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Abstract

Let P be a polynomial with a connected Julia set J . We use continuum theory to
show that it admits a finest monotone map ϕ onto a locally connected continuum
J∼P , i.e. a monotone map ϕ : J → J∼P such that for any other monotone map
ψ : J → J ′ there exists a monotone map h with ψ = h ◦ ϕ. Then we extend ϕ onto
the complex plane C (keeping the same notation) and show that ϕ monotonically
semiconjugates P |C to a topological polynomial g : C→ C. If P does not have Siegel
or Cremer periodic points this gives an alternative proof of Kiwi’s fundamental
results on locally connected models of dynamics on the Julia sets, but the results
hold for all polynomials with connected Julia sets. We also give a criterion and a
useful sufficient condition for the map ϕ not to collapse J into a point.

Date: September 22, 2008.

2000 Mathematics Subject Classification. Primary 37F10; Secondary 37B45, 37C25,
37F20, 37F50, 54F15

Key words: Complex dynamics, Julia set, core decomposition

1 Introduction

A major idea in the theory of dynamical systems is that of modeling an ar-
bitrary system by one which can be better understood and treated with the
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help of existing tools and methods. To an extent, the entire field of symbolic
dynamics is so important for the rest of dynamical systems because symbolic
dynamical systems serve as an almost universal model. A different example,
coming from one-dimensional dynamics, is due to Milnor and Thurston who
showed in [17] that any piecewise-monotone interval map f of positive en-
tropy can be modeled by a piecewise-monotone interval map of constant slope
h (i.e., f is monotonically semiconjugate to h). For us however the most in-
teresting case is that of modeling complex polynomial dynamical systems on
their connected Julia sets by so-called topological polynomials on their (topo-
logical) locally connected Julia sets. Let us now describe more precisely what
we mean.

Consider a polynomial map P : C→ C; denote by JP the Julia set of P , by KP

its filled-in Julia set, and by U∞(P ) = C\KP its basin of attraction of infinity.
In this paper we always assume that JP is connected. A very-well known fact
from complex dynamics (see, e.g., Theorem 9.5 from [16]) shows that there
exists a conformal isomorphism Ψ from the complement of the closure of the
open unit disk D onto U∞(P ) which conjugates zd|C\D and P |U∞(P ). The Ψ-

image Rα of the radial line of angle α in C\D is called an (external) ray. By [9]
external rays with rational arguments land at repelling (parabolic) periodic
points or their preimages (i.e., the rays compactify onto such points). If JP is
locally connected, Ψ extends to a continuous function Ψ which semiconjugates
zd|C\D and P |U∞(P ).

Set ψ = Ψ|S1 and define an equivalence relation ∼P on S1 by x ∼P y if and
only if ψ(x) = ψ(y). The equivalence ∼P is called the (d-invariant) lamination
(generated by P ). The quotient space S1/ ∼P = J∼P

is homeomorphic to JP

and the map f∼P
: J∼P

→ J∼P
induced by zd|S1 ≡ σ is topologically conjugate

to P |JP
. The set J∼P

is a topological (combinatorial) model of JP and is often
called the topological Julia set. On the other hand, the induced map f∼P

:
J∼ → J∼ serves as a model for P |JP

and is often called a topological polynomial.
Moreover, one can extend the conjugacy between P |JP

and f∼P
: J∼P

→ J∼P

(as the identity outside JP ) to the conjugacy on the entire plane. In fact,
equivalences ∼ similar to ∼P can be defined abstractly, in the absence of any
polynomial. Then they are called (d-invariant) laminations and still give rise
to similarly constructed topological Julia sets J∼ and topological polynomials
f∼.

In his fundamental paper [14] Kiwi extended this to polynomials P with no
irrational neutral periodic points (called CS-points). In the case of a polyno-
mial P with connected Julia set he constructed a d-invariant lamination ∼ on
S1 such that P |JP

is semiconjugate to the induced map f∼ : J∼ → J∼ by a
monotone map m : JP → J∼ (monotone means a map with connected point
preimages). Kiwi also proved that for all periodic points p ∈ JP the set JP is
locally connected at p and m−1 ◦m(p) = {p}.
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However the results of [14] do not apply if a polynomial admits a CS-point.
As an example consider the following. A Cremer fixed point is a neutral non-
linearizable fixed point p ∈ J . A polynomial P is said to be basic uniCremer
if it has a Cremer fixed point and no repelling/parabolic periodic point of P
is bi-accessible (a point is called bi-accessible if at least two rays land it). In
this case the only monotone map of JP onto a locally connected continuum is
a collapse of JP to a point [4–6], strongly contrasting with [14].

The aim of this paper is to suggest a different (compared to [14]) approach to
the problem of locally connected dynamical models for connected polynomial
Julia sets JP . Our approach works for any polynomial P , regardless of whether
P has CS-points or not, and is based upon continuum theory. Accordingly,
Section 3 does not deal with dynamics at all. To state its main result we
need the following definitions. Let A be a continuum. Then an onto map
ϕ : A → Yϕ,A is said to be a finest (monotone) map (onto a locally connected
continuum) if for any other monotone map ψ : A → L onto a locally connected
continuum L there exists a monotone map h : Yϕ,A → L such that ψ = h ◦ ϕ.
Observe, that in this situation the map h is automatically monotone because
for x ∈ L we have h−1(x) = ϕ(ψ−1(x)).

In general, it is not clear if a finest map exists. Yet if it does, it gives a
finest locally connected model of A up to a homeomorphism. Suppose that
ϕ : A → B, ϕ′ : A → B′ are two finest maps. Then it follows from the
definition that a map associating points ϕ(x) ∈ B and ϕ′(x) ∈ B′ with x
running over the entire A is a homeomorphism between B and B′. Hence
all sets Yϕ,A are homeomorphic and all finest maps ϕ are the same up to a
homeomorphism. Thus from now on we may talk of the finest model YA = Y
of A and the finest map ϕA = ϕ of A onto Y . In what follows we always use
the just introduced notation for the finest map and the finest model. Call a
planar continuum Q ⊂ C unshielded if it coincides with the boundary of the
component of C \ Q containing infinity. The following is the main result of
Subsection 3.1 of Section 3.

Theorem 1. Let Q be an unshielded continuum. Then there exist the finest
map ϕ and the finest model Y of Q. Moreover, ϕ can be extended to a map
Ĉ → Ĉ which maps ∞ to ∞, in Ĉ \ Q collapses only those complementary
domains to Q whose boundaries are collapsed by ϕ, and is a homeomorphism
elsewhere in Ĉ \Q.

It may happen that the finest model is a point (e.g., this is so if the continuum
is indecomposable, i.e. cannot be represented as the union of two non-trivial
subcontinua). In Subsection 3.2 of Section 3 we establish a useful sufficient
condition for this not to be the case. In Section 4 we apply Theorem 1 to a
polynomial P with connected Julia set and prove the following theorem.
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Theorem 2. Let P be a complex polynomial with connected Julia set JP . Then
the finest map ϕJP

= ϕ can be extended to a monotone map ϕ̂ : Ĉ→ Ĉ so that
ϕ̂|Ĉ\JP

is one-to-one in U∞(P ) and in all Fatou domains whose boundaries

are not collapsed to points by ϕ and ϕ̂ semiconjugates P and a topological
polynomial g : Ĉ → Ĉ. There is a finest lamination ∼P such that g|ϕ(JP ) is
conjugate to f∼P

|J∼P
.

In particular, ϕJP
semiconjugates the dynamics on JP , so we have the following

diagram which commutes. (Here Φ is the quotient map corresponding to the
lamination ∼P .)

JP JP S1 S1

J∼ J∼

-
P |JP

Q
Q

Q
Q

QQs

ϕ
Q

Q
Q

Q
QQs

ϕ

-σd

´
´

´
´

´
+́

Φ
´

´
´

´
´

+́

Φ

-
g|J∼

Finally, in Section 5 we suggest a criterion for the fact that the finest model
is non-degenerate. Given a set of angles A ⊂ S1 denote by Imp(A) the union
of impressions of angles in A. Also, call a set wandering if all its images under
a specified map are pairwise disjoint. Finally, call an attracting or parabolic
Fatou domain of a polynomial parattracting. Essentially, the criterion is that
the finest model is non-degenerate if and only if one of the following properties
holds:

(1) there are infinitely many bi-accessible P -periodic points;
(2) JP has a parattracting Fatou domain;
(3) P admits a Siegel configuration defined later in Definition 41 — basically,

it means that there are several collections of angles A1, . . . , Am such that
for all i the eventual σd-image of Ai is a point and the sets Imp(Ai) are
wandering continua such that on the closures of their orbits the map is
monotonically semiconjugate to an irrational rotation of the circle.

If P does not have Siegel or Cremer periodic points we deduce from our
results an independent alternative proof of Kiwi’s results [14]. We also ob-
tain a few corollaries; to state them we need the following terminology. By a
(pre)periodic point we mean a point with finite orbit and by a preperiodic point
we mean a non-periodic point with finite orbit (similarly we define preperi-
odic and (pre)periodic sets as well as (pre)critical and precritical points). A
set A is (pre)critical if there exists n such that P n|A is not one-to-one and
non-(pre)critical otherwise. Call K a ray-continuum if for some collection of
angles, K is contained in the union of impressions of their external rays and
contains the union of principal sets of their external rays; the cardinality of
the set of rays whose principal sets are contained in K is said to be the valence
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of K.

We show that if there is a wandering non-(pre)critical ray-continuum K ⊂ JP

of valence greater than 1 then there are infinitely many repelling bi-accessible
periodic points and the finest model is non-degenerate. In particular, these con-
clusions hold if there exists a non-(pre)periodic non-(pre)critical bi-accessible
point of JP . We also rely upon the finest model to study for what (pre)periodic
points x we can guarantee that the Julia set JP is locally connected at x; to this
end we apply a recent result [7] about the degeneracy of certain impressions.

2 Circle laminations

Consider an equivalence relation ∼ on the unit circle S1. Classes of equivalence
of ∼ will be called (∼-)classes and will be denoted by boldface letters. A ∼-
class consisting of two points is called a leaf ; a class consisting of at least three
points is called a gap (this is more restrictive than Thurston’s definition in
[26]; for the moment we follow [3] in our presentation). Fix an integer d > 1.
Then ∼ is said to be a (d-)invariant lamination if:

(E1) ∼ is closed : the graph of ∼ is a closed set in S1 × S1;

(E2) ∼ defines a lamination, i.e., it is unlinked : if g1 and g2 are distinct ∼-
classes, then their convex hulls Ch(g1), Ch(g2) in the unit disk D are disjoint,

(D1) ∼ is forward invariant : for a class g, the set σd(g) is a class too

which implies that

(D2) ∼ is backward invariant : for a class g, its preimage σ−1
d (g) = {x ∈ S1 :

σd(x) ∈ g} is a union of classes;

(D3) for any gap g, the map σd|g : g → σd(g) is a covering map with pos-
itive orientation, i.e., for every connected component (s, t) of S1 \ g the arc
(σd(s), σd(t)) is a connected component of S1 \ σd(g).

The lamination in which all points of S1 are equivalent is said to degenerate.
It is easy to see that if a forward invariant lamination ∼ has a class with
non-empty interior then ∼ is degenerate. Hence equivalence classes of any
non-degenerate forward invariant lamination are totally disconnected.

Call a class g critical if σd|g : g → σ(g) is not one-to-one, (pre)critical if
σj

d(g) is critical for some j ≥ 0, and (pre)periodic if σi
d(g) = σj

d(g) for some
0 ≤ i < j. A gap g is wandering if g is neither (pre)periodic nor (pre)critical.
Let p : S1 → J∼ = S1/ ∼ be the quotient map of S1 onto its quotient space
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J∼, let f∼ : J∼ → J∼ be the map induced by σd. We call J∼ a topological
Julia set and the induced map f∼ a topological polynomial. The set J∼ can be
canonically embedded in C and then the map p can be extended to the map
p̂ : C → C [8]. Radial lines from S1 are then mapped by p̂ onto topological
external rays of the topological Julia set J∼ on which the map z 7→ zd induces
a well-defined extension of f∼ onto the union of J∼ and the component of
C \ J∼ containing infinity.

We need the following theorem [13]. Given a closed set G′ ⊂ S1 let the “poly-
gon” G = Ch(G′) ⊂ D be its convex hull. In this case we say that G′ is
the basis of G. In this situation let us call G (and G′) wandering if the sets
G = Ch(G′), Ch(σ(G′)), Ch(σ2(G′)), . . . are all pairwise disjoint (and so the
sets G′, σ(G′), . . . are pairwise unlinked, see (E2) above). Also, call G (and
G′) non-(pre)critical if the cardinality |σn(G′)| of σn(G′) equals the cardinal-
ity |G′| of G′ for all n, and (pre)critical otherwise.

Theorem 3. If G is a wandering polygon then |G′| ≤ 2d, and if G is not
(pre)critical then |G′| ≤ d.

Consider a simple closed curve S ⊂ J∼. Call the bounded component U(S) =
U of C \ J∼ enclosed by S a Fatou domain. By Theorem 3 S is (pre)periodic
and for some minimal k the set fk

∼(S) = Q is periodic of some minimal period
m in the sense that pairwise intersections among sets Q, . . . , fm−1

∼ (Q) are at
most finite. We cannot completely exclude such intersections; e.g., in the case
of a parabolic fixed point a in a polynomial locally connected Julia set, there
will be several Fatou domains “revolving” around a and containing a in their
boundaries. However, it is easy to see that U(Q), . . . , U(fm−1

∼ (Q)) are pairwise
disjoint.

Lemma 4 ([3], Lemma 2.4). There are only two types of dynamics of fm
∼ |S.

(1) The map fm
∼ |S can be conjugate to an appropriate irrational rotation.

(2) The map fm
∼ |S can be conjugate to zk|S1 with the appropriate k > 1.

In the case (1) we call U a (periodic) Siegel domain and in the case (2) we
call U a (periodic) parattracting domain.

The map f∼, which above was extended onto the unbounded component of
C \ J∼, can actually be extended onto the entire J∼-plane as a branched cov-
ering map. Indeed, it is enough to extend f∼ appropriately onto any bounded
component V of C \J∼. This can be done by noticing the degree k of f∼|Bd(V )

and extending f∼ onto V as a branched covering map of degree k so that the
extension of f∼ remains a branched covering map of degree d and behaves,
from the standpoint of topological dynamics, just like a complex polynomial.
In particular, if S is a Siegel domain of period m, we may assume that U(S)
is foliated by Jordan curves on which fm

| ∼ acts as the rotation by the same
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rotation number as that of fm
∼ . On the other hand, if k > 1 then fm

∼ |U(S)

should have one attracting (in the topological sense) fixed point to which all
points inside U(S) are attracted under fm

∼ . Any such extension of f∼ onto C
will still be called a topological polynomial and denoted f∼. In Section 4 we
relate P and the appropriate extension of f∼ much more precisely, however
here it suffices to guarantee the listed properties. Call a continuum X ⊂ J∼
wandering if all its iterates are disjoint.

Theorem 5. [3] The map f∼|J∼ has no wandering continua.

The collection of chords in the boundaries of the convex hulls of all equivalence
classes of ∼ in D is called a (d-invariant) geometric lamination (of the unit
disk). Denote the geometric lamination obtained from the lamination ∼ by
L∼. In fact, geometric laminations - in what follows geo-laminations - can also
be defined abstractly (as was originally done by Thurston [26]). A geometric
prelamination L is a collection of chords in the unit disk called (geometric)
leaves and such that any two leaves meet in at most a common endpoint.
If in addition the union |L| of all the elements of L is closed, L is said to
be a geometric lamination. The closure of a component of D \ |L| is called a
(geometric) gap. If it is clear that we talk about a geo-lamination we will use
leaves and gaps.

Denote a leaf ` = ab ∈ L by its two endpoints. Given a geometric gap (leaf)
G, set G′ = G ∩ S1 and call G′ the basis of G. Clearly the boundary of each
geometric gap is a simple closed curve S consisting of leaves of L and points
of S1. As in [26] one can define the linear extension σ∗ of σ over the leaves
of L which can then be extended over the entire unit disk (using, e.g., the
baricenters) so that not only is σ∗(ab) = σ(ab) the chord (or point) in D with
endpoints σ(a) and σ(b) but also for any geometric gap G we have that σ∗(G)
is the convex hull of the set σ(G′). Even though we denote this extension of
σ by σ∗, sometimes (if it does not cause ambiguity) we use the notation σ for
σ∗ (e.g., when we apply σ∗ to leaves).

