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Abstract. Every plane continuum admits a finest locally connected model.
The latter is a locally connected continuum onto which the original contin-

uum projects in a monotone fashion. It may so happen that the finest locally

connected model is a singleton. For example, this happens if the original con-
tinuum is indecomposable. In this paper, we provide sufficient conditions for

the existence of a non-degenerate model depending on the existence of subcon-

tinua with certain properties. Applications to complex polynomial dynamics
are discussed.

1. Introduction. A natural approach to studying a topological space X is to
model X using simpler and easier to deal with spaces. By this we mean finding
a quotient space of X such that both the quotient map m : X → L and the model
space L are manageable. In this paper we consider only plane continua; in that set-
ting we view monotone maps and locally connected continua as manageable. This
leads to the concept of the finest locally connected model under a monotone map of
a plane continuum X.

The concept was inspired by Jan Kiwi who approached the problem of modeling
from the point of view of (complex) dynamical systems. To state Kiwi’s results we
need a few definitions. All maps are assumed to be continuous.

Definition 1.1 (Semiconjugacy of maps). Two maps f : X → X and g : Y → Y
are said to be semiconjugate if there exists a map ψ : X → Y such that ψ◦f = g◦ψ.
In other words, the following diagram is commutative:
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We also need to define a concept of a monotone map.

Definition 1.2 (Monotone map). A surjective map f : X → Y of continua is
monotone provided for each y ∈ Y , the fiber f−1(y) is connected.

In what follows let C be the complex plane and let Ĉ be the complex sphere.
In his paper [9] Kiwi proves that if a polynomial P with connected Julia set J(P )
has no periodic points with multipliers which are complex numbers of modulus
1 and irrational argument then P can be semiconjugate to a so-called topological
polynomial fP : C → C. The semiconjugacy ϕ : C → C is a monotone map
which is one-to-one outside the Julia set J(P ); thus, basically ϕ collapses some
subcontinua of J(P ) (fibers of ϕ) to points. The topological polynomial fP is a
branched covering map such that ϕ(J(P )) is a locally connected continuum with
well-understood structure and dynamics described by so-called laminations.

As mentioned above, Kiwi’s approach to the problem was based upon dynamical
systems’ considerations. Later on in [2] it was discovered that an approach based
upon continuum theory yields results that extend those of [9] while also being
applicable in a purely topological setting. We need a few definitions.

Definition 1.3. Let X be a continuum. A continuum Y is a finest locally connected
model for X if there exists a monotone map m : X → Y so that for any monotone
map f : X → Z, where Z is a locally connected continuum, there exists a monotone
map g : Y → Z so that g ◦m = f ; then we will call the map m a finest monotone
map.

We consider this notion on the plane in the context of so-called unshielded con-
tinua.

Definition 1.4. Given a compact set X in the plane, let U∞X denote the unbounded
complementary domain of X. The set TH(X) = C \ U∞X is called the topological
hull of X. A compact set X in the plane is unshielded provided X coincides with
the boundary ∂U∞X of the unbounded complementary domain U∞X of X. Observe
that any subcontinuum of an unshielded continuum is unshielded.

The following theorem shows that a finest locally connected model and a finest
monotone map are well-defined for unshielded plane continua (in [3] the result was
extended to plane compacta).

Theorem 1.5 ([2]). Every unshielded plane continuum X has a finest locally con-
nected model Y and a finest monotone map m. Moreover, any two finest locally
connected models of an unshielded continuum X are homeomorphic. Furthermore,

m can be extended to a monotone map Ĉ → Ĉ which maps ∞ to ∞, in C \ X
collapses only those complementary domains to X whose boundaries are collapsed

by m, and is a homeomorphism elsewhere in Ĉ \X.

By Theorem 1.5 we can talk about the finest locally connected model of an
unshielded continuum and the finest monotone map. It follows that if an unshielded
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plane continuum X has the finest locally connected model which is non-degenerate
then its topological hull TH(X) also has a non-degenerate model.

In particular, the connected Julia set of a polynomial admits a finest locally
connected model. However, in some cases the finest locally connected model is a
single point; in this case we say that the finest locally connected model is degenerate
while otherwise we call such model non-degenerate. Obviously, if the finest model
is degenerate, all information regarding the continuum X is lost while otherwise
some of the structure of X is preserved in its model. This shows the importance
of the fact that the finest locally connected model of an unshielded continuum is
non-degenerate. In the present paper we will study conditions under which the
finest locally connected model is non-degenerate. Moreover, in the final section we
apply this result to polynomial dynamics.

2. Statement of main results and applications. In this section we assume
knowledge of basic concepts of continuum theory and complex dynamics (all neces-
sary definitions are given in detail later in the sections of the paper containing the
proofs of our main results). Denote the open unit disk by D and the disk at infinity
(i.e., C \ D) by D∞. We will identify the unit circle S = ∂D = ∂D∞ with R/Z and
call the induced order on S the circular order. Note that the circular order is not
defined for a pair of points in S, but if x, y, z ∈ S are three distinct points, then
x < y < z in the circular order if, when traveling from x in the positive direction
along S, we encounter y before z. Thus, from now on a single point x ∈ S will be
denoted by the corresponding angle, i.e. by a number α ∈ [0, 1) with x = e2παi.

If X is a plane continuum, then by the Riemann mapping theorem there exists
a conformal map ψX : D∞ → U∞X with derivative converging to a real number as
|z| → ∞. External rays of X foliate U∞X and serve as a major tool in studying the
topology of ∂U∞X .

Definition 2.1 (External rays). Let X be a plane continuum. By an external ray
of X we mean the image of the radial line segment with argument 2πα under the
Riemann map ψX ; in what follows, this image will be denoted by RX(α). In other
words,

RX(α) = ψX({r e2παi | r > 1}).
If we do not want to emphasize the argument we denote an external ray of X by RX .
We say that the external ray RX(α) lands at xα ∈ X provided RX(α)\RX(α) = xα.

