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ABSTRACT. The combinatorial Mandelbrot set is a continuum in the
plane, whose boundary can be defined, up to a homeomorphism, as the
quotient space of the unit circle by an explicit equivalence relation. This
equivalence relation was described by Douady and, in different terms,
by Thurston. Thurston used quadratic invariant laminations as a major
tool. As has been previously shown by the authors, the combinatorial
Mandelbrot set can be interpreted as a quotient of the space of all limit
quadratic invariant laminations. The topology in the space of lamina-
tions is defined by the Hausdorff distance. In this paper, we describe two
similar quotients. In the first case, the identifications are the same but
the space is smaller than that taken for the Mandelbrot set. The result
(the quotient space) is obtained from the Mandelbrot set by “unpinch-
ing” the transitions between adjacent hyperbolic components. In the
second case, we do not identify non-renormalizable laminations while
identifying renormalizable laminations according to which hyperbolic
lamination they can be “unrenormalised” to.

INTRODUCTION

Understanding families of one-dimensional complex polynomials is a
central objective in complex dynamics. An important step towards this ob-
jective involves constructing combinatorial models for such families. The
most famous case when such a model is known is the quadratic family, i.e.,
the family of quadratic polynomials Pc(z) = z2 + c. The set of all parame-
ters c such that Pc has connected Julia set (equivalently, the critical Pc-orbit
0, Pc(0) = c, . . . , is bounded) is called the Mandelbrot set and is denoted
by M2. In his seminal preprint [Thu85], William Thurston introduced a
variety of (mostly combinatorial and geometric by nature) new tools and
constructed a combinatorial geometric model Mc

2 of M2. There exists a

Date: July 17, 2017.
2010 Mathematics Subject Classification. Primary 37F20; Secondary 37F10, 37F50.
Key words and phrases. Complex dynamics; laminations; Mandelbrot set; Julia set.
The third named author was partially supported by the Russian Academic Excellence

Project ’5-100’.
1



2 ALEXANDER BLOKH, LEX OVERSTEEGEN, AND VLADLEN TIMORIN

monotone map from M2 onto Mc
2. A major open conjecture in complex

dynamics, referred to as MLC, states that this map is a homeomorphism.
The setMc

2 has a very rich and fascinating structure. It contains a count-
able and dense family of homeomorphic copies of itself whose precise loca-
tion can be deduced from the description ofMc

2. Thus,Mc
2 is an example

of a so-called fractal set. According to Adrien Douady, the process of con-
structingMc

2 can be described as “pinching the closed unit disk D” which
is whyMc

2 is often said to be the “pinched disk model” ofM2. “Pinching”
refers to collapsing a certain chord of D; evidently, each act of pinching
creates an increasingly complicated new quotient space of D. Therefore it
is natural to attempt to understand the structure of the “pinched disk model”
by doing only some of the pinchings and ignoring the other ones. Some-
what loosely, one can say that in order to understandMc

2, one may try to
partially “unpinch”Mc

2 and thus obtain partial quotient spaces of D as steps
towards understandingMc

2.
This by itself provides a motivation for studying partially “unpinched”

versions of Mc
2. There is however another no less important thought that

motivated the authors. Namely, while in the quadratic case the problem
of constructing an adequate combinatorial model of M2 was solved by
Thurston in [Thu85], producing a similar combinatorial model in the cu-
bic case, let alone in the arbitrary degree d case, presents a difficult problem
that has not yet been solved. Partial quotients of D admit cubic analogs.
The latter may serve as simplified models of the cubic connectedness locus.

We begin with an informal overview. We assume basic knowledge of
complex dynamics. Later on, especially in the last two sections of the pa-
per, we will also use well-known facts concerning the structure of the com-
binatorial Mandelbrot setMc

2.

Laminational equivalence relations. Laminational equivalence relations
are closed equivalence relations ∼ on the unit circle S in the complex plane
C such that all classes are finite and the convex hulls of all classes are pair-
wise disjoint; denote the corresponding quotient map of S by ψ∼. Notice
that ψ∼ can be canonically extended over C by assuming that all classes of
points of C outside D are these points themselves while inside D any convex
hull of a ∼-class is declared to be one class of equivalence while the points
inside infinite gaps of L∼ are treated in the same way as points outside of
D, i.e. are declared to be degenerate classes. This extends ∼ and ψ∼ onto
the entire complex plane. We are interested in quotient spaces of D and S
under the map ψ∼.

Each laminational equivalence relation∼ gives rise to an associated geo-
metric object L∼ called a geodesic lamination generated by ∼. It is the set
of all chords (called leaves) in the boundaries of the convex hulls (in the
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FIGURE 1. The geodesic lamination QML

closed unit disk) of all equivalence classes of ∼. The union of all leaves of
L∼ and S is a continuum L+

∼ called the solid of L∼ (or of ∼). The closure
in C of a non-empty component of D \ L+

∼ is called a gap of L∼. If G is a
gap or a leaf, call the set G′ = S ∩ G the basis of G. A gap is said to be
finite (infinite, countable, uncountable) if its basis is finite (infinite, count-
able, uncountable); countable gaps are only possible for generally defined
geodesic laminations (see below) but not for the just defined geodesic lam-
ination generated by ∼. For L∼ infinite gaps are associated with bounded
complementary domains of S/ ∼ by the corresponding quotient map.

Sometimes we relax the assumption of finiteness of classes of equiva-
lence and talk of laminational equivalence relations possibly with infinite
classes [BOPT17]. All related notions can be defined for either lamina-
tional equivalence relations or for laminational equivalence relations possi-
bly with infinite classes, thus in what follows we only define them for lam-
inational equivalence relations. In particular, this concerns the associated
quotient maps and quotient spaces. In case when we deal with a lamina-
tional equivalence relation ∼, all the infinite gaps of ∼ give rise to bounded
complementary domains of the corresponding quotient space.

Assume now that L∼ is perfect (i.e., there are no isolated leaves in L∼).
Then, no two gaps of L∼ intersect. There are various laminational equiva-
lence relations possibly with infinite classes that generate L∼. This is be-
cause some infinite gaps of L∼ can be declared convex hulls of equivalence
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classes (recall that L∼ is perfect!). Now, consider the laminational equiva-
lence relation ∼d in which all infinite gaps of L∼ are declared convex hulls
of classes (equivalently, for each infinite gap G of L∼ its basis G′ is de-
clared one class). It is easy to see that S/ ∼d= D/ ∼d is a dendrite (a
locally connected continuum without subsets homeomorphic to a circle).
This dendrite can be obtained from D/ ∼ by collapsing the closures of all
bounded complementary domains of S/ ∼ (recall that they are associated to
infinite gaps of L∼) to points. We call ∼d and D/ ∼d the dendritic version
of ∼ and D/ ∼.

A laminational equivalence relation is (σd-)invariant if it is “respected”
by the map σd(z) = zd : S → S; a formal definition will be given later.
The map σd induces a topological polynomial f∼ : S/∼→ S/∼ from the
topological Julia set J∼ = S/∼ to itself. If, for a polynomial P , its Julia set
J(P ) is locally connected, then J(P ) can be identified with the topological
Julia set S/ ∼ of some laminational equivalence relation ∼ such that ψ∼
identifies with the extension to the unit circle of the normalized Riemann
map of the basin of infinity of P . Thus, in this case, P |J(P ) is topologically
conjugate to (and even identifies with) f∼.

From now on, “invariant” means “invariant under the map σd”. In par-
ticular, given a chord ` = ab ∈ L∼, with endpoints a, b ∈ S, the chord
σd(a)σd(b) is also a (possibly degenerate) chord ofL∼, and we write σd(`) =

σd(a)σd(b). Not only should the collection L∼ of chords be invariant but
also boundaries of complementary to L∼ domains of D should map forward
in the orientation preserving fashion (except that some edges may collapse
to points).

Invariant geodesic laminations. Although σd is only defined on the unit
circle S, it makes sense to talk about the images σd(X) for subsets X of the
closed unit disk obtained as convex hulls of X ∩ S; by definition, we set
σd(X) to be the convex hull of σd(X ∩ S). Thurston in his famous paper
[Thu85] introduced and studied geometric objects similar to L∼ but more
general, and called them invariant geodesic laminations. Thus, σd-invariant
geodesic laminations L are closed collections of chords in D (leaves) with
special properties relating the leaves and the map σd. It will be convenient
to consider also unions of all leaves of L together with all points of S;
such unions are denoted L+ and are called solids of laminations. For any
laminational equivalence relation ∼, the set L∼ is a σd-invariant geodesic
lamination. Such geodesic laminations are called q-laminations (q from
“equivalence”).