A geometric prelamination L is d-invariant if

(1) (forward leaf invariance) for each ` = ab ∈ L, either σ(`) ∈ L or σ(a) =
σ(b),

(2) (backward leaf invariance) for each leaf ` ∈ L there exist d disjoint leaves
`1, . . . , `d ∈ L such that for each i, σ(`i) = `,

(3) (gap invariance) for each gap G of L, if G′ = G ∩ S1 is the basis of G
and H is the convex hull of σ(G′) then either H ∈ S1 is a point, or
H ∈ L is a leaf, or H is also a gap of L. Moreover, in the last case
σ∗|Bd(G) : Bd(G) → Bd(H) is a positively oriented composition of a
monotone map m : Bd(G) → S, where S is a simple closed curve, and a
covering map g : S → Bd(H).
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Clearly, L∼ is a geometric lamination and ∼-gaps are bases of geometric gaps
of L∼. In general, the situation with leaves and geometric leaves is more com-
plicated (e.g., the basis of a geometric leaf on the boundary of a finite gap
of L∼ is not a ∼-leaf). Thus in what follows speaking of leaves we will make
careful distinction between the two cases (that of a geometric leaf and that of
a leaf as a class of a lamination). Call a gap G of a geometric prelamination
wandering if all its iterates under σ∗ are pairwise disjoint; then Theorem 3
applies to wandering (geometric) gaps of (geometric) laminations.

Slightly abusing the language, we sometimes use for gaps terminology applica-
ble to their bases. Thus, speaking of a finite/infinite gap G we actually mean
that G′ is finite/infinite. Now we study infinite gaps (of geometric laminations)
and establish some of their properties. We begin with a series of useful gen-
eral lemmas in which we establish some properties of geometric laminations.
Given two points x, y ∈ S1, set ρ(x, y) to be the length of the smallest arc in
S1, containing x and y. There exists εd > 0 such that ρ(σd(x), σd(y)) > ρ(x, y)
whenever 0 < ρ(x, y) < εd.

Lemma 6. If K ⊂ S1 and k > 0 are such that limi→∞ diam(σik
d (K)) = 0,

then there exists i0 such that diam(σi0k
d (K)) = 0.

Proof. If limi→∞ diam(σik
d (K)) = 0, there exists i0 such that diam(σik

d (K)) <
εkd for all i ≥ i0. If diam(σi0k

d (K)) = 0 then (diam(σik
d (K)))∞i=i0

is an in-
creasing sequence of positive numbers converging to 0, a contradiction. So
diam(σi0k

d (K)) = 0.

Let us study geometric leaves on the boundary of a periodic gap.

Lemma 7. Suppose that G is a periodic gap of a geometric lamination. Then
every leaf in Bd(G) is either (pre)periodic from a finite collection of grand
orbits of periodic leaves, or (pre)critical from a finite collection of grand orbits
of critical leaves.

Proof. We may assume that the gap G is fixed. Let ` be a leaf which is not
(pre)periodic. Since Bd(G) is a simple closed curve and σi(`) ∩ σj(`) may
consist of at most a point, limi→∞ diam(σi(`)) = 0. Therefore, by Lemma 6,
there exists i0 such that diam(σi0(`)) = 0, meaning that ` is (pre)critical.
Now, there are only finitely many leaves αβ in Bd(G) such that ρ(α, β) ≥ εd,
and there are only finitely many critical leaves in any geometric lamination.
Since by the properties of εd any non-degenerate leaf in Bd(G) maps to one
of them, the proof of the lemma is complete.

In what follows for geometric leaves of a geometric lamination we will use
self-explanatory terms isolated (from one side) and limit (from one side). Let
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us study critical leaves of geometric laminations. The following terminology is
quite useful: a leaf is said to be separate if it is disjoint from all other leaves
and gaps. Observe that if ` is a separate leaf then ` is a limit leaf from either
side. Also, if a gap or a separate leaf is such that its image is a point we call it
all-critical. Clearly, a gap is all-critical if and only if all its boundary leaves are
critical. It may happen that two all-critical gaps are adjacent (have a common
leaf). Moreover, there may exist several all-critical gaps whose union coincides
with their convex hull. In other words, their union looks like a “big” all-critical
gap inside which some leaves are added. Then we call this union an all-critical
union of gaps. Clearly we can talk about boundary leaves of all-critical unions
of gaps. Moreover, each all-critical gap is a part of an all-critical union of gaps,
and there are only finitely many all-critical gaps.

Lemma 8. Suppose that L is a d-invariant geo-lamination and ` is its critical
leaf. Then one of the following holds:

(1) ` is isolated in L;
(2) ` is a separate leaf;
(3) ` is a limit boundary leaf of an all-critical union of gaps G whose boundary

consists of limit leaves.

In particular, if L is the closure of a d-invariant prelamination L′ and ` lies
on the boundary of a geometric gap G of L then either ` ∈ L′, or σ(G) is a
point.

Proof. Suppose that neither (1) nor (2) holds. Then ` ∈ L is a critical leaf
lying on the boundary of a gap G which is the limit of a sequence of leaves `i

approaching ` from outside of G. If σ(G) is not a point, then σ(`i) must cross
σ(G), a contradiction. Hence σ(G) is point and all leaves in the boundary of
G are critical. Take the all-critical union of gaps H containing G. If all other
boundary leaves of H are limit leaves we are done. Otherwise there must exist
a boundary leaf ` of H and a gap T to whose boundary ` belongs. Then the
leaves σ(`i) will cross the image σ(H), a contradiction. This completes the
proof.

The next lemma gives a useful condition for an infinite gap to have nice proper-
ties. By two concatenated leaves we mean two leaves with a common endpoint,
and by a chain of concatenated leaves we mean a (two-sided) sequence of leaves
such that any consecutive leaves in the chain are concatenated (such chains
might be both finite and infinite). For brevity we often speak of just chains
instead of “chains of concatenated leaves”.

Lemma 9. Let G be an infinite gap and on its boundary there are no leaves
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` such that for some n,m we have that σm(`) is a leaf while σm+n(`) is an
endpoint of σm(`). Then the following claims hold.

(1) There exists a number N such that any chain of concatenated leaves in
Bd(G) consists of no more than N leaves.

(2) All non-isolated points of G′ form a Cantor set G′
c, and so for any arc

[a, b] ⊂ S1 such that [a, b] ∩ G′ is not contained in one chain, the set
G′∩ [a, b] is uncountable (in particular, the basis G′ of G is uncountable).

(3) If G is σn-periodic then σn|Bd(G) is semiconjugate to σk : S1 → S1 with
the appropriate k > 0 by the conjugacy which collapses to points all arcs
in Bd(G) complementary to G′

c. If k = 1 the map to which σn|Bd(G) is
semiconjugate is an irrational rotation of the circle.

Proof. By Theorem 3, G is (pre)periodic. Since there are only finitely many
gaps in the grand orbit of G on which the map σ is not one-to-one, we see
that it is enough to prove the lemma with the assumption that G is fixed.
Moreover, by Lemma 7 we may assume that all periodic leaves in Bd(G)
are fixed with fixed endpoints. Consider a chain of concatenated leaves from
Bd(G). By Lemma 7 under some power of σ this chain maps onto one of
finitely many chains containing a critical or a fixed leaf. Thus, it remains
to prove the lemma for chains containing a critical and/or a fixed leaf. By
way of contradiction we may assume that L is a maximal infinite chain of
concatenated leaves (it may be one-sided or two-sided).

First let ` ∈ L be a fixed leaf with fixed endpoints. By the assumptions of the
lemma and by the properties of laminations each leaf concatenated to ` also
has fixed endpoints. Repeating this argument we see that the chain consists
of fixed leaves with fixed endpoints, hence L is a finite chain of fixed leaves
with fixed endpoints. Second, consider the case when ` ∈ L is a critical leaf.
Consider the points a, b ∈ S1 with [a, b] ⊂ S1 the smallest arc whose convex
hull contains L. Then by Theorem 3 the convex hull Ch(L) of L cannot be a
wandering polygon. It follows that for some m we have that σm(L) ⊂ σm+n(L).
Since by the above there are no leaves with periodic endpoints in L and by
the assumptions of the lemma no leaf of L can map into its endpoint, we see
that all leaves of σm(L) map under σn in the same direction, say, towards
the point a so that every leaf has an infinite orbit converging to a. However
then a is σn-fixed and must repel close points under σn, a contradiction. Since
there exist only finitely many distinct chains containing a critical or periodic
leaf, there exists a number N such that any chain of concatenated leaves in
Bd(G) consists of no more than N leaves. This immediately implies that any
non-isolated point of G′ is a limit point of other non-isolated points. Hence
the set G′

c of all non-isolated points of G′ is a Cantor set, and the claims (1)
and (2) of the lemma are proven.

To prove (3) define m : Bd(G) → S1 by collapsing to points all complementary
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arcs to G′
c in Bd(G). It follows that (σ∗)n|Bd(G) is monotonically semiconjugate

by the map m to a covering map f of the circle of a positive degree. It follows
that for any non-degenerate arc I ⊂ S1 the set m−1(I) ∩ S1 is uncountable.
Let us show that I is not wandering, i.e. the intervals {fk(I) | k > 0} are not
pairwise disjoint. Indeed, if I wanders under f then so does m−1(I) under σ∗d.
Since Bd(G) is homeomorphic to S1, then limk→∞ diam((σ∗d)

k(m−1(I))) = 0,
contradicting Lemma 6.

Also, let us show that I is not periodic. Suppose that f q(I) ⊂ I. Then fm|I
is monotone preserving orientation and all points of I converge to an f q-
fixed point under (σ∗)q. On the other hand, only countably many points of an
uncountable set m−1(I) ∩ S1 map into a σ-periodic point. Thus, there exists
a non-(pre)periodic point y ∈ m−1(I) ∩ S1 such that m(y) converges under
(σ∗)q to an f q-fixed point z. Since m is monotone this implies that the orbit
of y approaches the interval m−1(z) but does not map into it (because y is
non-(pre)periodic). Thus, y must converge to an endpoint of m−1(z), which is
impossible (e.g., it contradicts Lemma 6). A standard argument now implies
that f is an irrational rotation or a map σk with appropriately chosen k, still
we sketch it for the sake of completeness. Consider two cases.

Case 1: σ∗|Bd(G) is monotone.

Let us show that f has no periodic points. By way of contradiction, suppose
f q(x) = x, choose a point y 6= x with f q(y) 6= y, and let I be the component
of S1\{x, y} containing f q(y). Since σ∗|Bd(G) is monotone, it follows that I is a
periodic interval a contradiction. Therefore, f : S1 → S1 is a positively oriented
map with no periodic points and no wandering intervals, and is therefore
conjugate to an irrational rotation by [15, Theorem 1.1]. By Lemma 7 all
leaves in Bd(G) are (pre)critical.

Case 2: σ∗|Bd(G) is not monotone.

Since f is a covering map of degree k > 1 without periodic and wandering
intervals, f is conjugate to z 7→ zk for some k. Indeed, that there is a monotone
semiconjugacy between f and σk is well-known (see, e.g., [18] for the case
k = 2). However if there are no wandering intervals and periodic intervals, then
the semiconjugacy cannot collapse any intervals and is therefore a conjugacy.
In what follows the semiconjugacy which we have just defined in both cases
will be denoted ψ.

Given a geo-lamination L, a periodic geometric gap G satisfying conditions
of Lemma 9 is called a Fatou gap (domain) of L. If G is a Fatou domain,
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then by Theorem 3 G′ is (pre)periodic. A Fatou domain G is called periodic
(preperiodic, (pre)periodic)) if so is G′. A periodic Fatou domain G of period
m is called parattracting if (σ∗)m|Bd(G) is not monotone (in the topological
sense introduced earlier in the paper) and Siegel otherwise. Equivalently, G
is parattracting (resp. Siegel) if (σ∗)m|Bd(G) can be represented as the com-
position of a covering map of degree greater than 1 (resp. equal to 1) and a
monotone map. The degree of σm|G is then defined as the degree of the model
map f defined in Lemma 9. Thus, the terms “parattracting Fatou domain”
and “Siegel domain” are used both for the geometric laminations and for the
topological polynomials. Since it will always be clear from the context which
situation is considered, this will not cause any ambiguity in what follows.

There are several cases in which Lemma 9 applies. The first one is considered in
Lemma 10. Recall, that given a lamination ∼ we denote by p the corresponding
quotient map p : S1 → J∼.

Lemma 10. Suppose that g is an infinite gap of a non-degenerate lamination
∼. Then B = Bd(Ch(g)) contains no geometric (pre)critical leaves and there-
fore is a Fatou gap. In addition to that, any chain of concatenated geometric
leaves in B eventually homeomorphically maps to a periodic chain, and if g is
periodic of period n then the degree of (σ∗)n|B is greater than 1.

Proof. By Theorem 3 g is (pre)periodic. Suppose that ` = αβ ⊂ B is a critical
geometric leaf and that g ⊂ [α, β]. By Lemma 8 ` cannot be a limit leaf of
L∼. Hence there is a geometric gap H of L∼ on the side of ` opposite to B
(so that H ′ ⊂ [β, α]). The points α, β are limit points of H ′ for otherwise
there must exist a geometric leaf βγ or θα and hence γ must be added to g, a
contradiction. By the gap invariance then σ(H) = σ(Ch(g)). Now, since H is a
gap of L∼, either H ′ is a class itself, or there are uncountably many distinct ∼-
classes among points of H ′. However the latter is impossible because all these
classes map into one ∼-class g. Thus, H ′ is one ∼-class which implies that it
had to be united with g in the first place, a contradiction. Hence Lemma 9
applies to g. Clearly, it follows also that any chain of concatenated geometric
leaves in B eventually homeomorphically maps to a periodic chain.

Let us now prove the last claim of the lemma. Since there are no critical
leaves in B, (σ∗)n|B is a covering map. If the degree of (σ∗)n|B is 1, then σn|g
is one-to-one. By a well-known result from the topological dynamics (see, e.g.,
Lemma 18.8 from [16]) g must be finite, a contradiction.

Lemma 10 shows that if ∼ is a lamination, then there are two types of Fatou
domains of L∼: 1) Fatou domains whose basis (the intersection of the boundary
with S1) is one ∼E-class (one ∼E-gap), 2) Fatou domains for which this is not
true (and which correspond to a Fatou domain in the J∼-plane). However this
distinction cannot always be made if we just look at the geometric lamination.
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For a lamination ∼ the induced geo-lamination L∼ has the property that every
geometric leaf is either disjoint from all other geometric leaves and gaps, or
contained in the boundary of a unique geometric gap G. For an arbitrary
geometric lamination, this is no longer the case. Hence, in general distinct
geometric gaps may intersect. If, given a geo-lamination L, ∼ is a lamination
such that a ∼ b whenever ab = ` ∈ L, we say that the lamination ∼ respects
the geo-lamination L. Given a d-invariant geo-lamination L, let ≈=≈L be the
finest lamination which respects L. It is not difficult to see that ≈ is unique
and d-invariant. Let π : S1 → J≈ be the corresponding quotient map. It may
well be the case that S1/ ≈ is a single point (see [2] for a characterization of
quadratic geometric laminations L with non-degenerate J≈L).

Let us discuss the properties of ≈. It is shown in [2] that ≈ can be defined as
follows: a ≈ b if and only if there exists a continuum K ⊂ S1∪|L| containing a
and b such that K ∩S1 is countable. By Lemma 9 if G is a Fatou domain of L,
then G/ ≈ is a simple closed curve. In particular, whenever a d-invariant geo-
lamination L contains a Fatou gap, then J/ ≈L is non-degenerate. Moreover,
if F is an invariant Fatou domain, then the restricted map f≈ : π(Bd(F )) →
π(Bd(F )) coincides with the map f from Lemma 9 and is conjugate to a either
an irrational rotation of a circle (if F is Siegel) or to the map σm for m equal
to the degree of σ|F (in the parattracting case). The case of a periodic Fatou
domain is similar.

