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Abstract. Define the following order among all natural numbers
except for 2 and 1:

4� 6� 3� · · · � 4n� 4n + 2� 2n + 1� 4n + 4� . . .

Let f be a continuous interval map. We show that if m� s and f
has a cycle with no division (no block structure) of period m then
f has also a cycle with no division (no block structure) of period s.
We describe possible sets of periods of cycles of f with no division
and no block structure.

1. Introduction and statement of the results

The simplest type of limit behavior of a trajectory is periodic; study-
ing periodic orbits (cycles) is one of the central topics in one-dimension-
al dynamics. To some extent this can be explained by a remarkable
result, the Sharkovsky Theorem, proved by A. N. Sharkovsky in the
1960s (see [Sha64] and [Sha-tr] for its English translation). To state it,
let us first recall the Sharkovsky order of the set N of positive integers:

3 �s 5 �s 7 �s . . . �s 2·3 �s 2·5 �s 2·7 �s . . . �s 22·3 �s 22·5 �s 22·7 �s . . . �s 22 �s 2 �s 1.

Denote by Sh(k) the set of all integers m such that k �s m or m = k, and
by Sh(2∞) the set {1, 2, 4, 8, . . . }; denote by Per(f) the set of periods of
cycles of a map f (by the period we mean the minimal period). Below
I always denotes a closed interval.
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The Sharkovsky Theorem. If g : I → I is continuous, m �s n and
m ∈ Per(g) then n ∈ Per(g) and there exists k ∈ N∪ 2∞ with Per(g) =
Sh(k). Conversely, if k ∈ N ∪ 2∞ then there exists a continuous map
f : I → I with Per(f) = Sh(k).

The Sharkovsky Theorem is important, in particular, because it in-
troduces a concept of forcing relation: it states that if m �s n then the
fact that an interval map has a cycle of period m forces the presence
of a cycle of period n. Thus, it shows how various “types” of cycles
(here by “type” one means “period”) force each other. Another in-
terpretation of the Sharkovsky Theorem is that it fully describes all
possible sets of periods of cycles of interval maps. This leads to similar
problems: (a) how the existence of cycles of certain types forces the
existence of cycles of certain other types, and (b) what possible sets of
types of cycles an interval map may have.

For example, given a cycle P = {x1 < x2 < · · · < xn} of an interval
map f , associate with it the (cyclic) permutation π defined by f(xi) =
xπ(i), i = 1, 2, . . . , n. Think of π as the type of P . The family of all
cycles associated to π is called an oriented pattern (see [ALM00]). If
we identify oriented patterns obtained from each other by a flip, we get
patterns (we denote patterns with capital letters A,B, . . . ). Similar to
the Sharkovsky Theorem, one can ask for an interval map f (a) how
cycles of certain patterns force cycles of other patterns, and (b) what
possible sets of patterns of cycles f may have.

A useful way of studying patterns is by decomposing them.

Definition 1.1 (Block structure). Let π be a permutation of the set
X = {1, . . . , n}. Suppose that for some k > 1 and m > 1 we have
n = km and the permutation π maps sets Y1 = {1, . . . ,m}, Y2 =
{m+1, . . . , 2m}, . . . , Yk = {n−m+1, . . . , n} to one another. Then sets
Y1, . . . , Yk are called blocks and the permutation π is said to have block
structure; if blocks are two-point sets, π is said to be a doubling. As
always, similar terminology is used for patterns and cycles. Otherwise
a permutation (a pattern, a cycle) is said to have no block structure.

The appropriate power of the map on a block can be viewed as a kind
of renormalization of a pattern; patterns with block structure admit a
renormalization like that. Consider an important particular case.

Definition 1.2 (No division). Let π be a permutation of {1, . . . , 2m}
such that π(i) > m+ 1 for each i, 1 6 i 6 m (and, hence, π(i) 6 m for
each i > m + 1). Then we say that π (and the corresponding pattern
and cycles) has division. Otherwise π (and the corresponding pattern
and cycles) is said to have no division.
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Observe that a pattern of period 2 has no block structure but has a
division. Therefore we will treat period 2 separately.