An important reason for defining geodesic laminations is to provide “vi-
sualization” of laminational equivalence relations and use the former to
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“topologize” the latter. This is done by defining Hausdorff metric on ge-
odesic laminations. To this end, consider the space of all chords (includ-
ing degenerate ones) in the unit disk. Equivalently, we can consider the
space of all unordered pairs of points of S (so that a pair (α, β) is identified
with the pair (β, α)). It follows that the space in question is a “half-torus”
E. If a topological 2-torus is represented as a quotient space of the square
0 6 x, y 6 1 by the equivalence relation identifying (x, 0) with (x, 1) and
(0, y) with (1, y) for all x, y ∈ [0, 1], then E is given by x 6 y with the ad-
ditional identification of (0, x) with (x, 1). Topologically, this is a Möbius
strip. Every geodesic lamination L can be viewed as a closed subset of E
(each leaf of L is a point of E). Define the Hausdorff distance between
two geodesic laminations L1, L2 by viewing L1 and L2 as subsets of E.
When speaking of geodesic laminations, we will always consider the topol-
ogy on them defined by the Hausdorff metric. We will speak of limits of
laminations only in this sense.

If d = 2, then the corresponding geodesic laminations, laminational
equivalence relations, topological polynomials and Julia sets are said to be
quadratic. However, for clarity of terminology, in this paper we address the
corresponding geodesic laminations and laminational equivalence relations
as σ2-invariant. Thurston [Thu85] introduced and studied properties of in-
dividual σd-invariant laminations while also obtaining striking results on the
entire family of σ2-invariant geodesic laminations and parameterizing them
with the help of his famous quadratic minor lamination QML.

For every σ2-invariant geodesic lamination L, Thurston defines its ma-
jor M as a longest leaf of L. It is easy to see that either L has a unique
major, which is then a diameter of D, or L has two distinct majors with
equal σ2-images. Then Thurston defines m = σ2(M), calls it the minor
of L, and shows that the family of the minors of all σ2-invariant geodesic
laminations is a geodesic lamination itself! This geodesic lamination is the
quadratic minor lamination QML that can be generated by an equivalence
relation∼QML. Each class of∼QML is associated with a unique σ2-invariant
laminational equivalence relation and the corresponding topological poly-
nomial. The quotient space S/∼QML parameterizes the space of all σ2-
invariant laminational equivalence relations (equivalently, the space of all
topological polynomials of degree two). This yields a setMc

2 in the plane,
defined up to a homeomorphism, whose boundary Bd(Mc

2) is homeomor-
phic to S/ ∼QML.

Geodesic laminations were introduced not only to study dynamics of in-
dividual complex polynomials but also to construct combinatorial (lami-
national) models for spaces of complex polynomials. This is done with the
help of the following approach. Firstly, with each complex polynomial from
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the space under consideration, associate its laminational equivalence rela-
tion and the corresponding topological polynomial. Observe that, while this
is straightforward in the locally connected case and in some other cases (see
below), in case of more complicated topology of the Julia sets a special con-
struction may be required. Secondly, describe (parameterize) the space of
topological polynomials associated with all complex polynomials from the
chosen space, and use the thus obtained space of topological polynomials
as the model for the given space of complex polynomials.

In order to implement this plan, one has to overcome several difficulties.
First, the association of a laminational equivalence relation with a complex
polynomial may be hard. This is related to the fact that the Julia set J(P )
of a complex polynomial P may have complicated topology. Still, in many
cases P gives rise to a lamination, even if J(P ) is not locally connected.
For example, this happens in the case when J(P ) is connected and has no
periodic non-repelling points. In this case, the association is due to Jan
Kiwi [Kiw04]. The corresponding topological Julia sets are dendrites, and
the corresponding complex polynomials are called dendritic. Notice that
the actual Julia set of a dendritic polynomial does not have to be a dendrite.

Known facts from polynomial dynamics imply that dendritic polynomials
are dense in the boundary of the Mandelbrot set. Thus, one can extend the
correspondence between complex quadratic dendritic polynomials and their
laminational equivalence relations onto Bd(M2). We mean the extension
by continuity, or the closure of the correspondence. This closure fails to be
a map; one polynomial may correspond to several laminations.

Let us now discuss details of the above outlined plan focusing on the
case of quadratic polynomials. A difficulty here is that geodesic lamina-
tions associated to laminational equivalence relations do not form a closed
subspace. In [BOPT16a], we resolve this issue by taking the closure Lq2 of
the space Lq2 of all q-laminations. Clearly, Lq2 includes all q-laminations as
well as limits of non-constant sequences of q-laminations.

Limit laminations. We proceed in [BOPT16a] by following Thurston [Thu85]
and defining minors m(L) of geodesic laminations from Lq2. Two geodesic
laminations L1, L2 ∈ Lq2 are identified if m(L1) ∩m(L2) 6= ∅. This yields
the associated quotient space of Lq2 which is proven in [BOPT16a] to be
homeomorphic to Mc

2. However, we want to argue that there is another
similar quotient space of a certain subspace of Lq2 that is, from the point of
view of geodesic laminations, in some sense even more natural than Mc

2

(viewed as a quotient space of Lq2). Indeed, the space Lq2 may contain iso-
lated geodesic laminations. As we visualize the space Lq2, isolated lamina-
tions can be placed anywhere in the picture. In other words, their location is
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a matter of convenience and does not reflect the true structure of the space.
Therefore, it is of interest to consider the space of all non-isolated geodesic
laminations from Lq2 with the same identification as above (two are iden-
tified if their minors are non-disjoint), and to describe the corresponding
quotient space.

Limit laminations are defined as non-isolated points in Lq2. It is proven
in [BOPT16a] that a σ2-invariant limit lamination L must contain a critical
quadrilateral or a critical leaf. However, L having a critical quadrilateral or
leaf is only a necessary condition. In this paper, we give sufficient condi-
tions and thus describe the entire space of limit laminations, which will be
denoted by Ll2 (“l” from “limit”). It turns out that the sufficient condition on
L is the existence of a q-lamination L∼ satisfying property (0) below and
one of properties (1)–(3).

(0) The critical set of L is included into the critical set of L∼.
(1) The lamination L∼ is dendritic with a critical set X; in this case, L

is obtained from L∼ by inserting a critical leaf/quadrilateral Q into X and
inserting pullbacks of Q into pullbacks of X . Such geodesic lamination
is a limit lamination. A critical leaf is by definition a diameter of the unit
circle. A critical quadrilateral is by definition the convex hull of two critical
leaves.

(2) The lamination L∼ has a periodic Siegel gap, and L = L∼.
(3) There is a periodic Fatou gap U of L∼ of period n that maps for-

ward two-to-one under σ2. It is well known [Thu85] that then there exists
a unique non-degenerate periodic edge M of U of exact σ2-period n. The
leaf M is a major of ∼ while m = σ2(M) is the minor of ∼ (and of L∼).
There are two possible subcases.

(a) The leaves M , σ2(M), . . . , σn−12 (M) are pairwise disjoint. The criti-
cal set of L is either a critical leaf sharing an endpoint withM or the critical
quadrilateral havingM as an edge. All these laminationsL can be described
explicitly, and all of them are identified.

(b) The leaves M , σ2(M), . . . , σn−12 (M) are not pairwise disjoint. The
lamination L has a critical diameter sharing an endpoint with M .

Thus, the minors of laminations L of type b) are endpoints of m =
σ2(M). These laminations L break down into two classes corresponding
to the endpoints of m. These are distinct classes because no limit geodesic
lamination has a critical quadrilateral with edge M .

Laminations of type b) are exactly laminations that correspond to points
of Mc

2 at which the closures of two distinct hyperbolic domains in Mc
2

meet. According to the description in b), corresponding leaves in QML
must be erased and replaced by their endpoints. Mimicking Thurston, we
can call this process cleaning of QML. This is the only modification of
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QML necessary to transform∼QML into a laminational equivalence relation
parameterizing the above described quotient space of the space of all σ2-
invariant limit laminations.

By the known properties of QML, this cleaning produces a new geodesic
lamination QMLl with no isolated leaves (and hence perfect). The corre-
sponding quotient space will be denoted by Ml

2. Informally, one can say
that while the “pinched disk model” of Mc

2 is obtained by pinching D at
various places prescribed by QML, we can then obtain Ml

2 by “unpinch-
ing” Mc

2 at places prescribed by QML \ QMLl. Alternatively, one can
say thatMl

2 is obtained if certain parts ofMc
2 are replaced by topological

disks. Two interior components ofMc
2 are said to be associated if they are

connected by a chain of complementary components touching at boundary
points. The closures of maximal unions of pairwise associated components
are to be replaced with topological disks.

