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Abstract: We introduce a new complete metric in the space V2 of unimodal
C2-maps of the interval, with two maps close if they are close in the C2-metric
and differ only on a small interval containing their critical points. We identify
all structurally stable maps in the sense of this metric. They are maps for which
either (1) the trajectory of the critical point is attracted to a topologically at-
tracting (at least from one side) periodic orbit, but never falls into this orbit,
or (2) the critical point is mapped by some iterate to the interior of an interval
consisting entirely of periodic points of the same (minimal) period. We verify
the generalized Fatou conjecture for V2 and show that structurally stable maps
form an open dense subset of V2.

1. Introduction

One of the central problems in dynamical systems theory is to investigate how
the dynamics of a map changes if the map is slightly perturbed. The size of a per-
turbation is normally measured by the Cr-distance between maps. The dynamics
is said to change in an essential way if the new map is not conjugate to the orig-
inal one. If a map f has a neighborhood U such that all maps in U are conjugate
to f then f is said to be structurally stable. The definition of structural stability
depends on the topology in the space of maps, but since the standard agreement
is that maps are considered with Cr-topology, this dependence is omitted from
the definition. According to the generalized Fatou conjecture, structurally stable
maps should form an open dense subset in the entire space and should have some
nice properties (like hyperbolicity). The original Fatou conjecture goes back to
Poincaré, Fatou and Andronov and was stated in [3] by Fatou for rational maps.
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For interval maps, density of Axiom A maps has been proved by Jakobson [4]
in C1-topology, and more recently, in Cr-topology (r = 2, 3, . . . ,∞, ω) by Ko-
zlovski [5] for unimodal maps and by Kozlovski, Shen and van Strien [6] for
multimodal maps.

Let us look at this situation from a different point of view. Suppose that
maps g and h are close to a map f so that the Cr-distances between g and f
and between h and f are the same. Suppose however that the map g differs
from f on the entire space while the map h differs from f only on a small open
set. Then intuitively one should declare that h is closer to f than g. To reflect
this intuitive feeling one needs to introduce another metric in the space of all
Cr-maps.

Now, suppose that f is not structurally stable. Then there are maps with
different dynamics which are very close to f in the Cr-metric, and one can ask if
these maps differ from f on big sets (like g) or on small sets (like h). Theoretically
it might happen that to change the dynamics of a structurally unstable f one
needs to introduce small changes f everywhere, while the dynamics of f persists
under small changes on small sets. If this were the case, it would reflect a version
of stability of the dynamics of f . In our view, making a distinction between these
two situations is natural and important.

We would like to employ this point of view in the context of smooth unimodal
maps. Despite apparent simplicity, these maps provide a variety of hard to study
dynamical phenomena. The crucial role for the description of their dynamics is
played by the behavior of the trajectory of the critical point, on which the dy-
namics depends almost completely. Therefore, if we want to achieve the maximal
impact by slightly changing the map on a small set, it is natural to choose the
set to be a small neighborhood of the critical point. In other words, one can
expect that the critical point is the most sensitive to the changes of the map and
makes the greatest impact upon the dynamics. This motivates us to study the
question of which unimodal maps change their dynamics under small perturba-
tions on small neighborhoods of their critical points, and which are stable with
respect to such perturbations. An additional motivation is the fact that this was
the main kind of perturbations used by Jakobson in [4] and that it works for
Collet-Eckmann maps in higher smoothness (see [1]).

We suggest a certain formalism which reflects the above considerations and
may be helpful if we compare our approach to the standard one.

For a closed interval I and a Cr-function ϕ : I → R we will denote by
‖ϕ‖r,I the Cr-sup-norm of ϕ; the corresponding metric is denoted by dr,I . We
want some smoothness, so we will assume that r ≥ 1 and consider the space
Cr(I,R) of real-valued Cr-functions on I, as well as a subspace Cr(I, J) of
Cr(I,R), consisting of the functions with values in an interval J . Without loss
of generality, by a unimodal Cr-map we mean a map f ∈ Cr(K,K) of a closed
interval K = [a, b] into itself such that it has a unique critical point c = cf , f
attains a local maximum at cf , and f(a) = f(b) = a (we will keep the notation
K, a, b, c throughout the paper). Given an interval I, we denote its length by |I|.

