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Abstract

We study maps of am-od with the branching point fixed and show that sometimes it is possible to
introduce rotation numbers and prove theorems similar to those known for the circle and the interval.
We obtain additional results far= 3. They explain the form of the sets of periods of periodic points
for triod mapsO 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

An important problem in dynamical systems theory is that of coexistence of various
kinds of behavior, in particular in the casegefiodic orbits (calledcyclesin what follows).
A number of results in this direction were obtained for one-dimensional maps with the first
being a famous Sharkovs$kitheorem [11]. To state it let us first introduce B@rkovskit
ordering for the setN of positive integers:

3~5>7>...>2.3-2-5>2.7>.-.
=22.3-22.5-22.7>...»8>4>2>1.
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Denote byS (k) the set of all integers such thak > m, together withk, by S(2°°) the set
{1,2,4,...} and byN the setN U {2°°}. Let also Peff) be the set of periods of cycles of
f (by aperiod we mean the least period).

Theorem 1.1 [11]. If f:[0, 1] — [0, 1] isa continuousmap, m > n and m € Per(f), then
n € Pel(f); hencethereexists k € N’ with Per( f) = S(k). Moreover, for every k € N’ there
exists a continuousmap 1 : [0, 1] — [0, 1] with Per(f) = S(k).

Here certain types of dynamical behavior, once exhibited by a foege some other
types, thus the question of coexistence becomes a question of forcing.

Now we state the related results of [9]. Consider a circle rfiagf degree 1. Choose
its lifting F and observe that if € ST is periodic of period: and X is its lifting then
F"(X) = X +m wherem does not depend on the choiceXfDefine theotation pair of x
as(m, n) and theotation number of X asm/n. Note that they can also be defined by means
of the “displacement((x) = F(X) — X; the rotation pair of is (Zf:‘(}<p(f"(x)), n) and
the rotation number ig;‘;&w(f" (x))/n.

Itis useful to represent rotation pairs differently. Think of a rotation pajs, mq) with
p,q coprime as a paift, m), wheret = p/q is a rational number and a positive integer.
We call the latter pair anodified rotation pair and the numbenq its period. Then think
of the real line with a prong attached at each rational point and th¥’searked on this
prong in the Sharkovskbrdering (1 is closest to the real line and 3 is furthest from it).
All points of the real line are marked 0; at irrational points we can think of degenerate
prongs with only 0 on them. The union of all prongs and the real line is denot@d.by
Thus, a modified rotation pair, m) corresponds to the specific elemenMf namely to
the numbern on the prong attached atHowever, no rotation pair correspondgtp2°°)
orto(z, 0).

With all this in mind, it is natural to speak of theill [(z1, m1), (2, m2)] of two elements
of M (in particular,(t1, m1) and (2, m2) may be modified rotation pairs themselves). It
consists of all modified rotation paics, m) with either strictly betweern; ands; ort = ¢;
andm € S(m;) fori =1 or 2.

Let mrp( f) be the set of modified rotation pairs of all cyclesfofClearly, mrg f) ¢ M.
Moreover, the following theorem holds.

Theorem 1.2 [9]. Let f be a degree 1 map of the circle. Then there are elements (¢1, m1)
and (r2, m2) of M such that mrp(f) = [(t1, m1), (f2, m2)], and if ¢; isrational then m; #£ 0
for i = 1, 2. Moreover, for any set of the above form there exists a degree 1 map f of the
circlewith mrp( f) equal to this set.

Similar results hold for interval maps. L¢t: I — I be continuous, leP be a cycle of
f of periodg > 1 and letn be the number of points € P such that( f (x) — x)(f?(x) —
f(x)) <0.Then(m/2, q) is called theover-rotation pair of P and the numbet: /(2q) is
called theover-rotation number of P (see [8]). Again, a specific displacement generates
them. Setbq (f)(x) to be 12 if (f2(x) — f(x))(f(x) —x) < 0 and O otherwise. Then the
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over-rotation pair of a periodic point of periodn is (Z;‘;é Dor (f)(fi(x)),n). Observe
that the functiond,, is invariant under non-reversing orientation conjugacieg: #nd g
arey-conjugate ands does not reverse the orientation theg (f)(x) = @or (2) (¥ (x)).