An alternative description of the space Ll2 is that the latter consists of
limits of sequences of dendritic geodesic laminations. It is easy to see that
now we do not have to insist that the sequences be non-constant. Observe
also that there are other, alternative ways to describe the laminations from
Ll2 by describing their properties intrinsically and without referring to the
limits of geodesic laminations. Indeed, all laminations from Ll2 have no
isolated majors unless the critical set is just a critical leaf (as is the case of
a Siegel gap). This can be turned into a characterization of Ll2.

After “unpinching”, the Main Cardioid CA turns into a bigger gap de-
noted here by CAl. In fact, we can think of “unpinching” as follows. On
the first step we erase all non-degenerate edges of the Main Cardioid itself.
On the second step we erase non-degenerate edges in the copies of the Main
Cardioid that used to be attached to the Main Cardioid. If we go on with
this, we will in the end obtain CAl. Observe that some degenerate edges
of CAl are obtained on finite steps in the process. These are endpoints of
edge erased after a finite number of steps or Siegel points on the boundary
of some copy of the Main Cardioid.

Evidently, the only remaining edges of CAl that are not obtained after
a finite number of steps are infinitely-renormalizable and are limits of se-
quences of non-degenerate edges of deeper and deeper copies of CA asso-
ciated with CA. Some of these edges are non-degenerate, others are degen-
erate. Let us characterize those minors of infinitely renormalizable lamina-
tions that are non-degenerate (we provide here only a sketch of the proof).
To this end we need a well-known description of canonical copies ofMc

2

contained inMc
2 (sometimes these are informally called “baby Mandelbrot

sets”).
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Indeed, these copies are obtained by first choosing specific periodic (of
period, say, k) infinite gaps V that are σ2-images of quadratic Fatou gaps.
The standard monotone collapse of edges of V semiconjugates σk2 |Bd(V )

with σ2 (see details in Section 3). Using this correspondence, we lift QML
to V . It turns out that the lift in fact coincides with the restriction of QML
onto V . If we take the associated quotient space of V , then we will obtain a
copy ofMc

2 insideMc
2. In other words, one chooses a special gap V ⊂ D

and then considers a “pinched” version of V using QML transferred to V
and inducing the corresponding lamination in V . This is what makesMc

2

a fractal, i.e., a set that contains infinitely many homeomorphic copies of
itself.

The part of Mc
2 important for us is the real line (i.e., one can draw the

real line and consider its segment contained inMc
2). There are two equiva-

lent ways of describing this part ofMc
2. First, observe that all minors that

intersect the real line are vertical and vice versa so that the fact that a minor
is vertical is equivalent to it belonging to the real line in Mc

2. To define
the second way of describing the real line insideMc

2 we need the notion of
the growing tree of f∼ [BL02]. It is defined as follows. In the topological
Julia set J∼ we connect the two points associated with angles 0 and 1/2 (the
unique fixed angle for σ2 and its preimage). Denote this connecting arc I .
Then consider the union of all images of I under f∼ by T∞ and call it the
growing tree of f∼. It is easy to see ([BL02]) that the set T∞ is an interval
if and only if the minor of L∼ is vertical.

Now, if L∼ is infinitely renormalizable then J∼ is a dendrite. Suppose
that L∼ is associated with a real polynomial (equivalently, the two majors
of L∼ are vertical). Clearly, these majors cannot coincide (and be critical

leaves) as the only vertical diameter is 1
4

3

4
which does not correspond to an

infinitely renormalizable lamination. Thus, the critical set of L∼ is a criti-
cal quadrilateral with vertical edges and the minor of L∼ is non-degenerate.
It follows, that if we choose a canonical copy ofMc

2 insideMc
2 and then

choose similar place inside this copy, the corresponding minor will be non-
degenerate. For brevity let us call minors of this kind renormalized real.
Thus, for every renormalized real minor of an infinitely renormalizable lam-
ination L∼ is non-degenerate.

To prove the converse, consider J∼. If the critical set of L∼ is a non-
degenerate critical quadrilateral Q, it follows that f∼(c) is a cutpoint of J∼
(here c is the critical point of f∼). Hence by [BL02] there exists a finite
f∼-invariant tree T that contains c. If we consider sufficiently high renor-
malization of f∼ it will have to be defined on the interval because there
are only finitely many branchpoints in T . This implies that for this renor-
malization its growing tree is an interval. By the above this implies that the
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corresponding minor is real. To summarize, the minor of an infinitely renor-
malizable lamination L∼ is non-degenerate if and only if it is renormalized
real.

The geodesic lamination QMLl is a visual counterpart of a certain equiv-
alence relation on the circle. As QMLl is perfect, there are two main alter-
native equivalence relations, ∼l and ∼ld, that generate the same geodesic
lamination QMLl. Here ∼l is a laminational equivalence relation (so that
all its classes are finite), and since QMLl is perfect, ∼l is well-defined. By
construction, QMLl has a variety of pairwise disjoint infinite gaps. The
interpretation of QMLl as the geodesic lamination generated by a lamina-
tional equivalence relation is based on the assumption that all classes are
finite so that in the quotient, infinite gaps of QMLl give rise to bounded
complementary domains ofMl

2. As explained above, in a alternative den-
dritic version of QMLl we declare every gap of QMLl to be the convex hull
of an equivalence class. This results into a well-defined laminational equiv-
alence relation with possibly infinite classes ∼ld. Hence, one can define
yet another quotient space S/ ∼ld= Mld

2 , a dendritic version of Ml
2, by

collapsing the closures of all bounded complementary domains toMl
2.

This purely topological construction in fact defines a certain quotient
space of Lq2 (or Lq2, or Ll2). Namely, recall that the perfect part of a ge-
odesic lamination L is obtained by taking the maximal perfect subset of L.
In particular, all isolated leaves ofLmust be erased as we extract the perfect
part of L. Now, say that two geodesic laminations are countably equivalent
if they have the same perfect parts (equivalently, if the symmetric difference
between them is countable).

For instance, all laminations from the Main Cardioid are countably equiv-
alent. Their common perfect part is the unit circle. Other countable lamina-
tions also have S as their perfect part. All countable laminations are count-
ably equivalent. However countable equivalence relation defined above is
not closed. If we close it and consider the resulting class of equivalence of
all countable laminations, we will get the class coinciding with the bound-
ary of CAl intersected with the unit circle (recall that when we talk about
classes of equivalence we consider points of the unit circle). Slightly abus-
ing the language, let us call the just defined closed equivalence relation
countable equivalence relation and say that two geodesic laminations are
countably equivalent if they belong to the same class in the sense of count-
able equivalence relation. Then CAl is the convex hull of the class of count-
able equivalence relation corresponding to the Main Cardioid. The quo-
tient space of the unit disk/circle under the countable equivalence relation
is S/ ∼ld=Mld

2 defined above.
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FIGURE 2. The lami-
nation QMLl

FIGURE 3. A zoom-
in of QMLl

FIGURE 4. Another zoom-in of QMLl

Parameter space of non-renormalizable laminations. In the last section
of the paper, Section 3, we consider another way to modifyMc

2. The aim,
as in the cases ofMl

2 andMld
2 above, is to uncover the structure ofMc

2 by
replacing more complicated parts of Mc

2 by their simplified “unpinched”
versions. Recall that “unpinching” works as follows. For certain leaves ` of
Mc

2, we allow laminations from Lq2 with critical leaves sharing endpoints
with ` and not allow laminations with the critical quadrilateral supported by
`. The name of the game is which critical quadrilaterals are allowed and
which are not.

We now want to remove from QML all non-degenerate leaves corre-
sponding to renormalizable laminations. Renormalizable q-laminations can
be described as laminations L∼ such that J∼ admits non-trivial periodic
subcontinua (under the action of f∼). Equivalently, L∼ is renormalizable
if L+

∼ has a non-trivial σ2-periodic closed connected subset. Here “non-
trivial” means non-degenerate and not equal to the entire Julia set (or, in the
second case, not projected to a trivial continuum under the quotient map).

Now, suppose that L1 is a renormalization of L2. It means the following.
First, there exists a lamination L̂2 with an n-periodic critical Fatou gap U .
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The lamination L2 contains L̂2 (i.e., L̂2 ⊂ L2) so that all the leaves of
L2 \ L̂2 are contained in gaps of L̂2 that belong to the grand orbit of U .
Now, restrict L2 onto U and, similar to the above, collapse all edges of U
to points. This semiconjugates σn2 |Bd(U) and σ2 (intuitively, one can say
that this “magnifies U to the unit circle) and transforms L2|U to L1. In this
setting L2 is said to be a tuning of L̂2.

