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ABSTRACT. The combinatorial Mandelbrot set is a continuum in the
plane, whose boundary is defined as the quotient space of the unit circle
by an explicit equivalence relation. This equivalence relation was de-
scribed by Douady and, separately, by Thurston who used quadratic in-
variant geolaminations as a major tool. We showed earlier that the com-
binatorial Mandelbrot set can be interpreted as a quotient of the space
of all limit quadratic invariant geolaminations with the Hausdorff dis-
tance topology. In this paper, we describe two similar quotients. In
the first case, the identifications are the same but the space is smaller
than that used for the Mandelbrot set. The resulting quotient space is
obtained from the Mandelbrot set by “unpinching” the transitions be-
tween adjacent hyperbolic components. In the second case we identify
renormalizable geolaminations that can be “unrenormalized” to the same
hyperbolic geolamination while no two non-renormalizable geolamina-
tions are identified.

INTRODUCTION

To study families of complex polynomials one may construct models for
them. A famous case here is the quadratic family of polynomials Pc(z) =
z2 + c where c belongs to the complex plane C. The setM2 of all param-
eters c such that Pc has a connected Julia set is called the filled Mandelbrot
set; we call its boundary the Mandelbrot set (notice that our terminology is
not entirely standard). In his seminal preprint [Thu85], William Thurston
constructed a combinatorial geometric model Mc

2 of M2. There exists a
monotone map from M2 onto Mc

2. The MLC conjecture states that this
map is a homeomorphism.

The set Mc
2 contains a countable and dense family of homeomorphic

copies of itself. Thus,Mc
2 is an example of a so-called fractal set. Accord-

ing to Adrien Douady, the process of constructing Mc
2 can be described
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as “pinching the closed unit disk D” which is whyMc
2 is often called the

“pinched disk model” of M2. “Pinching” refers to collapsing a chord of
D (or a polygon with vertices in S); each additional act of pinching creates
an increasingly complicated new quotient space of D. One can understand
the “pinched disk model” by doing only some of the pinchings and ignor-
ing other ones. The resulting partial quotient spaces of D are steps towards
understandingMc

2. This motivates our work. Also, producing similar mod-
els in the higher degree cases is a difficult problem that has not yet been
solved. Partial quotients of D constructed in this paper admit cubic analogs
that may be viewed as simplified models of the cubic connectedness locus.
This serves as our second motivation.

FIGURE 1. The geolamination QML

The main results of the paper use concepts related to laminational equiv-
alence relations, geolaminations (geodesic laminations), etc. They require
intimate knowledge of the structure of the combinatorial Mandelbrot set
Mc

2. All these notions and precise statement of our main results can be
found in Section 1. Here we only describe our main results assuming the
knowledge of the above mentioned concepts. Notice that when talking
about σ2-invariant objects (e.g. geolaminations) we often call them qua-
dratic.

The combinatorial Mandelbrot set Mc
2 is defined by Thurston [Thu85]

as the quotient space of the unit circle S under the laminational equivalence
relation ∼QML generated by the quadratic minor geolamination QML. In
[BOPT16a] we interpret this as follows. First we define the space Lq

2 of
all quadratic laminational equivalence relations ∼ on the unit circle S by
defining, for each such equivalence relation ∼, the geodesic lamination L∼
generated by ∼ which is the union of S and all the edges of convex hulls of
all classes of∼ (in what follows we often call geodesic laminations geolam-
inations); then we identify ∼ with L∼. We define a metric on Lq

2 by using
the Hausdorff distance function on the set of geolaminations L∼. Since the
space in question in non-compact, we take its closure Lq

2. The space Lq
2
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consists of Hausdorff limits of geolaminations L∼ where ∼ belongs to Lq
2.

The main result of [BOPT16a] is that Mc
2 is a quotient of the space Lq

2.
More precisely, two geolaminations from Lq

2 are identified if their minors
(see [Thu85]) are non-disjoint (we call it minor equivalence). We prove
in [BOPT16a] that each class of equivalence in Lq

2 contains a unique geo-
lamination L∼. Hence the corresponding quotient of Lq

2 can be identified
with Lq

2 set-theoretically. Each laminational equivalence relation in Lq
2 is

identified with a point ofMc
2, and we show in [BOPT16a] that the resulting

one-to-one identification between classes of minor equivalence in Lq
2 and

points ofMc
2 is a homeomorphism.

In this paper we describe a similar quotient Ml
2 of the space Ll

2 ⊂ Lq
2

consisting of all geolaminations which are non-isolated in Lq
2; the space

Ml
2 is obtained fromMc

2 by “unpinching” all points ofMc
2 at which two

hyperbolic components ofMc
2 meet. It is generated by the parametric ge-

olamination QMLl obtained from QML by replacing all isolated leaves of
QML by their endpoints. We also consider another modification Mnr

2 of
Mc

2 obtained by replacing all maximal “baby-Mandelbrot” sets by the cor-
responding gaps of D and thus defining yet another parametric geolamina-
tion QMLnr.

FIGURE 2. The geo-
lamination QMLl

FIGURE 3. A zoom-
in of QMLl

1. PRELIMINARIES

We write D for the open unit disk, and S = Bd(D) for its boundary, the
unit circle. Let a, b ∈ S. By [a, b], (a, b), etc., we mean the closed, open,
etc., positively oriented circle arcs from a to b, and by |I| the normalized
length of an arc I in S (a normalization is made so that the length of S is 1).

1.1. Laminational equivalence relations. Denote by Ĉ the Riemann sphere.
For a compactumX ⊂ C, let U∞(X) be the component of Ĉ\X containing
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FIGURE 4. Another zoom-in of QMLl

infinity. If X is connected, there exists a Riemann mapping ΨX : Ĉ \ D→
U∞(X); we always normalize it so that ΨX(∞) =∞, and Ψ′X(z) tends to
a positive real limit as z →∞.

Consider a monic polynomial P of degree d ≥ 2, i.e., a polynomial of
the form P (z) = zd+ lower order terms. Consider the Julia set JP of P
and the filled-in Julia set KP of P . Extend the map z 7→ zd to a map θd
on Ĉ. If JP is connected, then ΨJP = Ψ : Ĉ \ D → U∞(KP ) is such that
Ψ ◦ θd = P ◦Ψ on the complement of the closed unit disk [DH85, Mil00].

If JP is locally connected, then Ψ extends to a continuous function

Ψ : Ĉ \ D→ Ĉ \KP ,

and Ψ ◦ θd = P ◦ Ψ on the complement of the open unit disk. Thus, we
obtain a continuous surjection Ψ: Bd(D) → JP (the Carathéodory loop).
Identify S = Bd(D) with R/Z. Set ψ = Ψ|S. We will write σd for the
restriction of θd to S.

Define an equivalence relation ∼P on S by x ∼P y if and only if ψ(x) =
ψ(y), and call it the (σd-invariant) laminational equivalence relation of P ;
since Ψ defined above semiconjugates θd and P , the map ψ semiconjugates
σd and P |J(P ), which implies that ∼P is invariant. Equivalence classes of
∼P have pairwise disjoint convex hulls. The topological Julia set S/ ∼P=
J∼P

is homeomorphic to JP , and the topological polynomial f∼P
: J∼P

→
J∼P

, induced by σd, is topologically conjugate to P |JP .
An equivalence relation ∼ on the unit circle, with similar properties to

those of ∼P above, can be introduced with no references to polynomials.

Definition 1.1 (Laminational equivalence relations). An equivalence rela-
tion ∼ on the unit circle S is said to be laminational if:
(E1) the graph of ∼ is a closed subset in S× S;
(E2) convex hulls of distinct equivalence classes are disjoint;
(E3) each equivalence class of ∼ is finite.



PERFECT SUBSPACES OF QUADRATIC LAMINATIONS 5

For a closed set A ⊂ S, let CH(A) be its convex hull. An edge of CH(A)
is a closed straight segment I connecting two points of S such that I ⊂
Bd(CH(A)). By an edge of a ∼-class we mean an edge of its convex hull.

Definition 1.2 (Laminational equivalences and dynamics). A laminational
equivalence relation ∼ is (σd-)invariant if:
(D1) ∼ is forward invariant: for a class g, the set σd(g) is a class too;
(D2) for any ∼-class g, the map τ = σd|g extends to S as an orientation
preserving covering map τ̂ such that g is the full preimage of τ(g) under
the covering map τ̂ .