Suppose that A is a forward invariant family of pairwise disjoint periodic or
wandering gaps/leaves with a given family of their preimages so that together
they form a d-invariant geometric prelamination LA. This prelamination and
its closure LA (which is a geo-lamination [26]) are said to be generated by A
(then A is called a generating family). The following important natural case
of this situation was studied by Kiwi in [14].

Given a point y ∈ JP , denote by A(y) the set of all angles whose rays land at
y. If JP is locally connected then A(y) 6= ∅ for any y ∈ JP , however otherwise
this is not necessarily so. A point y ∈ JP is called bi-accessible if |A(y)| > 1
(i.e., there are at least two rays landing at y). By Douady and Hubbard [9] if
x is a repelling or parabolic periodic point (or a preimage of such point) then
A(x) is always non-empty, finite, and consists of rational angles. Denote by
R the set of all its periodic repelling (parabolic) bi-accessible points and their
preimages. Let x ∈ R; also, given a set A denote by Ch(A) its convex hull.
Then let Gx = Ch(A(x)) and let |Lrat| be the union of all the sets Gx, x ∈ R.
Let Lrat be the collection of all chords contained in the boundaries of all the
sets Gx. Then Lrat, called the rational geometric prelamination, is a d-invariant
geometric prelamination. By [26] the closure Lrat of Lrat in the unit disk is a
closed d-invariant geo-lamination called rational geometric lamination.

The situation described above may be considered in a more general way. Sup-
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pose that we are given a geometric prelamination generated by (pre)periodic
or wandering non-(pre)critical pairwise disjoint gaps and leaves. Then any
result concerning its closure will serve as a tool for studying Lrat. The fol-
lowing theorem can be such a tool. If we require that all gaps or leaves in
such prelamination map onto their images in a covering fashion, we can con-
clude that there are no critical leaves in the prelamination. Indeed, such leaves
can only belong to gaps/leaves disjoint from other leaves and collapsing to a
point (all-critical). However we assume that the generating family consists of
leaves and gaps which are non-(pre)critical. Hence an all-critical element of
the prelamination cannot come from the forward orbits of the elements of the
generating family. On the other hand, it cannot come from their backward
orbits since the generating family consists of gaps and leaves (and the image
of an all-critical gap/leaf is a point).

In Lemma 11 we deal with geometric laminations. For simplicity, in its proof
speaking of leaves and gaps we actually mean geometric leaves and gaps. By
a separate leaf we mean a leaf disjoint from all other leaves or gaps.

Lemma 11. Suppose that L− is a non-empty geometric d-invariant pre-
lamination generated by a generating family A such that no element of L−
contains a critical leaf on its boundary. Let L be the closure of the prelamina-
tion L−. Then the following holds.

(1) If three leaves of L meet at a common endpoint, then the leaf in the middle
is either a leaf from L− or a boundary leaf of a gap from L−.

(2) At most four leaves of L meet at a common end point, and if they do then
the two in the middle are on the boundary of a gap of L−.

(3) Suppose G is a gap of L and xa is a leaf of L such that xa ∩ G = {x}.
Let xb ⊂ G be the leaf such that xb separates G \ xb from xa \ {x}. Then
either xb is a leaf from L−, or G ∈ L− or there exists a gap H of L−
such that xa∪ xb ⊂ H. In particular, if two gaps G,H of L meet only in
a point, then there exists a gap K ∈ L− such that both G∩K and H ∩K
are leaves from L.

(4) Suppose that ` is a critical leaf of L. Then either ` = H is a separate leaf
or ` is a boundary leaf of an all-critical gap H of L, and all boundary
leaves of H are limit leaves (in particular, ` is a limit leaf from at least
one side). Moreover, σn(H) is disjoint from H for all n > 0.

(5) If G is a gap or leaf of L and σn(G) ⊂ G then σn(G) = G.
(6) Any gap or leaf G of L either wanders or is such that for some m < n

we have σm(G) = σn(G).
(7) If G is a gap of L such that G′ is infinite, then G is a Fatou gap.

Proof. (1) Suppose that ax, bx, cx are three leaves of L with x < a < b < c in
the counterclockwise order < on S1. Then bx is isolated. Hence bx is either a
separate leaf from L− or a boundary leaf of a gap from L−.
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(2) Suppose that L contains the leaves a1x, a2x, a3x, . . . , anx with n ≥ 4. We
may assume that a1 < a2 · · · < an < x. Since the leaves a2x, a3x, . . . , an−1x are
isolated and must come from L−. Since elements of L− are pairwise disjoint,
n = 4 and the leaves a2x, a3x are on the boundary of a gap of L−.

(3) Suppose that a gap G and a leaf xa of L meet only at x. Let xb ⊂ G be
the leaf which separates G \ xb from xa \ {x}. Then xb is isolated and, hence,
either a separate leaf in L− or a boundary leaf of a gap of L−. If the former
holds, or G ∈ L−, we are done. Otherwise there exists a gap H ∈ L− which
contains xb. It now follows easily that xa ⊂ H as desired.

(4) The first part immediately follows from Lemma 8 and the assumption
that there are no critical leaves in the prelamination L−. This implies that the
point σ(H) is separated by leaves of L− from all other points of S1. Hence by
the properties of geo-laminations σn(H) ⊂ H is impossible.

(5) By (4) we may assume that G is a gap which contains no σn-critical leaves
in Bd(G) and σn(G) is not a point. Now, if G is a gap and σn(G) = ab is a
boundary leaf of G then σ2n(a) = a, σ2n(b) = b and G is a finite gap. Denote
by ca the other leaf in Bd(G) containing a. Suppose first that G ∈ L−. Then
σn(G) = ab ∈ L−, a contradiction. Similarly, if ca is an element of L− then
σn(ca) = ab (because there are no critical leaves in Bd(G)), a contradiction
with the fact that elements of L− are pairwise disjoint. Suppose that ca is
on the boundary of a gap H 6= G. Then it follows that H ∈ L− because
G 6∈ L− and ca is not an element of L−. Then since σn(ca) = ab we see that
σn(H) 6= H whereas σn(H) ∩ H 6= ∅, a contradiction. We conclude that ca
is a limit leaf from the outside of G. However then the σ2n-images of leaves
converging to ca will cross G, a contradiction.

(6) Suppose that G is a gap or leaf from L for which the conclusions of the
lemma do not hold. If G is infinite, then by Theorem 3 G is preperiodic. So
we may assume that G is finite and that |G′| = |σi(G)′| for all i > 0. By the
assumption about G we may assume that for some n > 0, G∩ σn(G) 6= ∅ and
σn(G) 6= G (in particular, G is not a point because otherwise we would have
σ(G) = G) and for no i 6= j we have σi(G) = σj(G). Since the elements of
L− are pairwise disjoint, G 6∈ L−. Moreover, it is easy to see that no leaf in
Bd(G) is periodic. Indeed, otherwise under the map which fixed the endpoints
of this leaf G will have to be mapped onto itself.

Suppose now that G is a leaf. If an endpoint of G is σn-fixed then we would
have more than 4 leaves of L coming out of this point, contradicting (2). Hence
σn(G) must be a leaf, “concatenated” to G, σ2n(G) is a leaf “concatenated”
to σn(G), and so on. Since these leaves do not intersect inside D, it follows
that they converge to a leaf or to a point limi σ

ni(G) which is σn-fixed. This
contradicts the fact that σn is locally repelling.
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Suppose next that G is a gap such that G and σn(G) meet along the (isolated)
leaf `. Since G 6∈ L−, ` ∈ L−. Since there are no periodic leaves in Bd(G),
σn(`)∩ ` = ∅. Repeating this argument we see that leaves σin(`) are such that
the gaps σin(G) are “concatenated” (attached) to each other at these leaves.
This again, as in the previous paragraph, implies that the limit lim σni(`) exists
and is either a σn-fixed leaf in L or a σn-fixed point in S1. which contradicts
the fact that σ is locally repelling.

Hence it remains to consider the case when G and σn(G) meet in a point x ∈
S1. By (2) there exist boundary leaves xa ⊂ Bd(G) and xb ⊂ Bd(σn(G)) and
there exists a gap H ∈ L− which contains both of these leaves in its boundary.
If H is periodic, then xa and xb are periodic too, a contradiction. Hence, H
is not periodic. Since H ∈ L−, H must wander and σn(H) ∩ σm(H) = ∅
when n 6= m. It follows that sets σin(G) are all “concatenated” at points
x, σn(x), . . . , the set

⋃∞
i=0 σni(G) is connected set, and lim σni(G) exists and

is either a leaf in L or point in S1 which is fixed under σn. As before, this
contradicts the fact that σn is locally repelling and completes the proof of (6).

(7) Follows immediately from (4) and Lemma 9.(2).

We are ready to construct a non-degenerate lamination compatible with L−
(or, equivalently, with L). Suppose that A = {Gα} is a generating collection of
finite gaps/leaves and L− is a non-empty geometric d-invariant pre-lamination
generated by a generating family A such that there are no critical leaves in
L−. Set L = L− and ≈L=≈A.

Theorem 12. We have that S1/ ≈A is non-degenerate and any equivalence
class of ≈A is finite. Moreover, ≈A has no Siegel domains. In particular, if
R 6= ∅, then the finest lamination ≈rat which respects Lrat, is not degenerate
and in the geometric lamination L≈rat every leaf not contained in the boundary
of a Fatou domain is a limit of leaves from Lrat.

Proof. Let ≈ be the equivalence relation in S1 defined as follows: x ≈ y if and
only if there exists a continuum K ⊂ S1 ∪ L∗ such that x, y ∈ K and K ∩ S1

is countable (such continua are called ω-continua). Then ≈ is the finest closed
equivalence relation which respects L; moreover, ≈ is an invariant lamination
([2]).

Now, suppose first that L has no gaps. Then the leaves from L fill the entire
disk. If there are two leaves coming out of one point, then there must be
infinitely many leaves coming out of the same point which is impossible by
Lemma 11. Hence all leaves of L are pairwise disjoint and equivalence classes
of ≈ are endpoints of (possibly degenerate) leaves. From now in the proof we
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assume that L has gaps. It now follows easily that gaps of L are dense in D
and so if an ω- continuum K meets a leaf ` ∈ L and D\`, then K must contain
one of the endpoints of `.

In the proof below we construct so-called super gaps and associate them to
some leaves and gaps of L. If G is a leaf of L disjoint from all gaps of L we
call it a separate leaf (of L). In this case put G+ = G and call it a super gap
associated with G. Clearly, G+ is a two sided limit of leaves from L−. Let
G =

⋃{G | G is a finite gap of L}. For any gap G of L, let G+ be the closure
of the convex hull of the component of G which contains G. Again, call G+

a super gap associated with G. By Lemma 11.(6), a gap/leaf G of L either
wanders or is such that σm(G) = σn(G) for some m < n.

Claim 1. Suppose that G is a wandering gap/leaf of L. Then G+ is either a
separate leaf or a finite union of finite gaps whose convex hull is a wandering
polygon and every leaf in its boundary is a limit of leaves from L−.

Proof of Claim 1. The case when G is a separate leaf immediately follows from
the definition of a super gap; in this case G+ = G is a separate leaf. Suppose
next that G is a leaf which meets a gap H of L or G is a wandering gap. By
Lemma 11.(2), there exist gaps G0, . . . , Gn such that G ⊂ G0, Gi ∩ Gi+1 is a
leaf and Gn = H (if G + H is a wandering gap, then we set G0 = H = Gn).
By Lemma 11.(6) G0 is either wandering or (pre)periodic, and since G is
wandering, so is G0.

Assume, by way of induction, that G′ is a finite union of finite gaps which is
a wandering polygon and H is a gap of L which meets G′ along the leaf ab.
Then ab is wandering because it comes from G′. Again since by Lemma 11 H is
either wandering or (pre)periodic, we see that H also wanders. In particular,
by Theorem 3 H is finite. We claim that H ∪ G′ is a wandering polygon.
For suppose this is not the case. Then we may assume that σ(G′) ∩ H 6= ∅.
Moreover, the common leaf ab of G′ and H is isolated and hence comes from
L−. Therefore it is not critical and its image σ(ab) is a leaf again. Clearly,
σ(ab) is the leaf shared by σ(G′) and σ(H). Repeating this argument, we get
a sequence of gaps of L “concatenated” at images of the leaf ab. Similarly
to the arguments in the proof of Lemma 11.(6) it implies that the orbit of
ab converges to a point or a leaf but never maps into it which is impossible
because of repelling properties of σ.

It follows that G+ is a wandering polygon and, by Theorem 3, |G+∩S1| ≤ 2d.
Hence G+ is finite union of finite gaps. Note that every leaf on the boundary of
G+ is a limit of leaves from L− as desired. This completes the proof of Claim
1.

Observe that by Lemma 11.(7) for every infinite gap G of L the set G′ consists
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of a Cantor set G′
c ⊂ S1 and a countable collection of finite sets G′

1, G
′
2, . . .

of cardinality at most k (k depends on G) such that for every i the set G′
i is

the intersection of G′ and a complementary to Gc subarc Ui of S1. If |G′
i| > 1

we connect the endpoints of Ui with a leaf ` and add ` to the lamination
L. It is easy to see that the resulting extension of the geo-lamination L is a
geo-lamination itself. From now on we will use the notation L for the new
extended geo-lamination.

Suppose next that G is a finite (pre)periodic gap or a (pre)periodic leaf of
L. If some forward image of G contains a critical leaf on its boundary, then
we may assume that σ(G) is a point by Lemma 11.(4). Hence each leaf in
the boundary of G is a limit of leaves from L− and G+ = G. If no forward
image of G contains a critical leaf on its boundary, then from some time on
|σk(G′)| > 1 stabilizes and by Lemma 11.(6) we may assume that σm(G) = G
for some m > 0 and |G′| ≥ 2. Choose n ≥ 0 such that σn(G) = G and each
leaf in the boundary of G is fixed.

Claim 2. Suppose G is a (pre)periodic finite gap or (pre)periodic leaf of L.
Then G+ is a finite polygon and any leaf in the boundary of G+ is either a
limit of leaves from L− or is contained in an uncountable gap of L. Moreover,
if G is an n-periodic gap/leaf then G+ ⊃ G is the convex hull of a subset of
the component of the set of leaves from L with σn-fixed endpoints.

Proof of Claim 2. Suppose that σn(G) = G and that all points of G′ are fixed.
If G is a separate leaf then G+ = G and we are done. If G is a non-separate
leaf then it is a boundary leaf of a gap Q. Since the endpoints of G are σn-
fixed, either σn(Q) = G or, because the map σn|Bd(Q) is positively oriented,
σn(Q) = Q. The former is impossible by Lemma 11.(5). Hence we find a gap
Q ⊃ G whose all vertices are σn-fixed. Finally, if G is a gap then we can set
Q = G. Thus, if G is not a separate leaf, we can always find a gap Q ⊃ G
whose all vertices are σn-fixed.

Suppose, by induction, that G is a finite polygon which is a finite union of
gaps from L. Moreover, suppose that the boundaries of the gaps consist of
leaves with σn-fixed endpoints. Let H be any gap of L which meets G along
the leaf ab. By Lemma 11.(5) σn(H) cannot be equal to ab, and since σn|Bd(H)

is a positively oriented covering map we see that σn(H) = H. If H is finite, all
leaves in the boundary of H must also be fixed. Otherwise H is an infinite, and
hence uncountable, gap. It follows that G+ ⊃ G is a finite union of σn-fixed
gaps and that every leaf in the boundary of G+ is either a limit of leaves from
L− or is contained in an uncountable gap from L.

Now let G be any (pre)periodic finite gap of L. Then there exists n such that
σn(G) = H is periodic. If H is a point then by Lemma 11.(4) all leaves in
the boundary of G are limit leaves and hence G+ = G. Otherwise if H is a
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separate leaf it follows that all boundary leaves of G are limit leaves and we
are done. Thus by the previous paragraph we may assume that H+ is a finite
union H = H1, . . . , Hn of gaps of L. Let G+ be the component of

⋃
i σ

−n(Hi)
which contains G. Then G+ is a finite union of finite gaps and every leaf in
the boundary of H+ is either a limit of leaves from L− or on the boundary of
an uncountable gap from L.