In what follows it is easier for us to work with tunings of geodesic lam-
inations rather than with their renormalizations (even though these two ap-
proaches are clearly equivalent). Thus, given a geodesic lamination L1 we
may be able to find a lamination L2 with L1 ⊃ L2 such that L1 is a tuning
of L2. Now, L2 can itself be a tuning of a lamination L3 ⊂ L2, etc. If we
go on with this, on the n-th step we will obtain a sequence of geodesic lam-
inations L1 ⊃ L2 ⊃ L3 ⊃ · · · ⊃ Ln+1 so that Li is a tuning of Li+1 ⊂ Li
as long as i 6 n. In the obvious sense L2,L3, . . . ,Ln+1 are ancestors of L1

while L1 is an offspring of L2, . . . ,Ln+1. Since we want to “unpinch” all
minors associated with renormalizable laminations, we need to move along
this “genealogical tree” as far back as possible in order to find the oldest
ancestor of a given geodesic lamination L = L1.

There is an important detail that should not be overlooked here. Namely,
every geodesic lamination is a tuning of the empty lamination (the one with-
out non-degenerate leaves). This trivializes the issue of looking for the old-
est ancestor as the empty lamination is the oldest ancestor for all lamina-
tions. Thus, we need to decide in what cases the empty lamination can(not)
be considered as the oldest ancestor of a lamination. To this end, consider a
hyperbolic lamination L with critical Fatou gap U such that L is not a tun-
ing of any non-empty lamination. (A hyperbolic lamination is a lamination
corresponding to a hyperbolic polynomial). Making one step back from L
to the empty lamination should not be allowed if, as a result, a substantial
piece of information is lost. Thus, if L is uncountable, we consider L as the
oldest ancestor lamination and call L non-trivial. However, if L is count-
able (recall that L is assumed to not be a tuning of any non-empty lamina-
tion so that its countability implies that L belongs to the Main Cardioid) we
consider the empty lamination as the corresponding oldest ancestor lamina-
tion. This defines the family of all oldest ancestor laminations. The empty
lamination is called the trivial oldest ancestor lamination.

Consider now a new family of laminations. We keep the non-renormali-
zable laminations in it. Otherwise for any non-trivial oldest ancestor lami-
nation with critical Fatou gap U we consider all possible laminations with
critical leaves in U or critical quadrilaterals based upon edges of U . We will
still characterize (“tag”) our laminations with their minors. Thus, postcrit-
ical gaps V of non-trivial oldest ancestor laminations described above and
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pinched under the equivalence relation ∼QML in the process of creation of
Mc

2 are now completely “unpinched”. Thus, gaps V must be present in the
parametric lamination QMLnr that we are now constructing. Notice that the
resulting lamination QMLnr does not have any isolated leaves. As usual,
denote by ∼nr the laminational equivalence relation generating QMLnr.

Now consider all countable laminations L that are not tunings of non-
empty laminations. Recall that we associate with them the empty lamina-
tion as their oldest ancestor. As above, we insert all possible critical leaves
into them and all possible critical quadrilaterals into them, with one excep-
tion. Namely, if U is a critical gap of L of period n then we do not insert a
critical quadrilateral in U supported by the edge of U of period n. This cor-
responds to the fact that all countable laminations L that are not tunings of
non-empty laminations have the same empty oldest ancestor and therefore
should be associated with the same gap CAnr in the parameter space.

In QMLnr the gap CAnr replaces the Main Cardioid. It plays a special
role in QMLnr. To describe its edges and vertices, take all edges and ver-
tices of all postcritical Fatou gaps of laminations from the Main Cardioid
— except for the edges of the same period as the Fatou gap in question
(i.e., except for the edges that are edges of the Main Cardioid itself). Add
to this list all vertices of the Main Cardioid associated with Siegel lamina-
tions. This collection of edges and vertices forms the boundary of CAnr.
Basically this means that to create CAnr we erase all minors of QML con-
tained in postcritical Fatou gaps associated with laminations from the Main
Cardioid, and also all edges of the Main Cardioid.

As with limit laminations and their space, alternatively to ∼nr in the sit-
uation of Section 3 we can also identify all points of S on the boundaries
of infinite gaps of QMLnr. This creates a laminational equivalence relation
with possibly infinite classes ∼nrd called the dendritic version of ∼nrd. In
terms of quotient spaces this will lead to the collapse of all bounded com-
plementary domains ofMnr

2 to points yielding a new, dendritic, parameter
space denoted byMnrd

2 .

1. PRELIMINARIES

A part of this section is devoted to geodesic laminations, a major tool
in studying the dynamics of individual complex polynomials as well as in
modeling certain families of complex polynomials. Let a, b ∈ S. By [a, b],
(a, b), etc., we mean the closed, open, etc., positively oriented circle arcs
from a to b, and by |I| the normalized length of an arc I in S (a normaliza-
tion is made so that the length of S is 1).

1.1. Laminational equivalence relations. Denote by Ĉ the Riemann sphere.
For a compactumX ⊂ C, let U∞(X) be the component of Ĉ\X containing
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infinity. If X is connected, there exists a Riemann mapping ΨX : Ĉ \ D→
U∞(X); we always normalize it so that ΨX(∞) =∞, and Ψ′X(z) tends to
a positive real limit as z →∞.

Consider a monic polynomial P of degree d ≥ 2, i.e., a polynomial of
the form P (z) = zd+ lower order terms. Consider the Julia set JP of P
and the filled-in Julia set KP of P . Extend the map z 7→ zd to a map θd
on Ĉ. If JP is connected, then ΨJP = Ψ : Ĉ \ D → U∞(KP ) is such that
Ψ ◦ θd = P ◦Ψ on the complement of the closed unit disk [DH85, Mil00].
If JP is locally connected, then Ψ extends to a continuous function

Ψ : Ĉ \ D→ Ĉ \KP ,

and Ψ ◦ θd = P ◦ Ψ on the complement of the open unit disk. Thus, we
obtain a continuous surjection Ψ: Bd(D) → JP (the Carathéodory loop).
Throughout the paper, Bd(X) denotes the boundary of a subset X of a
topological space. Identify S = Bd(D) with R/Z. Set ψ = Ψ|S. We will
write σd for the restriction of θd to S.

Define an equivalence relation ∼P on S by x ∼P y if and only if ψ(x) =
ψ(y), and call it the (σd-invariant) laminational equivalence relation of P ;
since Ψ defined above conjugates θd and P , the map ψ semiconjugates σd
and P |J(P ), which implies that ∼P is invariant. Equivalence classes of ∼P
have pairwise disjoint convex hulls. The topological Julia set S/ ∼P= J∼P

is homeomorphic to JP , and the topological polynomial f∼P
: J∼P

→ J∼P
,

induced by σd, is topologically conjugate to P |JP .
An equivalence relation ∼ on the unit circle, with similar properties to

those of ∼P above, can be introduced abstractly without any reference to a
complex polynomial.

Definition 1.1 (Laminational equivalence relations). An equivalence rela-
tion ∼ on the unit circle S is said to be laminational if:
(E1) the graph of ∼ is a closed subset in S× S;
(E2) convex hulls of distinct equivalence classes are disjoint;
(E3) each equivalence class of ∼ is finite.

For a closed set A ⊂ S we denote its convex hull by CH(A). Then by
an edge of CH(A) we mean a closed segment I of the straight line connect-
ing two points of the unit circle such that I is contained in the boundary
Bd(CH(A)) of CH(A). By an edge of a ∼-class we mean an edge of the
convex hull of that class.

Definition 1.2 (Laminations and dynamics). A laminational equivalence
relation ∼ is (σd-)invariant if:
(D1) ∼ is forward invariant: for a class g, the set σd(g) is a class too;
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(D2) for any ∼-class g, the map σd : g → σd(g) extends to S as an ori-
entation preserving covering map such that g is the full preimage of σd(g)
under this covering map.

Again, if this does not cause ambiguity, we will simply talk about invari-
ant laminational equivalence relations.

Definition 1.2 (D2) has an equivalent version. Given a closed set Q ⊂ S,
a (positively oriented) hole (a, b) of Q (or of CH(Q)) is a component of
S\Q. Then (D2) is equivalent to the fact that for a∼-class g either σd(g) is
a point or for each positively oriented hole (a, b) of g the positively oriented
arc (σd(a), σd(b)) is a hole of σd(g). From now on, we assume that, unless
stated otherwise, ∼ is a σd-invariant laminational equivalence relation.

Given ∼, consider the topological Julia set S/ ∼= J∼ and the topolog-
ical polynomial f∼ : J∼ → J∼ induced by σd. Since S ⊂ C, we can use
Moore’s Theorem to embed J∼ into C and then to extend the quotient map
ψ∼ : S → J∼ to a map ψ∼ : C → C with the only non-trivial fibers being
the convex hulls of non-degenerate ∼-classes. A Fatou domain of J∼ (or of
f∼) is a bounded component of C \ J∼. If U is a periodic Fatou domain of
f∼ of period n, then fn∼|Bd(U) is either conjugate to an irrational rotation of
S or to σk with some 1 < k, cf. [BL02]. In the case of irrational rotation,
U is called a Siegel domain. The complement of the unbounded component
of C \ J∼ is called the filled-in topological Julia set and is denoted by K∼.
Equivalently, K∼ is the union of J∼ and its bounded Fatou domains. If the
laminational equivalence relation ∼ is fixed, we may omit ∼ from the nota-
tion. By default, we consider f∼ as a self-mapping of J∼. For a collection
R of sets, denote the union of all sets fromR byR+.