Normally this space of maps is endowed with the Cr-metric and the corre-
sponding topology. To implement the ideas described earlier, we introduce a finer
metric. Let f be a unimodal Cr-map and g be its perturbation.1 Then denote

1 We will use the word “perturbation” basically in 2 different meanings. The first one is the
usual “process of perturbing.” The second one is as here: we start with a map f , perturb it, and
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by Di(f, g) the open set of all points x such that f(x) 6= g(x). The idea is to
measure both how big Di(f, g) is and how far it is from the critical points of f
and g. To do so, let I(f, g) be the smallest closed interval containing Di(f, g), cf
and cg. Set ρr(f, g) = |I(f, g)| + ‖f − g‖r,K . Then ρr(f, g) ≥ ‖f − g‖r,K. In the
next section (Proposition 2.1) we will show that ρr is a complete metric.

Observe that the metric ρr is strictly finer than the Cr-metric. For instance,
if K = [0, 1] and f ∈ Cr(K,K) is unimodal then unimodal self-mappings of K
defined as fε = (1− ε)f converge to f in Cr-sense, while ρr(fε, f) > |K| = 1 for
any ε. Finally, one can introduce topology analogous to the C∞-topology in the
space of all unimodal C∞-maps by declaring that C∞-maps converge to a map
if they converge to it in all ρr-metrics.

Since the metric ρr reflects closeness of maps around their critical points and
coincidence far away from the critical points, it serves our purpose and will be
used from now on. To distinguish between ours and standard terminology we
speak of (arbitrarily) c-small perturbations meaning (arbitrarily) small pertur-
bations in ρr-metric, c-structurally (un)stable meaning structurally (un)stable
in ρr-metric, c-close meaning close in ρr-metric, and so on (it will follow from
the context what smoothness r we consider).

Let us fix a closed interval K = [a, b]. Think of trivial ways in which a c-small
perturbation of a unimodal map f is not topologically conjugate to f . One such
way would be to have f(cf) or f2(cf ) to be equal to an endpoint ofK, a property
that can be easily destroyed by such a perturbation. Unless f(a) = a, this reflects
the choice of K, rather that the dynamics of f and its perturbations. However,
we excluded such phenomena by requiring that f(a) = f(b) = a.

Another trivial situation when a c-small perturbation produces a map which is
not topologically conjugate to f occurs when the critical point of f is degenerate,
that is, f ′′(cf ) = 0. Then there are c-small perturbations g with cf as a critical
point, but with g′′(cf ) > 0. Thus, g is not unimodal, so it cannot be conjugate
to f . This basically means that unimodal maps with a degenerate critical point
should be considered c-structurally unstable. However, the metric ρr that we
are using, is not defined outside the space of unimodal maps. Fortunately, there
is another point of view, that we will adopt here. Namely, we consider only
perturbations that are unimodal. Note that if the critical point is non-degenerate,
its C2-c-small perturbation is also unimodal. Hence, our decision will influence
only classification of unimodal maps with the degenerate critical point.

We will denote the space of unimodal Cr-maps of K into itself by Vr and
its subspace consisting of maps with the critical point non-degenerate (that is,
with the second derivative in the critical point non-zero) by Ur. Those spaces are
considered with the metric ρr. We proved already that the space Vr is complete.
As we will prove in Lemma 6.1, Ur is its open dense subset.

We are interested in describing all c-structurally stable maps in Vr and proving
that c-structurally stable maps are dense in Vr. To do so we need a couple of
definitions. An interval I is said to be periodic of period k > 1 if fk(I) ⊂ I and
the interiors of f i(I) are pairwise disjoint for i = 0, 1, 2, . . . , k − 1. If f ∈ Vr is
a map such that either (1) the trajectory of cf is attracted to a topologically
attracting (at least from one side) periodic orbit, but never falls into this orbit,
or (2) cf is mapped by some iterate of f to the interior of an interval consisting

get a map g which is a perturbation of f . However, when we speak of a “small perturbation,”
we mean that g − f (not g) is small.
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c cf f

Fig. 1.1. Attractively stabilized (left) and neutrally stabilized (right) maps

entirely of periodic points of the same (minimal) period, then we call f stabilized.
Moreover, in the case (1) we call f attractively stabilized, and in the case (2)
neutrally stabilized. Observe that in both cases cf is mapped by some iterate
of f to the interior of a periodic interval I of period k with fk|I monotone.
Moreover, if x belongs to such interval then either x is periodic or the trajectory
of x is attracted to a topologically attracting (at least from one side) periodic
orbit.

Denote the set of all stabilized maps in V2 by St2. Our main result is the
following theorem, in which we verify the generalized Fatou conjecture for V2.