Definition 1.2 (D2) has an equivalent version. Given a closed set Q ⊂ S,
a (positively oriented) hole (a, b) of Q (or of CH(Q)) is a component of
S\Q. Then (D2) is equivalent to the fact that for a∼-class g either σd(g) is
a point or for each positively oriented hole (a, b) of g the positively oriented
arc (σd(a), σd(b)) is a hole of σd(g). From now on, we assume that, unless
stated otherwise, ∼ is a σd-invariant laminational equivalence relation.

FIGURE 5. The Julia
set of f(z) = z2 − 1
(so-called “basilica”)

FIGURE 6. The geo-
lamination for the Ju-
lia set of z2 − 1

Given ∼, consider the topological Julia set S/ ∼= J∼ and the topolog-
ical polynomial f∼ : J∼ → J∼ induced by σd. Since S ⊂ C, we can use
Moore’s Theorem to embed J∼ into C and then to extend the quotient map
ψ∼ : S → J∼ to a map ψ∼ : C → C with the only non-singleton fibers
being the convex hulls of non-degenerate ∼-classes. A Fatou domain of
J∼ (or of f∼) is a bounded component of C \ J∼. If U is a periodic Fatou
domain of f∼ of period n, then fn

∼|Bd(U) is either conjugate to an irrational
rotation of S or to σk for some 1 < k, cf. [BL02]. In the case of irrational
rotation, U is called a Siegel domain. The complement of the unbounded
component of C \ J∼ is called the filled-in topological Julia set and is de-
noted by K∼. Equivalently, K∼ is the union of J∼ and its bounded Fatou
domains. If the laminational equivalence relation ∼ is fixed, we may omit
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∼ from the notation. By default, we consider f∼ as a self-mapping of J∼.
For a collectionR of sets, denote the union of all sets fromR byR+.

Definition 1.3 (Leaves). If A is a ∼-class, call an edge ab of CH(A) a leaf
of ∼. All points of S are also called (degenerate) leaves of ∼.

The family of all leaves of∼ is closed (the limit of a converging sequence
of leaves of ∼ is a leaf of ∼); the union of all leaves of ∼ is a continuum.
For any subset X ⊂ D with the property X = CH(X ∩S), we set σd(X) =
CH(σd(X∩S)). In particular, for any leaf ` of∼, the set σd(`) is a (possibly
degenerate) leaf.

1.2. Geolaminations. Assume that∼ is a σd-invariant laminational equiv-
alence relation.

Definition 1.4. The set L∼ of all leaves of ∼ is called the geolamination
generated by ∼.

Geolaminations “visualize” laminational equivalence relations.

Definition 1.5 (Geolaminations, cf. [Thu85]). Distinct chords in D are un-
linked if they meet at most in a common endpoint; otherwise they are linked,
or cross each other. A geodesic pre-laminationL is a set of (possibly degen-
erate) chords in D such that any two distinct chords from L are unlinked. A
geodesic pre-lamination L is a geolamination if all points of S are elements
of L, and L+ is closed. Elements of L are leaves of L. A degenerate leaf
(chord) is a singleton in S. The continuum L+ ⊂ D is the solid of L. Let L
be a geolamination. The closure in C of a non-empty component of D \ L+

is a gap of L. If a leaf (a gap) satisfies all the properties of leaves (gaps) of
geolaminations but are not a part of any geolamination, we will call them
stand alone leaves/gaps. If G is a gap or a leaf, call the set G′ = S ∩ G
the basis of G. A gap is finite (infinite, countable, uncountable) if its ba-
sis is finite (infinite, countable, uncountable). Uncountable gaps are also
called Fatou gaps. Points of G′ are called vertices of G. Geolaminations
of the form L∼, where ∼ is a laminational equivalence relation, are called
q-laminations (“q” from “equivalence”). A chord is (σd-)critical if its end-
points have the same image under σd (we often omit σd from notation).

The notion of sibling invariant geolaminations introduced below is slightly
different from the original notion of invariant geolaminations in the sense
of Thurston. However, sibling invariant geolaminations form a closed set
and include all q-laminations. Thus, for all our purposes, it will suffice to
consider sibling invariant geolaminations only. Some advantage of working
with sibling σd-invariant geolaminations is that they are defined through
properties of their leaves; gaps are not involved in the definition. It was



PERFECT SUBSPACES OF QUADRATIC LAMINATIONS 7

0
1

2

1

8

1

16

5

8

9

16

G

H

1

4

3

4

FIGURE 7. An example of a geolamination which is not a q-lamination

shown in [BMOV13] that all sibling invariant geolaminations are also in-
variant in the sense of Thurston [Thu85]. In particular for any gap G of a
sibling invariant L the set σd(G) is a point, or a leaf of L, or a gap of L.
Moreover, if σd(G) = H is a gap then σd|Bd(G) : Bd(G) → Bd(H) is a
composition of a monotone map and a positively oriented covering map. In
that case we call the degree of σd|Bd(G) the degree of σd|G.

Definition 1.6. A geolamination L is sibling σd-invariant provided that:

(1) for each ` ∈ L, we have σd(`) ∈ L,
(2) for each ` ∈ L there exists `1 ∈ L so that σd(`1) = `.
(3) for each ` ∈ L so that σd(`) is a non-degenerate leaf, there exist d

disjoint leaves `1, . . . , `d in L so that ` = `1 and σd(`i) = σd(`) for
all i = 1, . . . , d.

Let us list a few properties of sibling σd-invariant geolaminations.

Theorem 1.7 ([BMOV13]). The space of all sibling σd-invariant geolami-
nations is compact. All geolaminations generated by σd-invariant lamina-
tional equivalence relations are sibling σd-invariant.

In what follows instead of “sibling σd-invariant geolaminations” we say
“σd-invariant geolaminations”. Also, we talk interchangeably about leaves
(gaps) of∼ or of L∼. Let us now discuss gaps in the context of σd-invariant
laminational equivalence relations and geolaminations.
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Definition 1.8 (Critical gaps). A gap G of a geolamination is called
(σd-)critical if for each y ∈ σd(G′) the set σ−1d (y)∩G′ consists of at least 2
points. If it does not cause ambiguity, we talk about critical gaps.

Definition 1.9 (Periodic and (pre)periodic gaps). Let G be a gap of an in-
variant geolamination L. A gap/leaf U of L∼ is said to be (pre)periodic if
σm+k
d (U ′) = σm

d (U ′) for some m ≥ 0, k > 0; if m, k are chosen to be
minimal, then U is said to be preperiodic if m > 0 or periodic (of period k)
if m = 0. If the period of G is 1, then G is said to be invariant. Define pre-
critical and (pre)critical objects similarly to (pre)periodic and preperiodic
objects defined above.

Consider infinite periodic gaps of σd-invariant geolaminations. Observe
that, by [Kiw02], infinite gaps are eventually mapped onto periodic infinite
gaps. First we state (without a proof) a well-known folklore lemma about
the edges of preperiodic (in particular, infinite) gaps (see, e.g., Lemma 2.28
[BOPT17]).

Lemma 1.10. Any edge of a (pre)periodic gap is either (pre)periodic or
(pre)critical.

Let us now classify infinite gaps. It is known that there are three types of
such gaps: caterpillar gaps, Siegel gaps, and Fatou gaps of degree greater
than one.

Definition 1.11. An infinite gap G is said to be a caterpillar gap if its basis
G′ is countable.

An example of a caterpillar gap is shown in Fig. 7. A general description
of σ3-invariant caterpillar gaps is given in [BOPT16b]. The fact that the
basis G′ of a caterpillar gap G is countable implies that there are lots of
concatenated edges of G. Other properties of caterpillar gaps can be found
in Lemma 1.12.

Lemma 1.12 (Lemma 1.15 [BOPT16a]). Let G be a caterpillar gap of pe-
riod k. Then the degree of σk

d |Bd(G) is one, and G′ contains some periodic
points of period k.

Definition 1.13. A periodic Fatou gap G of period n is said to be a periodic
Siegel gap if the degree of σn

d |G is 1, and the basis G′ of G is uncountable.

The next lemma is well known (see, e.g., [BOPT16a, Lemma 1.12]).

Lemma 1.14. LetG be a Siegel gap of period n. Then σn
d |Bd(G) is monoton-

ically semiconjugate to an irrational circle rotation, contains no periodic
points, and one of its iterated images has a critical edge.
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A period n Fatou gap is said to have degree k > 1 if the degree of
σn
d |Bd(G) is k > 1; if k = 2, then G is said to be quadratic. The next

lemma is well known.