We now pass on to the proof of the fact that ≈L=≈A is non-degenerate.
Indeed, consider all the super gaps constructed in Claim 1 and Claim 2 (i.e.,
all the sets G+ ∩ S1 for different gaps and leaves G of the geo-lamination L).
Also, if a point x ∈ S1 does not belong to any gap or leaf of L we call it a
separate point and add it to the family of sets which we construct. Clearly,
all sets in the just constructed family F of super gaps and separate points
are closed. Moreover, by the definition two sets in the family F are disjoint.
Indeed, two super gaps cannot meet over a leaf by the definition. If they meet
at a vertex then by Lemma 11.(1), Lemma 11.(2) and by the construction of
the extended lamination L they again must be in one super gap. Hence all
elements of F are pairwise disjoint.

Considering elements of F as equivalence classes we get a closed equivalence
≈ on S1 which respects L− and L (it is easy to see that ≈ is indeed closed). By
the construction and Claims 1 and 2, all ≈-classes are finite. Because of the
definition of a super gap, if an equivalence respects L− (and hence L), it cannot
split a ≈-class (i.e., a set G+ ∩ S1 for some gap/leaf G of L) into two or more
classes of equivalence. Therefore ≈ is the finest equivalence which respects L−.
As was explained in the beginning of the proof of Theorem 12, by [2] there
always exists the finest equivalence which respects a geometric lamination,
and from what we have just proven if follows that this finest equivalence ≈L
coincides with ≈. By Claims 1 and 2 super gaps are finite, thus all ≈-classes
are finite and hence ≈ is non-degenerate.

Finally assume that U is a Siegel domain of ≈. Then Bd(U) must contain
a critical leaf because otherwise by a well-known result from the topologi-
cal dynamics (see, e.g., Lemma 18.8 from [16]) Bd(U) ∩ S1 must be finite, a
contradiction. However by Lemma 11.(4) this is impossible. The rest of Theo-
rem 12 which deals with the rational lamination follows immediately from the
construction. This completes the proof of the theorem.

3 The existence of a locally connected model for unshielded planar
continua

As outlined in Section 1, in this section we prove Theorem 1 and show the
existence of the finest model and the finest map for any unshielded planar
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continuum Q. We do this in Subsection 3.1. In Subsection 3.2 we suggest
a topological condition sufficient for an unshielded continuum Q to have a
non-degenerate finest model. This will be used later when in Theorem 2 we
establish the criterion for the connected Julia set of a polynomial to have a
non-degenerate finest model.

3.1 The existence of the finest map ϕ and the finest locally connected model

In what follows Q will always denote an unshielded continuum in the plane
and U∞ will always denote the corresponding simply connected neighborhood
of infinity in the sphere, called the basin of infinity (so that Q = Bd(U∞)).

We begin by constructing the finest monotone map ϕ of Q onto a locally
connected continuum. The map will be constructed in terms of impressions of
the continuum Q. Since Q = Bd(U∞), there is a unique conformal isomorphism
Ψ : U∞ → D which has positive real derivative at ∞. Define the principal set
of the external angle α ∈ S1 as

Pr(α) = Q ∩Ψ−1({re2πiα | r ∈ [0, 1)}).

Define the impression of the external angle α ∈ S1 as

Imp(α) =
{

lim
i→∞

Ψ−1(αi) | {αi | i > 0} ⊂ D and lim
i→∞

αi = α
}
.

The positive wing (of an impression) is defined as follows:

Imp+(α) =
{

lim
i→∞

Ψ−1(αi) | {αi | i > 0} ⊂ D and

lim
i→∞

αi = α with arg(αi) ≥ arg(α)
}
.

Similarly, the negative wing (of an impression) is defined as follows:

Imp−(α) =
{

lim
i→∞

Ψ−1(αi) | {αi | i > 0} ⊂ D and

lim
i→∞

αi = α with arg(αi) ≤ arg(α)
}
.

The differences between these sets are illustrated in Figure 1. In a lot of ap-
plications it is crucial that in the above construction the map Ψ is conformal.
However the construction can be carried out if instead of Ψ certain homeomor-
phisms Ψ′ : U∞ → D are used. The definitions of the principle set, impression
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Fig. 1. On the left is depicted a continuum with an external ray for which the
impression, positive wing, negative wing, and principle sets are distinct. The positive
wing is the line segment joining A and B, while the negative wing is the line segment
joining B and C. On the right is depicted the quotient by D defined in Lemma 13,
which is locally connected.

and wings of impression can be given in this case as well. Since some continua
we construct have topological nature, we use this idea in what follows defining
for them the map Ψ′ in a topological way and then defining principle sets,
impressions and wings of impressions accordingly.

Any angle’s principle set, impression, wings of its impression are each sub-
continua of Q. It is known that Pr(α) = Imp+(α) ∩ Imp−(α) ⊂ Imp+(α) ∪
Imp−α = Imp(α). If Q is locally connected, the impression of every external
angle is a point, and therefore impressions intersect only when they coincide.
Non-locally connected continua may have impressions of different external an-
gles which intersect and do not coincide.

Lemma 13. There exists a partition DQ = D of Q which is finest among all
upper semi-continuous partitions whose elements are unions of impressions of
Q. Further, elements of D are subcontinua of Q.

Proof. Let Ξ be the collection of closed equivalence relations on Q such that,
for any equivalence relation ≈ from Ξ, Imp(α) is contained in one class of
equivalence for any external angle α. Then the equivalence relation

⋂
Ξ is also

an element of Ξ (classes of equivalence of
⋂

Ξ are intersections of classes of
equivalence of all equivalence relations from Ξ). Let D be the collection of
equivalence classes of

⋂
Ξ.

To see that the elements of D are connected, we can define a finer partition
D′ whose elements are connected components of elements of D. Then D′ is
an upper semi-continuous monotone decomposition of Q [20, Lemma 13.2].
Since impressions are connected subsets of Q, that each impression belongs
to an element of D implies that it belongs to an element of D′. Therefore,
D′ ∈ Ξ and D′ is a refinement of D, so D = D′, and the elements of D are
connected.
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Fig. 2. Here are two examples of continua for which a fiber of ϕ is a simple closed
curve. Notice that points of the simple closed curve in the figure on the left are
accessible from both the bounded and unbounded complementary domains.

We will show that Q/D is locally connected, and D is the finest upper semi-
continuous partition of X into connected sets with that property. Thus, the
finest monotone map respecting impressions turns out to be the finest monotone
map producing a locally connected model. To implement our plan we study
properties of monotone maps of unshielded continua. First we suggest the
canonic extension of any monotone map m : Q → Y onto the entire plane
which respects the planar structure. Given any monotone map ψ, let call sets
ψ−1(y) ψ-fibers, or just fibers.

Definition 14. Let U ⊂ Ĉ be a simply connected open set containing ∞.
If A is a continuum disjoint from U , the topological hull TH(A) of A is the
union of A with the bounded components of Ĉ \ A. Equivalently, TH(A) is
the complement of the unique component of Ĉ \ A containing U . Note that
TH(A) ⊂ C is a continuum which does not separate the plane.

Suppose that a monotone map m : Q → Y is given. Then m-fibers may be
separating, as indicated in Figure 2, or non-separating. Denote by Tm(Q) the
union of Q and the topological hulls of all separating fibers. To extend our
map m onto the plane as a monotone map, we must collapse topological hulls
of separating fibers because otherwise the extension will not be monotone.
This idea is implemented in the next lemma.

Lemma 15. If Q is an unshielded continuum and m : Q → Y is a surjec-
tive monotone map, then there exists a monotone map M : Ĉ → Ĉ and an
embedding h : Y → C such that:

(1) M |Ĉ\Tm(Q)
is a homeomorphism onto its image;
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(2) M(U∞) is a simply connected open set whose boundary is M(Q), with
M(∞) = ∞; and

(3) M |Q = h ◦m.

Proof. We extend the map m by filling in its fibers. Define the collection

D̂ =
{
TH(m−1(y)) : y ∈ Y

}
∪ {{p} : p 6∈ Tm(Q)} .

It is immediate that D̂ is an upper semi-continuous partition of Ĉ whose ele-
ments are non-separating continua. Therefore, by [19], Ĉ/D̂ is homeomorphic
to Ĉ, and there exists a monotone map M : Ĉ→ Ĉ whose fibers are sets from
D̂. Observe that by the construction M−1(Y ) = Tm(Q).

Further, since points of Ĉ \M−1(Y ) are elements of D̂, invariance of domain
gives that M |Ĉ\M−1(Y )

is a homeomorphism onto its image and that M(U∞)

is an open subset of Ĉ with M(∞) = ∞. Also, M(U∞) ∩ M(Q) = ∅, so
Bd(M(U∞)) = M(Q). Finally, notice that the fibers of M |Q are the same as
the m-fibers so there exists a natural homeomorphism h : Y → M(Q). This
is a homeomorphism of Y onto M(Q) and an embedding of Y into C since Y
is compact.

Next we show that any monotone map of an unshielded continuum onto a
locally connected continuum must collapse impressions to points. A crosscut
of Q is a homeomorphic image C ⊂ U∞ of an open interval (0, 1) under a
homeomorphism ψ : [0, 1] → C such that ψ(0) ∈ Q 6= ψ(1) ∈ Q. Define
Sh(C) (the shadow of C) as the closure of the bounded component of U∞ \C.
Observe that in our definition of a crosscut and its shadow we always assume
that the continuum is unshielded and that crosscuts are contained in the basin
of infinity.

Lemma 16. Suppose that m : Q → Y is a monotone map onto a locally
connected continuum. Then m(Imp(α)) is a point for every α ∈ S1.

Proof. Let M be as guaranteed in Lemma 15. Since M |U∞ is one-to-one, it is
then easy to see that a crosscut of Q maps by M either to a crosscut of M(Q) or
to an open arc in M(U∞) whose closure is a simple closed curve meeting M(Q)
in a single point. Because M(∞) = ∞, we see that M(Sh(C)) = Sh(M(C))
for any crosscut C whose image is a crosscut while if M(C) is a simple close
curve then M(Sh(C)) is the interior of the Jordan disk enclosed by M(C).

Choose any external angle α. There exists a null sequence of crosscuts (Ci)
∞
i=1

such that
⋂∞

i=1 Sh(Ci) = Imp(α) [16, Lemma 17.9]. Since Sh(Ci) are nested,
we have
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Fig. 3. In this continuum, constructed by joining every point of a Cantor set to a
base point with a straight line segment, every pair of non-degenerate impressions
intersect, and every point is contained in a non-degenerate impression. Therefore,
Lemma 16 concludes that the finest locally connected model is a point.

M(Imp(α)) = M

( ∞⋂

i=1

Sh(Ci)

)

=
∞⋂

i=1

M(Sh(Ci))

=
∞⋂

i=1

Sh(M(Ci)).

By uniform continuity, limi→∞ diam(M(Ci)) = 0. Since M(Q) is locally con-
nected,

⋂∞
i=1 Sh(M(Ci)) is indeed a point, and so is M(Imp(α)).

The next lemma is essentially a converse of Lemma 16.

Lemma 17. Suppose that m : Q → Y is a monotone surjective map such that
m(Imp(α)) is a point for all α ∈ S1. Then Y is locally connected. Moreover,
the map Φm : S1 → Y defined by Φm = m ◦ Imp is a continuous single-valued
onto function.

Proof. Φm is a single-valued function, since by assumption m maps impressions
to points of Y . Also, it is surjective, since m is surjective and every point is
contained in the impression of some angle. To see sequential continuity, observe
that

24



αi → α =⇒ lim sup
i→∞

Imp(αi) ⊂ Imp(α)

=⇒ lim sup
i→∞

m(Imp(αi)) ⊂ m(Imp(α))

=⇒ Φ(αi) → Φ(α).

The continuous image of a locally connected continuum is locally connected,
so Y is locally connected as the Φm-image of S1.

The picture which follows from the above lemmas is as follows. Imagine that
we have a monotone map m of an unshielded continuum Q ⊂ C onto a locally
connected continuum Y . By Lemma 15 we can think of m as the restriction
of a monotone map M : Ĉ → Ĉ which in fact is a homeomorphism on U∞
as well as on the components of C \Q whose boundaries are not collapsed by
m. To avoid confusion, we call the plane containing Q the Q-plane, and the
plane containing Y the Y -plane. Likewise, if there is no ambiguity we will call
various objects in the Q-plane Q-rays etc while calling corresponding objects
in the Y -plane Y rays etc.

Now, take external conformal Q-rays. Then the map M carries them over
to the Y -plane as just continuous rays (obviously, our construction is purely
topological and does not preserve the conformal structure in any way). The
construction however forces all these Y -rays to land; moreover, the family of
Y -rays can be used to define impressions in the sense of that family (see our
explanation following the definition of the impression). By Lemma 16, these
impressions must be degenerate.

We are ready to prove the existence of the finest locally connected model and
the finest map for unshielded continua. Recall that DQ = D denotes the finest
among all upper semi-continuous partitions of Q whose elements are unions
of impressions of Q (it is provided by Lemma 13).

Theorem 18. There exists a monotone map ϕ : Ĉ → Ĉ such that ϕ|Q is
the finest monotone map of Q onto a locally connected continuum, ϕ(Q) is
the finest locally connected model of Q, and ϕ is a homeomorphism on Ĉ \
ϕ−1(ϕ(Q)). Moreover, the map ϕ|Q can be defined as the quotient map Q →
Q/D.

Proof. Let us show that the quotient map m : Q → Q/D is the finest map
of Q onto a locally connected continuum. Indeed, suppose that ψ : Q → A
is a monotone map onto a locally connected continuum A. Then ψ generates
an upper semi-continuous partition of Q whose elements, by Lemma 16, are
unions of impressions of Q. By the choice of D there exists a continuous map
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h : Q/D → A which associates to an element B of D the point x ∈ A such that
ψ−1(x) contains B. To complete the proof we let ϕ : C→ C be the extension
of m guaranteed by Lemma 15.

Define Φ : S1 → ϕ(Q) as Φ = ϕ◦Imp. From Lemma 17, Φ is a well-defined con-
tinuous function. According to the picture given after Lemma 17, Φ maps an
angle α to the landing point of the corresponding ϕ(Q)-ray (i.e., the ϕ-image
of the external conformal ray to Q in the Q-plane). Then the finest lamina-
tion ∼Q (corresponding to Q) is the equivalence relation ∼ on S1, defined by
α1 ∼ α2 if and only if Φ(α1) = Φ(α2).

3.2 A constructive approach

Recall that the finest map of an unshielded continuum Q is always denoted by
ϕ = ϕQ. Fibers under the finest map will be called K-sets. In the notation from
Subsection 3.1 and Lemma 13, K-sets are exactly the elements of the partition
DQ = D, the finest among all upper semi-continuous partitions whose elements
are unions of impressions of Q. Classes of equivalence in the lamination ∼Q

will be called K-classes. We are interested in the structure of K-sets, and will
describe how to determine if two points lie in the same K-set. Given a set
A ⊂ S1 let Imp(A) be the union of impressions of all angles in A.

Lemma 19. If {a} is a degenerate K-set then Q is locally connected at a.

Proof. Suppose that A is a K-class with a degenerate K-set Imp(A) = {a}
(by the definitions, this is equivalent to ϕ−1(ϕ(a)) = {a}). Take the point
ϕ(a). Since ϕ(Q) is locally connected, there is a nested sequence of open
connected neighborhoods U1 ⊃ U2 ⊃ . . . of ϕ(a) such that ∩∞i=1Ui = {ϕ(a)}.
By the properties of ϕ, the sets Vi = ϕ−1(Ui) form a nested sequence of
open connected neighborhoods of a with the intersection coinciding with a =
ϕ−1(ϕ(a)). So, Q is locally connected at a.

Now we introduce two important notions.

Definition 20. A ray-compactum (or ray-continuum) X ⊂ Q is a compactum
(respectively, a continuum or a point) for which there exists a closed set of
angles Θ(X) ⊂ S1 such that

⋃

θ∈Θ(X)

Pr(θ) ⊂ X ⊂ ⋃

θ∈Θ(X)

Imp(θ).

Denote X ∪ ⋃
θ∈Θ(X) Rθ by X̃.
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One of the notions defined below is fairly standard. We give two equivalent
definitions of second notion, one involving separation of sets and the other
involving cutting the plane.