Theorem 1.1. A map f ∈ V2 is c-structurally stable if and only if it is stabilized.
Moreover, St2 is an open dense subset of V2.

Let us compare this theorem with a theorem of Kozlovski in which he verifies
the generalized Fatou conjecture for unimodal maps.

Theorem 1.2 (Kozlovski). The set of real analytic unimodal maps whose crit-
ical points are attracted by attracting periodic orbits is dense in the set of all
unimodal Cr-maps in the Cr-topology for r = 1, 2, . . . ,∞, ω.

We use this theorem in an essential way when we consider infinitely renor-
malizable unimodal maps in Section 5. However, a major tool in [5] are analytic
maps, which implies that in [5] perturbations inevitably differ from the origi-
nal map on the entire interval except for finitely many points. Therefore the
arguments from [5] are not directly applicable to V2. On the other hand, if the
question of density of structurally stable maps is considered for smaller spaces
of maps (like, for example, analytic unimodal maps, space of real polynomials,
etc.) then even the question of density in the sense of ρr is not always reason-
able because then the space with ρr-metric may become discrete (as in the cases
mentioned above).

We deal with the problem in a step-by-step fashion. Section 2 contains pre-
liminaries. In Section 3 we show that stabilized maps from V2 are c-structurally
stable. In Section 4 we consider finitely renormalizable unimodal maps in U2 and
prove that if they are not stabilized then they are not c-structurally stable. The
decay of geometry established in [2] and [11] is crucial for our arguments. Then
in Section 5 we obtain similar results for infinitely renormalizable maps in U2
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(and even in U∞). Finally in Section 6 we deduce the results for V2 from the
results for U2.

When the paper was ready for submission, we learned about Mike Todd’s
thesis [13] in which, among others, a problem of stability of unimodal maps was
considered. In the case of non-recurrent critical points the results of [13] are
similar to ours (as we point out before Lemma 4.1, they are known). In the
case of a recurrent critical point it is shown in [13] that if a unimodal map f
with recurrent critical point c is analytic or such that ω(c) is minimal, then
for any point x ∈ ω(c) arbitrarily small Ck-perturbations of f supported on an
arbitrarily neighborhood of x may change the combinatorial type of f . Todd
uses complex analytic tools based upon [5,7] and obtains results related to ours.
However, [13] covers only limited class of maps while we solve the problem for
all C2-unimodal maps.

2. Preliminaries

We start by proving the proposition promised in the introduction.

Proposition 2.1. The function ρr is a complete metric in Vr.

Proof. Let us show first that |I(f, g)| understood as the distance between f and
g is a metric. It is clear that |I(f, g))| is symmetric and reflexive. To prove the
triangle inequality observe that I(f, g) ∪ I(g, h) is a closed interval (it is the
union of two closed intervals, each of which contains cg) outside which we have
f = g = h. Moreover, cf , cg, ch ∈ I(f, g)∪I(g, h). Hence I(f, h) ⊂ I(f, g)∪I(g, h)
and the triangle inequality follows. Thus, ρr as a sum of two metrics, is a metric.

Let us now show that it is complete. Suppose that we have a Cauchy sequence
(in the sense of ρr) of unimodal maps f1, f2, . . . . Then it follows that there exists
f ∈ Cr(K,K) such that fi → f ∈ Cr(K,K) in the sense of the Cr-metric. Let

Im =
⋃∞

j=m I(fj , fj+1). Since for any j the intervals I(fj , fj+1) and I(fj+1, fj+2)

intersect each other (both contain cfj+1
), Im is a closed interval. Since we deal

with a Cauchy sequence in the sense of ρr, for every ε > 0 there exists m
such that |I(fm, fi)| ≤ ε for every i ≥ m. Hence Im ⊂ [cfm

− ε, cfm
+ ε] and

|Im| → 0. Since Im ⊃ Im+1 . . . we see that
⋂∞

m=1 Im = {c} for some point c.
Then c = limm→∞ cfm

is a local maximum of f .
Now, for every x 6= c there is a neighborhood U of x and an integer m such

that f coincides with fm on U and cfm
/∈ U . Thus, c is the only critical point of

f , so f is unimodal (note that in general unimodal Cr-maps may converge in the
Cr-sense to a non-unimodal map, e.g., to a map with an interval on which it is
constant). Therefore f ∈ Vr and |I(fm, f)| → 0. This proves that ρr(fm, f) → 0.