Lemma 1.15. Let G be a Fatou gap of period n and of degree k > 1. Then
the map σn

d |Bd(G) is monotonically semiconjugate to σk.

2. LIMIT GEOLAMINATIONS AND THEIR PROPERTIES

Take the space E of all chords (including degenerate ones) in the unit
disk with Hausdorff distance. Every geolamination L can be viewed as a
closed subset of E (each leaf of L is a point of E). Define the Hausdorff
distance between two geolaminations L1, L2 using the Hausdorff distance
between the two closed subsets L1 and L2 of E. This defines a metric on
the set of geolaminations. We speak of limits of geolaminations only in this
sense.

Fix a degree d and consider limits of σd-invariant q-laminations. In lem-
mas below, we assume that a sequence of σd-invariant q-laminationsLi con-
verges to a σd-invariant geolaminationL∞. By a strip we mean a (open) part
of the unit disk contained between two disjoint chords. By a strip around a
chord ` we mean a strip containing `. In what follows, when talking about
convergence of leaves/gaps, closeness of leaves/gaps, and closures of fami-
lies of geolaminations, we always use the Hausdorff metric on E.

Definition 2.1. Let Lq
d be the family of all σd-invariant geodesic q-laminations.

We will write Lq
d for the closure of Lq

d.

Even though we state below a few general results, we mostly concentrate
on periodic objects of limit geolaminations.

Lemma 2.2 (Lemma 2.2 [BOPT16a]). Let ` be a periodic leaf of L ∈ Lq
d.

If L̂ ∈ Lq
d is sufficiently close to L, then any leaf of L̂ sufficiently close to `

is either equal to ` or disjoint from `.

Definition 2.3 introduces the concept of rigidity.

Definition 2.3. A leaf/gap G of L is rigid if any q-lamination close to L
has G as its leaf/gap.

Some lemmas proved in [BOPT16a] study rigidity of periodic leaves/gaps
of geolaminations from Lq

d. These are combinatorial counterparts of the fact
that repelling periodic points survive under small deformations of complex
polynomials. By a (σd-)collapsing polygon we mean a polygon Q, whose
edges map under σd to the same non-degenerate chord `; if a point moves
around Q, its σd-image moves back and forth along `. If it does not cause
ambiguity, we omit σd from notation. We say thatQ is a collapsing polygon
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of a geolamination L if all edges of Q are leaves of L; we also say that L
contains a collapsing polygon Q. However, this does not imply that Q is a
gap of L as Q might be further subdivided by leaves of L inside Q.

Lemma 2.4 (Lemma 2.5 - 2.10 [BOPT16a]). Let L ∈ Lq
d. If ˆ̀∈ L is a non-

degenerate rigid leaf, a leaf ` ∈ L is such that σk
d(`) = ˆ̀ for some k ≥ 0,

and no leaf `, σd(`), . . . , σk−1(`) is contained in a collapsing polygon of L,
then ` is rigid. Also, the following objects are rigid:

(1) periodic leaves that are not edges of collapsing polygons;
(2) finite periodic gaps;
(3) (pre)periodic leaves of a gap eventually mapped to a periodic gap;
(4) finite gaps that eventually map onto periodic gaps;
(5) periodic Fatou gaps whose images have no critical edges.

Using these results and other tools, we characterize all σ2-invariant limit
geolaminations. Each such geolamination L can be described as a specific
modification of an appropriate geolamination Lq from Lq

2.

Definition 2.5. Geolaminations coexist if their union is a geolamination.

This notion was used in [BOPT16b]. If two geolaminations coexist, then
a leaf of one geolamination is either also a leaf of the other geolamination
or is located in a gap of the other geolamination.

For a σ2-invariant geolamination L, Thurston [Thu85] defines its major
M(L) as a longest leaf of L; either L has a unique major (a diameter of
D), or L has two distinct majors with equal σ2-images. Thurston defines
the minor of L as m(L) = σ2(M(L)) and shows that the family of the mi-
nors of all σ2-invariant geolaminations is a geolamination itself, called the
quadratic minor lamination QML and generated by an equivalence relation
∼QML. Each class of ∼QML is associated with a unique σ2-invariant lami-
national equivalence relation and its topological polynomial. The quotient
S/ ∼QML=Mc

2 is called the combinatorial Mandelbrot set.

Definition 2.6. A σ2-invariant geolamination is called hyperbolic if it has a
periodic Fatou gap of degree two.

Clearly, if a σ2-invariant geolamination L has a periodic Fatou gap U of
period n and of degree greater than one, then the degree of σn

2 |Bd(U) is two.
By [Thu85], there is a unique edge M(L) of U with σn

2 (M(L)) = M(L).
Either all leaves M(L), . . . , σn−1

2 (M(L)) are pairwise disjoint, or their
union can be broken down into several gaps permuted by σ2, in each of
which edges are “rotated” by the appropriate power of σ2, or n = 2k and
σk
2 flips M(L) on top of itself while all leaves M(L), . . . , σk−1

2 (M(L))
are pairwise disjoint. In fact, M(L) and its sibling M∗(L) are the two
majors of L while σ2(M(L)) = σ2(M

∗(L)) = m(L) is the minor of L
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[Thu85]. Any σ2-invariant hyperbolic geolamination L is actually a geo-
lamination L∼ generated by the appropriate hyperbolic σ2-invariant lami-
national equivalence relation ∼.

Definition 2.7. A critical set Cr(L) of a σ2-invariant geolamination L is
either a critical leaf, or a collapsing quadrilateral which is a gap of L, or a
gap G with σ2|G of degree two. A gap is said to be critical if it is a critical
set.

A σ2-invariant q-lamination has a finite critical set (a critical leaf, or a
finite critical gap) or is hyperbolic. In both cases, the critical set is unique.

Definition 2.8. A generalized critical quadrilateral Q is either a collapsing
quadrilateral or a critical leaf.

If Cr(L) is a generalized critical quadrilateral of a geolamination L, then
σ2(Cr(L)) = m(L). Theorem 2.9 describes geolaminations from Lq

2. A pe-
riodic leaf z is called a fixed return periodic leaf if the period of its endpoints
is k and all leaves z, σ2(z), . . . , σk−1

2 (z) are pairwise disjoint.

Theorem 2.9 (Theorem 3.8 [BOPT16a]). A geolamination L belongs to Lq
2

if and only if there exists a unique maximal q-lamination Lq coexisting with
L and such that either L = Lq or Cr(L) ⊂ Cr(Lq) is a generalized critical
quadrilateral, and exactly one of the following holds.

(1) The critical set Cr(Lq) is finite, and Cr(L) is the convex hull of two
edges or vertices of Cr(Lq) with the same σ2-image;

(2) the geolamination Lq is hyperbolic with a critical Fatou gap Cr(L)
of period n, and exactly one of the following holds:
(a) the set Cr(L) = ab is a critical leaf with a periodic endpoint

of period n, and L contains exactly two σn
2 -pullbacks of ab that

touch ab at the endpoints (one at a and one at b).
(b) the critical set Cr(L) is a collapsing quadrilateral, and m(L)

is a fixed return periodic leaf.

Thus, any σ2-invariant q-lamination corresponds to finitely many geolami-
nations from Lq

2, and the union of all of their minors is connected.

Given a geolamination L ∈ Lq
2, let Lq be the σ2-invariant q-lamination

associated with L as in Theorem 2.9.

Definition 2.10 ([BOPT16a]). Geolaminations L0, Lk ∈ Lq
2 are said to be

minor equivalent if there exists a finite collection of geolaminations L1, L2,
. . . , Lk−1 from Lq

2 such that for each i with 0 6 i 6 k − 1, the minors
m(Li) and m(Li+1) of the geolaminations Li and Li+1 are non-disjoint.
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Theorem 2.11 interprets the Mandelbrot set as a quotient of Lq
2. Let ψ :

Lq
2 → S/ ∼QML be the map which associates to each geolamination L ∈ Lq

2

the ∼QML-class of the endpoints of the minor m(L) of L.

Theorem 2.11 (Theorem 3.10 [BOPT16a]). The map ψ : Lq
2 → S/ ∼QML

induces a homeomorphism between the quotient space of Lq
2 with respect to

the minor equivalence and S/ ∼QML.

For every geolamination L let its minor set be the image of its critical set
unless L is hyperbolic in which case we call m(L) the minor set of L. Then
ψ associates to each class A of minor equivalence in Lq

2 the minor set of the
geolamination Lq, the only q-lamination in A. The minor set of Lq is the
convex hull of the union of minors of all geolaminations in A.