We will mostly consider external rays for unshielded plane continua X (in that
case X = ∂U∞X ) such as connected Julia sets of complex polynomials, however some-
times we work with external rays of other plane continua (e.g., we consider external
rays of connected filled Julia sets). Observe that the unbounded complementary
domain U∞X of a continuum X coincides with the unbounded complementary do-
main U∞TH(X) of its topological hull. Therefore we can (and will) interchangeably

talk about external rays of X and/or external rays of TH(X).

Definition 2.2 (Strategically placed subcontinua). Suppose that Y is a subcon-
tinuum of an unshielded continuum X in the complex plane. Then we say that Y
is strategically placed in X provided that there exists a dense set A(Y,X) = A ⊂ S
so that:

1. for each α ∈ A, RY (α) lands at a point yα ∈ Y ,
2. the set of points {yα}α∈A is dense in Y ,
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3. there exists a circle order preserving function p : A → S so that for each α ∈ A
the ray RX(p(α)) lands at yα.

In this case we say that A is an anchor set (of Y ) and p : A → S is an external
connecting function (of Y ).

Since p preserves order, p is one-to-one but we do not assume that p is contin-
uous. Easy examples show that p is also not necessarily one-sided continuous. For
instance, let Y = [−1, 1] be the interval in the x-axis and let X be the union of
Y and the two intervals connecting the points (1, 1) and (−1, 1) with the origin O.
Then it is easy to see that Y is strategically placed in X. Moreover, denote by α
the angle in the anchor set A such that RY (α) lands at O “from above”. Then it
is easy to see that if the map p is defined so that RX(p(α)) is the positive y-axis,
then p is neither continuous from the left nor continuous from the right at α.

Theorem A is our main continuum theory result. It shows that in some cases
the fact that a subcontinuum has a non-degenerate finest locally connected model
implies that the same can be said about the continuum itself.

Theorem A. Let X be an unshielded plane continuum. If Y is strategically placed
in X, and Y has a non-degenerate finest locally connected model MY , then X has a
non-degenerate finest locally connected model MX . Moreover, there exists a canon-
ical embedding of MY into MX .

The main applications of this result are in complex dynamics. Namely, the
following theorem holds.

Theorem B. Suppose that P : C→ C is a polynomial, and J∗ ⊂ J(P ) is the Julia
set of a polynomial-like map obtained as a restriction of Pn for some n > 0. If J∗

has a non-degenerate finest locally connected model, then so does J(P ).

In Subsection 4.3, we rely upon [3] and prove a version of Theorem B for dis-
connected Julia sets. The authors are indebted to the referee for suggesting the
“moreover” part of Theorem A.

3. Proof of Theorem A. In the first subsection of this section we give various
standard definitions. Then we prove Theorem A.

3.1. Basic definitions. The notion of the principal set is used in studying the
limit behavior external rays.

Definition 3.1 (Principal set). Given an external ray RX(α) of an unshielded

continuum X we denote by PrX(α) the set RX(α) \RX(α) and call it the principal
set of the ray RX(α). If PrX(α) is a single point y, then RX(α) lands at y.

More generally, let T ⊂ U∞X be an image of R+ = (0,∞) under a continuous map

ψ : R+ → C such that limt→∞ |ψ(t)| =∞ while ∅ 6= T \ T ⊂ X. Then we say that
T = ψ(R+) accumulates in X, denote T \ T by PrX(T ) and call it the principal set
of the curve T which accumulates in X. If PrX(T ) is a single point y we say that
the curve T lands at y.

Another important definition is that of a crosscut (see, e.g., [11] for details).

Definition 3.2 (Crosscuts). A crosscut C of X is an open arc C ⊂ U∞X so that its
closure is a closed arc with two distinct endpoints both of which belong to X. A
fundamental chain {Ci} (of crosscuts) is a sequence of crosscuts Ci of X such that
the following holds:
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1. Ci ∩ Cj = ∅ if i 6= j,
2. for each i, the crosscut Ci separates Ci+1 from infinity in U∞X , and
3. lim diam(Ci) = 0.

For each crosscut C of X its shadow SC is the closure of the bounded comple-
mentary domain of C \ [X ∪ C] whose boundary contains C.

Note that every fundamental chain {Ci} corresponds to a unique point α ∈ S
defined by lim(ϕX)−1(Ci) = α and in this case we say that {Ci} is a fundamental
chain for α.

Definition 3.3 (Impressions). The (X-)impression ImpX(α) is defined as

ImpX(α) =
⋂
SCi

, where {Ci} is a fundamental chain for α.

It is easy to see that both PrX(α) and ImpX(α) are continua, that PrX(α) ⊂
ImpX(α) and that ImpX(α) is independent of the choice of the fundamental chain
for α. Moreover, let X be an unshielded continuum. Then, even though

⋃
α PrX(α)

can be a proper subset of the continuum X,
⋃
α ImpX(α) = X.

3.2. Proof of Theorem A. Let us recall that the notion of a subcontinuum Y
strategically placed in an unshielded continuum X was introduced in Definition 2.2.
A part of this definition is a function p (so-called external connecting function) of
a dense set A ⊂ S to S which preserves circle order and maps angles such that for
each α ∈ A, both the ray RY (α) and the ray RX(p(α)) land at a point yα ∈ Y . We
will show below that the choice of the function p is severely restricted. Moreover,
the condition in Lemma 3.4 characterizes the situation in which a subcontinuum is
strategically placed in an unshielded continuum (and so this characteristic can be
used as an alternative definition of the fact that Y is strategically placed in X).