Definition 21. A set Y separates a space X between subsets A and B if
X \ Y = U ∪ V , where A ⊂ U , B ⊂ V , and U ∩ V = U ∩ V = ∅. We say that
a ray-compactum C ray-separates subsets A and B of Q if C̃ separates U∞
between A and B. If X ⊂ Q is a continuum and there are at least two points
of X which are ray-separated by C, we say that C ray-separates X.

The definition of ray-separation can be equivalently given as follows: (a) a
ray-compactum C ray-separates subsets A and B of Q if C ∩ (A∪B) = ∅ and
there exists no component of U∞ \ C̃ containing points of A and B. All these
notions are important ingredients of the central notion of well-slicing.

Definition 22. A continuum X ⊂ Q is well-sliced if there exists a collection
C of pairwise disjoint ray-compacta in Q such that

(1) each C ∈ C ray-separates X,
(2) for every different C1, C2 ∈ C there exists C3 ∈ C which ray-separates C1

and C2, and
(3) C has at least two elements.

The family C is then a well-slicing family for X.

We will also use the following combinatorial (laminational) version of well-
slicing.

Definition 23. Suppose that there is a collection C of at least two pairwise
disjoint geometric leaves or gaps in D. Suppose that for every different C1, C2 ∈
C there exists C3 ∈ C which separates D between C1 and C2. Then the family C
is then a well-slicing family for D. Equivalently, consider the family C ′ of closed
pairwise unlinked subsets of S1. Suppose that for every different C ′

1, C
′
2 ∈ C ′

there exists C ′
3 ∈ C ′ which separates S1 between C ′

1 and C ′
2. Then we say that

C ′ is a well-slicing family of S1. Clearly, if C is a well-slicing family of D then
the intersections of elements of C with S1 (i.e., their bases) form a well-slicing
family of S1, and vice versa.

As an example of a well-slicing family, take Q = S1. We define the family of
subsets

Cα = {e2πiα, e−2πiα}
with α taking a rational value in [0, 1/2). Each Cα is then a ray-compactum
with the set of angles Θ(Cα) = {α,−α}. Then for 0 ≤ α < β < 1

2
, we see that

Cα and Cβ are ray-separated by C(α+β)/2. Hence, C is a well-slicing family for
S1. Set CS1 = C and call this collection the vertical collection.
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Suppose that a collection C ′ of closed pairwise unlinked subsets of S1 is a well-
slicing of S1. Moreover, suppose that for each set C ′ ∈ C ′ the set Imp(C ′) is
a continuum in Q, and for distinct sets C ′

1, C
′
2 their impressions are disjoint.

Then it follows from the definitions that the sets Imp(C ′), C ′ ∈ C ′ form a
well-slicing family of the entire Q. If X ⊂ Q is such that all sets A from this
collection cut X (i.e., X \ A is disconnected) then it follows that this is a
well-slicing family for X.

Lemma 24. Suppose that C1, C2 are disjoint ray-compacta each of which ray-
separates A,B ⊂ Q. If C3 is a ray-compactum disjoint from A ∪ B which
ray-separates C1 and C2, then C3 also ray-separates A and B.

Proof. Suppose that C3 does not ray-separate A and B. Then there exists a
component V of C \ C̃3 containing points of both A and B. Since C3 ray-
separates C1 and C2, one of these sets (say, C1) is disjoint from V . Then V is
contained in a component W of C \ C̃1. Hence W contains points of both A
and B and so C̃1 does not separate X between A and B, a contradiction.

The next lemma is close in spirit to Lemma 24.

Lemma 25. Let A,B ⊂ Q. Suppose that K1 is a ray-compactum which ray-
separates A and B, and K2 is a ray-compactum disjoint from B which ray-
separates A and K1. Then K2 ray-separates A and B.

Proof. Suppose that K2 does not ray-separate A and B. Then there exists a
component V of U∞ \ K̃2 containing points of both A and B. Since K1 ray-
separates A and B, there must be points of K1 in V too. However this implies
that K2 does not ray-separate A and K1, a contradiction.

The next lemma shows that elements of a well-slicing family are separated by
infinitely many elements of the same family.

Lemma 26. If C is a well-slicing family of a continuum X ⊂ Q then, for any
two elements C1 and C2, infinitely many different elements of C separate C1

and C2.

Proof. Choose C3 ∈ C which ray-separates C1 and C2. Then choose C4 ∈ C
which ray-separates C3 and C2. It is easy to see that C4 6= C1. By Lemma 25
C3 ray-separates C1 and C2. Inductively applying this argument, we will find
a sequence of pairwise distinct elements of C each of which ray-separates C1

and C2 as desired.

Now we prove the first theorem of this subsection which implies that in a few
cases certain subcontinua of Q do not collapse under the finest map ϕ.
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Theorem 27. Suppose that C is a well-slicing of a continuum X ⊂ Q. Then
ϕ(X) is not a point.

Proof. Define x ≈ y whenever only finitely many elements of C ray-separate
x and y. Clearly, such a relation is symmetric and reflexive. To see that it is
transitive, suppose x ≈ y and x 6≈ z. Then infinitely many elements of C ray-
separate x and z. However, only finitely many of these elements ray-separate
x from y, and the rest then ray-separate y from z, so y 6≈ z.

Therefore, ≈ is an equivalence relation. We will now show that ≈ is a closed
equivalence relation by showing that {(x, y) ∈ Q2 | x 6≈ y} is open. Suppose
that x 6≈ y. In particular, there are two elements C1 and C2 which ray-separate
x and y. Every subspace of C is a normal space, so it is easy to see that sets C̃1

and C̃2 separate U∞ between every point y in a neighborhood V of x and every
point z in a neighborhood W of y. Then by Lemma 26 we can find infinitely
many elements of C which do not contain y or z and separate X between C1

and C2. Each such element of C separates X between y and z by Lemma 24.
Hence no point in V is ≈-equivalent to any point in W , and ≈ is closed. In
particular, the partition of Q into ≈-classes is upper semi-continuous.

Now we show that, for any external angle α, the impression Imp(α) is con-
tained in a ≈-class. To see this, suppose that x, y ∈ Imp(α) are ray-separated
by two elements B, C of C. Since B ∩ C = ∅, we see that the set Θ(B) of
angles associated with B is disjoint from Θ(C). Hence at most one of these
sets of angles contains α, and we may assume that α 6∈ Θ(C). Now, since C
is a ray-compactum, then each component W of C \ C̃ corresponds to a well-
defined open set of angles in S1 whose external rays are contained in W . Since
α 6∈ Θ(C), one such component V contains Rα together with rays of close to α
angles. Hence Imp(α) ⊂ V which means that Imp(α) is disjoint from all other
components of U∞ \ C̃ but V . However, by the assumption C ray-separates X
between x and y, hence the points x ∈ Imp(α) and y ∈ Imp(α) must belong
to distinct components of U∞ \ C̃, a contradiction.

Finally, we show that ϕ(X) is not a point. First we refine ≈ to get an equiv-
alence ≈′ with connected classes. Indeed, as in the proof of Lemma 13 we
can define a finer partition than that into ≈-classes whose elements are con-
nected components of ≈-classes. Then the new partition is an upper semi-
continuous monotone decomposition of Q [20, Lemma 13.2]. By the previous
paragraph any impression is still contained in an ≈′-class. Thus the quotient
map m : Q → Q/ ≈′ is a monotone surjective map collapsing impressions. By
Lemma 17 Q/ ≈′ is locally connected. Now, let C1, C2 ∈ C be different. For
all x ∈ C1 ∩X and y ∈ C2 ∩X, we see that x 6≈ y by Lemma 26 and hence
m(x) 6= m(y). Since ϕ is the finest monotone map, we see that ϕ(x) 6= ϕ(y),
and so ϕ(X) is not a point.
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Now we prove a related criterion: If an unshielded continuum Q ⊂ C has
an uncountable family of disjoint ray-continua, each of which ray-separate Q,
then there is a sub-family which is well-sliced, and therefore the finest model
is non-degenerate.

Lemma 28. Let C be an uncountable collection of disjoint ray-continua of an
unshielded continuum Q ⊂ C, each of which ray-separates Q. Then there exist
elements C0, C1 ∈ C such that uncountably many elements of C ray-separate
C0 and C1.

Proof. Assume by way of contradiction that this is not the case. For A,B ∈ C,
let YAB denote the set of points x ∈ X \ (A ∪B) which are not ray-separated
from A by B, nor vice-versa. We see that YAB is an open subset of X, each YAB

contains every element of C that it intersects, and by assumption each YAB may
contain only countably many elements of C. Then the open set U =

⋃
A,B∈C YAB

is an open subset of Q of which {YAB}A,B∈J forms an open cover. Since Q is
second countable, countably many YAB cover U . We therefore conclude that
the set of elements of C contained in (or intersecting) U is countable.

Consider now any D ∈ C contained in Q \ U . By the definition of U , D does
not ray-separate any pair of elements in C, so U must lie in a component
of C \ D̃. Let VD denote a different component of C \ D̃. Notice that, for
any D,E ∈ C such that D ∪ E ⊂ Q \ U , VD ∩ VE = ∅, since any point in
their intersection by definition belongs to YDE ⊂ U while VD ∪ VE ⊂ C \ U .
Therefore, {VA | A ∈ C, A * U} is an uncountable collection of disjoint open
subsets of X, contradicting that X is a metric continuum.

Theorem 29. Suppose that C is an uncountable collection of pairwise-disjoint
ray-continua in an unshielded continuum Q ⊂ C, each of which ray-separates
Q. Then a subcollection of C forms a well-slicing of Q, and the finest model
of Q is non-degenerate.

Proof. By Lemma 28, without loss of generality we may assume that there
are elements α0, α1 ∈ C such that all other elements of C ray-separate α0 and
α1. Clearly, a linear order ≺ is induced on C, where β ≺ γ whenever β ray-
separates α0 and γ (for if neither ray-separates the other from α0, one of them
does not ray-separate α0 and α1).

To each element α ∈ C we can associate a chord `α so that this collection of
chords in the unit disk is uncountable and also linearly ordered. Hence there
exists an element α1/2 such that both intervals (α0, α1/2)≺ and (α1/2, α1)≺
in C are uncountable. By induction we can define αq for any dyadic rational
q, 0 < q < 1. Then the collection {αq} with q dyadic rational is a well-slicing
family. By Theorem 27, the finest model of Q is non-degenerate.
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4 The finest model for polynomial Julia sets is dynamical

Now we show that if Q = JP is a connected polynomial Julia set then the
finest map ϕ (which we always canonically extend onto the entire plane as
explained above) semiconjugates P to a branched covering map g : Ĉ → Ĉ,
which we call the topological polynomial. Call ϕ(JP ) the topological Julia set.
In Section 1 by a topological polynomial we understood the map f∼ induced
by ∼ on the quotient space of a lamination ∼; since it will always be clear
whether we deal with a topological polynomial considered on J∼ or we deal
with its canonic extension on the entire plane, our terminology will not cause
ambiguity. Recall that DQ = D is the finest among all upper semi-continuous
partitions whose elements are unions of impressions of Q, or, as we have shown
above, the family of all fibers of the finest map ϕ (K-sets).

Theorem 30. For any D ∈ D, P (D) ∈ D.

Proof. Beginning from the relation

x ∼ y ⇐⇒ ∃α : x, y ∈ Imp(α),

we examine the equivalence which is its transitive closure ∼T (defined by
x ∼T y iff there is a connected finite union of impressions containing x and
y), and then the topological closure ∼P of ∼T in JP × JP .

Part 1: x ∼P y =⇒ P (x) ∼P P (y) (hence ∼P -classes map into classes).

Let d be the degree of P and define σd = σ as the restriction of the map
z 7→ zd to the unit circle S1. Knowing that x ∼ y immediately implies that
P (x) ∼ P (y), because of the Böttcher relation P (Imp(α)) = Imp(σ(α)) for any
external angle α. If x ∼T y, let α1, . . . , αn be impressions so that x ∈ Imp(α1),
y ∈ Imp(αn), and Imp(αi)∩ Imp(αi+1) 6= ∅ for 1 ≤ i < i. Since P (Imp(αi)) =
Imp(σ(αi)) then intersects P (Imp(αi+1)) = Imp(σ(αi+1)), we have a connected
finite chain of impressions (corresponding to σ(α1), . . . , σ(αn)) joining P (x) to
P (y), so P (x) ∼T P (y). Now, suppose that x ∼P y. Then there exist sequences
(xi)

∞
i=1 → x, (yi)

∞
i=1 → y such that xi ∼T yi for all i. Then P (xi) ∼T P (yi), so

P (xi) ∼P P (yi) and P (x) ∼P P (y).

Part 2: ∼P -classes map onto ∼P -classes.

That impressions map onto impressions again follows immediately from the
Böttcher relation. We prove that ∼T -classes map onto ∼T -classes by induction.
Let x ∈ JP and suppose that P (x) ∼T y. If P (x) is contained in the same
impression Imp(α) as y, let β = α+k

d
be chosen so that x ∈ Imp(β). Then

y ∈ P (Imp(β)) = Imp(α), so y is in the image of the ∼T -class of x.
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Now, suppose that we have proven that for any connected union A of n im-
pressions the fact that P (x) ∈ A implies that the ∼T -class B of x has the
P -image containing A. Let P (x) ∼T y, with a collection α1, . . . , αn+1 of an-
gles such that P (x) ∈ Imp(α1), y ∈ Imp(αn+1), and Imp(αi) ∩ Imp(αi+1)
non-empty for 1 ≤ i < n + 1. Choose z ∈ Imp(αn) ∩ Imp(αn+1). Then by
induction the z ∈ P (B) and we can choose z′ ∈ B such that P (z′) = z. On
the other hand, by the same argument as in the basis of induction the fact
that z, y ∈ Imp(αn+1) implies that the P -image of the ∼T -class of z′ must
contain both z and y. Since z′ ∈ B, the ∼T -class of z′ is actually B, hence
y ∈ P (B) as desired: y is in the image of the ∼T -class of x.

Now, suppose that x ∈ JP with P (x) ∼P y. Since ∼P is the closure of ∼T ,
there exist sequences (zi)

∞
i=1 → P (x) and (yi)

∞
i=1 → y with zi ∼T yi for each i.

Since P is an open map, there exists a sequence (xi)
∞
i=1 → x with P (xi) = zi

[20, Theorem 13.5]. Since by the proven above ∼T -classes map onto each other,
there exists a sequence (wi)

∞
i=1 such that wi ∼T xi and P (wi) = yi. If w is

any limit point of (wi)
∞
i=1, we see then that x ∼P w and P (w) = y. Since y

was arbitrary, the ∼P -class of x maps onto the ∼P -class of P (x). It remains
to observe that the ∼P -classes are exactly the elements of D.

The next theorem follows from Theorem 30.

Theorem 31. The map ϕ semiconjugates P to a branched covering map g :
C→ C.

Proof. Let m : C → C be the quotient map corresponding to D. The map
m◦P : C→ C is continuous, and is constant on elements of D by Theorem 30.
Therefore, there is an induced function g : C → C such that m ◦ P = g ◦m.
Also, it is easy to see that g is continuous. Indeed, let xi → x. Then ϕ−1(xi)
converge into ϕ−1(x) and P (ϕ−1(xi)) converge into P (ϕ−1(x)). Applying ϕ to
this, we see that g(xi) = ϕ(P (ϕ−1(xi))) converge to g(x) = ϕ(P (ϕ−1(x))),
and so g is continuous.

To see that g is open, let U ⊂ C be an open set. Then m−1(U) is a saturated
open set, and P (m−1(U)) is a saturated open set again by Theorem 30. There-
fore, m(P (m−1(U))) = g(U) is open. Since U was arbitrary, g is an open map.
By the Stoilow Theorem [25] g is branched covering.

In what follows we always denote by g the topological polynomial to which P
is semiconjugate; the ϕ-image of JP is denoted by J∼P

. Define Φ : S1 → J∼P

as Φ = ϕ ◦ Imp. From Lemma 17, Φ is a well-defined continuous function.

Theorem 32. The map Φ semiconjugates z 7→ zd to g|J∼P
.
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Proof. Define σd = z 7→ zd. Recall that g is defined so that (1) g ◦ ϕ = ϕ ◦ P
and also that the Böttcher uniformization gives that (2) P ◦ Imp = Imp ◦ σd.
We then see that, as desired,

g ◦ Φ = g ◦ ϕ ◦ Imp

= ϕ ◦ P ◦ Imp (by (1))

= ϕ ◦ Imp ◦ σd (by (2))

= Φ ◦ σd.