We modify this by considering the subset of Lq
2 consisting of all non-

isolated geolaminations. In other words, we consider geolaminations which
are limits of sequences of pairwise distinct σ2-invariant q-laminations.

Corollary 2.12. A geolamination L ∈ Lq
2 is non-isolated in Lq

2 if and only
if case (1) or (2) of Theorem 2.9 holds.

In order to prove Corollary 2.12, we need the following lemma.

Lemma 2.13. Suppose that L is a σ2-invariant q-lamination whose critical
set is a generalized critical quadrilateral. Then L is the only σ2-invariant
geolamination with critical set Cr(L).

Proof of Lemma 2.13. Indeed, properties of σ2-invariant geolaminations im-
ply that pullbacks of Cr(L) are well defined on each finite step; moreover,
these pullbacks are all sets from L. Furthermore, the closure L̂ of their
entire family is a σ2-invariant geolamination itself, and since L is closed it
follows that L̂ ⊂ L. We claim that L̂ = L. Indeed, suppose otherwise.
Then L̂ must contain a gap, say, U that itself is the union of s > 1 gaps of
L and, therefore, U contains leaves of L inside. If U is finite, it follows that
there are non-disjoint finite gaps of L. The latter is impossible as L is a q-
lamination. Thus, U is infinite. Mapping U forward several times, we may
assume without loss of generality that U is periodic of period k (indeed, by
[Kiw02], all infinite gaps of geolaminations are (pre)periodic).

Consider several cases. First suppose that U is a caterpillar gap. Then
the critical leaf of U (or of a gap in the forward orbit of U ) must coincide
with the critical set of L. Therefore, L has a critical leaf with a periodic
endpoint, which is impossible for a q-lamination.

Now, suppose that U is a Siegel gap. It is well-known (e.g., it follows
from Lemma 1.10) that all edges of U are (pre)critical and that, therefore,
some image σt

2(U) of U has a critical edge `; it then follows that Cr(L) = `,
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that all edges of U are pullbacks of `, and that under the map ψ collapsing
edges of U to points any chord ˆ̀connecting vertices of U projects to a non-
trivial chord ψ(ˆ̀) of the unit circle. Since ψ semiconjugates σk

2 |Bd(U) to an
irrational rotation ρ : S → S, the chord ψ(ˆ̀) in the unit disk will intersect
its eventual image under ρ, which implies a similar statement for the chord
ˆ̀⊂ U . We see that ˆ̀cannot be a leaf of any geolamination, a contradiction
with the above.

Finally, suppose that σk
2 |Bd(U) is of degree 2. Then some iterated image of

U is an infinite gap V such that σ2|Bd(V ) has degree two. On the other hand,
Cr(L̂) = Cr(L) is a generalized critical quadrilateral, a contradiction with
the existence of V . Hence this case is impossible either, and soL = L̂ = Lq

is the unique geolamination with critical set Cr(L). �

Proof of Corollary 2.12. By Theorem 2.9, if L satisfies the conditions of
the corollary, then L ∈ Lq

2. Since geolaminations in case (2) do not belong
to Lq

2, they must be limits of sequences of pairwise distinct σ2-invariant
q-laminations.

Consider case (1). Then Cr(Lq) is finite, and Cr(L) is the convex hull
of two edges or vertices of Cr(Lq) with the same σ2-image. Suppose that
Cr(Lq) is a polygon with more than four vertices. Then L 6= Lq (in fact,
L % Lq). Hence L /∈ Lq

2, and, as above, L is a limit point of Lq
2.

Consider now the case when Lq has a generalized quadrilateral as its
critical set Cr(Lq). It may happen that L has a critical leaf that is a diagonal
of a quadrilateral Cr(Lq) so that L 6= Lq; as before, then L is the limit of a
sequence of pairwise distinct σ2-invariant geolaminations.

It remains to consider the case when L = Lq is generated by an equiva-
lence relation∼ and has a critical set Cr(L) that is either a critical quadrilat-
eral or a critical leaf. Let us show that then L is the limit of a non-constant
sequence of q-laminations. By Lemma 2.13, the geolamination L is the
unique σ2-invariant geolamination with critical set Cr(L). Now, the fact
that L is the limit of a sequence of pairwise distinct q-laminations follows
from the uniqueness of L and the fact that, due to well-known properties of
the combinatorial Mandelbrot set, there is a sequence of q-laminations Li

with critical sets Cr(Li) → Cr(L) (recall that we are considering the case
when Cr(L) is a generalized quadrilateral). This completes the proof. �

Thus, isolated geolaminations in Lq
2 are (a) dendritic geolaminations with

critical sets that have more than four vertices, and (b) hyperbolic geolamina-
tions. Removing them from Lq

2, we obtain the closed space Ll
2 ⊂ Lq

2 of all
σ2-invariant geolaminations that are non-isolated in Lq

2. The minor equiva-
lence on Ll

2 is defined as before: two geolaminations are minor equivalent
if their minors can be connected by a chain of non-disjoint minors. Since
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we only consider minors of geolaminations from Ll
2, the minor equivalence

on Ll
2 is not a restriction of the minor equivalence on Lq

2, and some classes
of minor equivalence on Ll

2 are slightly different from the restrictions of the
corresponding classes of minor equivalence on Lq

2. Let us list all the cases.
(1) Take a dendritic geolamination L generated by a laminational equiv-

alence relation ∼ such that Cr(L) has more than four vertices. Several
geolaminations in Ll

2 with critical sets being generalized critical quadrilat-
erals in Cr(L) form one class A of the minor equivalence in Ll

2. Unlike for
Lq

2, the geolamination L does not belong to Ll
2 and is not included into A.

Still, the convex hull of the union of all minors of geolaminations in A is
the same for Ll

2 and for Lq
2.

(2) Let L be a dendritic geolamination such that Cr(L) is either a quadri-
lateral or a critical leaf. By Corollary 2.12, we have L ∈ Ll

2. The corre-
sponding class of minor equivalence in Ll

2 consists of L itself and two geo-
laminations obtained by inserting a critical diagonal in Cr(L) and pulling it
back. This class coincides with the corresponding class in Lq

2. The convex
hull of the union of minors remains the same as for Lq

2.
(3) A Siegel geolamination L belongs to both Ll

2 and Lq
2. The corre-

sponding class of the minor equivalence consists of L only.
(4) Let L be a hyperbolic geolamination with a critical gap U of period

n whose unique edge M of period n is a fixed return leaf. Then L does not
belong to Ll

2, but three closely related geolaminations form a class of minor
equivalence. Two of them have critical leaves with endpoints at endpoints
of M . The third one has a collapsing quadrilateral based on M . This yields
the same convex hull of the union of minors as before in case of Lq

2.
(5) Finally, let L be a hyperbolic geolamination with a critical gap U of

period n whose unique edge M = ab of U of period n is not a fixed return
leaf. Then neither L nor the geolamination with a collapsing quadrilateral
based on M belong to Ll

2. Thus, there are two non-equivalent geolamina-
tions with critical leaves `a and `b with endpoints a and b, respectively that
can be associated withL, and so there are two classes of minor equivalence,
generated by `a and `b, respectively, that can be associated with L.

Let A be a class of minor equivalence in Ll
2. Define m(A) as the convex

hull of the union of the corresponding minors. The association A 7→ m(A)

is similar to that made in [BOPT16a] for Lq
2. Let A′ be the minor equiv-

alence class in Lq
2 containing A. The above analysis implies that, in cases

(1) – (4), we have m(A) = m(A′). In cases (2) and (3), we have A = A′.
In cases (1) and (4), the class A′ consists of A and the geolamination Lq

generated by the corresponding laminational equivalence.
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In case (5) the situation is different. The two distinct classes of minor
equivalence in Ll

2 correspond to critical leaves `a and `b and give rise to
singletons {σ2(a)} and {σ2(b)} replacing the minor m(L) = σ2(a)σ2(b)
that corresponds to L in QML. Thus, the leaf m(L) is erased from QML
and replaced by its two endpoints. This “unpinching” of the circle yields a
new parametric geolamination QMLl, the laminational equivalence ∼QMLl ,
and the quotient spaceMl

2. Let ψl : Ll
2 → S/ ∼QMLl be the quotient map.

Then Theorem 2.11 implies Theorem 2.14.

Theorem 2.14. The map ψl induces a homeomorphism between the quo-
tient space of Ll

2 by the minor equivalence and the space S/ ∼QMLl .