Lemma 3.4. Suppose that Y ⊂ X are unshielded planar continua. Then the fol-
lowing are equivalent:

1. Y is strategically placed in X with anchor set A,
2. There exists a dense set A ⊂ S so that the following holds:

(a) for α ∈ A the ray RY (α) lands at the point yα ∈ Y so that the set of all
points yα, α ∈ A, is dense in Y ;

(b) for each α ∈ A there exists β(α) = β ∈ S so that the ray RX(β) also
lands at yα and the rays RY (α) and RX(β) are homotopic in {yα}∪C\Y
under a homotopy which fixes the landing point yα ∈ Y .

Proof. Suppose that Y is strategically placed in X with anchor set A and p : A → S
as the external connecting function. Suppose that α ∈ A and the ray RY (α) lands
at yα ∈ Y . Clearly, RX(p(α)) can be viewed as a curve in C \Y which accumulates
in Y ; more precisely, we can say that RX(p(α)) lands at yα. Thus, RX(p(α)) is
homotopic to some external ray RY (β) in C \ Y under a homotopy which fixes
yα (so that the ray RY (β) lands at yα too). If α 6= β, then both components of

C \RY (α) ∪RY (β) intersect Y (because two distinct external rays of Y which land
at the same point of Y cannot be homotopic outside Y ).

Choose γ1, γ2 ∈ A so that α < γ1 < β < γ2 < α and RY (γ1) and RY (γ2) land in

different components C1, C2 of C \ RY (α) ∪RY (β), respectively. Let RY (γ1) land
on a point yγ1 ∈ C1 ∩ Y and let RY (γ2) land at a point yγ2 in C2 ∩ Y . Then
RX(p(γ2)) is an external ray of X which also lands at yγ2 . Since α < γ1 < γ2, then
p(α) < p(γ1) < p(γ2).
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Consider the set E of angles in p(A) which belong to (p(α), p(γ2)). Consider also

the component Ẽ of the set

C \ [RX(p(α)) ∪ {yα} ∪RX(p(γ2) ∪ (C2 ∩ Y )]

containing external rays of X with arguments from E. The external rays of X with

argument in E can only land at points from the boundary of Ẽ but not on points
from other external rays of X; thus, the external rays of X with argument in E can
only land at points from [C2∩Y ]∪{yα}. In particular this must be true for the ray
RX(p(γ1)). However by definition this ray must land at the point yγ1 ∈ C1 ∩ Y , a
contradiction.

Suppose next that condition (2) holds. It suffices to show that the map p :
α → β(α) preserves circular order. Recall that by ψY : D∞ → U∞Y we denote the
conformal map with derivative converging to a real number as |z| → ∞. Similarly,
let ψX : D∞ → U∞X be the corresponding Riemann map from the complement of the
closed unit disk to the unbounded component of X. Assume that α1 < α2 < α3 ∈ A
and let βj = β(αj). Since the rays RY (α) and RX(β) are homotopic in {yα}∪C\Y
under a homotopy which fixes the landing point yα ∈ Y , the ray ψ−1Y (RX(βj)) = R̂j
lands at the point e2παj i = xj ∈ S and x1 < x2 < x3. Let Sr be the circle

ψ−1Y ◦ ψX({z ∈ C | |z| = r}) with an induced circular order <. As r ↘ 1, the circle

Sr intersects R̂j at a unique point yj(r), and limr↘1 yj(r) = xj . This implies that
y1(r) < y2(r) < y3(r) as required.

Suppose that Y ⊂ X is strategically placed in X with anchor set A. Then
Lemma 3.4 implies that for any α ∈ A ⊂ S the ray ψ−1Y (RX(p(α))) lands at α ∈ S.
This visualization is useful in the proof of the next lemma that describes intersec-
tions between closures of components of X \ Y and Y . It follows easily from the
assumptions that X is unshielded and Y is strategically placed in X.

Lemma 3.5. Suppose that X is an unshielded continuum and Y ⊂ X is a contin-
uum strategically placed in X. If C is a component of X \ Y , then

|ψ−1Y (C) ∩ ∂D| = 1.

In particular, if α = ψ−1Y (C) ∩ ∂D, then C ∩ Y ⊂ ImpY (α).

Proof. Observe that ψ−1Y (C) is a connected subset of C\D (becauseX is unshielded).

It follows that if ψ−1Y (C)∩ ∂D is non-degenerate then there exists a non-degenerate

arc [p, q] ⊂ ∂D such that any (not necessarily radial) ray T ∈ C \ D which lands
at β ∈ (p, q) must intersect ψ−1Y (C). Choose α ∈ (p, q) ∩ A. By Lemma 3.4,

ψ−1Y (RX(p(α)) lands at α. Then ψ−1Y (C) ∩ ψ−1Y (RX(p(α)) 6= ∅ and, hence, C ∩
RX(p(α)) 6= ∅, a contradiction. To prove the last claim of the lemma choose a

fundamental system of crosscuts Bi such that ψ−1Y (Bi) converge to α = ψ−1Y (C)∩∂D.
Then by definition their shadows converge to ImpY (α). Since all these shadows
contain C ∩ Y , it follows that C ∩ Y ⊂ ImpY (α) as desired.

Lemma 3.5 motivates the following definition.

Definition 3.6 (Angles associated with components of X \ Y ). Suppose that X
is an unshielded continuum and Y ⊂ X is a continuum strategically placed in X.

Given a component C of X \ Y we call the angle α such that ψ−1Y (C) ∩ ∂D = {α}
the angle associated with C and denote it by α(C) which defines a map from the
family of components of X \ Y to the unit circle. We also define the function C
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which associates to any point x ∈ X \ Y the component C(x) of X \ Y such that
x ∈ C(x). Finally, we consider a function α : X \Y → S defined as α(x) = α(C(x))
for every x ∈ X \ Y .