Consider the family NBS of patterns with no block structure and
the family ND of all patterns with no division. A pattern with block
structure can be studied in two steps: study the factor-pattern obtained
if each block is collapsed to a point while the order among blocks is kept,
and then study the restriction of the pattern on blocks. On the other
hand, no division patterns constitute the “core” in the Sharkovsky
Theorem. Thus, both patterns from NBS and ND are important.
To get uniformity, we consider only patterns of periods larger than 2;
patterns of periods 1 and 2 are discussed after the Main Theorem.

Define the following order among all natural numbers larger than 2:

4� 6� 3� · · · � 4n� 4n+ 2� 2n+ 1� 4n+ 4� . . . (∗)

We get it by writing even numbers in the natural order and inserting
odd numbers n after 2n.

Let Np be the set of all integers s with p� s and p itself. Given an
interval map f , let ND(f) be the set of periods (larger than 2) of all
f -cycles with no division, and let NBS(f) be the set of periods (larger
than 2) of all f -cycles with no block structure.

Main Theorem. Let f be a continuous interval map. If m � s and
f has a cycle with no division (no block structure) of period m then
f has also a cycle with no division (no block structure) of period s.
The following are the only possible cases (n below can be any positive
integer), and all of them occur.

(1) ND(f) = NBS(f) = ∅.
(2) ND(f) = NBS(f) = N2n+1.
(3) ND(f) = NBS(f) = N4n.
(4) ND(f) = NBS(f) = N4n+2.
(5) ND(f) = N4n+2, NBS(f) = N2n+1.

Remark 1.3. Consider patterns of period 1 and 2. A continuous interval
map always has a fixed point, so 1 should stand at the end of the
order (∗) both for both types of patterns. The situation with 2 is more
complicated. Namely, there is only one pattern of period 2, and it has
a division, but not a block structure. Thus, for no division patterns, 2
does not occur in the order. For no block structure patterns, 2 should
stand just before 1 because, by the Sharkovsky Theorem, if f has a
cycle of period larger than 1, it has also a cycle of period 2.

Remark 1.4. The order (∗) is similar to the orders present for the
continuous triod map (see [ALM89]) and given by 5, 8, 4, 11, 14, 7, . . .
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and 7, 10, 5, 13, 16, 8, . . . . This makes interesting connections and allows
us to look at an interval as a “diod.”

Remark 1.5. In [Mis94] it was proved that (a) patterns from NBS
of period 2n + 1 force patterns from NBS of period 4n + 4, and (b)
patterns from NBS of period 4n force patterns from NBS of period
4n + 2. However our proofs here are much simpler (because they use
the rotation theory). The fact that patterns with no block structure of
period 4n+ 2 force patterns with no block structure of period 2n+ 1 is
new; the order (∗) was mentioned in [Mis94] only for unimodal maps.
Finally, in our Main Theorem we take into account not only patterns
with no block structure but also patterns with no division.

2. Preliminaries

We will be using standard tools of combinatorial dynamics. The
reader that is not acquainted with them can find details for instance
in [ALM00], [BC92] or [MiNi91].

In particular, we will consider forcing among patterns. Given a pat-
tern A we will often consider a cycle P and the P -linear (“connect the
dots”) map f . Patterns forced by A are then exactly the patterns of
cycles of f . They can be found by looking at the Markov graph of
(f, P ), where vertices are the P -basic intervals (intervals between con-
secutive points of P ) and arrows correspond to f -covering (there is an
arrow from J to K if K ⊂ f(J)). The loops in this graph correspond
to cycles of f (and therefore they determine which patterns are forced
by A).

We will also use extensively rotation theory for interval maps. Since
it is less known, we will present its basic notions and results (see [Blo95,
BM97, BM97a, BM99, BS13]). We also prove some simple lemmas that
will be necessary later.

