MA 125-CW, CALCULUS I

Test 4, April 14, 2016

Name (Print last name first):

Show all your work and justify your answer!

No partial credit will be given for the answer only!

PART I

You must simplify your answer when possible. All problems in Part I are 9 points each.

1. If $f(x) = \ln(x^3 + x^2)$, find the derivative f'(x).

2. Find the derivative of $f(x) = e^{5x+1}$.

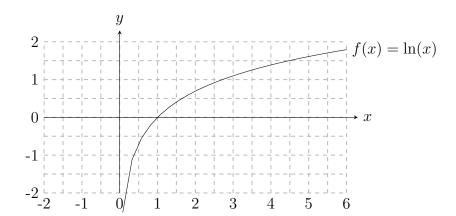
3. Evaluate $\int xe^{x^2} dx$

4. Solve $e^{2x+5} = 2$.

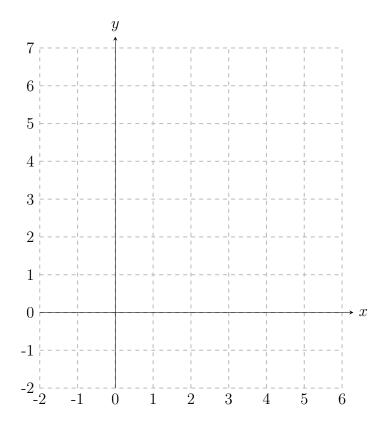
5. Solve ln(2x - 1) = -1.

6. Use Newton's method to approximate the value of $\sqrt{36.3}$. Start with $x_1 = 6$ and only compute the second approximate value x_2 . Hint: solve $x^2 - 36.3 = 0$.

7. Given $f(x) = x^3 + 4x + 1$ show first that f(x) is one-to-one and next compute the derivative $(f^{-1})'(4)$


PART II

1. [10 points] Evaluate


 $\int_{1/2}^{2} \frac{1}{x} dx$. Show your work and do NOT give a decimal number as your answer (i.e., give an expression involving an appropriate function as your answer).

- 2. [12 points] Given the graph of $y = \ln(x)$ below read off:
 - (1) the value $y = \ln(1.5)$
 - (2) the value of $x = e^{0.5}$ (Hint:recall that $\ln(x)$ and e^x are inverse functions!)
 - (3) Estimate the derivative of e^x at x = 0.5 (Hint: draw the appropriate tangent line and estimate its slope).

Indicate in the graph how you found your values; do NOT use your calculator to find these values!

- 3. [15 points] Graph the function $f(x) = x \ln(x)$ for x > 0. Indicate in the graph:
 - (a) x- and y-intercepts (if any)
 - (b) Horizontal and Vertical asymptotes (if any). [Do $\lim_{x\to 0^+} x \ln(x)$ numerically by computing values at $x=\frac{1}{10}$ and $x=\frac{1}{100}$.]
 - (c) Find critical points and where f(x) is increasing/decreasing.
 - (d) Local/Absolute Max/Min of f(x), if any.

Scratch paper