Then, as in the previous section, the finest lamination corresponding to J∼P

is the equivalence relation ∼P on S1, defined by α1 ∼P α2 if and only if
Φ(α1) = Φ(α2).

5 A criterion for the polynomial Julia set to have a non-degenerate
finest monotone model

Here we obtain the remaining main results of the paper. We give a necessary
and sufficient condition for the existence of a non-degenerate locally connected
model of the connected Julia set of a polynomial P . We give this criterion in
terms of its rational lamination as well as the existence of specific wandering
continua in the Julia set behaving in the fashion reminiscent of the irrational
rotation on the unit circle.

5.1 Topological and laminational preliminaries

We need the following definition. A finite set A is said to be all-critical if σ(A)
is a singleton. A finite set B is said to be eventually all-critical if there exists
a number n such that σn(A) is a singleton. The following result is obtained in
[7].

Theorem 33. Suppose that JP is the connected Julia set of a polynomial
P such that its locally connected model J∼ corresponding to the lamination
∼=∼P is a dendrite. Then there are infinitely many periodic cutpoints of J∼
and, respectively, ∼-classes, each of which consists of more than one point.

We will also need another result from [7].
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Theorem 34. Suppose f : C → C is a holomorphic map, X is a non-
separating continuum or a point such that f(X) ⊂ X, all fixed points in X are
repelling or parabolic, and for each fixed point xi ∈ X there exists an external
ray Ri of X, landing at xi, such that f(Ri) = Ri. Then X is a single point.

Theorem 33 applies in the proof of Theorem 35. Define an all-critical point
as a cutpoint of J∼ whose image is an endpoint of J∼.

Theorem 35. Suppose ∼ is a lamination. Then at least one of the following
properties must be satisfied:

(1) J∼ contains the boundary of a parattracting Fatou domain;
(2) there are infinitely many periodic ∼-classes each of which consists of more

than one angle;
(3) there exists a finite collection of all-critical ∼-classes with pairwise dis-

joint grand orbits whose images under the quotient map form the set of
all-critical points on the boundaries of Siegel domains from one cycle of
Siegel domains so that all cutpoints of J∼ on the boundaries of these
Siegel domains belong to the grand orbits of these all-critical points.

Proof. Suppose that J∼ is a dendrite. Then the result follows from Theorem 33.
Suppose now that J∼ is not a dendrite. Then J∼ contains a simple closed curve
S. By Lemma 4, there are two cases possible. First, we may assume that S is
the boundary of a periodic parattracting Fatou domain. Then (1) holds.

Consider the case when S is of period 1 and f∼|S is conjugate to an irrational
rotation (the case of higher period is similar). Consider a point x ∈ S which
is a cutpoint of J∼ (x must exist since S 6= J∼). Then x is not (pre)periodic.
Hence by Theorem 3 the ∼-class corresponding to x is finite. This implies that
the number of components of J∼ \ {x} is finite. One such component contains
S \ {x} while all others have closures intersecting S exactly at x. Denote by
Bx the union of x and all such components not containing points of S. Clearly
the set Bx is closed and connected.

Let us show that x is eventually mapped into a point which is not a cutpoint
of J∼. Indeed, otherwise all points f i

∼(x) are cutpoints of J∼. Since there are
finitely many critical points of f∼, we can then choose N such that no set
Bfm∼ (x) contains a critical point for m ≥ N . On the other hand, fN

∼ (x) is
a cutpoint of J∼ by the above. Hence BfN∼ (x) is a wandering continuum in
J∼, a contradiction with Theorem 5. Now the connection between ∼-classes
and points of J∼ implies that the ∼-class corresponding to x is eventually
all-critical. Clearly, any all-critical point y ∈ S corresponds to an all-critical
∼-class which meets the boundary of the corresponding Siegel domain U of
∼ in a leaf (since ∼-classes are convex). Moreover, an all-critical point in
S is a cutpoint of J∼ whereas all forward images of an all-critical point are
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endpoints of J∼. Hence the all-critical classes which are non-disjoint from U
have pairwise disjoint grand orbits. Clearly, this implies the properties listed
in the case (3) of the theorem. Similar arguments go through if S is periodic
rather than fixed.

By Theorem 2, if the finest model is not degenerate then it gives rise to a
non-degenerate lamination ∼P . Hence one of the three phenomena described
in Theorem 35 will have to take place in J∼P

. Thanks to the existence of the
finest map, this implies that corresponding phenomena will be present in the
Julia set JP . In other words, the presence of at least one of the phenomena is
a necessary condition for the existence of a non-degenerate finest model (we
will formalize this observation later on in Theorem 44). However now our main
aim is to show that the presence of at least one of the phenomena is sufficient
for the existence of a non-degenerate finest model. The main tool here is well-
slicing studied in Subsection 3.2. We will describe three cases in which we
establish sufficient conditions for the existence of well-slicing for the Julia set
(and hence, by the results from Subsection 3.2, for the non-degeneracy of its
finest model). The sufficient conditions are stated in a step by step fashion in
a series of lemmas and propositions.

5.2 The case of infinitely many periodic cutpoints

Next we want to suggest a sufficient condition for the non-collapse of the entire
JP corresponding to the case (2) of Theorem 35. However this time we need a
lot of preparatory work. First we study CS-points and CS-cycles (recall that
a CS-point is a Siegel or Cremer periodic point and a CS-cycle is a cycle of
CS-points). Call a set X periodic (of period m) if X, . . . , Pm−1(X) are pairwise
disjoint while Pm(X) ⊂ X. Then the union ∪m−1

i=0 P i(X) is said to be a cycle
of sets (we can then talk about cycles of continua and the like).

Lemma 36. If Y is a cycle of continua containing a CS-cycle and a periodic
point not from this CS-cycle then it contains a critical point of P .

Proof. We only consider the case when Y is an invariant continuum; the case
of the cycle of continua can be dealt with similarly. Suppose that Y contains
no critical points. Choose a neighborhood U of Y such that no critical points
belong to U , consider the set of all points never exiting U , and then the
component K of this set containing the given CS-point p; clearly, Y ⊂ K. Such
sets are called hedgehogs (see [21,22]) and have a lot of important properties.
In particular, K cannot contain any other periodic points. On the other hand,
Y ⊂ K, a contradiction with the assumption that there is a periodic point in
Y , distinct from p.
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Next we prove a few lemmas which discuss properties of JP at (pre)periodic
points. We need them for two reasons. First of all, they help us establish
the next sufficient condition for the non-collapse of JP under the finest map.
Second, they give sufficient conditions on a (pre)periodic point to be a point of
local connectivity of the Julia set. In that sense they generalize Kiwi’s theorem
[14] where he proves (using different methods) that in the absence of CS-points
the Julia set is locally connected at its (pre)periodic points.

There are two competing laminations which both reflect the structure of JP ,
the rational lamination≈rat and the finest lamination∼P . We use both of them
to suggest sufficient conditions for JP to be locally connected at a (pre)periodic
point p. Recall that A(y) is the set of all angles whose rays land at a point
y ∈ JP .

Lemma 37. Suppose that K = Imp(A) is the union of impressions of a finite
set of periodic angles A which is periodic, connected and disjoint from impres-
sions of all other angles. Then K is a repelling or parabolic periodic point.
Thus, if p is a P -(pre)periodic point and Φ−1(ϕ(p)) is finite then ϕ−1(ϕ(p)) =
{p} (i.e., {p} is a K-set) and JP is locally connected at p.

Proof. If K contains a parattracting Fatou domain in its topological hull,
then infinitely many periodic repelling points on its boundary (which exist
by [23]) would give rise to infinitely many impressions non-disjoint from K,
a contradiction. Let us show that the topological hull TH(K) of K cannot
contain a CS-point either. Indeed, otherwise by Lemma 36 it has to contain a
critical point c. Moreover, since TH(K) does not contain parattracting Fatou
domains, c ∈ JP . Then the symmetry around critical points implies that
there are two angles in A which map into one (recall that the only angles
whose impressions may contain c are the angles of A), a contradiction with
the assumptions on A. Thus K is an invariant non-separating subcontinuum
of JP which contains no CS-points. On the other hand, by the assumptions,
there are only finitely many periodic points in K. Hence all of these points
are repelling or parabolic and together with the rays landing at them may
be assumed to be fixed. By Theorem 34 this implies that K is a repelling or
parabolic periodic point.

To establish the next implication of the lemma, assume that p is a P -periodic
point and ϕ(p) = x. We may assume that x is g-fixed. Set A = Φ−1(x). By the
assumptions of the lemma Φ−1(ϕ(p)) is finite. Hence we may assume that all
angles in A are fixed. Clearly, B = ϕ−1(x) is an invariant continuum. By the
assumptions only angles of A can have impressions non-disjoint from B, and
there are finitely many of them. Hence by the first part of the lemma B is a
repelling or parabolic periodic point. The remaining claim that JP is locally
connected at p now follows from Lemma 19.
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The next lemma relies upon Lemma 37. Recall, that by ≈rat we denote the
finest lamination which respects the geometric lamination Lrat. Properties of
≈rat are studied in Theorem 12 (in particular, it is shown there that ≈rat is
not degenerate).

Lemma 38. Suppose that g is a (pre)periodic finite gap or leaf of ≈rat disjoint
from boundaries of Fatou domains of ≈rat. Then Ch(g) is a gap or leaf of Lrat,
coinciding with the set A(p) for a point p ∈ R, and JP is locally connected at
p.

Proof. We may assume that g is invariant. Also, since no leaf of B = Bd(Ch(g))
can come from the boundary of a Fatou domain of ≈rat, all leaves in B are
limit leaves of Lrat. The upper semi-continuity of impressions now implies that
the union of impressions Imp(g) of angles of g is a continuum itself. Moreover,
it is disjoint from impressions of all angles not in g because for any such angle
γ we can find a leaf of Lrat which cuts Imp(γ) off Imp(g). Now the lemma
follows from Lemma 37.

We need another preparatory result, dealing with laminations generated by
collections of periodic gaps and leaves. If we fix a set A, then a set B ⊂ A is said
to be cofinite (in A) if |A\B| is finite. Given a generating family A of pairwise
disjoint periodic gaps or leaves we then consider a geometric prelamination
LA consisting of A and preimages of elements of A. By Theorem 12 we can
construct the corresponding lamination ≈A; given a finite gap or leaf G from
LA, there exists a finite ≈A-class Cl(G) containing G′ and called the ≈A-class
generated by G. Denote by pA the quotient map from S1 to J≈A

.

Lemma 39. Suppose that A is an infinite generating family of periodic gaps
or leaves. Then there exists a cofinite subset D′ ⊂ A such that any cofinite set
E ⊂ D′ has the following properties.

(1) If G ∈ LE then Cl(G) ∩ Bd(U) = ∅ for any Fatou domain U in L≈E
or

L≈A
.

(2) The family of ≈E-classes generated by the elements of LE is a well-slicing
family of S1.

Proof. Clearly, A is countable. Denote the number of cycles of Fatou domains
of the lamination ≈A by fA. Clearly, if B ⊂ A then LB ⊂ LA. Hence by
Theorem 12 each Fatou domain of ≈A is contained in a Fatou domain of ≈B.
However there may exist cycles of Fatou domains of ≈B disjoint from cycles
of Fatou domains of ≈A; in other words, Fatou domains of ≈B may appear in
new places. Still, fB is not necessarily greater than fA because simultaneously
with the above some Fatou domains of ≈B may contain several Fatou domains
of ≈A. Now, the collection of Fatou domains of ≈A and those Fatou domains
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of ≈B whose cycles are disjoint from the cycles of Fatou domains of ≈A is a
collection of several Fatou domains which are pairwise disjoint (recall, that
Fatou domains are open). These Fatou domains are Fatou domains of two
distinct laminations, ≈A and ≈B, but since they are disjoint, they can be
considered together. This useful idea, which is an important ingredient of the
arguments, motivates the following definition. Take a cofinite subset B ⊂ A
and consider all intermediate sets A′ such that A ⊃ A′ ⊃ B. Consider the
family of orbits of all Fatou gaps of all laminations ≈A′ . There exists a maximal
in terms of cardinality subcollection of this family of pairwise disjoint orbits
of Fatou gaps; denote its cardinality by FB.

Since FB < d, we may choose a cofinite subset B ⊂ A such that FB is maximal
possible. Clearly, any Fatou domain generated by an intermediate set A′ is
contained in a Fatou domain of B. Let us show that then, by the choice of
B, for any cofinite subset C ⊂ B any Fatou domain of ≈C must contain a
Fatou domain of B. Indeed, otherwise there exists a cycle of Fatou domains
generated by C which contains no Fatou domains of any of the intermediate
sets A′. Therefore, this cycle of Fatou domains can be added to the FB cycles
of Fatou domains, contradicting the maximality of FB. In other words, Fatou
gaps of C cannot pop up at new spots.

Denote the Fatou domains of ≈B by U1, . . . , Uk and choose n so that all Ui

are σn-invariant. By the above, for any cofinite set C ⊂ B a Fatou domain of
≈C is σn-invariant and contains Ui for some i. Choose a cofinite set C ⊂ B
so that the number of its Fatou domains is minimal possible and denote them
W1, . . . , Wm. Then for any cofinite set D ⊂ C there are m Fatou domains
V1(D), . . . , Vm(D) of ≈C each of which is σn-invariant. Now, choose a cofinite
set D ⊂ C so that the sum of degrees of σn|Vi(D) taken over i = 1, . . . , m
is maximal possible. Let us show that then for any cofinite set E ⊂ D the
Fatou domains of ≈E coincide with Fatou domains of D. Indeed, otherwise we
may assume that there exists a cofinite set E ⊂ D which has a Fatou domain
Q % V1(D). Then the degree of σn|Q is greater than that of σn|V1(D) because
otherwise all the preimages of points of V ′

1(D) under σn|Q belong to V ′
1(D)

while being dense in Q′, a contradiction with Q % V1(D). However then the
sum of the degrees of σn|Vi(E) is greater than the sum of degrees of σn|Vi(D),
a contradiction with the choice of D. We conclude that for any cofinite set
E ⊂ D the Fatou domains of ≈E coincide with Fatou domains of ≈D.

Each periodic Fatou domain of ≈D has finitely may ≈D-gaps/leaves non-
disjoint from its boundary. Denote by D′ ⊂ D the family of all other ≈D-
gaps/leaves (observe that D′ is cofinite and hence infinite). Suppose now that
E ⊂ D′ is cofinite. Then by the previous paragraph the Fatou domains of ≈E

coincide with Fatou domains of ≈D, and by the choice of E no element of LE

intersects Bd(U) where U is a Fatou domain of L≈E
. Moreover, since E ⊂ A,

LE ⊂ LA. Hence, Fatou domains of L≈A
are contained in Fatou domains of
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L≈E
. This proves claim (1) of the lemma. To prove claim (2), let G,H ∈ LE

are such that Cl(G) and Cl(H) are distinct. Suppose that there are no ≈E-
classes, generated by elements of LE, separating S1 between Cl(G) and Cl(H).
Since by the construction ≈E-classes generated by elements of LE are dense
in L≈E

, there must be a Fatou gap of L≈E
on whose boundary both Cl(G)

and Cl(H) lie which is impossible by the above. This completes the proof of
(2).

Proposition 40. Suppose that p ∈ J∼P
= ϕ(JP ) is a periodic point such

that Φ−1(p) is infinite. Then there are no more than finitely many periodic
leaves of the rational geometric lamination Lrat connecting angles of Φ−1(p).
In particular, (1) the set of all bi-accessible periodic repelling or parabolic
points in ϕ−1(p) must be finite, and (2) if the set of all repelling bi-accessible
periodic points of P is infinite then the finest model is non-degenerate.