Let f : I → I be a continuous map with a cycle P of period q > 1.
Let m be the number of points x ∈ P with f(x)− x and f 2(x)− f(x)
of different signs. Then the pair (m/2, q) is called the over-rotation
pair of P and is denoted by orp(P ); the number m/(2q) is called the
over-rotation number of the cycle P and is denoted by %(P ). The set
of the over-rotation pairs of all cycles of f is denoted by ORP(f). Note
that the number m above is even, positive, and does not exceed q/2.
Therefore in an over-rotation pair (p, q) both p and q are integers and
0 < p/q 6 1/2. We call over-rotation pairs (p, q) coprime if p and q are
coprime. Clearly, we can speak of over-rotation pairs and over-rotation
numbers of patterns and permutations.
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Definition 2.1. We write (p, q) m (r, s) if p/q < r/s, or p/q = r/s =
m/n with m and n coprime and p/m �s r/m (clearly, p/m, r/m ∈ N).

The next lemma relates the fact that a pattern has a block structure
to the properties of the pattern’s over-rotation pair.

Lemma 2.2. If a cycle P with the over-rotation pair (k,m) has block
structure with q points in every block, then q divides both k and m. In
particular, if k and m are coprime then P has no block structure.

Proof. Clearly, q divides m. To see that q divides k, observe that if
we identify each block to a point to get a cycle Q of period m/q, the
over-rotation number of Q will be the same as for P , i.e., k/m. If
orp(Q) = (k′,m′), then k′/m′ = k/m and m′ = m/q, so k = k′q.
However, k′ is an integer, so q divides k. �

Definition 2.3. Let M be the set consisting of 0, all irrational numbers
between 0 and 1/2, and all pairs (α, n), where α is a rational number
from (0, 1/2] and n ∈ N ∪ {2∞}. Then for η ∈ M the set Ovr(η) is
equal to the following.

(1) If η is an irrational number or 0, then Ovr(η) is the set of all
integer pairs (p, q) with η < p/q 6 1/2.

(2) If η = (r/s, n) with r,s coprime, then Ovr(η) is the union of the
set of all integer pairs (p, q) with r/s < p/q 6 1/2 and the set
of all integer pairs (mr,ms) with m ∈ Sh(n).

In case (2) of Definition 2.3 if n 6= 2∞ then Ovr(η) is the set of all
over-rotation pairs (p, q) with (nr, ns) m (p, q), plus (nr, ns) itself.

Theorem 2.4 (Theorem 3.1 of [BM97]). If f : [0, 1]→ [0, 1] is contin-
uous, (p, q)m (r, s), and (p, q) ∈ ORP(f), then (r, s) ∈ ORP(f). Thus,
ORP(f) = Ovr(η) for some η ∈ M. Conversely, if η ∈ M then there
exists a continuous map f : [0, 1]→ [0, 1] such that ORP(f) = Ovr(η).

For some patterns automatically we get cycles of all periods.

Definition 2.5 (Convergent/divergent patterns). A pattern (cycle) of
period n is convergent if for the corresponding permutation π there is
a number m < n such that π(i) > i for i 6 m and π(i) < i for i > m;
otherwise a pattern (cycle) is divergent.

Observe that if P is a convergent cycle of a P -linear map f then f
has only one fixed point.

Lemma 2.6. Any divergent pattern forces a pattern with no block
structure of period n for every n > 1. Moreover, if f is an interval
map with a periodic orbit of divergent pattern then ORP(f) = Ovr(0).
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Proof. Let P be a cycle of divergent patternA. By Lemma 3.2 of [BM97],
if f is an interval map with a cycle of divergent pattern then ORP(f) =
Ovr(0), which is exactly the second claim of the lemma. It follows that
f has cycles of over-rotation pair (1, n) for every n. By Lemma 2.2
these cycles have no block structure. Considering a P -linear map f we
see that A forces patterns with no block structure of any period n as
desired. �

From now on we consider only convergent patterns. Then we can use
an alternative way of computing over-rotation pairs. Let P be a cycle of
a convergent pattern A with orp(P ) = (p, q). We will always denote by
aP = a the fixed point of the P -linear map f (we may omit the subscript
P if no ambiguity is possible). Then (x − f(x))(f(x) − f 2(x)) < 0 if
and only if x is mapped to the other side of a under f . Thus, p equals
the number of times when a point in P is mapped from the left of a to
the right of a (alternatively, from the right of a to the left of a); p can
also be computed if we count the number of times in P when a points
maps from one side of a to the other side of a, and divide this number
by 2. We can think of p as a cumulative rotation of P about a. This
interpretation helps, in particular, in the proof of the next lemma.