Using the terminology introduced in Definition 3.6 we can restate Lemma 3.5 as
follows: if X is an unshielded continuum and Y ⊂ X is a continuum strategically
placed in X then for every component C of X \ Y we have C ∩ Y ⊂ ImpY (α(C)).

Let us now prove a version of a particular case of a Kuratowski’s result dealing
with planar continua. More precisely, by [10, Theorem 61.2] the following holds.
Suppose that Y and Z are two planar continua. Then it follows from [10, Theorem
61.2] that if Y ∩ Z is disconnected then there exists a bounded complementary
domain of the union Y ∪ Z. We extend this result a tiny bit in the lemma below.
Recall that topological hulls of planar compacta are defined in Definition 1.4. First
we prove a simple lemma concerning unshielded continua and their subcontinua.

Lemma 3.7. Suppose that X is an unshielded continuum and Y ⊂ X,Z ⊂ X are
two continua. Then TH(Y ) ∩ TH(Z) = TH(Y ∩ Z).

Proof. Take a point v ∈ TH(Y )∩TH(Z) which does not belong to Y ∩Z. It follows
that v /∈ X (if v ∈ X then v can only belong to TH(Y ) if v ∈ Y , and v can only
belong to TH(Z) if v ∈ Z, a contradiction with v /∈ Y ∩ Z). Hence there exists
a bounded complementary domain V of X such that v ∈ V , and it is clear that
v ∈ TH(Y )∩TH(Z) implies that ∂V ⊂ Y ∩Z. Thus, points of TH(Y )∩TH(Z) either
belong to Y ∩Z, or belong to the interiors of boundary complementary domains V
to X such that ∂V ⊂ Y ∩ Z. Therefore TH(Y ) ∩ TH(Z) = TH(Y ∩ Z).

The next corollary follows from [10, Theorem 61.2].

Corollary 3.8. Suppose that X is an unshielded continuum and Y ⊂ X,Z ⊂ X
are two continua such that Y ∩ Z is disconnected. Then there exists a bounded
complementary domain V of the union Y ∪Z such that ∂V contains points of Y \Z
and points of Z \ Y .

In other words, among the bounded complementary domains of Y ∪ Z, there
must exist a “new” domain which is neither a bounded complementary domain of
Y nor a bounded complementary domain of Z.

Proof. By [10, Theorem 61.2] there are boundary complementary domains of Y ∪Z.
Suppose that for any such domain U we have either ∂U ⊂ Y , or ∂U ⊂ Z (i.e., no
boundary complementary domain of Y ∪ Z is “new”). Let us add these domains
to Y ∪ Z. This will result into the continuum TH(Y ∪ Z), the topological hull of
Y ∪Z, which has no bounded complementary domains at all. On the other hand, our
assumption about all complementary domains of Y ∪Z being not “new” implies that
TH(Y ∪ Z) = TH(Y ) ∪ TH(Z). Since TH(Y ∪ Z) has no bounded complementary
domains it now follows from [10, Theorem 61.2] that TH(Y ) ∩ TH(Z) must be
connected. Let us show that this contradicts the original assumption about Y ∩ Z
being disconnected (observe that so far we have not used the fact that Y and Z are
subcontinua of an unshielded continuum X). Indeed, since Y ∩ Z is not connected
then by Lemma 3.7 TH(Y ) ∩ TH(Z) = TH(Y ∩ Z) is not connected either, a
contradiction.

We are ready to prove Lemma 3.9, which is used in the “moreover” part of
Theorem A.
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Lemma 3.9. Suppose that X is an unshielded continuum and Y ⊂ X is a con-
tinuum strategically placed in X. Let Z ⊂ X be a continuum. Then Z ∩ Y is a
continuum too.

Proof. Suppose that Z ∩ Y is disconnected. Then by Corollary 3.8 there exists a
bounded complementary domain V of the union Y ∪Z such that ∂V contains points
of Y \ Z and points of Z \ Y . Choose an open set T of points on ∂V contained in
Y \ Z. It follows that there exists a point yα ∈ T for some angle α ∈ A(Y ) so that
an arc of the ray RY (α) is contained in V and lands at yα. Clearly, this contradicts
Lemma 3.4.

We will also need the following geometric lemma.

Lemma 3.10. Suppose that X is an unshielded continuum and Y ⊂ X is a contin-
uum strategically placed in X. Let {xi} be a sequence of points of X \ Y such that
xi → x and α(xi)→ β. Then either x ∈ ImpY (β) or x ∈ X \ Y and α(x) = β. In
particular, the map α : X \ Y → S is continuous.

Proof. Since impressions are upper semi-continuous and because C(xi)∩Y ⊂ ImpY
(α(xi)) by Lemma 3.5, we have that

lim supC(xi) ∩ Y ⊂ lim sup ImpY (α(xi)) ⊂ ImpY (β).

If angles θ, θ′, γ′, γ ∈ A are close to β and θ < θ′ < β < γ′ < γ then for sufficiently
large i we have that α(xi) = αi ∈ (θ, γ), and by Lemma 3.4 all components C(xi) are
contained in the same appropriately chosen component Z(θ, γ) of C\Y ∪RX(p(θ))∪
RX(p(γ)) containing external rays of X with arguments from (p(θ), p(γ)). Since the
set

Q(θ, γ) = Z(θ, γ) ∪RX(p(θ)) ∪RX(p(γ)) ∪ Y
is closed this implies that x ∈ Q(θ, γ). Consider now two possibilities.
1. Suppose that x /∈ Y but α(x) 6= β. Then we can choose angles θ and γ so that
α(x) /∈ [θ, γ] and therefore C(x) is disjoint from Q(θ, γ), a contradiction with the
fact that x ∈ Q(θ, γ). Thus, if x /∈ Y then α(x) = β.
2. Suppose that x ∈ Y . Let us show that then x ∈ ImpY (β). Indeed, choose angles
θ, θ′, γ′, γ as above. Draw crosscuts T (θ, γ) = T and then T (θ′, γ′) = T ′ inside the
shadow ST of T . Then for some ε > 0 every point z /∈ ST of a component C of
X \ Y with α(C) ∈ (θ′, γ′) is at least ε-distant from Y . In particular, if xi /∈ ST
then the distance between xi and Y is at least ε. Since xi → x ∈ Y , it follows that
xi ∈ ST for sufficiently large i, and hence that x ∈ ImpY (β).