For a unimodal map f : K → K set c = cf , c′ = c and for x 6= c define x′

as the unique point not equal to x with f(x′) = f(x). Observe that the map
x 7→ x′ is defined on the entire K because we assume that f(a) = f(b). Given a
set A ⊂ K, set A′ = {x′ : x ∈ A}. In what follows any interval I ⊂ K such that
I ′ = I will be called symmetric. We will also use the notation c1 = f(c).

In order to make a c-small perturbation of a unimodal map, we will be adding
to this map a small “bump” concentrated close to the critical point. The following
lemma describes this procedure.
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Lemma 2.2. Let an integer r ≥ 2, a map f ∈ Vr on an interval K, and a
symmetric interval I ⊂ K be given. Then for every ε > 0 there is δ > 0 such
that if z ∈ K is a point with 0 < |z − f(c)| < δ then there exists g ∈ Ur such
that f and g coincide outside I, have the same critical point c, g(c) = z, and
ρr(f, g) < ε. Moreover, if f is of class C∞, then g can be chosen also of class
C∞.

Proof. Fix functions ψ+, ψ− : R → R of class C∞, equal 0 outside the interval
[−1, 1], with ψ′

+(0) = ψ′
−(0) = 0, ψ′′

+(0), ψ′′
−(0) < 0 and such that ψ+ > 0 on

(−1, 1), while ψ− < 0 on (−1, 1). We will look for g of the form

g(x) = f(x) + α · ψ±

(
x− c

β

)

for some α, β > 0, where we choose ψ+ when z > f(c) and ψ− when z < f(c).
Clearly, if f is of class C∞, then g is also of class C∞.

We fix β so small that [c− β, c+ β] ⊂ I and β < min(1, ε/4). We have

|g(i)(x) − f (i)(x)| =

∣∣∣∣
α

βi
· ψ

(i)
±

(
x− c

β

)∣∣∣∣ (2.1)

for i = 0, 1, . . . , r, so

ρr(f, g) < ε/2 +
α

βr
‖ψ±‖r,[−1,1]. (2.2)

If α is small enough then the right-hand side of (2.2) is smaller than ε. On the
other hand, if δ > 0 is sufficiently small, we can choose the corresponding small
α to satisfy g(c) = z and, by (2.2), to guarantee that ρr(f, g) < ε. Thus, it
remains to prove that for a sufficiently small α the map g is unimodal with the
critical non-degenerate point c.

Since ψ′
±(0) = 0, ψ′′

±(0) < 0 and f ′′(c) ≤ 0, we get g′(c) = 0 and g′′(x) < 0
for every x in a small neighborhood U = (y, z) of c with f ′(y) > 0 and f ′(z) < 0.
Since |g′(x) − f ′(x)| is very small, the function g(x) has positive derivative if
x < c and negative derivative if x > c. Outside U , if α is sufficiently small, the
sign of g′ is the same as the sign of f ′. Thus, c is the maximum of g and g is
unimodal. This completes the proof.

Any perturbation from the above lemma (or the next one) will be called a
bump perturbation.

The next lemma uses the construction from Lemma 2.2 but includes some
additional estimates and is proven only in C2.

Lemma 2.3. Let f ∈ U2 and suppose that γ > 0 is given. Then there exists
δ > 0 such that for any interval T = [a, a′] with |T | ≤ δ and any point d ∈ K

with |d−c1|
|f(T )| ≤ δ there exists a unimodal map g ∈ U2 with the same critical point

c such that g = f outside T , ρ2(f, g) ≤ γ and g(c) = d.

Proof. We use the same construction as in Lemma 2.2, but only with ψ = ψ+

and admitting α < 0. Thus, we look for g of the form

g(x) = f(x) + α · ψ
(

x−c
β

)
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for some α, β ∈ R, β > 0. According to (2.1) and (2.2), we have

|g′′(x) − f ′′(x)| ≤
|α|

β2
ζ (2.3)

for all x ∈ K, and

ρ2(f, g) ≤ 2β +
|α|

β2
ζ, (2.4)

where ζ = ‖ψ‖2,[−1,1].
Since f ′′(c) 6= 0, there exists σ > 0 such that for any interval T = [a, a′],

|f(T )| ≤ σ
(
min(c− a, a′ − c)

)2
,

and there exists τ > 0 such that |f ′′(x)| > τ for any x ∈ (c− τ, c+ τ). Set

δ = min

(
γ

4
,
γ

2ζσ
, 1, τ,

τ

σζ

)
(2.5)

and if T = [a, a′] is an interval with |T | ≤ δ which we fix from now on, set

β = min(c− a, a′ − c).