Lemma 2.7. If A is a convergent pattern, %(A) = 1/2 if and only if
P has division.

Proof. If A has division then %(A) = 1/2. Now, if %(A) = 1/2, then
orp(A) = (n, 2n) for some n. Let P be a cycle of pattern A, and let f
be a P -linear map. Then P has 2n points and all of them are mapped
from one side of a to the other side. Therefore, P has a division. �

Another concept related to Theorem 2.4 is that of a twist pattern.

Definition 2.8 (Twist patterns). A pattern of over-rotation number
% is twist if it does not force any other pattern of over-rotation number
%; we use the same terminology for cycles and permutations.

By Lemma 2.6 a twist cycle must be convergent. In particular, if P
is a twist cycle then the P -linear map has a unique fixed point.

Lemma 2.9 ([BM97a, BM99]). Let P be a twist cycle P of the P -
linear map f . Then, if points u, v ∈ P lie on the same side of a, map
to the same side of a, and u is farther away from a than v, then f(u)
is farther away from a than f(v).

3. Proof of Main Theorem

We start by recalling the definition of a well known Štefan pattern.
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Definition 3.1 (Štefan pattern). Consider the cyclic permutation σ :
{1, 2, . . . , 2n+ 1} → {1, 2, . . . , 2n+ 1} defined as follows:

• σ(1) = n+ 1;
• σ(i) = 2n+ 3− i, if 2 6 i 6 n+ 1;
• σ(i) = 2n+ 2− i, if n+ 2 6 i 6 2n+ 2.

Then the pattern of this cyclic permutation is called the Štefan pattern,
and any cycle of this pattern is said to be a Štefan cycle.

The importance of those patterns is due to the following fact.

Theorem 3.2 ([Šte77]). Any pattern of period 2n+1 forces the Štefan
pattern of period 2n+ 1.

Now we prove some preliminary results. If P is a cycle of period
n > 1 then for each point x ∈ P we consider germs at x, i.e., small
intervals with x as one of the endpoints. Each point of P has two
germs, except the leftmost and rightmost points, which have one germ
each. There is a natural map induced on the set of germs by the P -
linear map f , and if we start at the germ of the leftmost point (or
the rightmost point), we get back exactly after n applications of this
map. Each germ is contained in a P -basic interval, so this loop of
germs gives us a loop of P -basic intervals. These loops are called the
fundamental loop of germs and the fundamental loop of intervals. Both
loops correspond to the original periodic orbit P Thus, the fundamental
loop of intervals contains both the leftmost and the rightmost P -basic
intervals. Observe that, by Lemma 2.9, if P is a twist cycle then any
germ at x ∈ P that points toward a maps to the germ at f(x) ∈ P that
points toward a too. Thus, if P is a twist cycle, then the vertices of
the fundamental loop of germs form the set of germs pointing toward
a.

In what follows we use the following notation. Denote by I = [bl, br]
the P -basic interval containing the point a. Observe that the arrow
I → I is a part of the Markov graphG of P . It follows that I is repeated
in the fundamental loop of intervals of P twice while all other P -basic
intervals are repeated there once. Consider the set P ′ = P ∪ {a}.
Though the germs at points of P stay the same whether we consider
P or P ′, there is a change concerning P ′-basic intervals versus P -basic
intervals: I is now replaced by two P ′-basic intervals, Il = [bl, a] and
Ir = [a, br]. Notice that the arrows Il → Ir and Ir → Il are in the
Markov graph of P ′. Clearly, a germ at a point of P ′ is contained in
a well-defined P ′-basic interval. Hence the fundamental loop of germs
of P gives rise to the fundamental loop of P ′-basic intervals and the
fundamental loop of germs of P ′. Thus, we get the following lemma.
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Lemma 3.3. If P is a twist cycle of period larger than 1 then the
fundamental loop of intervals of P ′ passes exactly once through every
P ′-basic interval.