This completes the proof of the lemma.

The following lemma is proven in [2].

Lemma 3.11 ([2]). Let K ⊂ C be an unshielded continuum and m : K → Z be a
monotone map of K to a locally connected continuum Z. Then all fibers of m are
unions of K-impressions (equivalently, m collapses any K-impression to a point).
In particular, this holds for the finest monotone map mK of K.

We will need the θ-curve Theorem due to Kuratowski ([10]). By a θ-curve one
means the union of three closed arcs having the same endpoints and no other com-
mon points (such is the letter θ).

Theorem 3.12 (Theorem 3 [10], p. 329). Every locally connected continuum X
containing no θ-curve has a basis such that the boundary of each element of the
basis is finite.
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We will also need another result from [10].

Theorem 3.13 (Theorem 1 [10], p. 283). Every connected space which has a basis
such that all its elements have finite boundary is locally connected.

Theorems 3.12 and 3.13 imply the following corollary.

Corollary 3.14. Suppose that Y is a subcontinuum of a locally connected unshielded
continuum X. Then Y is locally connected.

Proof. Since X is unshielded, then Y is unshielded too. Hence Y contains no θ-
curve. By Theorem 3.12 Y has a basis all of whose elements have finite boundaries.
By Theorem 3.13, Y is locally connected.

We are ready to prove Theorem A.

Theorem A. Let X be an unshielded plane continuum. If Y is strategically placed
in X, and Y has a non-degenerate finest locally connected model MY , then X has a
non-degenerate finest locally connected model MX . Moreover, there exists a canon-
ical embedding of MY into MX .

Proof. By Theorem 1.5 it suffices to show that there exists a monotone map from X
to a non-degenerate locally connected continuum L. Since Y has a non-degenerate
finest locally connected model, then there exists the finest monotone map mY :
Y → L so that L is a non-degenerate locally connected continuum. We will extend
the map mY to a monotone map m : X → L as follows: for every x ∈ X \ Y
set m(x) = mY (ImpY (α(x))). Observe that since by Lemma 3.11 the map mY

collapses all Y -impressions to points, then the map m(x) is well-defined. Let us
show that this map has the desired properties.

First we show that m is continuous. To see that, we first show that if xi → x
then one can find a subsequence xij such that m(xij ) → m(x). This is obvious
if infinitely many points xi belong to Y because mY is continuous. Thus we may
assume that xi ∈ X \ Y for every i. Choose a subsequence xij so that α(xij )→ β.
Then by Lemma 3.10 either x ∈ ImpY (β), or x ∈ X \ Y and α(x) = β. In either
case m(x) = m(ImpY (β)) while m(xij ) = m(ImpY (α(xij ))). Since impressions are
upper semi-continuous and m is continuous, then m(ImpY (α(xij ))) = m(xij ) →
m(ImpY (β)) = m(x) as desired.

We claim this implies continuity of m. Indeed, suppose that xi → x but m(xi) 6→
m(x). Refining our sequence we may assume that m(xi) → t 6= m(x). However
by the previous paragraph we can find a subsequence xij of xi such that m(xij )→
m(x), a contradiction.

Since for y ∈ Y , m−1(y) is the union of (mY )−1(y) and all components of X \ Y
whose closure intersects (mY )−1(y), m−1(y) is connected. Hence m : X → L is the
desired monotone map.

Let us now prove the “moreover” part of Theorem A. We will use a monotone
map m : X → L of X to the finest model L of Y constructed above. Recall that
m|Y coincides with the finest map mY of Y to its finest model L. Let us denote
the finest monotone model of X by T and the finest monotone map from X to T
by mX : X → T . The fact that m is a monotone map implies that there exists a
map ψ : T → L such that m = ψ ◦mX .

Let us show that mX |Y is monotone. Indeed, take a point t ∈ mX(Y ). Then
m−1X (t) is a continuum because mX is monotone. By Lemma 3.9 m−1X (t) ∩ Y is a

continuum. Since m−1X (t) ∩ Y is the preimage of the point t under the restriction
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mX |Y of mX onto Y , it follows that this restriction is monotone. Hence mY =
(ψ|mX(Y )) ◦ (mX |Y ) (observe that by Corollary 3.14 mX(Y ) is locally connected).
However mY is the finest monotone map for Y that implies that ψ|Y must be a
homeomorphism. Thus, the restriction of the finest map mX for X onto Y maps Y
onto the finest model L of Y as desired.

4. Applications. In this section we apply our results to complex dynamics.

4.1. Preliminaries from complex dynamics. We rely upon basic facts dis-
cussed, e.g., in [11]. Let us fix a polynomial P of degree at least two.

Definition 4.1 (Periodic points). A periodic point p of period n is repelling if

(Pn)′(x) = re2πiα with r > 1 and parabolic if (Pn)′(p) = e2πi
p
q , with p, q ∈ N.

A periodic point p of P of period n and (Pn)′(p) = e2πiα with α ∈ R \ Q is a
Siegel point if there exists an open disk U containing p so that Pn|U is analytically
conjugate to the rigid rotation R(z) = e2πiαz of the open unit disk and a Cremer
point if such a disk does not exist.

Periodic points play a crucial role in complex dynamics; in particular, they are
used in one of the standard equivalent definitions of the Julia set of P .