Definition 1.3 (Leaves). If A is a ∼-class, call an edge ab of CH(A) a leaf
of ∼. All points of S are also called (degenerate) leaves of ∼.

The family of all leaves of∼ is closed (the limit of a sequence of leaves of
∼ is a leaf of∼); the union of all leaves of∼ is a continuum. For any subset
X ⊂ D with the propertyX = CH(X∩S), we set σd(X) = CH(σd(X∩S)).
In particular, for any leaf ` of∼, the set σd(`) is a (possibly degenerate) leaf.

1.2. Geodesic laminations. Assume that ∼ is a σd-invariant laminational
equivalence relation.

Definition 1.4. The set L∼ of all leaves of ∼ is called the geodesic lamina-
tion generated by ∼.

Thurston studied collections of chords in D with similar properties to
those of L∼.

Definition 1.5 (Geodesic laminations, cf. [Thu85]). Two distinct chords
in D are said to be unlinked if they meet at most in a common endpoint;
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otherwise they are said to be linked, or to cross each other. A geodesic
pre-lamination L is a set of (possibly degenerate) chords in D such that
any two distinct chords from L are unlinked. A geodesic pre-lamination
L is called a geodesic lamination if all points of S are elements of L, and
L+ is closed. We will sometimes use the abbreviation geolamination for a
geodesic lamination. Elements of L are called leaves of L. By a degenerate
leaf (chord) we mean a singleton in S. The continuum L+ ⊂ D is called
the solid of L. Let L be a geodesic lamination. The closure in C of a
non-empty component of D \ L+ is called a gap of L. If G is a gap or
a leaf, call the set G′ = S ∩ G the basis of G. A gap is said to be finite
(infinite, countable, uncountable) if its basis is finite (infinite, countable,
uncountable). Uncountable gaps are also called Fatou gaps. Points of G′

are called vertices of G. Geolaminations of the form L∼, where ∼ is a
laminational equivalence relation, are called q-geolaminations (“q” from
“equivalence”).

Let us discuss geodesic laminations in the dynamical context. A chord is
called (σd-)critical if its endpoints have the same image under σd. If it does
not cause ambiguity, we will simply talk about critical chords.

It is essential to associate to each polynomial with connected Julia set a
corresponding laminational equivalence relation (we have already done it
in the case when the Julia sets is locally connected). By Kiwi [Kiw04], this
can also be done it P is a polynomial with connected Julia set and such that
all its periodic points are repelling (recall that such polynomials are said to
be dendritic). Here is an important result proven by Kiwi in [Kiw04].

Theorem 1.6. Suppose that a polynomial P with connected Julia set J =
J(P ) has no Siegel or Cremer periodic points. Then there exist a lamina-
tional equivalence relation ∼P , the corresponding topological polynomial
f∼P

: J∼P
→ J∼P

which acts on its topological Julia set, and a monotone
semiconjugacy ϕP : J → J∼P

. The semiconjugacy ϕP is one-to-one on
all (pre)periodic points of P belonging to J . If all periodic points of P are
repelling, then J∼P

is a dendrite.

In what follows, denote byD the space of all polynomials with connected
Julia sets and only repelling periodic points. Let Dd be the space of all
such polynomials of degree d. Then Theorem 1.6 implies that the following
diagram is commutative.
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-
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The notion of sibling invariant laminations introduced below is slightly
different from the original notion of invariant laminations in the sense of
Thurston. However, sibling invariant laminations form a closed set and in-
clude all q-laminations. Thus, for all our purposes, it will suffice to consider
sibling invariant laminations only. Some advantage of working with sibling
σd-invariant geodesic laminations is that they are defined through proper-
ties of their leaves; gaps are not involved in the definition. It was shown
in [BMOV13] that all sibling invariant laminations are also invariant in the
sense of Thurston [Thu85]. In particular for any gapG of a sibling invariant
L the set σd(G) is either a point, or a leaf of L, or a gap of L.

Definition 1.7. A geodesic lamination L is sibling σd-invariant provided
that:

(1) for each ` ∈ L, we have σd(`) ∈ L,
(2) for each ` ∈ L there exists `′ ∈ L so that σd(`′) = `.
(3) for each ` ∈ L so that σd(`) = `′ is a non-degenerate leaf, there

exist d disjoint leaves `1, . . . , `d in L so that ` = `1 and σd(`i) = `′

for all i = 1, . . . , d.

Let us list a few properties of sibling σd-invariant geodesic laminations.

Theorem 1.8 ([BMOV13]). The space of all sibling σd-invariant geodesic
laminations is compact. All geodesic laminations generated by σd-invariant
laminational equivalence relations are sibling σd-invariant.

For brevity, in what follows instead of “sibling σd-invariant geodesic lam-
inations” we will say “σd-invariant geodesic laminations”. Below, we talk
interchangeably about leaves (gaps) of ∼ or of L∼. Let us now discuss
gaps in the context of σd-invariant laminational equivalence relations and
geodesic laminations.

Definition 1.9 (Critical gaps). A gap G of a geodesic lamination is called
(σd-)critical if for each y ∈ σd(G′) the set σ−1d (y)∩G′ consists of at least 2
points. If it does not cause ambiguity, we talk about critical gaps.

Definition 1.10 (Periodic and (pre)periodic gaps). Let G be a gap of an
invariant geodesic lamination L. If the map σd restricted to G′ extends to
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Bd(G) as a composition of a monotone map and a covering map of some
degree m, then m is called the degree of σd|G. A gap/leaf U of L∼ is said to
be (pre)periodic of period k if σm+k

d (U ′) = σmd (U ′) for somem ≥ 0, k > 0;
if m, k are chosen to be minimal, then if m > 0, U is called preperiodic,
and, if m = 0, then U is called periodic (of period k). If the period of G is
1, then G is said to be invariant. Define precritical and (pre)critical objects
similarly to (pre)periodic and preperiodic objects defined above.

Consider infinite periodic gaps of σd-invariant geodesic laminations. There
are three types of such gaps: caterpillar gaps, Siegel gaps, and Fatou gaps of
degree greater than one. Observe that, by [Kiw02], infinite gaps are even-
tually mapped onto periodic infinite gaps. First we state (without a proof)
a well-known folklore lemma about the edges of preperiodic (in particular,
infinite) gaps (see, e.g., Lemma 2.28 [BOPT17]).

Lemma 1.11. Any edge of a (pre)periodic gap is either (pre)periodic or
(pre)critical.

Let us now classify infinite gaps.

Definition 1.12. An infinite gap G is said to be a caterpillar gap if its basis
G′ is countable.

As as an example, consider a periodic gap Q such that:
• The boundary of Q consists of a periodic leaf `0 = xy of period k, a

critical leaf `−1 = yz concatenated to it, and a countable concatena-
tion of leaves `−n accumulating at x (the leaf `−r−1 is concatenated
to the leaf `−r, for every r = 1, 2, . . . ).
• We have σk(x) = x, σk({y, z}) = {y}, and σk maps each `−r−1

to `−r (all leaves are shifted by one towards `0 except for `0, which
maps to itself, and `−1, which collapses to the point y).

The description of σ3-invariant caterpillar gaps is in [BOPT16b]. In gen-
eral, the fact that the basis G′ of a caterpillar gap G is countable implies
that there are lots of concatenated edges of G. Other properties of caterpil-
lar gaps can be found in Lemma 1.13.

Lemma 1.13 (Lemma 1.15 [BOPT16a]). Let G be a caterpillar gap of pe-
riod k. Then the degree of σkd |Bd(G) is one, and G′ contains some periodic
points of period k.

Definition 1.14. A periodic Fatou gap G of period n is said to be a periodic
Siegel gap if the degree of σnd |G is 1, and the basis G′ of G is uncountable.

The next lemma is well known. A part of it was actually proven in the
proof of [BOPT16a, Lemma 1.13].
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Lemma 1.15. Let G be a Siegel gap of period n. Then the map σnd |Bd(G) is
monotonically semiconjugate to an irrational circle rotation and contains
no periodic points. A periodic Siegel gap must have at least one image that
has a critical edge.

The following definition completes our series of definitions.

Definition 1.16. A periodic Fatou gap is of degree k > 1 if the degree of
σnd |Bd(G) is k > 1. If the degree of a Fatou gap G is 2, then G is said to be
quadratic.

The next lemma is well known.