Now we investigate twist cycles close to the fixed point.

Lemma 3.4. If P is a twist cycle of period n > 2 of a P -linear map
f then at least one of the points bl, br is the image of a point of P that
lies on the same side of a.

Proof. Suppose that bl = fP (cl), br = f(cr), where cl, cr ∈ P , and
cr 6 bl < br 6 cl. Since n > 2, either cr < bl or br < cl. We may
assume that cr < bl. However, then cr < bl < a < br = f(cr) < f(bl),
which contradicts Lemma 2.9. �

Twist patterns force other patterns with specific properties.

Proposition 3.5. If P is a twist cycle of the P -linear map f and P has
over-rotation pair (k,m) and over-rotation number %(P ) < 1

2
, then f

has a cycle of over-rotation pair (k+1,m+2), which is not a doubling.

Proof. By Lemma 3.4, we may assume that bl = f(cl) for some cl ∈ P
with cl < bl. Let L be the fundamental loop of intervals of P ′. By
Lemma 3.3 it passes through Il exactly once, so we can insert into L
the two arrows, Il → Ir → Il, at that place. Denote by M the loop of
length m+ 2 obtained in this way, and by Q a corresponding periodic
orbit of f . By the construction, each P ′-basic interval contains one
element of Q, except Il and Ir, which contain two elements each. This,
in particular, shows that the period of Q is m+ 2.

Let x ∈ Q be the point that belongs to the P ′-basic interval whose
left endpoint is cl. Then f(x) ∈ Il, f 2(x) ∈ Ir, and f 3(x) ∈ Il. Since
the fixed point a is repelling (because the interval [bl, br] is mapped
linearly onto a larger interval), we get x < f 3(x) < f(x) < a < f 2(x).
The other point of Q which is in Ir, is to the right of f 2(x), because
otherwise its image would be the third point of Q in Il (and by the
construction there are two points of Q in Il and two points of Q in Ir).

If Q is a doubling, then f(x) is paired with f 3(x) or f 2(x). The first
option is impossible because if it holds then the pair of points mapped
to the pair {f 3(x), f(x)} must be the pair {x, f 2(x)} and the points x
and f 2(x) are not consecutive in space. The second option is impossible
because then the image pair {f 2(x), f 3(x)} consists of points that are
not consecutive in space. Thus, Q is not a doubling.

Finally, since we added two points that are mapped onto the opposite
side of a, and the rest of the points of Q are mapped like the analogous
points of P , the over-rotation pair of Q is (k + 1,m+ 2). �
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From Lemma 2.2 and Proposition 3.5 we get the following lemma.

Lemma 3.6. Any pattern A with orp(A) = (ks,ms) where k and m
are coprime, and %(A) = k/m < 1/2 forces a pattern of over-rotation
pair (k+ 1,m+ 2), which is not a doubling. In particular, a pattern A
of over-rotation pair (2n− 1, 4n) forces a pattern of over-rotation pair
(2n, 4n+ 2) which has no block structure.

Proof. Let A be a pattern with orp(A) = (ks,ms) where k and m are
coprime, and %(A) = k/m < 1/2. By Theorem 2.4 A forces a twist
pattern A′ of over-rotation pair (k,m). By Lemma 3.5, A′ forces a
pattern of over-rotation pair (k + 1,m + 2) as desired. Now, let the
over-rotation pair of A be (2n−1, 4n). By the above A forces a pattern
B of over-rotation pair (2n, 4n+ 2) that is not a doubling. Let us show
that B has no block structure. Indeed, the only common divisor of 2n
and 4n + 2 is 2. Hence by Lemma 2.2 the only way B can have block
structure is when B is a doubling, a contradiction. �

We will also need the following lemma.

Lemma 3.7. Let A be a unimodal pattern. Then there exists a unique
unimodal doubling of A.