Definition 4.2 ((Filled) Julia set). The Julia set J(P ) of a polynomial P is the
closure of the set of repelling periodic points of P ; it is known that J(P ) is compact.
The set C\U∞J(P ) = TH(J(P )) is called the filled Julia set and is denoted by K(P ).

The Julia set J(P ) coincides with the boundary ∂U∞J(P ) of the open set U∞J(P )

and, hence, J(P ) is unshielded. The dynamics of P outside the filled Julia set K(P )
is rather predictable.

Definition 4.3 ((Non-)escaping points). Points attracted to infinity under itera-
tions of P are called escaping. Otherwise points are said to be non-escaping.

It is known that the unbounded complementary domain U∞J(P ) of J(P ) is in fact

the set of all escaping points while its complement K(P ) is in fact the set of all non-
escaping points. The set U∞J(P ) = U∞K(P ) is therefore called the basin of attraction

of infinity.
The Julia set J(P ) is a continuum if and only if all critical points of P are non-

escaping (in other words, the orbits of all critical points of P are contained in K(P )).
We will first assume that J(P ) (equivalently, K(P )) is connected. Then it is known
that all repelling and parabolic periodic points of P (and all their pre-images) are
the landing points of finitely many rays RJ(P )(α) with α ∈ Q.

In a vast majority of cases the connected Julia set of a polynomial is either lo-
cally connected, or at least admits a non-degenerate finest locally connected model.
However, this is not always the case. To give an example we need the following
alternative definition of a Cremer point.

Definition 4.4. Let P be a polynomial. Suppose that a is a periodic point of P
of period n such that (Pn)′(a) = e2πiθ with θ irrational. Moreover, suppose that a
belongs to the Julia set J(P ) of P . Then a is a Cremer periodic point of P .

The main result of [5] shows that in some cases the finest locally connected model
of a connected Julia set is degenerate.

Theorem 4.5 ([5]). For the Julia set of a quadratic polynomial with a fixed Cremer
point the finest locally connected model is a point.
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In general the existence of a subcontinuum with a non-degenerate finest locally
connected model provides no information about such a model for the entire un-
shielded continuum. However, if the subcontinuum is strategically placed, then
Theorem A shows that a non-degenerate model for the entire space does exist. A
natural choice of a subcontinuum of J(P ) on which one can hope to have a non-
degenerate finest locally model is that of a connected Julia set of a polynomial-like
map which is a power of P . This is another application of polynomial-like maps
that are a powerful tool in complex dynamics introduced by Douady and Hubbard
[8].

Definition 4.6 (Polynomial-like maps). A polynomial-like map of degree d is a
triple (U, V, f) where U and V are open subsets of C isomorphic to discs, with U
relatively compact in V , and f : U → V is a proper analytic map of degree d.

Similar to polynomials, one can define the (filled) Julia set of a polynomial-like
map.

Definition 4.7 ((Filled) Julia set of a polynomial-like map). If f : U → V is a
polynomial-like map of degree d, we will denote

Kf =
⋂
n≥0

f−n(U),

the compact set of points z ∈ U such that fn(z) is defined and belongs to U for all
n ∈ N. The set Kf is called the filled Julia set of f . The Julia set Jf of f is the
boundary of Kf .

Given a polynomial P , we will often say that Pn|K∗ : K∗ → K∗ (or Pn|J∗ :
J∗ → J∗) is a polynomial-like map meaning that there exist open sets U and V as
in Definition 4.6 such that K∗ is the filled Julia set (or J∗ is the Julia set) of the
corresponding polynomial-like map (Pn, U, V ).

The term polynomial-like maps is justified by the Straightening Theorem stated
below. However first we need one more definition.

Definition 4.8 (Hybrid equivalence [8]). Two polynomial-like maps f : U → V
and g : U ′ → V ′ are hybrid equivalent if there is a quasi-conformal map ϕ : U → U ′

conjugating f to g such that ϕ is conformal almost everywhere on K(f) (in other
words, ϕ is such that ϕ ◦ f = g ◦ ϕ near Kf ). The map ϕ is called a straightening
map.

An important result of [8] is given below; this theorem allows us to talk about
finest locally connected models of connected polynomial-like Julia sets.

Straightening Theorem ([8]). Let f : U → V be a polynomial-like map. Then f
is hybrid equivalent to a polynomial P . Moreover, if K(f) is connected, then P is
unique up to (global) conjugation by an affine map.

4.2. Main applications in the connected case. Suppose that the connected
Julia set J(P ) of a polynomial P contains a subcontinuum K∗ so that Pn|K∗ is a
polynomial-like map. Then by the Straightening Theorem Pn|K∗ : K∗ → K∗ is hy-
brid equivalent to a polynomial g with connected filled Julia set K(g). In particular,
under the hybrid equivalence appropriate arcs contained in external rays of K(g)
correspond to arcs inside U which accumulate to the corresponding polynomial-
like Julia set J∗ (the open set U is defined as in Definition 4.6). Slightly abusing
the language we will call these arcs polynomial-like rays and will denote them in
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the same way as we would have denoted external rays of K∗ (or equivalently, of
J∗), i.e. RK∗(α) where α is the argument of the external ray of the polynomial g
corresponding to RK∗(α).

Recall that an external ray RJ(α) is said to accumulate in J∗ if Pr(α) ⊂ J∗.
Also, it is easy to see that the property of a point being repelling or parabolic is
preserved under hybrid equivalence. By Definition 4.2 this allows one to conclude
that repelling periodic points of P are dense in J∗. Moreover, it follows that if p is
a repelling or parabolic periodic point of P , then only finitely many external rays
RJ∗(α) of J∗ and finitely many external rays RJ(β) of J land at p.