To visualize our results we describe the gap CAl ofMl
2 containing the

Main Cardioid CA. First though we need to define the Main Cardioid. We
do so by defining the filled Main Cardioid as the set of all parameters c
such that the polynomial Pc(z) = z2 + c has an attracting fixed point. The
Main Cardioid then is defined as the boundary of the filled Main Cardioid
(equivalently, this is the set of all parameters c such that the polynomial
Pc(z) = z2 +c has a neutral fixed point (i.e., a fixed point with multiplier of
modulus one). Notice that our terminology is a little unusual, but intuitive
and completely consistent with the classic notions of the Julia set and filled
Julia set. It is well known that the Main Cardioid is homeomorphic to its
laminational model, constructed in [Thu85] as a part of the construction of
the combinatorial Mandelbrot set Mc

2. Therefore in what follows we do
not make a distinction between the Main Cardioid and its combinatorial
counterpart, a subset ofMc

2.
Now we define the growing tree of f∼ [Lev98, BL02] (in [BL02] this is

done for topological polynomials of any degree, yet for the sake of simplic-
ity here we consider only the quadratic case). Given θ ∈ S and laminational
equivalence relation ∼, let ψ∼(θ) be the point of J∼ associated with the
∼-class containing θ. In the dendritic topological Julia set J∼, connect the
points ψ∼(0) and ψ∼(1/2) by an arc I∼. Clearly, I∼ consists of ∼-classes
that separate angles 0 and 1/2, and if c∼ is the critical point of f∼ then
c∼ ∈ I∼ because f∼(ψ(0)) = f∼(ψ(1/2)) = ψ(0). Denote the union of
all images of I∼ under f∼ by T∞∼ and call it the growing tree of f∼; clearly,
T∞∼ is an invariant connected set. In what follows we may omit ∼ from the
notation if it does not cause ambiguity. Slightly abusing the language, in
what follows by an interval we will mean any set homeomorphic to [0, 1]. If
all images of a set B are pairwise disjoint, then the set is called wandering.
Some useful for us results of [BL02] are collected in the next lemma.
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Lemma 2.15 ([BL02]). Suppose that f∼ is a topological polynomial of any
degree. Then it has finitely many periodic Fatou domains. All other Fa-
tou domains are their eventual preimages. Any continuum in J∼ is non-
wandering. If J∼ is dendritic, and the images of all critical ∼-classes are
non-degenerate, then there exists a finite invariant tree containing all crit-
ical points of f∼. In particular, if f∼ is quadratic, J∼ is dendritic, and
the critical ∼-class consists of more than two points, then T∞∼ is a finite
invariant tree.

In what follows, for a dendrite D and points x, y ∈ D we denote by
[x, y]D the unique arc in D connecting x and y. If it clear, what D is, we
will omit it from our notation.

Lemma 2.16. If J∼ be a dendrite, the following claims are equivalent.

(1) The minor m(L∼) is vertical.
(2) The growing tree T∞∼ is an interval.
(3) The critical point of f∼|J∼ belongs to an invariant interval.

Moreover, if these claims hold then every branchpoint of J that belongs
to T∞∼ must be (pre)critical.

Proof. To simplify notation, assume that ∼ is given and omit it from our
notation (thus, we set f = f∼,L = L∼, etc). Observe that some of the
notation was introduced above when we discussed growing trees.

To prove (1) =⇒ (2), observe that the majors of L are vertical. Indeed,
only a vertical or a horizonal leaf can map to a vertical leaf. Horizonal
majors are impossible since they would cross their minors. Therefore, there
is a finite critical gapG of L such that the two vertical majors of L are edges
of G. It follows that I contains both the critical point c of f and its image
f(c) (the∼-classes of points from I are exactly the∼-classes whose convex
hulls separate 0 from 1/2). This in turn implies that I is invariant (indeed,
[ψ(0), c]J is mapped to [ψ(0), f(c)]J ⊂ I , and similarly for [c, ψ(1/2)]J ),
and so the growing tree T∞ is an interval.

Clearly, (2) =⇒ (3).
Finally, assume that (3) holds. Let I0 ⊂ J be an invariant interval. First

we will show that then the last claim of the lemma holds, i.e., that any
branchpoint b ∈ I0 of J must be (pre)critical. Indeed, otherwise an even-
tual image b′ of b is a periodic branchpoint of J still belonging to I0. Then
the orbit of b′ cannot contain c, and the power of f that fixes b′, must ro-
tate small one-sided interval neighborhoods of b′ in J (which follows from
[Kiw02]). Since at least one of these neighborhoods is contained in I0 and
I0 is invariant, it follows that all of them are contained in I0, a contradiction
with the fact that I0 is an interval.
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Let us now prove that (3) =⇒ (1). Clearly, c ∈ I0. Observe that
c ∈ I0 ∩ I , and hence I ∩ I0 6= ∅. If I0 ⊂ I , then all points of I0 separate
ψ(0) from ψ(1/2). Thus, all iterated images σn

2 (m∼) of m∼ cross Di. This
property, in turn, implies that m∼ is vertical as desired. Now, suppose that
I0 6⊂ I and set Z = I ∪ I0. It follows that Z is invariant. Indeed, if z ∈ I0
then f(z) ∈ I0 ⊂ Z. Suppose now that z ∈ I . Then f(z) ∈ [ψ(0), f(c)] ⊂
Z. Hence Z is invariant. Denote by C∼ = C the critical ∼-class.

The mutual location of some ∼-classes and the way they separate other
∼-classes is well-known. Indeed, if Q is the invariant ∼-class such that
0 /∈ Q then Q separates 1/2 from C, the class C separates Q from 0, and
Q separates 0 from σ2(C). If we set q = ψ(Q) then we see that ψ(0) <
c < q < ψ(1/2) where “ <′′ is the natural order on I from ψ(0) to ψ(1/2).
Clearly, Z = I0 ∪ X ∪ Y where X is the arc in J connecting ψ(0) with
I0, and Y is the arc in J connecting ψ(1/2) with I0. We may assume that
X = [ψ(0), x] and Y = [ψ(1/2), y]. On the other hand, q ∈ I0 (by the
Brouwer fixed point theorem), c ∈ I0, and hence [q, c] ⊂ I0∩I . The mutual
location of points ψ(0) < c < q < ψ(1/2) now implies that y 6= c.

On the other hand, the fact that I0 6⊂ I implies that Z is not an interval,
by construction Z has one or two branchpoints, and any branchpoint of Z
is either x or y. Let b ∈ Z be a branchpoint of Z. By the above, b is not
periodic (in fact, no branchpoint of J in I0 is periodic). Now, if b is not
critical, then f(b) is also a branchpoint of Z. Repeating it and relying upon
the fact that no branchpoint of Z is periodic, we see that all branchpoints of
Z are (pre)critical, and c is a branchpoint of Z. Since by the above y 6= c,
it follows that x = c. Consider now three pairwise disjoint (except for the
common point c) intervals: K0 = [c, ψ(0)] and K1, K2 ⊂ I0 connecting c
with two endpoints of I0. Since f |I0 is not a homeomorphism, c is a critical
point of f |I0 . Hence f(K1) ∩ f(K2) contains a small interval starting at
f(c) and pointing towards q. On the other hand, the fact that Q separates 0
from σ2(C) implies that f(K0) ⊃ [c, q]. Clearly, this is impossible as f is
two-to-one. �

If L∼ is hyperbolic (equivalently, ifm∼ is periodic) then it is well-known
that m∼ coincides with a ∼QML-class. Otherwise J∼ is a dendrite and the
critical ∼-class is finite. Suppose, in addition, that m∼ is vertical. Let
us show that then m∼ again coincides with a ∼QML-class. For, if this is
not the case, then m∼ is an edge of the convex hull G of a larger ∼QML-
class and, moreover, G is a non-periodic ∼-class. Hence g = ψ∼(G) is a
non-periodic branchpoint of J belonging (by Lemma 2.16) to an invariant
interval I0 ⊂ J∼. By the last claim of Lemma 2.16, the point g must be
(pre)critical which makes g periodic, a contradiction. We conclude that ver-
tical minors are always full ∼QML-classes. If a minor m∼ is vertical, then
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the corresponding∼QML-class is also said to be vertical. The corresponding
topological polynomials and Julia sets will be called real (they correspond
to complex polynomials z2 + c with c ∈ R). For any laminational equiva-
lence relation ∼ denote by x∼ the point ofMc

2 corresponding to ∼ (x∼ is
the image of the minor class of ∼ under the quotient map). The set of all
points x∼ corresponding to the images of vertical ∼QML-classes under the
quotient map is called a real line.

