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2009-2010 UAB MATH TALENT SEARCH

This is a two hour contest. Answers are to be written in the spaces
provided on the test sheet. There will be no credit if the answer is
incorrect. You MUST justify your answers in order to get full credit;
otherwise, partial credit or no credit will be awarded according to the
decision made by the judges. Your work (including full justifications)
should be shown on the extra paper which is attached. The problems
are listed in increasing order of difficulty.

PROBLEM 1 (5 pts) It is given that u + a + b = 12 and that
u, a and b are non-negative integers. What is the maximal value of
uab + ua + ab + ub?

YOUR ANSWER:

PROBLEM 2 (10 pts) It is given that u
a−b

= u+a
b

= a
u

where u, a, b

are three positive numbers, all different. Find a+2b
u

.

YOUR ANSWER:

PROBLEM 3 (20 pts) Find all positive integers x such that x(x +
1)(x+7)(x+8) is a full square. Sum them up and write the sum below.

YOUR ANSWER:

PROBLEM 4 (30 pts) There are 11 points on the positive x-axis and
8 points on the positive y-axis. The 88 segments connecting the 11
points selected on the positive x-axis and the 8 points selected on the
positive y-axis are drawn. What is the maximal number of points of
intersection of these segments inside the open first quadrant?

YOUR ANSWER:

over, please
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PROBLEM 5 (50 pts) On all 64 squares of a chess board positive
integers are written as follows: 1, 2, . . . , 8 in the first row from left to
right, then 9, 10, . . . , 16 in the second row etc. Then 8 rooks (“castles”)
are put on the board in such a way that they do not capture each other
(thus, in every row and every column there stands exactly one rook).
The numbers of the squares the rooks are standing upon are summed
up. What are the possible values of the sum?

YOUR ANSWER:

PROBLEM 6 (80 pts) Let UABC be a parallelogram such that UA =
9 and AB = 10. The points E, F and G on segments UA, AB and UC
are chosen so that UE = AF = 3 and UG = 8. The line through G
parallel to EF intersects BC at a point H. Compute out the number

72× Area(EFGH)

Area(UABC)
and write it in the space below.

YOUR ANSWER:

PROBLEM 7 (120 pts) How many numbers m, 1 < m < 20, are there
such that

A(m) = (m− 1)!× (1 +
1

2
+

1

3
+ · · ·+ 1

m− 1
)

is divisible by m? Note that a simple computational solution
will not be awarded full credit. An argument (and NOT a com-
putation) should be provided which shows why certain numbers m are
such that m divides A(m), and why certain other numbers do not have
this property.

YOUR ANSWER:
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2009-2010 UAB MTS: SOLUTIONS

PROBLEM 1 (5 pts) It is given that u + a + b = 12 and that
u, a and b are non-negative integers. What is the maximal value of
uab + ua + ab + ub?

Solution: Observe that

uab+ua+ab+ub = uab+ua+ab+ub+(u+a+ b+1)− (u+a+ b+1)

which equals (u + 1)(a + 1)(b + 1) − 13. Since it is easy to see (and
is well-known) that (u + 1)(a + 1)(b + 1) assumes its maximum when
u = a = b = 4 we see that the maximal value of uab + ua + ab + ub is
53 − 13 = 112.

So the answer is 112.

PROBLEM 2 (10 pts) It is given that u
a−b

= u+a
b

= a
u

where u, a, b

are three positive numbers, all different. Find a+2b
u

.

Solution: Clearly, if u, a, b satisfy the equations, then so do their mul-
tiples by any number. Scale them so that u = 2. Then we have

2

a− b
=

a + 2

b
=

a

2

which implies that

a2 − 4 = ab = 2a + 4

and therefore a = 4, then b = 3, and since u = 2 we see that a+2b
u

= 5.

So the answer is 5.

PROBLEM 3 (20 pts) Find all positive integers x such that x(x +
1)(x+7)(x+8) is a full square. Sum them up and write the sum below.

Solution: Let (x + 4)2 = A; since x ≥ 1 we see that A ≥ 25. Since
x(x + 8) = (x + 4)2 − 16 and (x + 1)(x + 7) = (x + 4)2 − 9 we see that
B = x(x+1)(x+7)(x+8) = (A−16)(A−9). Consider now two cases.

(1) Suppose that A − 16 = 7k. Then B = 49k(k + 1) with k ≥ 2
(because A ≥ 25). Since k(k + 1) cannot be a full square, neither can
B.
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(2) Suppose that A− 16 is not a multiple of 7. Then it follows that
A − 16 and A − 9 have no common factors. If B is a full square, this
implies that both A − 16 and A − 9 are full squares. Clearly, there
are only two full squares such that the difference between them is 7,
namely 9 and 16 which corresponds to the value 25 of A. Hence the
only x solving the problem is 1

So, the answer is 1.

PROBLEM 4 (30 pts) There are 11 points chosen on the positive x-
axis and 8 points chosen on the positive y-axis. The 88 segments con-
necting the 11 points selected on the positive x-axis and the 8 points
selected on the positive y-axis are drawn. What is the maximal number
of points of intersection of these segments inside the open first quad-
rant?