Suppose that Y ⊂ X are unshielded plane continua. Above in Lemma 3.4 we
considered a map p : A → S; this map associated to a ray RY (α) the ray RX(p(α))
so that both rays landed on the same point yα ∈ Y and were homotopic outside Y
by a homotopy fixing yα. In the case of polynomials f and polynomial-like maps
f∗ it is easier to first consider the “inverse” map which associates rays RJ(f)(β)
which land at a point yβ ∈ J(f∗) to rays RJ(f∗)(ν(β)) which land at yβ and are
homotopic to RX(β) outside Y by a homotopy which fixes yβ . This is accomplished
in Lemma 4.9.

In what follows, given a map, we call a point preperiodic if it is not periodic but
eventually maps to a periodic point, and (pre)periodic if it is periodic or preperiodic.
Recall that if the Julia set J(P ) of a polynomial P is connected and an angle α is
(pre)periodic then the external ray RJ(P ) lands at a (pre)periodic (in the sense of
P ) point in J(P ) [11]. Given a set T ⊂ S we say that a map Ψ : T → S is extendably
monotone if Ψ has a monotone (but not necessarily continuous!) extension m : S→
S.

Lemma 4.9. Suppose that P is a polynomial of degree d with connected Julia set
J and J∗ ⊂ K is a subcontinuum of J such that Pn|J∗ is a polynomial-like map
with filled Julia set K∗ and Julia set J∗. Suppose that Pn|J∗ is hybrid equivalent
to a polynomial Q of degree k. Let B ⊂ S be the set of all angles β so that RJ(β)
lands at a point yβ ∈ J∗. Then there exists a extendably monotone continuous map
ν : B → S such that:

1. for each β ∈ B the ray RJ∗(ν(β)) lands at the same point yβ and the rays
RJ(β) and RJ∗(ν(β)) are homotopic outside K∗ under a homotopy which
fixes the point yβ,

2. if B′ ⊂ B is the set of all (pre)periodic angles, then ν(B′) is dense in S,
3. ν ◦ σd = σk ◦ ν.

Notice that the continuity of ν on B only means that ν is continuous at points
of B and does not imply that ν can be extended to a continuous monotone map of
the circle to itself.

Proof. Since Pn|J∗ is polynomial-like, there exist Jordan disks U ⊂ U ⊂ V such
that J∗ ⊂ U and Pn : U → V is polynomial-like. Denote Pn|U by P ∗.

Let RJ(β) be an external ray of J which lands at a point yβ ∈ J∗. Consider
the inverse ξ : U∞J∗ → D∞ of the corresponding Riemann map from D∞ to U∞J∗

with derivative converging to a real number at infinity. Then ξ(RJ(β)) is a curve
which accumulates at a point z ∈ S. Choose the polynomial-like ray RJ∗(α) of J∗

whose ξ-image is the radial ray to D∞ landing at z (the argument of this radial ray
and hence the argument of the corresponding polynomial-like ray is denoted by α).
Since in the D∞-plane the radial ray to z and ξ(RJ(α)) are homotopic, it follows
that RJ(β) and RJ∗(α) are homotopic outside J∗ by a homotopy which fixes y (the
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homotopy carries over to C \ J∗ under the Riemann map). Define ν(β) = α. Since
this construction goes through for all angles β ∈ B, this defines a map ν : B → S.

To see that ν is extendably monotone suppose that ν(β1) = ν(β2). Then
ξ(RJ(β1)) and ξ(RJ(β2)) are two curves which land at the same point z ∈ S.
Denote by T the component of D∞ \ [ξ(RJ(β1)) ∪ ξ(RJ(β2))] whose closure meets
S only in the point z ∈ S (in other words, T is the wedge between ξ(RJ(β1)) and
ξ(RK(β2)) which does not contain the unit disk). Then any external ray RJ(γ)
with ξ(RJ(γ)) ⊂ T that lands at a point of J∗ must land at y so that ξ(RJ(γ))
lands at z.

This implies that there exists an arc Az ⊂ S so that ν−1(z) = Az∩B. To see that
there exists a monotone extension of ν it remains to observe that circular orientation
among points of B is preserved under ν in the following sense: if β1 < β1 < β3 then
it is impossible that ν(β1) < ν(β3) < ν(β2) as otherwise some external rays of K
will have to intersect. Thus, the arcs Az constructed above for all points z ∈ ν(B)
have the same circular order as the points z ∈ S which implies the desired claim.

Now, choose an angle β ∈ B such that yβ ∈ J∗, the landing point of the external
ray RJ(β), is preperiodic. Set α = ν(β). Properties of polynomials (and hence
of polynomial-like maps) imply that the family of all polynomial-like rays which
are preimages of RJ∗(α) is such that their arguments are dense in S. Each such
polynomial-like ray R∗ with argument α′ is a unique pullback of RJ∗(α) under the
appropriate branch of the inverse function to P ∗ (recall that yβ is not periodic). If
we simultaneously pull back RJ(β) under the same branch of the inverse function
of P ∗ we will obtain an external ray RJ(β′) of J with argument β′ which lands at
the same point as R∗ and is homotopic to R∗ outside K∗. Denote the argument of
R by α′, then ν(β′) = α′. This shows that (2) holds.

To see that ν is continuous consider a sequence β1 < β2 < . . . in B so that
limβi = β∞ ∈ B. Consider the landing points zi of the curves ξ(RJ(βi)) and the
landing point z∞ of ξ(RJ(β∞)). The fact that ν is extendably monotone implies
that z1 ≤ z2 ≤ · · · ≤ z∞. We claim that z∞ = lim zi. Indeed, otherwise we have

that z1 ≤ lim zi = t < z∞. By (2) we can choose a (pre)periodic angle β̂ ∈ B′ such

that t < ν(β̂) < z∞. Since ν is extendably monotone this contradicts the fact that
limβi = β∞. Thus, z∞ = lim zi as desired. The last claim of the lemma is left to
the reader.