Lemma 1.17. Let G be a Fatou gap of period n and of degree k > 1. Then
the map σnd |Bd(G) is monotonically semiconjugate to σk.

2. LIMIT GEODESIC LAMINATIONS AND THEIR PROPERTIES

In this section, we deal with properties of limits of σd-invariant q-laminations.
For the most part, the results are obtained in [BOPT16a].

Fix a degree d. In lemmas below, we assume that a sequence of σd-
invariant q-laminations Li converges to a σd-invariant geodesic lamination
L∞. By a strip we mean a (open) part of the unit disk contained between
two disjoint chords. By a strip around a chord ` we mean a strip containing
`. In what follows, when talking about convergence of leaves/gaps, close-
ness of leaves/gaps, and closures of families of geodesic laminations, we
always use the Hausdorff metric.

Definition 2.1. Let Lqd be the family of all σd-invariant geodesic q-laminations.
We will write Lqd for the closure of Lqd.

Even though we state below a few general results, we mostly concentrate
on periodic objects of limit geodesic laminations.

Lemma 2.2 (Lemma 2.2 [BOPT16a]). Let ` be a periodic leaf of L ∈ Lqd.
If L̂ ∈ Lqd is sufficiently close to L, then any leaf of any L̂ sufficiently close
to ` is either equal to ` or disjoint from `.

Definition 2.3 introduces the concept of rigidity.

Definition 2.3. A leaf/gapG of L is rigid if any q-lamination close to L has
G as its leaf/gap.

A series of lemmas proved in [BOPT16a] studies rigidity of periodic
leaves/gaps of laminations from Lqd. These are combinatorial counterparts
of the fact that repelling periodic points survive under small deformations
of complex polynomials. Observe that (periodic) leaves of geodesic lamina-
tions are either edges of gaps or limits of other leaves. By a (σd-)collapsing
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polygon we mean a polygon P , whose edges map under σd to the same non-
degenerate chord. Thus, if a point makes a circuit around P , its σd-image
moves back and forth along the same non-degenerate chord; as before, if it
does not cause ambiguity, we simply talk about collapsing polygons. When
we say that Q is a collapsing polygon of a geodesic lamination L, we mean
that all edges of Q are leaves of L; we also say that L contains a collapsing
polygonQ. However, this does not imply thatQ is a gap of L asQmight be
further subdivided by leaves of L inside Q. Let us now quote some results
of [BOPT16a] concerning (pre)periodic leaves and gaps.

Lemma 2.4 (Lemma 2.5 - 2.10 [BOPT16a]). Let L ∈ Lqd. If ˆ̀∈ L is a non-
degenerate rigid leaf, a leaf ` ∈ L is such that σkd(`) = ˆ̀ for some k ≥ 0,
and no leaf `, σd(`), . . . , σk−1(`) is contained in a collapsing polygon of L,
then ` is rigid. Also, the following objects are rigid:

(1) periodic leaves that are not edges of collapsing polygons;
(2) finite periodic gaps;
(3) (pre)periodic leaves of a gap that eventually maps to a periodic

gap;
(4) finite gaps that eventually map onto periodic gaps;
(5) periodic Fatou gaps whose images have no critical edges.

Using these results and other tools, we characterize all σ2-invariant limit
laminations. Each such lamination L can be described as a specific modifi-
cation of an appropriate geodesic lamination Lq from Lq2.
Definition 2.5. Two geodesic laminations coexist if their union is a lamina-
tion.

This notion was used in [BOPT16b]. If two geodesic laminations coexist,
then a leaf of one lamination is either also a leaf of the other lamination or
is located in a gap of the other geodesic lamination.

Definition 2.6. A σ2-invariant geodesic lamination is called hyperbolic if it
has a periodic Fatou gap of degree two.

Clearly, if a σ2-invariant geodesic lamination L has a periodic Fatou gap
U of period n and of degree greater than one, then the degree of σ2|Bd(U)

is two. By [Thu85], there is a unique edge M(L) of U with σn2 (M(L)) =
M(L); M(L) is such that either all leaves M(L), . . . , σn−12 (M(L)) are
pairwise disjoint, or their union can be broken down into several gaps per-
muted by σ2, in each of which edges are “rotated” by the appropriate power
of σ2, or n = 2k and σk2 flips M(L) on top of itself while all leaves M(L),
. . . , σk−12 (M(L)) are pairwise disjoint. In fact, M(L) and its siblingM ′(L)
are the two majors of L while σ2(M(L)) = σ2(M

′(L)) = m(L) is the mi-
nor of L [Thu85] (recall that a major of a σ2-invariant geodesic lamination
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is the longest leaf of L). Any σ2-invariant hyperbolic geodesic lamination
L is actually a geodesic lamination L∼ generated by the appropriate hyper-
bolic σ2-invariant laminational equivalence relation ∼ so that the topolog-
ical polynomial f∼ considered on the entire complex plane is topologically
conjugate to a complex quadratic hyperbolic polynomial; this justifies our
terminology.

Definition 2.7. A critical set Cr(L) of a σ2-invariant geodesic lamination
L is either a critical leaf or a gap G with σ2|Bd(G) of degree two.

A σ2-invariant q-lamination L either has a finite critical set (a critical
leaf, or a finite critical gap) or is hyperbolic. In both cases, the critical set is
unique.

Definition 2.8. By a generalized critical quadrilateral Q we mean either a
4-gon whose σ2-image is a leaf, or a critical leaf (whose image is a point).
A collapsing quadrilateral is a generalized critical quadrilateral with four
distinct vertices.

If Cr(L) is a generalized critical quadrilateral, then σ2(Cr(L)) = m(L).
The notion of generalized critical quadrilateral was used in [BOPT17] in
our study of geodesic laminations of arbitrary degree.

Theorem 2.9 describes all geodesic laminations from Lq2. A periodic leaf
n such that the period of its endpoints is k and all leaves n, σ2(n), . . . ,
σk−12 (n) are pairwise disjoint, is said to be a fixed return periodic leaf.

Theorem 2.9 (Theorem 3.8 [BOPT16a]). A geodesic lamination L belongs
to Lq2 if and only if there exists a unique maximal q-lamination Lq coexisting
with L and such that either L = Lq or Cr(L) ⊂ Cr(Lq) is a generalized
critical quadrilateral, and exactly one of the following holds.

(1) The critical set Cr(Lq) is finite, and Cr(L) is the convex hull of two
edges or vertices of Cr(Lq) with the same σ2-image;

(2) the lamination Lq is hyperbolic with a critical Fatou gap Cr(L) of
period n, and exactly one of the following holds:
(a) the set Cr(L) = ab is a critical leaf with a periodic endpoint

of period n, and L contains exactly two σn2 -pullbacks of ab that
intersect ab (one of these pullbacks shares an endpoint a with
ab, and the other one shares an endpoint b with ab).

(b) the critical set Cr(L) is a collapsing quadrilateral, and m(L)
is a fixed return periodic leaf.

Thus, any σ2-invariant q-lamination corresponds to finitely many geodesic
laminations from Lq2, and the union of all of their minors is connected.

Given a geodesic laminationL, letLq denote the σ2-invariant q-lamination
associated with L defined in Theorem 2.9.
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To interpret the Mandelbrot set as a quotient of Lq2, we define a certain
equivalence relation on Lq2, cf. [BOPT16a].

Definition 2.10. Suppose that L′, L′′ ∈ Lq2. Then the geodesic laminations
L1 and L2 are said to be minor equivalent if there exists a finite collection
of geodesic laminations L1 = L′, L2, . . . , Lk = L′′ from Lq2 such that for
each i with 1 6 i 6 k − 1, the minors m(Li) and m(Li+1) of the geodesic
laminations Li and Li+1 are non-disjoint.

The last result of [BOPT16a] is the following theorem. Let ψ : Lq2 →
S/QML be the map which associates to each geodesic lamination L ∈ Lq2
the QML-class of the endpoints of the minor m(L) of L.

Theorem 2.11 (Theorem 3.10 [BOPT16a]). The map ψ : Lq2 → S/QML is
continuous. The partition of Lq2 into classes of minor equivalence is upper
semi-continuous, and the quotient space of Lq2 with respect to the minor
equivalence is homeomorphic to S/QML.

One can understand Theorem 2.11 as follows. For every geodesic lam-
ination L define its minor set as the image of its critical set unless L is
hyperbolic in which case we call m(L) the minor set of L. Then ψ can be
viewed as the map associating to each class A of minor equivalence in Lq2
the minor set of the geodesic lamination Lq that is the only q-lamination in
A. The minor set of Lq is in fact the convex hull of the union of minors of
all laminations in A.