Since the number: above is even, positive, and does not excgg2l then in an over-
rotation pair(p, ¢) both p andqg are integersand @ p/q < 1/2. Just like we did before we
can again transform all rotation pairs of cyclesfahto modified rotation pairs and denote
the set of all modified rotation pairs of cycles pfby mrp( f). Then again mrgf) ¢ M
and the following theorem holds.

Theorem 1.3 [8]. If f:[0,1] — [0, 1] is a continuous map with some cycles of period
greater than 1 then mrp(f) = [(¢1, m1), (1, 2)] for some (t1,m1) € M. Moreover, for
every (t1,m1) € M there exists a continuous map f:[0, 1] — [0, 1] with mrp(f) =
[(t1,m1), (1, 2)].

Theorems 1.1, 1.2 and 1.3 are examples of the situation when knowing a little about a
map (the period of a cycle, the rotation pair or two rotation pairs of two cycles) we can say a
lot about the variety of its cycles. Observe, that here the number of known parameters does
not depend on the periods of points. We would like to obtain similar informative results
for other dynamical systems. We call them “informative” because relying upon them one
gets a lot of information from just a little information. Theorems 1.1-1.3 fit into a general
scheme [6,12] described below; in the present paper we apply this scheroel tmaps.

Let f: K — K be a continuous map of a compact spdceinto itself and lety
be a function displacement) defined onK or its subset. Ifx is a periodic point of
periodn and displacement is defined at all points of its orbit then we call the pair of
numbers rpix) = (Z;:éw(f" (x)),n) = (s, n) the p-rotation pair of x and the number
Py (x) = s/n the p-rotation number of x. The closurel,(f) of the set of allp-rotation
numbers of periodic points of is called theg-rotation set of f, the set of all their
¢-rotation pairs transformed into modified rotation pairs is denoted by, @itp If the
displacemeny is fixed then we often omit it from the notation.

All these objects are callddnctional rotation pairs, numbers and sets. If for some maps
f and appropriate choice of displacementhe set mrp(f) is a hull then it means that
knowing just a little (the ends of the hull) we can get a lot of information about the cycles
of a map. We also work in a different situation. Namely, we consider maps with cycles of
certain type and prove that then for some displacemehe set mrp(f) is a hull; that is,
in this case we do not fix the displacement up front, rather try to choose it for certain types
of maps so that mga f) is a hull. In either case we say thatation theory is constructed.

In this paper we introduce displacement and rotation numbers and pairs for mapsd of
fixing its branching point and obtain for these maps some results similar to Theorems 1.2
and 1.3. Still, the situation for the-od is more complicated and those results are not full
analogs of Theorems 1.2 and 1.3.

The paper is organized as follows. In Sections 2 and 3 we introduce our main tools. In
Section 4 we introduce a class of cycles onithed X which we callnon-passing; with
such cycles? and P-monotone maps we always associate a specific displacem&hen
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by the general construction we get sets of all modifiggrptation pairs of cycles off
denoted by mrf) and the following theorem holds (we state it here in a weaker form
than in Section 4). Amap : X — X of then-od into itself is calledP-linear for its cycle

P if it fixes the branching point of X, is affine on every component 6]\ (P U {a})

and constant on every componentXf\ [P], where[P] is the smallest connected set
containingP.

Theorem 45. Let f:X — X be a P-linear map where P is a non-passing cycle.
Then there are there are elements (r1,m1) and (r2, m2) of M such that mrp(f) =
[(t1, m1), (2, m2)].

In Sections 5 and 6 we apply our tools to triod maps. In particular we show that if a
P-linear mapf of the triod X has only one fixed point (namely, its branching point) and
no periodic points of period 2 then the results similar to Theorems 1.2, 1.3 and 4.5 can be
proven for f. We then deduce well-known results about coexistence of periods for triod
maps [1] from this.