Proof. Letm be the period ofA and let π : {1, 2, . . . ,m} → {1, 2, . . . ,m}
be a permutation with pattern A. We may assume that there is i such
that π is increasing to the left of i and decreasing to the right of i. To
construct the permutation of the unimodal doubling of π we have to
replace each point j ∈ {1, 2, . . . ,m} by two points 2j − 1 and 2j. The
new permutation has to map 2j − 1 to 2π(j) − 1 and 2j to 2π(j) if
j < i and 2j − 1 to 2π(j) and 2j to 2π(j) − 1 if j > i. If j = i then
we have two choices, but while one of them produces a cyclic permu-
tation, the other one produces a permutation consisting of two cycles.
Thus, we get a unique permutation with a unimodal pattern which is
the doubling of A. �

In what follows we will use the notation below: for every m > 2 set

η(m) =

{
(s− 1, 2s) if m = 2s,

(n, 2n+ 1) if m = 2n+ 1,

In particular, η(4n) = (2n− 1, 4n) and η(4n+ 2) = (2n, 4n+ 2).
We are ready to prove our Main Theorem. By Lemma 2.7, in the

proof we can consider only convergent patterns.

Proof of Main Theorem. Recall that because we are excluding the pat-
tern of period 2, each pattern with no block structure has no division.
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By Lemma 2.7, patterns with no division have over-rotation numbers
less than 1/2. Each integer larger than 2 is of one of the three forms:
2n+ 1, 4n, 4n+ 2, with n > 1. The largest possible over-rotation num-
bers smaller than 1/2 for patterns of those periods are, respectively,
n

2n+1
, 2n−1

4n
, 2n

4n+2
. Those numbers are ordered as follows:

· · · < 2n− 1

4n
<

2n

4n+ 2
=

n

2n+ 1
<

2n+ 1

4n+ 4
< . . . .

Thus, by the definition of the order m, we get the following order among
over-rotation pairs associated with these over-rotation numbers:

· · ·m η(4n) m η(4n+ 2) m η(2n+ 1) m η(4n+ 4) m . . . (∗∗)

Observe that the over-rotation pairs (2n− 1, 4n) and (n, 2n+ 1) are
coprime; on the other hand, the over-rotation pair (2n, 4n + 2) is not
coprime as the greatest common divisor of 2n and 4n+ 2 is 2.

Let f be a continuous interval map. If all cycles of f have division
then all cycles of f have block structure as division is a particular case
of block structure. This means that case (1) of Main Theorem takes
place. To proceed with less trivial cases of Main Theorem, fix two
integers, m > 2 and s such that m� s.

Consider first the case of cycles with no division. Assume that f
has a cycle P of period m > 2 with no division. This cycle has over-
rotation number less than 1/2, so by Theorem 2.4 the map f has a
cycle of over-rotation pair η(m). If m� s then η(m) m η(s), so again
by Theorem 2.4, f has a cycle Q of over-rotation pair η(s). Since its
over-rotation number is smaller than 1/2, Q has no division. In other
words, if f has a cycle of period m with no division and m� s then f
must have a cycle of period s with no division. This proves, for cycles
with no division, the first statement of Main Theorem.

Now, assume that f has a cycle P of period m > 2 with no block
structure. Then, in particular, P has no division. As before, this
implies that f has a cycle of over-rotation pair η(m) and, again, f has
some cycles of over-rotation pair η(s). To prove the first statement of
Main Theorem for cycles with no block structure we need to show that
a cycle of over-rotation pair η(s), forced by P , can be chosen to be with
no block structure. By Lemma 2.2 and by the analysis of over-rotation
pairs η(4n), η(4n+ 2), and η(2n+ 1), any cycle Q of over-rotation pair
η(s) with s = 4n or s = 2n + 1 automatically has no block structure.
If s = 4n + 2, then either m = 4n or m � 4n, so f must have a
cycle of over-rotation pair η(4n) = (2n − 1, 4n). Then by Lemma 3.6
the map f must have a cycle Q of over-rotation pair (2n, 4n + 2) and
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no block structure. This completes the proof of the first statement of
Main Theorem for cycles with no block structure.