We want to modify this result by considering the maximal perfect sub-
set of Lq2. Observe that this subset consists of all non-isolated lamina-
tions. Equivalently, we consider geodesic laminations which are limits of
sequences of pairwise distinct σ2-invariant geodesic q-laminations. Theo-
rem 2.9 implies Corollary 2.12.

Corollary 2.12. A geodesic lamination L ∈ Lq2 is non-isolated in Lq2 if and
only if one of the following holds:

(1) the critical set Cr(Lq) is finite, and Cr(L) is the convex hull of two
edges or vertices of Cr(Lq) with the same σ2-image;

(2) the lamination Lq is hyperbolic with a critical Fatou gap Cr(L) of
period n, and exactly one of the following holds:
(a) the set Cr(L) = ab is a critical leaf with a periodic endpoint

of period n, and L contains exactly two σn2 -pullbacks of ab that
intersect ab (one of these pullbacks shares an endpoint a with
ab and the other one shares an endpoint b with ab).

(b) the set Cr(L) is a collapsing quadrilateral, andm(L) is a fixed
return periodic leaf.
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In order to prove Corollary 2.12, we need the following lemma.

Lemma 2.13. Suppose that L is a σ2-invariant q-lamination whose critical
set is a generalized critical quadrilateral. Then L is the only σ2-invariant
geodesic lamination with critical set Cr(L).

The proof is based on Thurston’s pullback construction [Thu85].

Proof of Lemma 2.13. Indeed, properties of σ2-invariant geodesic lamina-
tions imply that pullbacks of Cr(L) are well defined on each finite step;
moreover, these pullbacks are all sets from L. Furthermore, the closure L̂
of their entire family is a σ2-invariant geodesic lamination itself, and since
L is closed it follows that L̂ ⊂ L. We claim that L̂ = L. Indeed, sup-
pose otherwise. Then L̂ must contain a gap, say, U that itself is the union
of s > 1 gaps of L and, therefore, U contains leaves of L inside. If U is
finite, it follows that there are non-disjoint finite gaps of L. The latter is
impossible as L is a q-lamination. Thus, U is infinite. Mapping U forward
several times, we may assume without loss of generality that U is periodic
of period k (indeed, by [Kiw02], all infinite gaps of geodesic laminations
are (pre)periodic).

Consider several cases. First suppose that U is a caterpillar gap. Then
the critical leaf of U (or of a gap in the forward orbit of U ) must coincide
with the critical set of L. Therefore, L has a critical leaf with a periodic
endpoint, which is impossible for a q-lamination.

Now, suppose that U is a Siegel gap. It is well-known (e.g., it follows
from Lemma 1.11) that all edges of U are (pre)critical and that, therefore,
some image σt2(U) of U has a critical edge `; it then follows that Cr(L) = `,
that all edges of U are pullbacks of `, and that under the map ψ collapsing
edges of U to points any chord ˆ̀ connecting vertices of U projects under
ψ to a non-trivial chord ψ(ˆ̀) of the unit circle. Since ψ semiconjugates
σk2 |Bd(U) to an irrational rotation, the chord ψ(ˆ̀) in the unit disk will even-
tually intersect itself under the irrational rotation in question which implies
the same fact for the above chord ˆ̀⊂ U . We see that ˆ̀cannot be a leaf of
any lamination, a contradiction with the above.

Finally, suppose that σk2 |Bd(U) is of degree 2. Then some image of U is
an infinite gap V such that σ2|Bd(V ) has degree two. On the other hand,
Cr(L̂) = Cr(L) is a generalized critical quadrilateral, a contradiction with
the existence of V . Hence this case is impossible either, and soL = L̂ = Lq
is a unique geodesic lamination with critical set Cr(L). �

We are now ready to deduce Corollary 2.12 from Lemma 2.13.

Proof of Corollary 2.12. By Theorem 2.9, ifL satisfies the conditions of the
corollary, then L ∈ Lq2. Clearly, geodesic laminations described in (2)(a)
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and (2)(b) above do not belong to Lq2. Since they belong to Lq2, it follows
that they are limits of sequences of pairwise distinct σ2-invariant geodesic
q-laminations.

Consider now case (1). Then Cr(Lq) is finite and Cr(L) is the convex
hull of two edges or vertices of Cr(Lq) with the same σ2-image. Suppose
that Cr(Lq) is a polygon with more than four vertices. Then L 6= Lq (in
fact, L % Lq). Hence L /∈ Lq2, and, as above, L is the limit of a sequence of
pairwise distinct σ2-invariant geodesic q-laminations.

Consider now the case when Lq has a generalized quadrilateral as its
critical set Cr(Lq). In this case it may happen that L has a critical leaf that
is a diagonal of a quadrilateral Cr(Lq) so thatL 6= Lq; as before this implies
that L is the limit of a sequence of pairwise distinct σ2-invariant geodesic
laminations.

It remains to consider the case when L = Lq is generated by an equiva-
lence relation∼ and has a critical set Cr(L) that is either a critical quadrilat-
eral or a critical leaf. Let us show that then L is the limit of a non-constant
sequence of q-laminations. By Lemma 2.13, the lamination L is the unique
σ2-invariant geodesic lamination with critical set Cr(L). Now, the fact that
L is the limit of a sequence of pairwise distinct q-laminations follows from
the uniqueness of L and the fact that, due to well-known properties of the
combinatorial Mandelbrot set, there is a sequence of geodesic laminations
Li with critical sets Cr(Li) → Cr(L) (recall that we are considering the
case when Cr(L) is a generalized quadrilateral). This completes the proof
of the corollary. �

Thus, isolated geodesic laminations in Lq2 are the following:

(1) dendritic geodesic laminations with critical sets that have more than
four vertices,

(2) hyperbolic laminations.

If we remove them from Lq2, we will obtain the closed space Ll2 ⊂ Lq2 of
all σ2-invariant geodesic laminations that are non-isolated in Lq2. The minor
equivalence on Ll2 is defined in the same way as the minor equivalence on
Lq2: two laminations are minor equivalent if their minors can be connected
by a chain of non-disjoint minors. However, we only consider minors of
laminations from Ll2. Therefore, the minor equivalence on Ll2 is not a re-
striction of the minor equivalence on Lq2. In particular, some classes of
minor equivalence on Ll2 are slightly different from the restrictions of the
corresponding classes of minor equivalence on Lq2. Consider several cases;
the analysis below follows from Theorem 2.9 and Corollary 2.12.

(1) Take a dendritic geodesic lamination L generated by a laminational
equivalence relation ∼ such that Cr(L) has more than four vertices. Then
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there are several geodesic laminations in Ll2 with critical sets being gener-
alized critical quadrilaterals in Cr(L). These laminations form one class A
of the minor equivalence in Ll2. However, unlike for Lq2, the geodesic lam-
ination L itself does not belong to Ll2 and therefore is not included into A.
Still, it follows that the convex hull of the union of all minors of laminations
in A is the same for Ll2 and for Lq2.

(2) Now letL be a dendritic geodesic lamination such that Cr(L) is either
a quadrilateral or a critical leaf. Then, by Corollary 2.12, we have L ∈ Ll2.
Hence, in this case, the corresponding class of minor equivalence in Ll2
consists of L itself and two geodesic laminations obtained by inserting a
critical diagonal in Cr(L) and then pulling it back. In other words, this
class coincides with the corresponding class in Lq2. Of course, as in case
(1), the convex hull of the union of minors remains the same as for Lq2.

(3) In the case of a Siegel geodesic lamination L, we have that L belongs
to both Ll2 and Lq2. The corresponding class of the minor equivalence then
consists of L only.

(4) Consider a hyperbolic geodesic lamination L with a critical gap U of
period n such that the unique edge M of U of period n is a fixed return leaf.
ThenL itself does not belong to Ll2. However, three closely related geodesic
laminations form a class of minor equivalence. Two of them have critical
leaves with endpoints at endpoints of M . The third one has a collapsing
quadrilateral based on M . This yields the same convex hull of the union of
minors as before in case of Lq2.

(5) Finally, consider a hyperbolic geodesic lamination L with a critical
gap U of period n such that the unique edge M = ab of U of period n is not
a fixed return leaf. It follows that neitherL nor the geodesic lamination with
a collapsing quadrilateral based on M belong to Ll2. Therefore, there are
two non-equivalent geodesic laminations with critical leaves `a and `b with
endpoints a and b, respectively that can be associated with L, and so there
are two classes of minor equivalence, generated by `a and `b, respectively,
that can be associated with L.

Let A be a class of minor equivalence in Ll2. Define m(A) as the convex
hull of the union of the corresponding minors. The association A 7→ m(A)

is similar to that made in [BOPT16a] for Lq2. Let A′ be the minor equiva-
lence class in Lq2 containing A. The analysis made above implies that, in
cases (1) – (4), we have m(A) = m(A′). In cases (2) and (3), we have
A = A′. In cases (1) and (4), the class A′ consists of A and the lamination
Lq generated by the corresponding laminational equivalence.