Note that in [4] results about coexistence of periods similar to those of [1] were obtained.
A nice interpretation of this description of sets of periods of a continuous self map of
the n-od was given in [3], where it was shown that the sets of periods of such a map
can be expressed as the unions of “initial segments” of the linear orderings associated to
all rationals in the interval0, 1) with denominator at most defined in certain subsets
of natural numbers. However, this phenomenon was only observed but not explained.
Rotation theory fully explains it in the case of interval [8] and, as we show in this paper, in
the case of triod. We hope that appropriate version of rotation theonéarwill explain
the results of [4,3] as well.

2. Patterns

We consider the sét, of all continuous maps of am-od X into itself for which the
central pointz of X is fixed. We writex > y if x andy lie on the same branch of andx
is further froma thany. We write alsax > y if x > y orx =y.

Call two cyclesP, Q on X equivalent if there exists a homeomorphisin [P] — [QO]
conjugatingP and Q and fixing branches oX. The class of equivalence of a cydkis
called thepattern of P. This definition is a slight variation of the standard one (see, e.g.,
[1,2]) since we treat branches as distinguishable.

The cycle{a} and its pattern are very special. In many cases when we speak about some
properties of patterns or some constructions involving patterns, it constitutes an exception
and often we treafa} as having no pattern at all. Repeating such statements each time
when it is necessary makes the paper less readable. Thus we adopt the method often used
with the empty set: forget about this nasty exception. We hope this will not cause any
confusion.

We use the standard terminology for patterns. A cyRlef a map f € U, exhibits a
patternA (oris of pattern A, or is arepresentative of the patternd in f) if P belongs to
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the equivalence class. A patternA forcesa patternB if and only if any mapf € U, with
a cycle of patterm has also a cycle of patte®.

The following theorems are minor variations of the ones proved in [1,2], and the proofs
are practically the same. We say that a cyRlbas ablock structure over a cycleQ if it can
be divided into subsetblocks) Py, ..., P, of the same cardinality, where is the period
of Q, the setd P;] are pairwise disjoint, none of them contaimmseach of them contains
one pointy; of Q, and f(P;) = P; wheneverf (x;) = x;. We use the same terminology
for patterns. In particular, a pattemhas ablock structure over a patternB if there exists
a cycleP of patternA with a block structure over a cycl@ of patternB.

Theorem 2.1. If apattern A forces a pattern B # A then B does not force A.

Theorem 2.2. Let f be a P-linear map where P is of pattern A. Then a pattern B is
forced by A if and only if f hasa cycle Q of pattern B.

Theorem 2.3. If a pattern A has a block structure over B and A forces C then either C
hasa block structure over B or B forces C. Moreover, if P isarepresentativeof A ina P-
linear map f € U, and A hasablock structure over B then P hasblocks P; corresponding
to this structure and whenever A forces a pattern C with block structure over B then there
isarepresentative Q of C in f contained in the union of the convex hulls of these blocks.

We need more terminology. P has a block structure ove? and blocks consist of two
points each, we calt adoubling of Q. A cycle thatis a doubling of another cycle is called
adoubling. We use the same terminology for patterns.

We call a cycle (and its patterpyimitive if each of its points lies on a different branch
of X.

If fis Q-linear for a cycleQ and P # Q is a cycle of f of periodm, each point ofP
is repelling for f, except two cases: eithér is a doubling ofP, or Q is primitive (and
then P has the same pattern). With those two exceptions, weRcalbsitive or negative,
according to whethey™ preserves or reverses orientation at pointofNow we prove
an analog of Theorem 9.12 of [10].

Theorem 2.4. Assume that a pattern A forces a pattern B of period m, A has no block
structure over B, and B is not a doubling. Then for every k > 1 A forces a pattern of
period km with a block structure over B.