In the next several paragraphs we consider q-laminations of arbitrary de-
gree d and study their infinitely renormalizable sets. This is justified as the
results concerning infinitely renormalizable sets are obtained almost liter-
ally in the same way in the quadratic case and in the general case.

Definition 2.17 (Infinitely-renormalizable laminations). A σd-invariant q-
lamination L∼ is said to be infinitely renormalizable if there is an infinite
sequence of q-laminations L1 ⊂ L2 ⊂ . . . with L∼ =

⋃
i Li and a nested

sequence of critical Fatou gaps Ui of Li of period mi such that m1 < m2 <
. . . . If L∼ is infinitely renormalizable, then the corresponding topological
polynomial f∼ is also said to be infinitely renormalizable. Let ψ∼ be the
projection of S onto J∼ = S/ ∼. Set Zi = ψ∼(Bd(Ui)). The nested
sequence Z1 ⊃ Z2 ⊃ . . . is called a generating sequence of continua.
Moreover, the set Z =

⋂∞
i=1 orbZi is said to be a infinitely renormalizable

set.

The notation introduced in Definition 2.17 will be used in what follows.
The next lemma establishes a useful property of infinitely renormalizable
topological polynomials.

Lemma 2.18. Let f∼ be an infinitely renormalizable topological polyno-
mial, and Z1 ⊃ Z2 ⊃ . . . a generating sequence of continua. Then, for all
sufficiently large i, Zi are dendrites. Moreover, the infinitely renormalizable
set Z contains no periodic points.

Proof. Indeed, otherwise the fact that there are finitely many periodic Fatou
domains, and all Fatou domains eventually map to periodic ones, implies
that there must exist a periodic Fatou domain V of f∼ of period, say, k such
that Bd(V ) ⊂ Zi for any i. Since pairwise intersections of distinct Fatou
domains are finite, this implies that mi 6 k for all i, a contradiction. Now,
suppose that a periodic point y belongs to Z. Denote by Y the convex hull
of the ∼-class associated to y. Consider several cases.

First assume that Y is a singleton (a degenerate ∼-class) of period N .
Then Y is a degenerate ≈i-class in every i (here ≈i is the laminational
equivalence relation associated with q-lamination Li from Definition 2.17).
Hence, if mi > N , then in the σd-orbit of Ui two distinct Fatou gaps have a
common point that is a degenerate class of Li which is clearly impossible.
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Now assume that Y is a periodic leaf of period N . Then, if mi > 2N , then
there will be two distinct Fatou gaps in the σd-orbit of Ui that are located
on the same side of Y , a contradiction. Finally, if Y is a periodic gap and
its edges are of period N , then, if mi > N , then there will be two distinct
Fatou gaps in the σd-orbit of Ui that are “attached” to Y at the same edge of
Y , a contradiction. �

In what follows, by a continuum we mean a connected compact set con-
sisting of more than one point. By an (f -)periodic continuum we mean
a continuum A such that for some m > 0 the pairwise intersections of
A, f(A), . . . , fm−1(A) are at most finite while fm(A) ⊂ A. The inte-
ger m is called the period of A. Since a continuum is infinite, the pe-
riod is well defined. Given a periodic continuum A of period m we set
orbA =

⋃m−1
j=0 f

j(A) and call orbA a cycle of continua. Evidently, continua
Zi from a generating sequence of continua of an infinitely renormalizable
set are periodic (because closures of distinct Fatou domains in a cycle of
Fatou domains intersect over sets that are at most finite and, in fact, consist
of periodic points).

Lemma 2.19. Let f = f∼ be an infinitely renormalizable topological poly-
nomial, and Z1 ⊃ Z2 ⊃ . . . a corresponding generating sequence of con-
tinua. Then Z =

⋂
i orbZi is a Cantor set.

Proof. Obviously, Z is compact. Let Y be a component of Z. We claim
that Y is wandering. Indeed, suppose otherwise. We may assume that
fn(Y ) ∩ Y 6= ∅ for some n. Fix a number i and assume that Y ⊂
fk(Zi). It follows that fk(Zi)∩ fk+n(Zi) is non-empty. On the other hand,
fk(Zi) ∩ fk+n(Zi) is finite and consists of periodic points (see the remark
right before the lemma). Since fn(Y )∩ Y ⊂ fk(Zi)∩ fk+n(Zi), it follows
that Y ⊂ Z contains periodic points, a contradiction with Lemma 2.18.
Thus any component of Z is wandering, and hence, any component of Z
is a point (recall that by Lemma 2.15 there are no wandering continua in
J∼). There are no isolated points in Z since every f j(Zi) contains infinitely
many points of Z. Therefore, Z is a Cantor set. �

It follows that the topological polynomial on an infinitely renormalizable
set is conjugate to a so-called adding machine and is minimal (every point
in it has a dense orbit in the set). In particular two distinct infinitely renor-
malizable sets are either disjoint or coincide, and infinitely renormalizable
sets are Cantor sets that do not contain periodic points.

The next proposition relies on [BL02] (see Lemma 2.15). A gap is said
to be all-critical if all its edges are critical.

Proposition 2.20. Let f = f∼ be an infinitely renormalizable topological
polynomial, and Z1 ⊃ Z2 ⊃ . . . a corresponding generating sequence of
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continua. Suppose that, for any critical point c of f in Z =
⋂

i orbZi, the
point f(c) separates J = J∼. Then there exists a finite periodic tree T ⊂ J
of period m such that Z ⊂ orbT . In particular, one may find a periodic
interval I such that all sets in the cycle of I are intervals, and Z ⊂ orbI .

Proof. Let d be the degree of f . Consider a sequence of q-laminations
L1 ⊂ L2 ⊂ . . . and a nested sequence of critical Fatou gaps Ui of Li with
ψ∼(Bd(Ui)) = Zi. Choose i so large that the critical points of f that belong
to orbZi are exactly the critical points of f that belong to Z. In particular,
by the assumption on critical points of f belonging to Z it follows then that
no Fatou gap σk

d(Ui) intersects an all-critical gap. Let c ∈ Zi be a critical
point while C is the convex hull of the corresponding ∼-class. Then in
general C is either a leaf or a gap, yet in our case C cannot be a leaf since
σd(C) is non-degenerate. Thus, C is a gap.

Let us show that σk
d(C) crosses the interior of σk

d(Ui), for every k. By
the previous paragraph E = σk

d(C) is not an all-critical gap. It follows that
σk
d(C) is always a non-degenerate leaf or gap of L∼. Assume that σk

d(C)
does not cross the interior of σk

d(Ui). Then σk
d(C) is an edge of σk

d(Ui) or
a finite gap “attached” to an edge of σk

d(Ui). The edge σk
d(C) ∩ σk

d(Ui) is
(pre)periodic or (pre)critical. In the latter case, σk

d(C) is eventually mapped
to an all-critical gap, again a contradiction. Since c ∈ Z and by Lemma
2.18, the critical point c cannot be (pre)periodic. Hence no edge of C can be
(pre)periodic. We again arrive at a contradiction, which shows that σk

d(C)
crosses the interior of σk

d(Ui), for every k.
Consider the map φUi

: Bd(Ui) → S collapsing all edges of Ui. The
restriction of ∼ to Ui is mapped under φUi

to some σdi-invariant lamina-
tional equivalence ∼i. We will write gi for the corresponding topological
polynomial, and Ji for the corresponding topological Julia set. Recall that
gi is conjugate to the map induced by σmi

d on S/ ∼i. By the above, for any
critical point c ∈ Ji and the corresponding gap C, the gap σmi

d (C) crosses
the interior of Ui, hence gi(c) separates Ji. If we now apply Lemma 2.15
to gi, we see that the image of Z under the homeomorphism between Zi

and Ji is contained in a gi-invariant finite tree. The corresponding finite tree
T ⊂ Zi must then contain Z; it is easy to see that T has all the required
properties.