Note that
β ≤ |T | ≤ δ ≤ min(1, τ) and |f(T )| ≤ σβ2. (2.6)

Take a point d ∈ K with |d−c1|
|f(T )| ≤ δ, and set α = d − c1. Then g(c) =

f(c) + α = d and (in view of (2.5) and (2.6))

|α|

β2
ζ ≤

|d− c1|ζσ

|f(T )|
≤ δζσ ≤ min

(γ
2
, τ

)
. (2.7)

To see that g is unimodal, observe that g = f outside (c − δ, c + δ) ⊂ (c −
τ, c+ τ), and for x ∈ (c− τ, c+ τ) we have

|g′′(x)| ≥ |f ′′(x)| − |f ′′(x) − g′′(x)| > τ − |f ′′(x) − g′′(x)|,

and this is positive by (2.3) and (2.7). Moreover, both f and g−f have a critical
point at c, so c is also a critical point of g.

Finally, by (2.4)–(2.7)

ρ2(f, g) ≤ 2β +
|α|

β2
ζ ≤ 2δ +

γ

2
≤ γ.

This completes the proof.

If f is a smooth piecewise monotone map then an interval I is said to be a
homterval if for every n there is no critical point of fn in its interior. Clearly, a
point belongs to the interior of a homterval if and only if it is not approximated
by precritical points. We need the following theorem, proved in [10]. We state it
here in a form convenient for us.

Theorem 2.4. Let f ∈ U2. If J is a homterval then J is eventually mapped into
a periodic homterval. In particular, if c is not periodic then the critical value c1
is approximated by precritical points if and only if none of the following happens:
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1. c1 is mapped to the interior of a periodic homterval by some iterate of f ,
2. f(c) = b and a is an endpoint of an invariant homterval.

If there exists a periodic interval I containing c of period greater than 1 then
f is said to be renormalizable. If there exists a number k such that a periodic
interval containing c cannot be of period greater than k then f is said to be
finitely renormalizable, otherwise f is said to be infinitely renormalizable. An
interval T = [p, q] ⊂ K such that c ∈ (p, q) and all forward images of p, q miss
(p, q) is said to be nice (see [8]). We always assume that nice intervals are small
and map off themselves. Fix a nice interval T .

Consider a point x ∈ K. Then we can define the first entry map RT into intT
as the first positive iterate of f (if any) which maps x into intT . Clearly, there
are points at which RT is not defined. The set of all points on which RT is defined
is the union DT of pairwise disjoint open intervals called domains of RT . There
is one exceptional domain of RT , called central return domain of T and defined
as follows. Suppose that c is recurrent. Then there exists the minimal positive
integer m with fm(c) ∈ intT . We can choose an open interval J 3 c1 such that
fm−1(J) = T and fm−1|J has no critical points. The interval f−1(J)∩T is then

called the central return domain of T and is denoted by T̂ ; moreover, f maps T̂
a 2-to-1 fashion onto J . Clearly, even though T is not necessarily symmetric, its

central return domain always is. Observe that the endpoints of T̂ are mapped
by fm into one endpoint of T . Otherwise a domain I of RT is mapped by RT

diffeomorphically onto T .
The properties of domains of RT in the case when T is nice are well known.

For the sake of completeness we state them in the following lemma. It is partially
proved in [9], page 341, partially is obvious.

Lemma 2.5. Let T 3 c be a nice interval, and let Q be a domain of RT . Then
for some m the map RT |Q coincides with fm|Q, the endpoints of Q are mapped
by RT to the endpoint(s) of T and have the positive f -orbits disjoint from intT ,
and there are two possibilities: (1) RT |Q is monotone and RT (Q) = T (if Q is not
a central domain of T ), or (2) RT |Q has only one critical point (if Q is a central
domain of T ). Moreover, intervals Q, f(Q), . . . , fm(Q) = RT (Q) are pairwise
disjoint, and also disjoint from T , except for the case when Q ⊂ T , in which
case the only nonempty intersection may be between Q and fm(Q) = RT (Q).