Proof. We may assume that p is a fixed point of g; then Φ−1(p) is an infinite
gap of ∼P . Set G = int(Ch(Φ−1(p))); by Lemma 10 G is a Fatou gap of L∼P

and hence by Lemma 9 there is a monotone semiconjugacy ψ of σ∗|Bd(G) and a
map σk : S1 → S1 with the appropriately chosen k > 1. The map ψ collapses all
chains of concatenated leaves in Bd(G) to points; by Lemma 7 all leaves in the
chains are (pre)periodic and by Lemma 9 and Lemma 10 each chain consists
of at most N leaves (N depends on G). By way of contradiction suppose
that there are infinitely many periodic leaves of the rational prelamination
Lrat connecting angles of Φ−1(p). The idea is to use the map ψ in order to
transport the restriction of Lrat onto Φ−1(p) to the entire circle S1, then to
use Lemma 39 to find a well-slicing family of S1 consisting of (pre)periodic
geometric gaps and leaves of S1 corresponding to elements of Lrat, and then
to show that ray-continua corresponding those elements of Lrat form a well-
slicing family of ϕ−1(p). By Theorem 27 then ϕ(ϕ−1(p)) is not a point, a
contradiction.

The leaves of Lrat which lie in the boundary of Ch(Φ−1(p)) = G will produce
just points under ψ. However, by Lemma 7 there are only finitely many peri-
odic leaves in Bd(G). Hence by the assumptions of the proposition there are
infinitely many periodic geometric leaves or gaps of Lrat contained in G and
such that ψ does not identify points of their bases with other points at all.
Denote their family by A; also, denote the family of all their preimages under
all powers of σ contained in G by L̂A (recall, that the notation LA is reserved
for the collection of all preimages of elements of A). Thus, L̂A is the family
of all (pre)periodic geometric leaves and gaps of Lrat contained in G and not
in Bd(G). Define the geometric prelamination L′ = ψ(L̂A) on the entire circle
S1 as the family of convex hulls of ψ-images of bases of elements of L̂A (recall
that ψ is defined only on Bd(G)). It is easy to see that this indeed creates a
geometric prelamination whose all leaves are (pre)periodic. By the choice of A
in this way each gap/leaf of L = L̂A is transported by ψ to the corresponding
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gap/leaf of L′ in a one-to-one fashion. Then ψ(A) is the family of periodic
geometric leaves and gaps of L′. Clearly, ψ(A) is infinite and the lamination
L′ is the same as the lamination Lψ(A) introduced right before Lemma 39 in
which appropriate preimages of elements of ψ(A) are used.

By Lemma 39 there exists a cofinite family B ⊂ A satisfying both properties
listed in Lemma 39. In particular, as in Lemma 39 for B the prelamination LB

and the corresponding lamination ≈B can be constructed. By the choice of A
the map ψ then allows us to pull them back to G in a one-to-one fashion and
without changing the order. Now, by claim (1) of Lemma 39 if h ∈ LB then
Cl(h)∩Bd(U) = ∅ for any Fatou domain U in L≈B

(here Cl(h) is understood
in the sense of the lamination ≈B, i.e. Cl(h) is the ≈B-class containing h).
Let us show that then in fact h = Cl(h) and ψ−1(h) ∈ Lrat. Indeed, consider
leaves on the boundary of Cl(h). By Theorem 12 they all are limits of leaves of
elements of LB. It follows that then leaves on the boundary of ψ−1(Cl(h)) are
limit leaves for leaves of ψ-preimages of elements of LB. Thus, leaves on the
boundary of ψ−1(Cl(h)) are limit leaves for leaves of Lrat. This implies that
the impression of any angle not from ψ−1(Cl(h)) is cut off Imp(ψ−1(Cl(h))) by
tails of the appropriate points of R and hence is disjoint from Imp(ψ−1(Cl(h))).
By Lemma 37 then h = Cl(h) and ψ−1(h) ∈ Lrat.

Now, by Lemma 39 LB is a well-slicing family of S1. By the previous paragraph
and by the properties of the map ψ it follows that the family of degenerate
ray-continua Imp(ψ−1(h)), h ∈ LB is a well-slicing family of ϕ−1(p) and hence
by Theorem 27 ϕ(ϕ−1(p)) is not a point, a contradiction. This proves (1).
Now, if the finest model is degenerate then the degenerate topological Julia
set can play the role of the point p, the entire circle S1 plays the role of the
≈P -class Φ−1(p), and (1) implies that R is finite. Hence, (2) follows and the
proof is completed.

5.3 The Siegel case

Now we establish the third sufficient condition for the non-degeneracy of the
finest model, this time corresponding to the case (3) of Theorem 35. However
first we need to introduce the appropriate terminology.

As was explained in Section 2, the closure of any invariant geometric prelami-
nation is a geometric lamination. This idea was used when the geo-lamination
Lrat was constructed. However it can also be used in other situations. Sup-
pose that there exists a finite collection K of wandering ray-continua Ki, i =
1, . . . , m. We will call K a wandering collection if distinct forward images of
continua Ki are all pairwise disjoint. By the arguments similar those from
Theorem 4.2 [6] one can associate to K a geometric prelamination LK gen-
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erated by K, and then its closure - a geo-lamination LK generated by K. For
completeness we will briefly explain the main ideas of this theorem.

First we need to construct the grand orbit of sets from K. However it may
happen that simply taking pullbacks of the forward images of these sets will
lead to their growth. Indeed, suppose, for example, that K1 contains a critical
point c. Then already the first pullback of P (K1) may well be bigger than
K1. If as we iterate the map K1 hits several critical points, the same can take
place several times. However since K is a wandering collection we can choose
a big N so that the continua PN(Ki), i = 1, . . . , m are non-precritical.

If we now take these continua, all their forward images, and then all pullbacks
of these forward images we will get a “consistent” grand orbit of several sets
meaning that for every set Q from the grand orbit in question the P i-pullback
of P i(Q) containing Q coincides with Q. As a result of the construction the ini-
tially given ray-continua may have grown, however they will have (eventually)
the same images as the originally given continua. In particular, the continua Ki

may have grown to new continua K ′
i, and we can think of the just constructed

grand orbit Γ as the grand orbit of the family of continua K ′
1, . . . , K

′
m. Observe

that K′ = {K ′
1, . . . , K

′
m} is still a wandering collection. Hence, since all Fatou

domains are (pre)periodic, any set from Γ is a non-separating subcontinuum
of JP .

Since each Ki is a ray-continuum, by Definition 20 there is a set of angles asso-
ciated to Ki in that the union of the principal sets of these angles is contained
in Ki while the union of their impressions contains Ki. The new continuum K ′

i

is obtained as the union of Ki with some pullbacks of its images. Hence and
because the collection of all principal sets and impressions is invariant we see
that K ′

i is also a ray-continuum. It follows that in fact any continuum K ′ ∈ K′
is a ray-continuum, and if we define the set of angles Θ(K ′) = HK′ as the set
of all angles whose principal sets are contained in K ′ then we will have

⋃

θ∈HK′

Pr(θ) ⊂ K ′ ⊂ ⋃

θ∈HK′

Imp(θ)

which means that the set of angles HK′ is associated with the continuum K ′

in the sense of the Definition 20. Observe that by Theorem 3 the sets of angles
HK′ , K ′ ∈ K′ cannot have more than 2d angles (and therefore they are closed).

Now it is not hard to show (see Theorem 4.2 [6]) that the family of convex
hulls of so defined sets of angles HK′ , K ′ ∈ Γ form a geometric prelamination
which we denote by LK. By the definition each original ray-continuum Ki has
the associated to it set of angles Ai, and it follows that Ai ⊂ HK′

i
= Hi.

Therefore each Ai is contained in a leaf or gap of LK. Then the closure LK
of LK is a geo-lamination. We are especially interested in collections of angles
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which give rise, through the above construction, to specific geo-laminations
reminiscent of the case (3) of Theorem 35.

Definition 41. Suppose that H is a collection of finite sets of angles Hi, i =
1, . . . , m such that the following holds.

(1) Each set Hi is mapped into a one-angle set (i.e., is an all-critical set).
(2) For each i the set Imp(Hi) is a continuum disjoint from impressions of

any angle not belonging to Hi.
(3) The continua Imp(Hi), i = 1, . . . ,m form a wandering collection.
(4) Consider the geo-lamination LH. Then there is a cycle of Siegel domains

in LH such that H is the family of all-critical gaps/leaves on the bound-
aries of domains from the cycle. Moreover, each Ch(Hi) meets the corre-
sponding Siegel domain of LH in a leaf and sets Hi have pairwise disjoint
orbits.

In that case we say that the collection of sets of anglesH with their impressions
and all their pullbacks form a Siegel configuration; the collection of sets of
angles H is said to generate the corresponding Siegel configuration. We will
also say in this case that P admits a Siegel configuration.

The next proposition shows that such Siegel configuration cannot be admitted
by the polynomial inside a periodic infinite K-class; in particular, if P admits
a Siegel configuration, it implies that the finest model is non-degenerate.

Proposition 42. Suppose that p ∈ J∼P
= ϕ(JP ) is a periodic point such that

Φ−1(p) = g is infinite. Then no collection of subsets of g generates a Siegel
configuration. In particular, if P admits a Siegel configuration, then the finest
model is non-degenerate.

Proof. By way of contradiction let us assume that P admits a Siegel con-
figuration, and the corresponding generating collection of sets of angles is
H = {H1, . . . , Hm}. Set Imp(Hi) = Ti. First we simply analyze the corollar-
ies of this assumption without assuming that sets from H are contained in a
periodic K-class.

We may assume that all sets Hi have common leaves with an invariant Siegel
domain S. By Lemma 9 the map σ∗|Bd(S) is semiconjugate with an irrational
rotation of the circle. Then there are no periodic leaves/points in Bd(S) and
by Lemma 7 every leaf ` ⊂ Bd(S) is (pre)critical. By Lemma 8 ` is not a limit
leaf, hence ` belongs to an element Q of the grand orbit of H. From part (4)
of Definition 41 Q ∩ Bd(S) = `. Since grand orbits of sets Hi are pairwise
disjoint, all images of ` are two-sided limit points of Bd(S)∩S1. Observe that
there might exist chains of concatenated leaves in Bd(S) (they may arise as
a result of pulling back a set Hi through a critical gap on the boundary of
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S). However by Lemma 9 any maximal chain of leaves in Bd(S) consists of
no more than N leaves with some uniform N . Points of Bd(S) which are not
contained in any leaf are angles whose impressions are also continua. Let us
denote by A the collection of elements of the grand orbit of H non-disjoint
from Bd(S) as well as points in Bd(S) which do not belong to leaves. Then
all elements of A have connected impressions.

Suppose now that A,B ∈ A. Choose the arc I ⊂ Bd(S) which contains
A∩Bd(S), B∩Bd(S) and runs in a counterclockwise direction from A∩Bd(S)
to B∩Bd(S). Consider the union T = T (A,B) of all elements ofA non-disjoint
from I. Clearly, T is connected.

Claim A. The set Imp(T ) is a continuum.

It follows from the upper semi-continuity of impressions that Imp(T ) is closed.
By way of contradiction suppose that Imp(T ) = X∪Y where X, Y are disjoint
non-empty closed sets. Since for every Q ∈ A such that Q ⊂ T we have that
the set Imp(Q) is a continuum, every such Q has its impression either in X
or in Y . Denote by X ′ the union of all elements of A contained in T whose
impressions are contained in X; then X ′ is well-defined and disjoint from the
union Y ′ of all elements of A contained in T whose impressions are contained
in Y . Now, by the upper semi-continuity of impressions the sets X ′, Y ′ are
closed (every limit set of X ′ still comes from T and has its impression in X),
and by the above they are disjoint and non-empty. However X ′ ∪ Y ′ = T is
connected, a contradiction. This implies that Imp(A) is a continuum.

Claim B. Impressions of two distinct elements A,B of A do not meet. The
continuum Imp(A) separates the plane.

Indeed, suppose otherwise. Choose a set H1 ∈ H. Then H1 ∩ Bd(S) is a leaf.
By Lemma 9, there exists a sequence mi such that σmi(A) will approach an
endpoint of H1∩Bd(S) while σmi(B) will approach a point y ∈ S ′. Now, y 6∈ H1

because A is distinct from B and because the map σ on Bd(S) acts like an
irrational rotation. On the other hand, by the assumption Imp(A)∩Imp(B) 6=
∅, hence by the upper semi-continuity of impressions Imp(y) ∩ Imp(H1) 6=
0, a contradiction with the part (2) of Definition 41. Hence elements of A
have pairwise disjoint impressions. It implies that Imp(A) separates the plane
because otherwise by [1,10] Imp(A) would contain a fixed point, and then an
element of A containing it and its image would have non-disjoint impressions,
a contradiction.

Claim C. The union of two impressions of distinct angles - images of elements
of H - ray-separates Imp(A).
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Consider {α}, {β} ∈ A, α 6= β, both α and β images of sets from H which
are non-isolated from either side in Bd(S) ∩ S1 (we can do this by what we
showed in the second paragraph of the proof). We need to show that if Q =
Imp(α)∪ Imp(β) then Imp(A) meets two distinct components of U∞ \ Q̃ (U∞
is the basin of attraction of infinity, Q is a ray-compactum with the associated
set of angles {α, β}, and by Q̃ we denote the union of Q and rays Rα, Rβ, see
Section 3 where this notation is introduced). Consider the union V of rays of
all angles from [α, β] and the union W of rays of all angles from [β, α]. Clearly,
V ∩W = Rα∪Rβ and V ∪W = U∞. Also, it follows that V = V ∪ Imp([α, β])
and W = W ∪ Imp([β, α]).

Let us show that V ∩W = Q̃. It suffices to show that if T ′ = Imp([α, β]) \Q
and T ′′ = Imp([β, α]) \ Q then T ′ ∩ T ′′ = ∅. Observe that by Claim B and
by the choice of α, β we have that Imp(α) is disjoint from impressions of all
angles not equal to α, and Imp(β) is disjoint from impressions of all angles not
equal to β. Hence it suffices to show that if γ′ ∈ (α, β) and γ′′ ∈ (β, α) then
Imp(γ′) ∩ Imp(γ′′) = ∅. By Claim B we may assume that at least one of the
angles γ′, γ′′ (say, γ′) does not belong to an element of A. Then there exists a
non-degenerate element L of A such that L∩S1 ⊂ (α, β) and γ′ is contained in
an arc (θ1, θ2) ⊂ (α, β) where θ1, θ2 ∈ L. This implies that Imp(γ′) is contained
in the union of rays Rθ1 , Rθ2 and the impression Imp(L) of L. If γ′′ belongs to
H ∈ A, put M = H and θ3 = θ4 = γ′′. Otherwise, there exists a set M ∈ A
such that M ∩S1 ⊂ (β, α) and γ′′ is contained in an arc (θ3, θ4) ⊂ (β, γ) where
θ3, θ4 ∈ L. Then Imp(γ′′) is contained in the union of rays Rθ3 , Rθ4 and the
impression Imp(M) of M . Since by Claim B Imp(L)∩ Imp(M) = ∅, it follows
that Imp(γ′)∩Imp(γ′′) = ∅ as desired. Observe that U∞\Q̃ = (V \Q̃)∪(W \Q̃)
where sets V \ Q̃ and W \ Q̃ are open in U∞ and disjoint which proves the
claim.

Let us now prove the theorem. Observe that by Claim A the set Imp(A) is a
continuum. Denote by Z the family of impressions of singletons from A which
are angles-images of elements of H. By Lemma 9 the map ψ semiconjugates
σ∗|Bd(S) to an irrational rotation τ of S1. This map allows us to associate to
elements of Z their ψ-images which are angles in S1 coming from a finite
collection of orbits under τ . Choose pairs of angles from ψ(Z) so that S1 with
them is homeomorphic to S1 with the vertical collection of pairs CS1 . This gives
rise to the corresponding family of pairs of impression from Z. By Claim C
and by the construction these pairs of impressions form a well-slicing family
of Imp(A). Therefore by Theorem 27 ϕ(Imp(A)) is not a point. On the other
hand, by the construction Imp(A) ⊂ ϕ−1(p), a contradiction.
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5.4 The criterion

First we deal with parattracting Fatou domains. This sufficient condition for
the non-collapse of a subset of JP corresponds to case (1) of Theorem 35.
Let us recall that by R we denote the set of all periodic repelling (parabolic)
bi-accessible points and their preimages.

Proposition 43. Suppose that U is parattracting Fatou domain of P . Then
Bd(U) is well-sliced in JP and hence is not collapsed under the finest map ϕ.
In particular, suppose that p ∈ J∼P

is a periodic point. Then ϕ−1(p) cannot
contain the boundary of a parattracting Fatou domain of P .