To complete the proof, choose a largeN so that each set f j(ZN) contains
at most one critical point of f . This is possible by Lemma 2.19. Observe
that any critical point c ∈ orbT has a small neighborhood Wc in orbT (here
Wc is an interval if c is not a branchpoint of the corresponding component of
orbT or a k-od for some k otherwise) such that ifQ ⊂ Wc is an interval then
f(Q) is an interval too. Call such neighborhoods Wc interval preserving.
Of course if a subinterval of T contains no critical points then its image is
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again an interval. Now, since the periods of sets Zi grow to infinity, the tree
T has only finitely many vertices, and by definition of a periodic continuum,
it follows that if N is sufficiently large then some sets f j(ZN ∩ T ) are
intervals and all sets of the form f i(ZN ∩ T ) containing a critical point are
contained in this critical point’s interval preserving neighborhood. Hence,
all sets f i(ZN ∩ T ) are intervals (as in our setting at no moment can a
non-interval be the image of an interval). This completes the proof. �

Let us now go back to the quadratic case. The above stated general
facts can be restated in the quadratic case as follows. Suppose that a qua-
dratic topological polynomial f∼ is infinitely renormalizable; then every
such topological polynomial is dendritic, and there is a nested sequence of
periodic continua Z0 ⊃ Z1 ⊃ . . . of periods m0 < m1 < . . . such that the
critical point c of f∼ belongs to Z =

⋂
i orbZi. Also, for each i, there exists

a topological conjugacy between fmi : Zi → Zi and the restriction of some
quadratic topological polynomial gi = f∼i

to its Julia set Ji. Moreover, it
is well-known that in this case x∼ (recall that this is the point inMc

2 asso-
ciated with f∼ and ∼) belongs to baby Mandelbrot sets M̃c

2(i) ⊂Mc
2, and

its location in M̃c
2(i) corresponds to the location of x∼i

inMc
2. To describe

locations relative to M̃c
2(i) we speak of “baby Main Cardioid”, “baby real

line” etc. The topological polynomials gi are called renormalizations of f∼.
Proposition 2.20 and Lemma 2.16 imply the following corollary.

Corollary 2.21. If a quadratic topological polynomial f∼ is infinitely renor-
malizable and Z =

⋂
i orbZi, where Zi are as above, then Z = ω(c), and

there are only two possibilities.
(1) The critical class C of ∼ consists of two points.
(2) The critical class C of ∼ is a quadrilateral, there exists N such

that, for i ≥ N , all sets fk(Zi), k = 0, 1, . . . can be assumed to be
intervals, and the corresponding topological Julia sets Ji are real.
In particular, x∼i

belongs to a baby real line in the corresponding
baby Mandelbrot set.

We are ready to visualize the gap CAl ofMl
2 containing the Main Car-

dioid CA. A topological polynomial f∼ is said to be Feigenbaum if it is
infinitely renormalizable and the above defined sequence of periods can be
chosen to be m0 = 1 < m1 = 2 < · · · < mi = 2i < . . . . It is known that
there is a unique topological Feigenbaum polynomial, so from now on we
will talk about the Feigenbaum topological polynomial. The correspond-
ing laminational equivalence relation will be denoted ∼F . It is well-known
that the minor set m∼F

is a leaf of QML approximated from one side by
uncountably many leaves (minors) of QML. If a topological polynomial
has a renormalization which is the Feigenbaum topological polynomial, we
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say that it has a Feigenbaum renormalization; by the above, all minors as-
sociated to topological polynomials with Feigenbaum renormalizations are
limits of uncountable families of minors from QML from one side. A baby
Main Cardioid Y is finitely attached to CA if there are finitely many baby
Main Cardioids between Y and CA.

Proposition 2.22. The boundary of CAl consists of vertices and leaves of
QML. The vertices of CAl are vertices of baby Main Cardioids finitely
attached to CA, or endpoints of edges of baby Main Cardioids finitely at-
tached to CA, or minors associated to some infinitely renormalizable qua-
dratic topological polynomials that do not have a Feigenbaum renormal-
ization. The edges of CAl are all associated to infinitely renormalizable
topological polynomials that have Feigenbaum renormalizations.

Proof. The process of creation of CAl can be viewed as follows. First we
erase all non-degenerate edges of CA; then we erase non-degenerate edges
in the copies of CA that used to be attached to the Main Cardioid, etc. On
each step we obtain bigger and bigger gaps containing CA. Observe that by
construction any q-lamination (or topological polynomial) associated with
the minors of QML erased after finitely many steps in the process of creat-
ing CAl must have only finitely many periodic leaves. In the end of this pro-
cess we get CAl. Hence the degenerate edges of CAl obtained after finitely
many steps are endpoints of edges erased after a finite number of steps or
Siegel points on the boundary of a baby Main Cardioid finitely attached to
CA. The remaining edges of CAl are infinitely renormalizable limits of
sequences of non-degenerate edges of deeper and deeper baby Main Car-
dioids. These edges may be degenerate or non-degenerate.

By Corollary 2.21 if ` is a non-degenerate edge of CAl then it is asso-
ciated with an infinitely renormalizable topological polynomial f∼, and an
m-periodic copy J ′ of a real quadratic dendritic topological Julia set J≈
of a topological polynomial f≈ is contained in J∼ where fm

∼ |J ′ is topolog-
ically conjugate to f≈|J≈ (f≈ is generated by a laminational equivalence
relation ≈). If f≈ is not the Feigenbaum topological polynomial then the
Sharkovsky Theorem implies that for some N and all i ≥ 0 the geolami-
nation L≈ has periodic leaves of periods 2N(2i + 1). If we now choose a
minor `′ ∈ QML which is very close to ` and was erased when we con-
structed CAl then it would follow that periodic leaves of periods 2N(2i+1)
with i ≥ t are still leaves of the q-lamination associated with `′. However
this contradicts the fact that this q-lamination can only have finitely many
periodic leaves. �

When we construct QMLl we remove countable concatenations of copies
of CA finitely attached to CA itself and replace their union by CAl. We
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have to do similar actions inside each baby Mandelbrot set, Thus, the only
infinite gaps of QMLl associated to the bounded complementary domains
ofMl

2 are copies of CAl from various baby Mandelbrot sets.

Proposition 2.23. The geolamination QMLl is perfect.

Proof. We need to show that QMLl has no isolated leaves. Suppose that
` is an isolated leaf of QMLl. Since it is a leaf of QMLl, it is not iso-
lated in QML. Hence we may assume that there exists a one-sided semi-
neighborhood U of ` that contains no leaves of QMLl but contains leaves
`i ∈ QML \ QMLl converging to `. We may think of U as the Jordan disk
with the boundary formed by ` itself, two circular arcs T and R whose end-
points are endpoints of `, and the remaining chord connecting the other two
endpoints of T and R and disjoint from `. Then leaves `i connect T and R.

Fix a number i. Since `i is isolated in QML, `i is an edge of a baby Main
Cardioid contained in a baby Mandelbrot set M c

2,i. Hence `i is contained
in a copy Ai ⊂ M c

2,i of CAl. Therefore, either there exists an edge of
Ai with endpoints in T and R, or ` itself is an edge of Ai. The former is
impossible by the assumption on U . Thus, ` is an edge of Ai. However
then it follows from the last claim of Proposition 2.22 and the remark right
before this proposition that ` is approximated by leaves of QMLl from the
side opposite to U . �

The geolamination QMLl is the visual counterpart of a laminational equiv-
alence relation ∼QMLl that can be defined as follows: two angles α ad β are
∼QMLl-equivalent if there exists a finite chain of leaves of QMLl connect-
ing them. By the above, ∼QMLl is a well-defined laminational equivalence
relation (so that all its classes are finite). Almost all ∼QMLl-classes are in
fact ∼QML-classes and correspond to the appropriate non-hyperbolic qua-
dratic topological polynomials. The minors m = ab of QML that used to
be associated to quadratic hyperbolic topological polynomials are erased
from QML and replaced by pairs of their endpoints a and b. Moreover, the
geolamination associated, say, with a, is obtained from the corresponding
to m hyperbolic q-lamination ∼m by inserting a critical leaf `a in the criti-
cal Fatou gap U of ∼m such that σ2(`a) = a and then pulling it back inside
various gaps of ∼m that are pullbacks of U .

Let us suggest an interpretation of interiors of various filled copies of
CAl. Recall that the perfect part of a geolamination L is obtained by tak-
ing the maximal perfect subset of L. In particular, all isolated leaves of L
must be erased as we extract the perfect part of L. Now, say that two ge-
olaminations are countably equivalent if they have the same perfect parts
(equivalently, if the symmetric difference between them is countable). For
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instance, all q-laminations from the Main Cardioid are countably equiva-
lent. Their common perfect part is the unit circle. Other q-laminations
with countably many non-degenerate leaves also have S as their perfect part
and, hence, are countably equivalent. We can associate the interior of the
filled CAl to the corresponding class of countable equivalence among q-
laminations. In fact, interiors of all baby versions of CAl can be associated
to corresponding classes of countable equivalence among all q-laminations.