Finally we state a result which we rely upon considering the finitely renor-
malizable recurrent case in Section 4. It has been proven in [2] and [11], and
establishes the decay of geometry for maps in U3. Moreover, the same result is
true in U2, see [11] and [12]. To state it we need some definitions. Given intervals
I,M with I ⊂ intM we set

ε(M, I) = max

{
|I|

|M−|
,

|I|

|M+|

}
,

where M− and M+ are components of M \ I, and if ε(M, I) < ε, we say that I
is ε-inside M .

Theorem 2.6. Let f ∈ U2 be a finitely renormalizable map with a recurrent and
non-periodic critical point c. Then for any ε > 0 there exists a nice interval I 3 c

such that the central return domain Î is ε-inside I.
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3. Stabilized maps and their structural stability

Here we prove the simple direction of Theorem 1.1 and show that stabilized
maps are c-structurally stable. We also state a useful (although trivial) lemma
dealing with maps whose critical points are periodic.

Theorem 3.1. For r = 0, 1, . . .∞, if f ∈ Str then it is c-structurally stable in
Vr.

Proof. If f ∈ Str then two cases are possible. First suppose that f is neutrally
stabilized. Then for some minimalm the point fm(cf ) belongs to an open interval
I consisting of periodic points of minimal period k. Choose pullbacks of I along
cf , . . . , f

m(cf ) and denote them I−1, . . . , I−m with cf ∈ I−m. Choose a small
neighborhood U ⊂ I−m of cf . If a perturbation is sufficiently c-small then it will
not change the map outside U , and on U the new map g will act so close to f
that g(U) ⊂ I−m+1, . . . , g

m(U) ⊂ I. Clearly, a homeomorphism which acts as
the identity outside

⋃m

i=1 I−i = H and insideH simply maps intervals gi(U) onto
the intervals f i(U) appropriately, conjugates g and f which shows that neutrally
stabilized maps are c-structurally stable. A very similar argument shows that if
a map is attractively stabilized then it is c-structurally stable too. We leave this
case to the reader.

The next lemma deals with the case when the orbit of the critical point is
periodic.

Lemma 3.2. Suppose that f ∈ Vr (r = 1, 2, . . . ,∞) and the orbit of cf is peri-
odic. Then f is not c-structurally stable in Vr, but arbitrarily c-close to f there
are attractively stabilized maps.

Proof. Let n be the period of c = cf . For any sufficiently c-small bump per-
turbation g of f the point c is a critical point of g and gn(c) 6= c, so g is not
topologically conjugate to f . Moreover, if the perturbation is sufficiently c-small,
the attracting periodic orbit of period n persists and attracts the g-trajectory
of c. Thus, g is attractively stabilized.

4. Finitely renormalizable maps

In this section we consider finitely renormalizable unimodal maps. The main
result here is Theorem 4.3 in which we show that a finitely renormalizable f /∈
St2 is not structurally stable. We begin with the non-recurrent case (this result
is known, but we include it for completeness).

Lemma 4.1. Let f ∈ Ur (r = 2, 3, . . . ,∞) be a map with the critical point c
which is non-recurrent and none of the following happens:

1. c1 is mapped to the interior of a periodic homterval by some iterate of f ,
2. f(c) = b and a is an endpoint of an invariant homterval.

Then arbitrarily c-close to f in Ur there are maps with critical periodic points.
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Proof. By Theorem 2.4 there are precritical points arbitrarily close to c1. Let us
show that then there exists a neighborhood U of c such that arbitrarily close to
c1 there are precritical points whose trajectories never enter U before they hit c.

Consider two cases. First, it may happen that there is a small neighborhood
of c which contains no precritical points. Then choose this neighborhood as U .
Now, suppose that there are precritical points in any neighborhood of c. Since
c is non-recurrent, we can choose a precritical point y < c so close to c that
the orbit of c1 is disjoint from [y, y′]. Moreover, we can choose y so that no
point inside (y, y′) = U is mapped into c before y. That is, the order (the time
necessary to get to c) of every precritical point from (y, y′) is strictly higher than
that of y (and of y′).

Let V be a small neighborhood of c1 and let z be the precritical point of the
smallest order m in V . Let us show that the trajectory of z never enters U before
it hits c. Suppose that for some k < m we have fk(z) ∈ U . By the choice of U
then fk(c1) /∈ U and hence there exists a point t ∈ V such that fk(t) = y or
fk(t) = y′. By the choice of y it follows that t is precritical and of smaller order
than z, a contradiction. Hence the trajectory of z misses U before it hits c.