Proof. Let f be theQ-linear map for a cycle with patternA. By Theorem 2.1, patterns
of cycles of f are exactly those that are forced AyHencef has a cycleP of patternB.
SinceA has no block structure ove, the cyclesP and Q have different patterns and
is not a doubling ofP. ThereforeP is repelling, and either negative or positive.

Assume first thatP is negative and try to find a positive representativeBoiChoose
x € P such thatthere is npe P with y > x (i.e., x is the farthest frona point of P on its
branch). Moreover, ifP is not primitive, choose from a branch on which there is more



32 A. Blokh, M. Misiurewicz / Topology and its Applications 114 (2001) 27-48

than one point ofP. Start to movex towardsa and look what happens with its images. To
describe the movement, we introduce the real variafilmme) and speak of () depending
affinely on¢, with x(0) = x andx(1) = a.

Let us make some observations concerning the movement of the points. First of all,
notice thatf™ (x(0)) = x(0) and that for smalt we havef™ (x(¢)) > x(0) > x(¢z), which
follows from the fact thatP is negative. Thus, the point™ (x(¢)) starts to move initially
away fromx, but then it has to turn back and collide witki) for someT < (0, 1] for the
first time. Then by continuity we havg™ (x (1)) > x(¢) for 0 <t < T. Also, by the choice
of the pointx (0) for any 1< k < m eitherx(0) > f*(x(0)) or the pointf¥(x(0)) does not
belong to the same branch &fasx (0).

We claim that for O< r < T there is no collision between pointé (x (1)) and £/ (x (1))
for 0<i < j <m and no collision betweef’ (x()) anda for 0 < i < m. Suppose that
there is such a collision. Since the times of collision form a closed set and there is no
collision for smallz, if there is a collision for some @ ¢ < T then there is the smallest
time 0< s < T when a collision occurs. 1§ (x(s)) = a then alsof™ (x(s)) = a, but
this contradictsf™ (x(s)) > x(s). If fi(x(s)) = f/(x(s)) for some 0< i < j < m then
fE(x(s)) = fm(x(s)) for k=m — j + i, so f¥(x(s)) > x(s). Since O< k < m, either
x(0) > f¥(x(0)) or f¥(x(0)) andx(0) lie on different branches. Hence there is a collision
betweenx () and f*(x(r)) for somer smaller thans, a contradiction. This proves the
claim. Note that it follows from the claim that it is impossible to hat/éx (r)) > x(¢) for
O<i<mandO0<r<T.

From the above claim it follows that the ordering of the images(of on the branches
stay the same all the time. Denote the orbivef x(7) by P’. If the period ofy is m then
P’ has the same pattern & Moreover, since for alt < T we havef™ (x (1)) > x(t) >
x(T) then P’ is positive. Let us see what happens if the perio®ofs k < m andT < 1.

Since f™(y) = y, k dividesm. If P’ is positive (that is,f* preserves orientation at the
points of P’) then forsr < T, but close tal’, we havef* (x(r)) > x(r), a contradiction. If

P’ is negative then for suchwe havef%(x (1)) > x(¢) and hence = m. Thus, atl’ we
have a collision of pairg’ (x(T)), f™/?t(x(T)), and beford’ the relative order of points
f7(x(2)) stays the same. This means tifaits a doubling ofP’. However, we assumed that

B (and thereforeP) is not a doubling. Hence, the situation described above cannot occur.

Another possibility isT = 1. Theny = a. We claim that in this cas@ is primitive.
Indeed, otherwise, by our choice of there is O< i < m such thatx(0) > f'(x(0)).

For somer < T we havex(t) = f1(x(0)), so "I (x(t)) = f™(x(0)) = x(0) > x(¢), a
contradiction.

In such a way we proved thgt has a positive cycl® of patternB. If B is primitive, R
may degenerate t@}. This means that instead of points®fwe have to look at germs of
branches a&. Fortunately, this does not make much difference for us, and the rest of the
proof is essentially the same for non-degenerate and degenerate cases. For simplicity we
write the proof for the non-degenerate case; the reader can easily verify that it works for
the degenerate case too.