3. NON-RENORMALIZABLE GEOLAMINATIONS

In Section 3 we consider another way to modify Mc
2. The aim, again,

is to uncover the structure of Mc
2 by replacing more complicated parts of

Mc
2 with their simplified “unpinched” versions in which some leaves of

Thurston’s quadratic minor lamination QML are deleted (i.e., replaced by
pairs of their endpoints). In other words, some q-laminations are still con-
sidered, but some are not. We explain our selection below.

Suppose that there exist q-laminations L̂ ⊂ L and L̂ is non-empty. By
definition this means that some leaves ofL are contained in gaps of L̂. Since
both are q-laminations, no leaves of L are in finite gaps of L̂. Moreover, if
a leaf ` is inserted in a periodic Siegel gap then the semiconjugacy with
an irrational rotation that collapses all edges of this gap will transport this
leaf into a chord inside a unit disk on whose boundary the corresponding
irrational rotation acts; this shows that ` crosses its eventual image, a con-
tradiction. Hence there must exist an n-periodic critical Fatou gap U of L̂
and all the leaves of L\L̂ are contained in gaps of L̂ from the grand orbit of
U ; evidently, σ2|Bd(U) is of degree two. Restricting L onto U and collaps-
ing all edges of U to points one semiconjugates σn

2 |Bd(U) and σ2 (intuitively,
this “magnifies” U to the unit circle) and transforms L|U to a q-lamination
L1. Then L is said to be a tuning of L̂ (one can also say that L tunes L̂),
and L1 is called a renormalization of L. In particular, L is renormalizable;
it follows that if a q-lamination is non-renormalizable, then it cannot be a
tuning of a non-empty q-lamination. Observe that L̂ here is a hyperbolic
q-lamination.

We work with tunings of q-laminations rather than with their renormal-
izations. If a q-lamination L1 is a tuning of a q-lamination L2, then L2 is
said to be an ancestor of L1. We say that L2 ⊂ L1 is the oldest ances-
tor (of L1) if every q-lamination L3 ⊂ L2 is either empty (has no non-
degenerate leaves) or coincides with L2. We want to parameterize the fam-
ily of all oldest ancestors similarly to QML. By the previous paragraph,
a non-renormalizable q-lamination is an oldest ancestor. Observe that all
Siegel q-laminations from the Main Cardioid are non-renormalizable, hence
they are oldest ancestors (of themselves). On the other hand, hyperbolic
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oldest ancestors are renormalizable but in a unique way, and their unique
renormalizations are empty. Evidently, any oldest hyperbolic ancestor has
a critical Fatou gap U . We may say that an oldest ancestor L replaces all
q-laminations that are tunings of L. The entire family of oldest ancestors
is denoted by Lnr. We will characterize (“tag”) all q-laminations from Lnr

with their postcritical (i.e., minor) sets. In particular, an oldest ancestor with
a critical Fatou gap U is tagged with its post-critical Fatou gap V = σ2(U).

Thus, postcritical gaps V = σ2(U) of hyperbolic oldest ancestors, pinched
under the equivalence relation ∼QML in the process of creation ofMc

2, are
now “unpinched”. It is well-known that pinched gaps V are in fact baby
Mandelbrot sets maximal by inclusion among all non-trivial (i.e., not coin-
ciding withMc

2) baby Mandelbrot sets. Thus, in QMLnr baby Mandelbrot
sets are replaced by the corresponding infinite gaps.

As before, let us first concentrate upon gaps of QMLnr closely related
to the Main Cardioid CA. Let x ∈ CA be a vertex of CA which is not an
endpoint of an edge of CA. Then the q-lamination Lx corresponding to x
has an invariant Siegel gap G and is the oldest ancestor of itself. Hence
Lx ∈ Lnr. Now, let ` be an edge of CA. Then the q-lamination L` as-
sociated to ` has an invariant finite gap G` with ` as its shortest edge, and
the periodic forward orbit of a postcritical Fatou gap V attached to G`; the
grand orbits of G` and V form the family of all gaps of L`. It follows that
the empty q-lamination is the only ancestor of L`, and so L` belongs to
Lnr. By construction its tag is the post-critical gap V . Thus, in the center
of the geolamination QMLnr we have a “countable flower” with CA in the
center and countably many postcritical gaps V growing out of CA at its
edges. The edges of CA are thus isolated in QMLnr. A natural choice is to
associate the interior of CA with the empty q-lamination. The gaps V de-
scribed above are associated with hyperbolic q-laminations from the Main
Cardioid; vertices of the Main Cardioid remain vertices of the “countable
flower” and are, as before, associated with q-laminations with an invariant
Siegel disk.

Let V be a postcritical gap of a hyperbolic oldest ancestor L∼. Then V
is periodic of some period n, and it is well known that V has a unique edge
m of period n, and all other edges of V are pullbacks of ` that are not edges
of other gaps of QML. We call m the root edge of V . It is also well known
that such m is the root edge of only one postcritical gap V , and the unique
q-lamination associated to m is L∼.

Lemma 3.1. The space QMLnr is compact. All leaves of QMLnr not on
the boundary of CA are non-isolated.

Thus QMLnr is “almost” perfect.
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Proof. Let us use the notation and terminology introduced right before Lemma 3.1.
Then it is easy to see that the leaves we remove are exactly leaves of QML
that intersect the interior of V . Hence the set of all leaves we removed is an
open set and its complement is closed. Thus, QMLnr is compact.

Suppose that ` is a leaf of QMLnr that is not on the boundary of CA. Let
us prove that ` cannot be a common edge of two gaps of QMLnr. Indeed,
suppose that ` is a common edge of a gap G and a gap H . By construction,
finite gaps of QMLnr are finite gaps of QML. Thus the fact that QML
is generated by a laminational equivalence relation ∼QML implies that at
least one of the gaps G, H is infinite. Suppose that G is infinite. Then by
construction G is a postcritical n-periodic gap of some oldest ancestor L∼.
By the remark right before the statement of the lemma, ` is either the only
edge of G of period n, or a pullback of the only edge m of G of period n.
If H is also infinite, we can apply a high iteration of σ2 to ` and obtain that
the root edge of H and the root edge of G coincide, a contradiction. If H is
finite, then the situation will contradict the remark right before the claim of
the lemma. Thus, all possibilities lead to a contradiction. This proves that
QMLnr is perfect. �

By construction, we associate infinite post-critical gaps of QMLnr to
renormalizable oldest ancestors; otherwise QMLnr consists of finite gaps
and leaves that are not edges of any gaps of QMLnr. All above listed sets
are pairwise disjoint. Moreover, properties of QML (in particular the fact
that QML is generated by a laminational equivalence relation∼QML) imply
that this family of sets is upper-semicontinuous. Hence QMLnr is in fact
generated by an equivalence relation ∼nr that has properties (E1) and (E2)
of laminational equivalence relations. Although we may choose∼nr to also
satisfy property (E3) (stating that all classes are finite), it would be more
natural to admit infinite classes of ∼nr. Namely, we assume that infinite
post-critical gaps V of QMLnr corresponding to hyperbolic oldest ances-
tors give rise to infinite classes V ∩ S. Call an equivalence relation ∼ on
the circle a laminational equivalence relation with possibly infinite classes
if it has properties (E1) and (E2) of Definition 1.1. Then it follows that
QMLnr is generated by a laminational equivalence relation with possibly
infinite classes ∼nr. Moreover, by Lemma 3.1, all infinite gaps of QMLnr

are convex hulls of ∼nr-classes. It follows that the corresponding quotient
space S/ ∼nr=Mnr

2 is a dendrite.
Finally, similarly to how we reinterpreted the q-lamination QMLl and

the corresponding quotient spaceMl
2 using the notion of countable equiva-

lence, we can reinterpretMnr
2 as follows. Call two q-laminations common

ancestor equivalent if they have the same oldest ancestor. Then the space
Mnr

2 can be viewed as the quotient space of the combinatorial Mandelbrot



PERFECT SUBSPACES OF QUADRATIC LAMINATIONS 27

setMc
2 under the common ancestor equivalence; the corresponding quotient

map fromMc
2 toMnr

2 simply collapses to points all maximal by inclusion
baby Mandelbrot sets.
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