Now, for every bump perturbation g of f such that Di(f, g) ⊂ U , the point z
found above is also precritical for g. By Lemma 2.2 we can choose g such that
it is of the same class as f , differs from f on an arbitrarily small neighborhood
W ⊂ U , and once W is fixed, g(c) = z (so c is periodic for g) and z is so close
to c1 that g − f has as small Cr-norm as we want.

We get the following corollary to the above lemma.

Corollary 4.2. If f ∈ Ur \ Str (r = 2, 3, . . . ,∞) and c is non-recurrent then f
is not c-structurally stable in Vr.

Proof. We may assume that f(c) 6= b as otherwise f is obviously not c-structurally
stable. If the orbit of c is infinite then c is not mapped into the interior of a
homterval because f /∈ Str, and in view of Theorem 2.4 every infinite trajectory
of a point in an interior of a homterval is attracted to a periodic orbit. Thus, in
this case f is not c-structurally stable by Lemma 4.1. If the orbit of c is finite,
then c is preperiodic. If k is its eventual period then again because f /∈ Str,
there exists an arbitrarily c-small bump perturbation g of f for which c is not
preperiodic with the eventual period k (this explains the definition of a neutrally
stabilized map).

Now we deal with recurrent finitely renormalizable case.

Theorem 4.3. If f ∈ U2\St2 is finitely renormalizable then f is not c-structurally
stable. Moreover, arbitrarily c-close to f there are maps g with periodic critical
points.

Proof. By Lemma 3.2 we may assume that c is not periodic. By Lemma 4.1
we may assume that c is recurrent. Suppose that γ > 0 is given. Now, choose
δ applying Lemma 2.3 to f and γ. By Theorem 2.6 there exists an arbitrarily

small nice interval I = [x, x′] such that its central return domain Î = [y, y′] is

δ-inside I. It follows that if I is sufficiently small then |f(Î)|
|f(I)| < δ.

Now, by Lemma 2.3 there exists a map g with ρ2(g, f) < γ and g(c) = f(y).
Since by Lemma 2.5 the f -orbit of f(y) avoids (x, x′), we see that the g-orbit of
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g(c) = f(y) avoids (x, x′) because g = f outside (x, x′). Since c is recurrent for
f , it implies that f and g are not topologically conjugate. Consider a family of
maps gt, 0 ≤ t ≤ 1, defined as gt(x) = tf + (1 − t)g. Clearly, all these maps are
unimodal C2-maps with the same critical point c coinciding with g = f outside
(x, x′). Since f and g are not topologically conjugate it follows that for some t
the point c will be gt-periodic. By the choice of g we have ρ2(f, gt) < γ which
completes the proof.

5. Infinitely renormalizable maps

The main result of this section is based upon a simple observation that for
infinitely renormalizable maps the restriction of the appropriate iterate of the
map onto a small periodic interval can be viewed as a globally defined map. We
will need the following simple and well known lemma.

Lemma 5.1. For closed intervals I and J , a positive integer r and a Cr-function
ψ : J → R, the map f 7→ ψ ◦ f from Cr(I, J) to Cr(I,R) is continuous.

We will also need the following lemma about a specific extension of a function
defined on an interval onto a greater interval.

Lemma 5.2. Let r be a positive integer and let I, J, T be closed intervals such
that I ⊂ int(J) ⊂ J ⊂ int(T ). Then there exists a constant M = Mr(I, J)
such that the following holds. Given two functions f ∈ Cr(T,R), h ∈ Cr(I,R)
there exists a function F ∈ Cr(T,R) such that F |I = h|I , F |T\J = f |T\J and
‖F − f‖r,T < M‖h− f‖r,I. If f and h are of class C∞ then F can be chosen of
class C∞ except perhaps at the endpoints of I.

Proof. Consider the left endpoint p of I and the left component L of J \ int(I).
If t = ‖h− f‖r,I then |(h− f)(k)(p)| ≤ t for k = 0, 1, 2, . . . , r. For x ∈ L set

h(x) = f(x) +

r∑

k=0

ak(x− p)k, where ak =
(h− f)(k)(p)

k!
.

This formula extends h to a function of class Cr on I ∪ L and

‖h− f‖r,I∪L ≤ (r + 1)max(1, |L|r)t.

We do the same construction with the right endpoint of I and the right compo-
nent of J \ int(I). In this way we get an extension of h to a Cr-function on J
with

‖h− f‖r,J ≤ (r + 1)max(1, |J |r)‖h− f‖r,I .