We use a similar technique as in the first part of the proof. Namely, we choose a point
x € R such that there is ng € R with y > x and then move it away from. Since f™
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preserves orientation at, the point f”*(x) moves initially also away frona. We stop
when either we get withi(¢) to the end of the branch or witfi” (x(¢)) to x(0) (observe

the difference at this moment with the construction from the beginning of the proof). Note
also that all the time (except the initial time 0 and perhaps the final fimave have

7 (x(@0) > x(0). | |

We claim that ifs,z € (0, T) and O< i < j < m then f'(x(s)) # f/(x(¢)). Indeed, if
Fi(x(s) = f7(x(r) then f¥(x(s)) = f™(x(t)) > x(0) for k = m — j + i while on the
other handx(0) > f*(x(0)). Hence, there is: € (0,s) with f*(x(u)) = x(0). Clearly
f771(x(0)) > x(0) is impossible sincej — i < m. On the other hand we must have
FI7H(x(0)) = "% (x(0)) = f™(x(u)) > x(0), a contradiction. This proves the claim.

Consequently, it/ = (x(0), x(T)) then the intervalg’ (J), j = 1,...,m, are pairwise
disjoint. Moreover, since is a fixed point, these intervals do not contairfif for some
s € (0, T) we havef™(x(s)) = a then for some: < s we havef™ (x(«)) = x(0), which
contradicts the choice df). Therefore any cycle contained [d:.”:‘ol fi(J) has a block
structure oveR. As we just explained, thg™-image of no point from the interior of is
x(0) and thereforef™ (J) lies (non-strictly) farther away from thanx (0).

By the definition ofT, eitherx(T) is an end of a branch, of” (x(T)) = x(0). Let us
show that in any case there is a point@ﬁnsideulf”:_ol fi(J). Indeed, in the former case
it follows from the fact that the patterB is forced by the patterd and so there must be a
point of Q farther away fronu thanx (0), and this point is in/ because: (T) is the end of
the branch. In the latter case notice thét(x (z)) does not move in a monotone way. Since
f is Q-linear, it implies that there is a point @ in U;";ol Fi).

If f™(J)c JthenQ is contained "U?’;ol £i(J). HenceQ has a block structure over
R, contrary to our assumptions. Therefof&(J) 2 J, x(T) cannot be the end of the
branch and alwayg™ (x(T)) = x(0). Also, f™(J) 2 J implies that we can find a point
y € J with f™(y) > x(T). Therefore if we sef; = (x(0), y) andJ> = (y, x(T)) then both
f™(J1) and f™(J2) containJ. The standard technique (see, e.g., [5,2]) allows us to find
for everyk a periodic point off” of periodk, belonging to inJ. This point is periodic
for f of periodkm. Its orbit is contained ifU;";ol fi(J), so it has a block structure over
R. O

When we study patterns with a block structure over other patterns, we often have to look
at the iterate of our map that maps a block into itself. If the initial map-knear for a
cycle P with a given pattern then this leads to the investigation of an intervalgnéap~> 1
which is Q-linear for some invariant finite s€ (not necessarily a cycle).

Lemma 2.5. Let g: 1 — I be a continuous interval map which is Q-linear for a finite
invariant set Q. Then either g hasa cycle of period which isnot a power of 2 or it hasonly
cycles of finitely many periods.

Proof. Let us look at the standard oriented graphwhose vertices are closures of
components of \ Q and arrows correspond gecovering. Then there is a correspondence
between the loops @ and the cycles of (see, e.g., [5,2]). I& has no distinct elementary
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loops that pass through the same vertex then there are only finitely many loGpsird
thus there are only finitely many periods of cyclesgoflf G has such loops then the
number of paths it of lengthm grows exponentially withn and thereforg has positive
topological entropy. Henceg, has a cycle of period which is not a power of 22

3. Oriented graphs

We will say thatthere is an arrow from x to y and writex — y, if there isz such that
x >z and f(z) > y. Thus, any finite seP C X \ {a} gives us an oriented graph, whose
vertices are elements &f and arrows are defined as above. When we refer to a loop then,
unless stated otherwise, we mean a loop in this type of graph. Also, we use the standard
definition of f-covering (see, e.g., [2]). Namely, we say that an intedvgl-covers an
interval J if f(I) D J. Then we speak of ahain of intervalslp — Iy — --- if every
previous interval in the chaigf-covers the next one. We also speak of loops of intervals.
The following two lemmas are the basic tool in the rest of the paper.