In case (5) the situation is different. The two distinct classes of minor
equivalence in Ll2 correspond to critical leaves `a and `b and give rise to
sets {σ2(a)} and {σ2(b)}. These singletons replace the minor m(L) =
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σ2(a)σ2(b) that corresponds to L in QML. In other words, the leaf m(L)
is erased from QML and replaced by its two endpoints. This is what we
informally referred to in the beginning of the paper as “unpinching” of the
circle. In the end, this yields a new parametric geodesic lamination QMLl,
the corresponding laminational equivalence ∼QMLl , and the corresponding
quotient spaceMl

2. Let ψl : Ll2 → S/QMLl be the quotient map.

Theorem 2.14. The map ψl : Ll2 → S/QMLl is continuous. Thus, the
partition of Ll2 into classes of minor equivalence is upper semi-continuous,
and the quotient space of Ll2 with respect to the minor equivalence is home-
omorphic to S/QMLl.

It follows that the corresponding parametric geodesic lamination QMLl,
taken as a subset of the space of all chords in D, is perfect.

The dendritic versions ∼ld and Mld
2 of ∼l and Ml

2 were given in the
Introduction, so we refer the reader there; notice that the dendritic versions
here are well-defined as QMLl is perfect.

3. NON-RENORMALIZABLE GEODESIC LAMINATIONS

In this short section we suggest two spaces of σ2-invariant geodesic lam-
inations that can be obtained fromMc

2 through a process of “unpinching”
(i.e., replacing some leaves of QML by their endpoints). Both spaces are
described by the same parametric geodesic lamination QMLnr modifying
Thurston’s quadratic minor lamination QML and such that infinite gaps of
it are all pairwise disjoint. As before, this geodesic lamination can be in-
terpreted in two different ways resulting in two distinct but related quotient
spaces. First, we may consider various vertices and edges of infinite gaps
of the QMLnr as distinct classes of the corresponding equivalence relation;
then infinite gaps of QMLnr become closures of bounded complementary
domains of the quotient space D/QMLnr = Mnr

2 . Then we also consider
the dendritic versionMnrd

2 ofMnr
2 . The main ideas were already discussed

in the Introduction.
Consider a maximal by inclusion canonical copy X $Mc

2 of the com-
binatorial Mandelbrot setMc

2. In other words, consider a copy X $Mc
2 of

Mc
2 that can be described as follows. There exist a special ancestor lami-

national equivalence ∼X and the associated σ2-invariant ancestor geodesic
lamination LX with the following properties. The lamination LX is hyper-
bolic and has a critical Fatou gap UX of period, say, n. Let VX = σ2(UX)
be the postcritical gap of LX . The boundary Bd(VX) can be projected to S
by means of collapsing its edges. This projection will be denoted by ϕX . It
semiconjugates σn2 |Bd(VX) and σ2. Moreover, if we consider QML ⊂ D and
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lift it to VX using ϕX , we will obtain exactly the restriction of QML onto
VX ; the quotient space of VX under this restriction is exactly X .

This description applies to any canonical copy ofMc
2 inMc

2; in fact, it
can be viewed as the definition of a canonical copy ofMc

2 insideMc
2. Since

we only want maximal by inclusion canonical copies X ofMc
2 inMc

2, we
need to specify properties of LX . Well-known facts about the combinatorial
Mandelbrot set imply that maximal gaps VX can be of two types.

(1) There is a countable family of such gaps, each of which is based on
an edge of the Main Cardioid. The corresponding geodesic lamination LX
has a finite invariant rotational gap GX such that σ2(GX) = GX , and the
map σ2|GX

can be viewed as a “combinatorial rotation” (each edge of GX

under σ2 “jumps” over the same number of edges of GX in the positive
direction). Moreover, there is a cycle of Fatou gaps attached to GX at its
edges. The longest edge MX of GX is the major of LX at which the critical
gap UX is attached to GX . The edge σ2(MX) = mX is the minor of LX .
The gap VX = σ2(UX) is attached to GX at mX . As explained above, X
is a copy of Mc

2 that can be viewed as a “pinched gap” VX . There are
countably many such copies X of Mc

2 and, respectively, countably many
gaps VX attached at edges of the Main Cardioid to the Main Cardioid itself.
The remaining vertices of the Main Cardioid correspond to laminations with
invariant Siegel gap.

(2) Otherwise, there are maximal by inclusion copies X of Mc
2 in Mc

2

that are generated by gaps VX of different nature. In these cases, LX is a
hyperbolic lamination such that UX is a periodic critical Fatou gap of LX
of some period n with a fixed return edge of period n. Notice that these are
only maximal by inclusion Fatou gaps UX of some period n such that UX
has a fixed return edge of period n; there exist other hyperbolic geodesic
laminations with similar periodic Fatou gaps but we consider only maximal
ones among them.

Overall, we have countably many sets X and countably many gaps VX .
All these gaps are pairwise disjoint. In order to construct a new paramet-
ric geodesic lamination QMLnr (“nr” stands for “non-renormalizable”) we
proceed as follows. First, in case (2) above we replace sets X by the corre-
sponding gaps VX . In other words, we erase all minors inside gaps VX . In
QML, the gap VX was “pinched” by a geodesic lamination that copies QML
itself; now we “unpinch” VX . In case (1) above we do almost the same with
one exception. Indeed, let X be a canonical copy ofMc

2 associated with a
lamination ∼X and a postcritical Fatou gap VX of LX . Then we erase not
only all minors of QML inside VX but also the edge mX of VX which is
an edge of the Main Cardioid. This removes the “barrier” between VX and
the Main Cardioid. Evidently, it leads to a big gap which unites all gaps VX
from case (1) above and all Siegel vertices of the Main Cardioid into one
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new gap CAnr that can be viewed as the central gap of QMLnr replacing in
this capacity the Main Cardioid.

From the point of view of σ2-invariant geodesic laminations, vertices and
edges ` of VX represent geodesic laminations that can be constructed as
follows. Take, say, an edge ` of VX . Then take the convex hull of its full
preimage in UX ∩ S; this will produce a collapsing quadrilateral Q` ⊂ UX .
Using Thurston’s pullback construction, we can repeat this process infin-
itely many times. Then take the closure of the resulting set of leaves. This,
according to [Thu85], will be a σ2-invariant geodesic lamination whose crit-
ical set projects to a critical leaf under the map from Bd(UX) to S collapsing
of all edges of UX .

Thus, again, the idea is to choose a specific class of geodesic lamina-
tions (in this case, these are all renormalizable geodesic laminations) and
replace them by geodesic laminations that have either critical leaves or col-
lapsing quadrilaterals (projecting to critical leaves under the canonical col-
lapse of edges of the corresponding postcritical Fatou gap). In other words,
QMLnr, ∼nr, and the corresponding quotient spaceMnr

2 describe the fam-
ily of laminations that can be characterized as follows. First, these are all
non-renormalizable q-laminations. Second, these are all geodesic lamina-
tions obtained by inserting a critical leaf or a quadrilateral projecting to a
critical leaf under the collapse of individual edges in a maximal, by inclu-
sion, critical Fatou gap.

Each edge of the gap VX of period n is an eventual pullback of a unique
edge of VX of period n, which is in fact the minor mX of LX . In Mnr

2 ,
edges of VX represent cutpoints of Mnr

2 belonging to the boundaries of
bounded domains inside Mnr

2 . These are exactly the places at which VX
connects with the rest of Mnr

2 . Since all edges of VX are preimages of the
unique edge of VX of period n, it follows thatMnr

2 grows from VX (viewed
as a parametric gap) at specific places corresponding to specific laminations
inside the critical gap UX . These are laminations that, after renormalization
(that is, after projecting UX to the entire circle), become laminations with a
critical leaf eventually mapped to the point of S with argument 0.

All of the above applies to all gaps VX from case (2). Moreover, it almost
completely applies to the gaps VX from case (1). The only exception to
this is that the laminations from the Main Cardioid itself will not have their
minors represented as the edges of CAnr.

Finally, well-known facts about the combinatorial Mandelbrot set imply
that QMLnr is perfect. Thus the parametric geodesic lamination QMLnr

can in fact be interpreted in a different fashion giving rise to the dendritic
versions ∼nrd and Mnrd

2 of ∼nr and Mnr
2 . The main idea was explained

in the introduction. The space Mnrd
2 represents the model for quotient of

the space of all q-laminations determined by the equivalence relation under
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which two q-laminations L1,L2 are identified in the following two cases:
(1) is the oldest ancestor of them is the empty lamination (this means that
either lamination is a tuning of a lamination from the Main Cadrioid), or (2)
L1 and L2 have the same oldest ancestor lamination which is not the empty
lamination.
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