1].
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