Lemma3.1l. Letxg— x1 — -+ — x;—1 — xo bealoop. Assumethat thereisz € X \ {a}
and x; > z such that f(x;) and f(z) lie on different branches of X. Then there is a point
y e X\ {a} suchthat f™(y)=yandx; > ff(y)for k=0,1,...,m — 1.

Proof. There is a pointv € [z, x;] such thatf (w) = a. Then, using the standard technique
of f-covering (see, e.g., [1,2]), we get a loop of intervalsxg] — -+ — [w, x;] —
[a, xiy1] = -+ — [a, x;—1] — [a, x0], which gives us a desired poipt O

Lemma 3.2. The following properties hold.
(1) Let xo —> x1 — -+ — x;—1 — xo bealoop. Then thereisapoint y € X \ {a} such
that ™ (y) =y and for everyk =0, 1,...,m — 1 thepointsx; and f¥(y) lieonthe
same branch of X.
(2) Let f bea P-linear map for some cycle P £ {a}. Suppose that y # a isa periodic
point of f of period ¢. Then there exists a loop xo — x1 — -+ = x4_1 — xo such
that x; > fi(y) for all i.

Proof. (1) If the assumptions of Lemma 3.1 are satisfied, we use it. Otherwiges if
X\ {a} is sufficiently close ta andxg > z, thenx; > f¥(z) fork=0,1,....m—1.1fz >
™ (z) then we get the loop of intervalls, xo] — [ (z), x1] = -+ = [/ (), xp—1] —
[z, xo0], which gives us a desired point If f™(z) > z then we move; (formally, we
considerz(t) wheret is “time”) away froma for as long asf*(z) #a fork=0,1, ...,
m — 1 and ™ (z) > z. The conditionf”(z) > z has to break first, since if*(z) = a then
z>a= f"(z). Theny =z is our point.

(2) We may assume that¢ P U {a}. Then for anyi, 0 <i < g — 1, there exists a
well-defined component; of X \ (P U {a}) containingf’(y). Denote byx; the endpoint
of J; for which x; > fi(y). Thenx; € P. By the definition of aP-linear map for
one of the endpoints of J; we have f(z) > f*1(y), and sincef(z) € P, we get
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(z) > x;11. Hence, there is an arraw — x;11. Sincex, = xg, we obtained the desired
+ + q
loopxo— x1— -+ = x4-1—>x0. O

Lemma 3.2 and Theorem 2.2 allow us to speak of loops in the g@pgliven by a
patternA which correspond to patterns forced Ay Together with Theorem 2.4, they also
provide tools for studying sets of periods for maps:edd. Moreover, later we introduce
the notion of rotation pair for such maps and rely upon Lemma 3.2 in studying them by
means of grapld .

Now we start to build a rotation theory for our maps. Suppose we lfagé/, and a
finite setP C X \ {a}, and the oriented grapli given by P is transitive (that is, there is a
path from every vertex to every vertex). This is the case for instanéasfa cycle.

Denote the set of all arrows @f by A. We will call the set of all points of that are
contained in a given branch o¢f also abranch. Thus, the seP is divided into branches.
Denote the set of all branches Bfby B. Now think aboutX as being embedded into the
plane with the central point at the origin and branches being segments of straight lines.
To go from one branch to another we have to turn by some angle. This angle is defined
up to a multiple of z, but we choose one value. This value, divided by, #vill be
the displacement assigned to the transition between the two branches. We can formalize
this in the following way. We choose functiogs B — R (position) andy: B x B — R
(displacement) such that for any branchésc the numbet (b) + v (b, ¢) differs from¢(c)
by an integer. Moreover, we require thabif4 ¢ then¢ (b) — ¢(c) is not an integer.