Solution: A point of intersection in the first quadrant can be associated
with two intersecting inside it segments from the positive x-axis to the
positive y-axis. Hence to each two pairs of points, one on the x-axis and
the other one on the y-axis, we can associate one point of intersection
of the appropriately chosen segments. On the x-axis such choices can
be made in 11× 10/2 = 55 ways, and on the y-axis they can be made
in 8× 7/2 = 28 ways.

The maximal number of such points of intersection will be obtained
if no three segments intersect at one point which is clearly possible.
Then we will have 55× 28 = 1540 such points of intersection.
So, the answer is 1540.

PROBLEM 5 (50 pts) On all 64 squares of a chess board positive
integers are written as follows: 1, 2, . . . , 8 in the first row from left to
right, then 9, 10, . . . , 16 in the second row etc. Then 8 rooks (“castles”)
are put on the board in such a way that they do not capture each other
(thus, in every row and every column there stands exactly one rook).
The numbers of the squares the rooks are standing upon are summed
up. What are the possible values of the sum?

Solution: Let us write every number on the chess board as sums in the
following way: 0+1, 0+2, . . . , 0+8 in the first row, 8+1, 8+2, . . . , 8+8 in
the second etc. In other words, we do it in such a way that the first sum-
mand equals the number of the row (numbered from 0 through 7) and
the second equals the number of the column (numbered from 1 through
8). Now, suppose that the rooks stand so that none can capture another
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one. This means that in the sum of the corresponding numbers every
possible first summand will appear exactly once, and every possible sec-
ond summand will appear exactly once. So the entire sum must always
be equal to (0+8+16+24+32+40+48+56)+(1+2+3+4+5+6+7+8) =
260.

So, the answer is 260.

PROBLEM 6 (80 pts) Let UABC be a parallelogram such that UA =
9 and AB = 10. The points E, F and G on segments UA, AB and UC
are chosen so that UE = AF = 3 and UG = 8. The line through G
parallel to EF intersects BC at a point H. Compute out the number

72× Area(EFGH)

Area(UABC)

and write it in the space below.

Solution: It follows that the triangles AEF and GHC are similar.
Hence AE/EF = CH/CG = 2 which implies that CH = 4. Now,
suppose that there are two triangles, XY Z and XY ′Z ′ such that the
point Y ′ belongs to the side XY and the point Z ′ belongs to the side
XZ. Then it is known that the area of XY ′Z ′ divided by the area

of XY Z equals
XZ ′ ×XY ′

XZ ×XY
. Hence and since the location of points

E, F,H and G on the sides of the parallelogram UABC is known, we
can easily see how the areas of the triangles EAF, FBH, HCG and
GUE relate to the areas of triangles UAB, ABC,BCU and CUA each
of which has the area equal to one half of the area of UABC.

Thus, we get that the sum of the areas of triangles EAF,FBH,HCG
and GUE forms the following fraction of the area of UABC:

1

2
(

3 · 6
9 · 10

+
7 · 5
9 · 10

+
4 · 2
9 · 10

+
8 · 3
9 · 10

) =
17

36
.

Hence the area of the quadrilateral EFUG forms
19

36
of the area of

UABC. The required number then is 72 · 19

36
= 38.

So the answer is 38.

PROBLEM 7 (120 pts) How many numbers m, 1 < m < 20, are there
such that
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A(m) = (m− 1)!× (1 +
1

2
+

1

3
+ · · ·+ 1

m− 1
)

is divisible by m?

Solution: Let us make a few observations.
Claim 1. If m is an odd prime number then A(m) is divisible by m.

Indeed, first observe that no two quotients (m − 1)!/k = a and (m −
1)!/l = b with k 6= l can have the same remainder with respect to
m in this case. Indeed, otherwise a − b = ms is a multiple of m,
hence a = b + ms and ak = bk + bms = bl. This would imply that
b(k − l) = bms is a multiple of m which is impossible because m is a
prime number. Since there are m− 1 such quotients and none of them
can be a multiple of m because m is prime, we see that their remainders
with respect to m are 1, 2, . . . ,m− 1 (in no particular order) and their
sum is (m− 1)m/2. If m is an odd prime number, this is a multiple of
m as claimed.

Claim 2. If m = 2p is the product of 2 and a prime number p then
A(m) is NOT divisible by m.
Indeed, this is obvious if m = 4. If m > 4 then in the sum of integers

equal to fractions
(m− 1)!

k
all fractions with k 6= p are divisible by

m = 2p because they all include at least one 2 and exactly one p not

canceled out by the denominator k. However,
(m− 1)!

p
is not divisible

even by p, and hence is no divisible by m = 2p either.
It follows from Claims 1 - 2 that for m = 3, 5, 7, 11, 13, 17, 19 the sum

A(m) is divisible by m and for numbers 4, 6, 10, 14 the sum A(m) is not
divisible by m. The remaining numbers are 2, 8, 9, 12, 15, 16, 18. They
can be treated individually. This shows that for m = 2 and m = 8 we
have that A(m) is not divisible by m and for m = 9, 12, 15, 16, 18 the
sum A(m) is divisible by m. Thus, the numbers m, 1 < m < 20 such
that A(m) is divisible by m are 3, 5, 7, 9, 11, 12, 13, 15, 16, 17, 18, 29.
So the answer is 12.