This also proves that ND(f) and NBS(f) are either empty or of the
form Nr, i.e., ND(f) = Nrnd

and NBS(f) = Nrnbs
for some numbers

rnd and rnbs. Consider all the cases in more detail. Any cycle with no
block structure has no division. Hence in general ND(f) ⊃ NBS(f),
so rnd � rnbs. If rnd = 2n + 1 then, as before, f must have a cycle of
over-rotation pair η(2n+ 1) which is coprime. It follows that this cycle
has no block structure and, hence, in this case ND(f) = NBS(f) =
N2n+1. This covers case (2) of Main Theorem. If rnd = 4n, then, again,
f must have a cycle of over-rotation pair η(4n) which is coprime, this
cycle has no block structure, and ND(f) = NBS(f) = N4n. This
covers case (3) of Main Theorem.

Suppose now that rnd = 4n + 2. Then f must have a cycle of over-
rotation pair η(4n+ 2). If f has a cycle of over-rotation pair η(4n+ 2)
with no block structure, then ND(f) = NBS(f) = N4n+2, which
corresponds to case (4) of Main Theorem. Suppose now that all cy-
cles of over-rotation pair η(4n + 2) have block structure. Then, while
ND(f) = N4n+2, the set NBS(f) is strictly smaller than ND(f). The
first statement of Main Theorem implies that f has a point of period
2n + 1; we may assume that its over-rotation pair is η(2n + 1), which
is coprime, so the corresponding periodic orbit has no block structure.
We conclude that in this case ND(f) = N4n+2 while NBS(f) = N2n+1.
This covers case (5) of Main Theorem.

To prove that all cases (1)-(5) can occur, we rely upon the method
used in [ALM00] in the proof of the Sharkovsky Theorem. Consider the
full tent map T : [0, 1] → [0, 1], given by T (x) = 1− |2x− 1|, and the
truncated tent maps Tα : [0, 1]→ [0, 1], given by Tα(x) = min(T (x), α).
For any periodic orbit P of T the map Tα, where α = max(P ), has
only cycles of patterns forced by the pattern of P .

As we have already seen, if m > 2 then the T -orbit of 1− 1
2m+1

is of
period m and has no block structure (and, hence, no division). Also,
for every period the map T has only finitely many periodic orbits of
that period. Therefore we may define Pm as the orbit of T with the
smallest maximum among the cycles of period m with no division, and
Qm as the orbit of T with the smallest maximum among the cycles of
period m with no block structure. Evidently, these are forcing-weakest
orbits of T of period m that have not division or no block structure,
respectively. Recall that by Lemma 2.7 the over-rotation numbers of
cycles Qm and Pm are less than 1/2. Since a cycle with no block
structure has no division, then Qm forces Pm.
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By Theorem 2.4, any cycle of T of period m that has no division
forces a cycle of over-rotation pair η(m). Consider two cases depending
on the period m.

If m = 4n or m = 2n + 1, then η(m) is coprime. By Lemma 2.2,
any periodic orbit of over-rotation pair η(m) has no block structure.
Hence Pm = Qm and the corresponding map Tα, with α = max(Pm) =
max(Qm) is a map with ND(f) = NBS(f) = Nm. This shows that
cases (2) and (3) of Main Theorem are possible.

Suppose now that m = 4n+2. By the theorems on forcing extensions
of patterns (see [ALM00]), if A is a pattern and B is a doubling of A,
then B forces A and the only pattern forced by B but not by A is B
itself. By Lemma 3.7, if T has a cycle R then it also has a cycle which
is a doubling of R. Therefore, P4n+2 is a doubling of P2n+1. However,
P4n+2 has a block structure and hence max(Q4n+2) > max(P4n+2). A
map Tα with max(Q4n+2) > α > max(P4n+2) is an example for case (5),
while if α = max(Q4n+2), we get an example for case (4).

Clearly, a constant map is an example for case (1). �
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