Now we fix a function ϕ : R → [0, 1] of class C∞, depending only on I
and J , such that ϕ is 1 on I and 0 on a neighborhood of the closure of R \ J .
Finally, we define F = f + ϕ(h − f). Clearly, F |I = h|I and F |T\J = f |T\J .
By the formulas for the derivatives of a product of two functions and by the
estimate for ‖h − f‖r,J , there is a constant M , depending only on r, I, J , such
that ‖F − f‖r,T < M‖h− f‖r,I .

If f and h are of class C∞ then F constructed as above is of class C∞ except
perhaps at the endpoints of I.
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Now we can prove the main result of this section. A closed interval I will be
called strongly periodic (of period n) if I, f(I), . . . , fn−1(I) are pairwise disjoint
while fn(I) ⊂ I.

Theorem 5.3. Assume that f ∈ Ur (r ∈ {2, . . . ,∞}) is infinitely renormaliz-
able. Then f is not c-structurally stable. Moreover, arbitrarily c-close to f there
is a map F for which the trajectory of its critical point is attracted to an attract-
ing periodic orbit.

Proof. Fix ε > 0. Since f is infinitely renormalizable and by Theorem 2.4, there
exists a positive integer n and a closed strongly periodic interval I ⊂ K of length
less than ε/2 and period n such that c = cf ∈ int I. Then there exists a closed
interval J of length less than ε, containing I in its interior and disjoint from
fk(I), k = 1, 2, . . . , n− 1.

Assume first that r is finite. By Theorem 1.2 there exists a C∞-map g :
I → I arbitrarily Cr-close to fn|I and such that its critical point is attracted
to an attracting periodic orbit. Since fn−1|f(I) is a diffeomorphism and f |I =

(fn−1|f(I))
−1 ◦ fn|I , the map h : I → f(I) defined as h = (fn−1|f(I))

−1 ◦ g is
arbitrarily Cr-close to f |I by Lemma 5.1. By Lemma 5.2 we can extend h to
a Cr-map F on R so that F − f is supported on J and is arbitrarily Cr-close
to 0. In particular, the sign of F ′ will be the same as the sign of f ′ outside of
I. Since additionally we know that F |I = h|I is unimodal, F is also unimodal.
Since F = f on fk(I), k = 1, 2, . . . , n− 1, we get

F |I = fn−1|f(I) ◦ h|I = g,

and therefore the critical point of F is attracted to an attracting cycle.
If r = ∞ we first fix a finite s and apply the above construction for s instead

of r to get a map Fs with ρs(Fs, f) < 1/s. By Lemma 5.2, we may assume
that Fs is of class C∞ except perhaps at the endpoints of I. Then a standard
construction (like in the second part of the proof of Lemma 5.2) produces a map
Gs of class C∞, arbitrarily close to Fs in the Cs-topology and coinciding with
Fs outside J (which is shorter than 1/s). By the definition of the C∞-topology
the sequence (Gs)

∞
s=1 converges to f in this topology, which completes the proof

for r = ∞.

6. Proof of Theorem 1.1

First we show how to deal with the maps with degenerate critical points.

Lemma 6.1. For every r ≥ 2 the set Ur is open and dense in Vr.

Proof. Openness is clear, and density follows immediately from Lemma 2.2.

Now we can prove Theorem 1.1. One direction is immediate: if f ∈ St2 then
f is c-structurally stable by Theorem 3.1.

Assume now that f ∈ U2 is c-structurally stable. If f is finitely renormalizable,
then it belongs to St2 by Theorem 4.3. If f is infinitely renormalizable, then by
its c-structural stability and Theorem 5.3, it is conjugate to a map with the
critical point attracted to an attracting periodic orbit. Thus, the same property
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has to hold for f . This prevents infinite renormalizability, so this case cannot
occur. Hence, if f ∈ U2 is c-structurally stable then f ∈ St2.

Assume now that f ∈ V2 \ U2 is c-structurally stable. By its c-structural
stability and Lemma 6.1, f is conjugate to a c-structurally stable g ∈ U2. As we
proved, this g belongs to St2. By the definition of St2, any map conjugate to a
map from St2 also belongs to St2. Thus, f ∈ St2.

Finally, by the definition of c-structural stability, the set of all c-structurally
stable elements of V2 is open in V2. We will show that it is dense in V2. By
Lemma 6.1 it is enough to show that it is dense in U2. However, this density
follows immediately from Lemma 4.1, Theorem 4.3, and Theorem 5.3.

This completes the proof of Theorem 1.1.
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