Proof. By [23], R ∩ Bd(U) = A is dense in Bd(U) ⊂ X and each point of A
is accessible from within and from without U . This implies that any pair of
points of A ray-separates Bd(U). Since A consists of points accessible from
within U we can use the canonic Riemann map for U and parameterize points
of A by the corresponding angles; denote the corresponding set of angles by A.
Since all points of A are accessible from outside U and A is dense in Bd(U),
it follows that A is dense in S1. Since R is countable, so is A, and it is easy
to see that we can choose pairwise disjoint pairs of angles from A so that S1

with this collection of pairs is homeomorphic to S1 with the vertical collection
of pairs CS1 defined in the end of Section 3. Then the corresponding to these
pairs of angles pairs of points from A form a well-slicing family of Bd(U) and
by Theorem 27 Bd(U) is not collapsed under the finest ϕ as desired.

We are ready to state the main result of this section which gives a criterion of
the finest model not be degenerate. It lists three conditions, and for the finest
model to be non-degenerate it is necessary and sufficient that at least one of
them must be satisfied. In a descriptive form it was given in Section 1.

Theorem 44. The finest model of the Julia set of a polynomial P is not
degenerate if and only if at least one of the following properties is satisfied.

(1) The filled-in Julia set KP contains a parattracting Fatou domain.
(2) The set of all repelling bi-accessible periodic points is infinite.
(3) The polynomial P admits a Siegel configuration.

Proof. First we show that the fact that at least one of properties (1) - (3)
holds is necessary for the non-degeneracy of J∼P

= ϕ(JP ). In other words, we
assume that J∼P

is non-degenerate and deduce the appropriate properties of
JP using Theorem 35. Consider the cases (1) - (3) one by one.

(1) Suppose that, according to Theorem 35.(1), J∼P
contains a simple closed

curve S which is the boundary of a parattracting Fatou domain. Then ϕ−1(S)
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is a continuum which separates the plane and encloses an open set U comple-
mentary to JP . Moreover, for a dense in S subset of g-periodic points their
Φ-preimages are finite (there are no more than finitely many periodic points
of ϕ(JP ) whose Φ-preimages are infinite). By Lemma 37 this implies that full
ϕ-preimages of these g-periodic points are P -periodic points at which JP is
locally connected. Thus, U is a Fatou domain of P whose boundary contains
periodic points. This implies that U is a parattracting domain, and case (1)
holds.

(2) Assume now that J∼P
does not contain simple closed curves, that is, that

J∼P
is a dendrite. Consider the lamination ∼P . Since J∼P

is a dendrite, ∼P

does not have Fatou domains. Hence by Theorem 35 there are infinitely many
periodic ∼P -classes each of which consists of more than one point. Moreover,
we may assume that they are all finite (because there can only be finitely
many infinite periodic classes of a lamination). Finally, by the construction
the impression of each such class is disjoint from impressions of all angles not
belonging to the class. Hence by Lemma 37 all their impressions are points. We
conclude that there are infinitely many repelling bi-accessible periodic points
as desired and case (2) holds.

(3) By Lemma 4 we may now assume that ϕ(JP ) contains the boundary S of
an invariant Siegel domain. By Theorem 35.(3), there exists a finite collection
of all-critical ∼P -classesH = {H1, . . . , Hm} with pairwise disjoint grand orbits
whose images x1, . . . , xm under the quotient map Φ : S1 → ϕ(JP ) = J∼P

form
the set of all-critical points in S so that all cutpoints of ϕ(JP ) in S belong to
the grand orbits of these all-critical points. Observe that by the construction
for every i we have that Imp(Hi) = ϕ−1(xi) is a continuum.

We want to show that this implies that P admits a Siegel configuration. As
the collection of sets of angles needed to define a Siegel configuration we take
exactly H. Moreover, as in the definition of a Siegel configuration we take the
grand orbit of H then the corresponding sets of angles to form the geometric
prelamination LH. Observe that this will bring back all the leaves and gaps
from the set Φ−1(S) because all leaves and gaps in this set correspond to
cutpoints of J∼P

in S and, by Theorem 35.(3), come from the grand orbits of
all-critical points from S. Finally, by the construction the impressions Imp(Hi)
are disjoint from impressions of all angles not belonging to Hi. All this implies
that P admits a Siegel configuration and completes the consideration of the
case (3).

Now we consider the sufficiency of conditions (1) - (3). If (1) holds, then the
finest map is not degenerate by Proposition 43. If (2) holds, then the finest
map is not degenerate by Proposition 40. If (3) holds, then the finest map is
not degenerate by Proposition 42. This completes the proof.
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By Theorem 44 the finest model of a polynomial Julia set is degenerate if
and only if there are no parattracting Fatou domains, the set of all repelling
bi-accessible periodic points is finite, and there is no Siegel configuration. As
an application let us first prove a sufficient condition for the finest model
to be non-degenerate. Recall that the valence of a ray-continuum K is the
cardinality of the set of all rays whose principal sets are contained in K.

Theorem 45. Suppose that K ′ is a wandering ray-continuum such that the
valence of P n(K ′) is greater than 1 for all n ≥ 0. Then there are infinitely
many repelling bi-accessible periodic points of J and the finest model is non-
degenerate. In particular, these conclusions hold if there exists a non-(pre)periodic
non-(pre)critical bi-accessible point of J .

Proof. As explained in Subsection 5.3, the construction and the arguments
similar to those from Theorem 4.2 [6] imply that there is a (possibly) bigger
than K ′ but still wandering ray-continuum K (with the same eventual images
as K ′) whose grand orbit Γ (i.e. the collection of pullbacks of its forward
images) is well-defined. Moreover, to each element Q of Γ we can associate
the set Θ(Q) = HQ of all angles whose principal sets are contained in Q (by
Theorem 3 the set HQ is finite). Then all elements of Γ are non-separating
and wandering ray-continua. Moreover, convex hulls of sets HQ, Q ∈ Γ form a
prelamination which we denote LK . By the properties

By Theorem 12 we can consider its closure LK which is the geo-lamination
generated by K and then the lamination ≈K generated by K. By Theorem 12
≈K=≈ has no Siegel domains. However it may have several parattracting
Fatou domains.

Let us show that closures of Fatou domains of ≈ are pairwise disjoint. Let U
be a Fatou domain of LK . By the construction from Theorem 12, U remains
a Fatou domain of ≈. Let us study Bd(U) in detail. By Theorem 12 in the
geo-lamination LK and in the refined geo-lamination L≈ there are no critical
leaves. Therefore by Lemma 7 all leaves in Bd(U) are (pre)periodic. Thus, they
do not come from LK and must be the limit leaves of LK . Choose a geometric
leaf ` in Bd(U). By Theorem 12 elements of LK cannot be contained in U ,
hence they approach ` from outside of U . Moreover, we may assume that these
elements of LK are contained in convex hulls of distinct ≈-classes. Therefore
` cannot lie on the boundary of any other gap of L≈ or on the boundary of
another Fatou domain of LK (or, equivalently, of ≈), as desired.

Consider a new lamination ≈′K=≈′ obtained by identifying the boundary of
each Fatou domain of ≈K and show that J≈′ is a non-degenerate dendrite.
It is easy to see that ≈′ is a well-defined lamination. Then the corresponding
topological Julia set J≈′ can be obtained from J≈ by collapsing closures of all
its Fatou domains into points. Clearly, there are no more than countably many
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Fatou domains of ≈, their boundaries are continua, and these continua are
pairwise disjoint by the previous paragraph. Then by the Sierpiński Theorem
[24] the resulting (after this collapse) quotient space J≈′ is not degenerate.
Hence the lamination ≈′ is not degenerate. Moreover, since it no longer has
Fatou domains, J≈′ is a dendrite.

By the results of [7] any dendritic topological Julia set has infinitely many
periodic cutpoints. Hence there are infinitely many periodic cutpoints in J≈′ .
We now want to show that this implies that there are infinitely many periodic
cutpoints of J . Let h be a finite periodic class of ≈′ which does not belong to
the boundary of a Fatou domain of ≈. Then geometric leaves from Bd(Ch(h))
cannot come from elements of LK (who are all wandering). Let us show that
all geometric leaves on the boundary of h are limit leaves of LK . Indeed,
suppose that `′ is a boundary geometric leaf of Ch(h) which is not such a
limit leaf. Then there is a geometric gap g′ of LK on the side of `′ opposite
to g. By the choice of h, the gap g′ cannot be a Fatou domain of LK which
implies that it has a finite basis which should have been united with h into
one ≈-class, a contradiction. Thus, the set Imp(h) is disjoint from impressions
of all angles not in h because these other impressions are cut off Imp(h) by
the ray-continua from the grand orbit of K corresponding to the appropriate
elements of LK .

Consider now the set Imp(h) and show that Imp(h) is a continuum itself. If
a geometric leaf `′′ belongs to the boundary of Ch(h) then by the previous
paragraph `′′ is the limit of a sequence of elements of LΘ. Taking the Hausdorff
limit of a subsequence we see that the corresponding continua on the plane
converge to a continuum. By the semi-continuity of impressions this continuum
is contained in Imp(`′′). Hence Imp(`′′) is a continuum itself. Since the union
of impressions of leaves `′′ from the boundary of Ch(h) is in fact Imp(h), the
set Imp(h) is a continuum. By Lemma 37 Imp(h) is a repelling or parabolic
periodic point, and since h is a gap or leaf, it is a repelling or parabolic point
of J at which at least two rays land, as desired. By Theorem 44 this implies
that the finest model is non-degenerate. Clearly, the case when there exists
a non-(pre)periodic bi-accessible point of J is a particular case of the above.
This completes the proof.

Let us show how one can deduce Kiwi’s results [14] from our results. Say that
two angles α, β are K-equivalent if there exists a finite collection of angles
α0 = α, . . . , αk = β such that Imp(αi∩Imp(αi+1) 6= ∅ for each i = 0, . . . , k−1.
The notion (but not the terminology!) is due to Jan Kiwi [14] and is instru-
mental in his construction of locally connected models for connected Julia sets
of polynomials without CS-points. Clearly, if two angles are K-equivalent, they
must belong to the same K-class. Suppose that P does not have CS-points.
Let us show first that the finest model is non-degenerate. Indeed, by the as-
sumption P has no Siegel domains. If P has a parattracting domain then by
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Theorem 44 the finest model is non-degenerate. It remains to consider the case
when P has no Fatou domains (i.e., JP is non-separating) and no CS-points.
Then by [11,12] P has infinitely many repelling periodic bi-accessible points.
Hence in this case the finest model is non-degenerate either.

Now, take any point p of P , consider the corresponding K-class Φ−1(p) and
show that it is finite. Indeed, suppose first that p is non-(pre)periodic. Then
by Theorem 3 the corresponding K-class is finite. Now suppose that p is
(pre)periodic; we may assume that it is periodic of period 1. Consider the
set Q = ϕ−1(ϕ(p)) and show that it is non-separating. Indeed, otherwise there
is a parattracting domain U contained in the topological hull TH(Q) (since P
does not have CS-points it cannot be a Siegel domain). However by Lemma 43
the boundary Bd(U) is not collapsed under ϕ, a contradiction. Hence Q is non-
separating. Let us show that then it must contain infinitely many repelling
periodic bi-accessible points. Indeed, suppose otherwise. Then replacing P by
an appropriate power we may assume that all periodic points in Q and all
the rays landing at them are invariant. By Theorem 34 this implies, that Q
is a point, a contradiction to Φ−1(p) being infinite by the assumption (at any
repelling periodic point only finitely many rays land). So, if P has no CS-
points then there are no infinite K-classes which implies that K-equivalence
in fact coincides with the lamination ∼P and thus produces the finest locally
connected model of JP .

Let us compare our approach and results with those of [14]. Kiwi uses direct
arguments to construct the finest model for polynomials without CS-points.
He also relies more upon combinatorial and related to symbolic dynamics
arguments. Our approach, based upon continuum theory, is different. It allows
us to show that Kiwi’s locally connected model of a connected Julia set without
CS-points is actually the finest locally connected model of JP , the finest from
the purely topological point of view. It also allows us to extend Kiwi’s results
[14] onto all polynomials with connected Julia sets. However we only tackle
the case of connected Julia sets while in [14] disconnected Julia sets are also
considered.

To conclude the paper we want to specify K-equivalence a little more. Namely,
in the next theorem we obtain additional information about the way impres-
sions of angles from finite K-classes can intersect. The theorem holds regardless
of whether a polynomial has CS-points or not. However in the case when P
has no CS-points it applies to all K-classes.

Theorem 46. Suppose that A = {α1, . . . , αn} is a finite K-class. Then im-
pressions of adjacent on the circle angles in A meet. Moreover, any subset of
A in which only adjacent angles have meeting impressions consists of no more
than 3 elements.
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Proof. In the case when A is a (pre)periodic K-class (equivalently, ∼P -class) it
follows from Lemma 37 that Imp(A) is a point which implies the conclusions
of the lemma. Also, if A consists of two angles the conclusions of the lemma
are obvious. Hence the remaining case is when n ≥ 3 and A forms a so-called
wandering polygon. Consider this case by way of contradiction. Assume that
α1, . . . , αn circularly ordered and Imp(α1)∩ Imp(α2) = ∅. Denote the open arc
between α1, α2 which is complementary to A by I.

Let us show that there exists a Fatou domain U and a point of x ∈ [Imp(A) \
(Imp(α1) ∪ Imp(αn))] ∩ Bd(U). Draw a curve L which starts at a point of a
ray of an angle from I and ends at a point of a ray of an angle from S1 \ I.
Clearly, L separates Imp(α1) from Imp(α2). Since Imp(A) is a continuum, L
will have to intersect Imp(A). Denote by x the first on L point of intersection
between L and Imp(A). Let us show that a sufficiently small open subarc T
of L with one endpoint x and disjoint from Imp(A) is in fact disjoint from
JP . Indeed, since α1 and αn are adjacent elements of A, the set ∪γ∈IImp(γ)
is disjoint from Imp(A), and hence does not contain x. On the other hand,
x 6∈ Imp(α1) ∪ Imp(α2) by the choice of L. Hence x 6∈ ∪γ∈IImp(γ) = Q, and
since Q is compact, we can find the desired arc T . On the other hand, the
intersection Imp(A) ∩ Q = Imp(α1) ∪ Imp(αn) is disconnected which implies
that Q separates the plane. By the construction T must be contained in a
bounded component U of C \ Q. Since Q ⊂ JP , it follows that U is a Fatou
domain, and hence x ∈ Bd(U).

Take a small ball B centered at x. By [23] there exists a (pre)periodic point
y ∈ B ∩Bd(U). Also, choose a (pre)periodic point y′ ∈ Bd(U) so that a ray of
an angle belonging to I lands at Y ′. Since Imp(A) is wandering, y, y′ 6∈ Imp(A).
As in the proof of Lemma 43, connect a point z ∈ U with infinity by a curve E
which intersects JP only at y and y′. Then L′ separates Imp(α1) from Imp(α2)
on the plane and is disjoint from the continuum Imp(A) which contains both
Imp(α1) and Imp(αn), a contradiction. Thus, adjacent angles in A must have
non-disjoint impressions.

To prove the rest, assume that there exist angles β1, . . . , βr ∈ A, r ≥ 4 which
are circularly ordered and such that all adjacent angles have non-disjoint im-
pressions while otherwise the impressions of angles are disjoint. Consider two
continua, Y = Imp(β1) ∪ Imp(β2) and Z = ∪r

i=3Imp(βi). Then it follows that

Y ∩ Z = [Imp(β1) ∩ Imp(βr)] ∪ [Imp(β2) ∩ Imp(β3)]

which is disconnected because Imp(β1)∩Imp(β3) = ∅ (recall that r > 3). Hence
Imp(A) separates the plane which is impossible. Indeed, if Imp(A) separates
the plane then its topological hull contains a Fatou domain and Imp(A) is
(pre)periodic. Assume that Imp(A) (and A) are periodic of period 1. If Imp(A)
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contains the boundary of an parattracting Fatou domain then by [23] Imp(A)
will have to intersect infinitely many impressions, a contradiction. If Imp(A)
contains the boundary of a Siegel domain then by Lemma 36 it contains a
critical point c ∈ JP and A contains at least two angles with the same σ-
image. However, as A is a finite invariant K-class, the map σ maps A onto
itself in a one-to-one fashion, a contradiction.
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