The following corollary easily follows from definitions, Lemma 3.4 and Lemma 4.9

Corollary 4.10. Suppose that the connected Julia set J(P ) of a polynomial P
contains a subcontinuum J∗ so that Pn|J∗ is a polynomial-like map for some n ≥ 1.
Then J∗ is strategically placed in J(P ).

Proof. Let us use the notation from Lemma 4.9. Set A = ν(B). Then by Lemma 4.9
the set A is dense in S. Moreover, by Lemma 4.9 conditions listed in Lemma 3.4(2)
are satisfied for A ⊂ S and J∗ ⊂ J(P ). Hence J∗ is strategically placed in J(P ).

Lemma 4.10 allows one to conclude that connected polynomial-like Julia sets with
non-degenerate finest locally connected models force the existence of non-degenerate
finest locally connected models of containing them connected polynomial Julia sets.

Theorem B. Suppose that P : C → C is a polynomial and J∗ ⊂ J(P ) is the
polynomial-like Julia set of a suitable restriction of Pn for some n > 0. If J∗ has a
non-degenerate finest locally connected model, then so does J(P ).



5794 ALEXANDER BLOKH, LEX OVERSTEEGEN AND VLADLEN TIMORIN

Proof. Indeed, by Lemma 4.10 Theorem A implies the desired.

Note that if K∗ is a filled polynomial-like Julia set of a polynomial P , then K∗

is a component of P−n(K∗). As it turns out this is almost sufficient (the proof
of Lemma 4.11 uses some ideas communicated by M. Lyubich to the third named
author). For convenience we state these results in the case that n = 1.

Theorem 4.11 (Theorem B [4]). Let P : C→ C be a polynomial, and Y ⊂ C be a
full P -invariant continuum. The following assertions are equivalent:

1. the set Y is the filled Julia set of some polynomial-like map P : U∗ → V ∗ of
degree k,

2. Y is a component of the set P−1(P (Y )), and, for every attracting or parabolic
point y of P in Y , the immediate attracting basin of y or the union of all
parabolic domains at y is a subset of Y .

The following corollary is now almost immediate.

Corollary 4.12. Suppose that K∗ ⊂ K is an invariant subcontinuum of the filled
Julia set of a polynomial P such that K∗ is a component of P−1 ◦P (K∗) containing
all immediate parabolic and attracting basins of all attracting and parabolic points in
K∗. Then if ∂U∞K∗ has a non-degenerate finest locally connected model, then J(P )
has a non-degenerate finest locally connected model.

Proof. By [4], P |K∗ : K∗ → K∗ is a polynomial-like map. Hence the result follows
from Theorem B.

4.3. Models for non-connected spaces. Models for non-connected spaces were
studied in [3]. A compactum is a compact metric space. Since a compactum with
infinitely many distinct components is always not locally connected at some point,
we need to replace the condition of local connectedness of the model by a suitable
notion.

A compactum X is called finitely Suslinian if, for every ε > 0, every collection
of disjoint subcontinua of X with diameters at least ε is finite. By Lemma 2.9 [1],
unshielded planar locally connected continua are finitely Suslinian and vice versa.
Thus, in the unshielded case, the notion of finitely Suslinian generalizes the notion
of local connectivity. This motivates us to look for good finitely Suslinian models
of planar compacta.

Definition 4.13. Let X be a compactum. A finest finitely Suslinian model for X
is a finitely Suslinian compactum S and a monotone map m : X → S so that for
each monotone map f : X → Y to a finitely Suslinian compactum Y there exists a
monotone map g : S → Y with g◦m = f . Then the map m : X → S is called a finest
finitely Suslinian model map. We say that a compactum X has a non-degenerate
finitely Suslinian model S if at least one component of S is non-degenerate.

Observe that by definition of a monotone map it follows that if m is monotone
then distinct components of X map to distinct components of m(X). Observe also
that the above introduced notion of a degenerate finitely Suslinian model agrees
with the notion of a degenerate locally connected model in the case of continua.

By [3] all finest finitely Suslinian models of a compactum X are homeomorphic
and we can talk about the finest finitely Suslinian models of compacta. It was shown
in [3] that every planar unshielded compactum X has a finest finitely Suslinian
model S (which is unique up to homeomorphisms). As previously in the case of
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continua, the finest finitely Suslinian model S ofX may be degenerate (i.e., the finest
finitely Suslinian model monotone mapm : X → S may well collapse all components
of X to points). The following theorem is the main result of [3] concerning finest
finitely Suslinian models of polynomial Julia sets (this time including disconnected
Julia sets).

Theorem 4.14 (Theorem 6 [3]). The finest finitely Suslinian model monotone map
m : J(P )→ S of the Julia set J(P ) of a polynomial P coincides on each component
X of J(P ) with the finest monotone map mX of X to a locally connected continuum.
In particular, the following holds:

1. the finest finitely Suslinian monotone model of J(P ) is non-degenerate if and
only if there exists a periodic component of J(P ) whose finest finitely Suslinian
monotone model is non-degenerate;

2. the Julia set J(P ) is finitely Suslinian if and only if all periodic non-degenerate
components of J(P ) are locally connected.

Hence, the following theorem immediately follows.

Theorem 4.15. Suppose that J is the Julia set of a polynomial P and J∗ ⊂ J is
a subcontinuum so that, for some integer r, P r|J∗ : J∗ → J∗ is a polynomial-like
map and J∗ has a non-degenerate finest locally connected model. Then J has the
finest finitely Suslinian model.

Proof. Suppose that K∗ is contained in the component C of J . Then C must be
periodic of some period n. By a result of [6], Pn|C : C → C is a polynomial-like
map. Hence Pn|C is hybrid equivalent to a polynomial g. Since J∗ ⊂ C it follows
from Theorem B that C has a non-degenerate finest locally connected model. Hence,
by Theorem 4.14, J has the finest finitely Suslinian model.
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