Once the displacement has been definedBor B, it induces in the natural way a
functiong: A — R, which we also calbdisplacement. Namely, ifu € b andv € ¢, then
o(u — v) = ¥ (b, ¢). Note that although se? and the graplG coming with P motivate
us to introduce displacement, in fact the latter may be introduced for transitions between
branches o which in turn would induce the displacememitsandg as above.

Note that our graplG has a special property, connected with the branch structure.
Namely, if # and v belong to the same branch, one of them is further feothan the
other one. This is visible irG in the following way. Ifv > u then whenever there is an
arroww — v, there is also an arrow — u, and whenever there is an arraw—> w, there
is also an arrow — w.

For aloopI” in G denote byy(I") the sum of the values of the displacemegraiong the
loop. In the model withX embedded into the plane, this number tells us how many times
we revolved around the origin. Thus(I") is an integer. We denote the lengthioby |I|.

As usual,(¢(I'), |I"|) is called therotation pair of I" ande(I")/|I"| the rotation number
of I'. The closure of the set of rotation numbers of all loop&/aé called therotation set
of G and denoted.(G).

By [12], the rotation set of7 is equal to the smallest interval containing the rotation
numbers of all elementary loops of (a loop is calledelementary if it passes through
every vertex at most once). Moreover, every rational number figai) is the rotation
number of some loop ofi. The next question usually asked in such situations is whether
if p/q belongs toL(G) and p, ¢ are coprime then there exists a loop with rotation pair
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(p, ). In general the answer is “no”. However, there is a special situation when the answer
is “yes”.

For every arrow: — v of G, whereu belongs to the branch, and an integem, think
of a car(u — v),, driving fromm + ¢(b) tom + ¢(b) + ¢(u — v). A car (u' — v'),»
(with u’ € b’) passesa car(u — v),, if m’ +¢(b") <m+¢(b), whilem’ +¢ (') + o' —
V") > m+ (D) + ¢(u — v). If this does not happen for any pair of cars corresponding to
arrows inG, we say that our displacementign-passing. Although the definition formally
involves infinitely many objects, passing cannot occymif— m’| is too large. Therefore
checking whether a displacement is hon-passing involves only finitely many operations.

Proposition 3.3. The following properties hold.

(1) Assumethat G istransitive and the displacement is non-passing. Then for every pair
of integers (p, ¢) with ¢ > 0 and p, g coprime, such that p/q € L(G), there exists
aloop in G with rotation pair (p, g).

(2) Supposethat (r, s) and (+’, s”) arerotation pairs of two non-disjoint loopsin G and
that (r, s) and (r', s") are Farey neighbors (that is, |rs’ — r’s| = 1). Then for every
pair of integers (u, t) withz > O suchthat u /¢ lies between r /s and r’ /s’ there exists
aloopin G with rotation pair (u, t).

Proof. (1) As we already know, there exists a loopGnwith rotation numbep/q. Take
such aloof” of minimal length. Then the rotation pair &fis (mp, mq) for some positive
integerm. We have to show that = 1.

Assume thatn > 1. Let the consecutive arrows il be ag, a1, ..., og—1, and set
Upg = 00, Apg+1l = 0L, -+ .. Look at the sums; = (o) + @(jy1) + -+ + o(Aitg-1)-
We claim that at least one of these sums is equal.ttndeed, if none of them is, then
(sincemp is the sum ofn such sums) there af&s with s; < p and withs; > p. Therefore
there isj with s; < p ands;;1 > p. Let the arrowx; go from the branclb to ¢, and the
arrowa 4 from the branch’ to ¢’. Thenz (b) +s; = ¢(b') + k for some integek. The
car (b, c),, drives fromp + ¢ (b) to p + ¢(b) + ¥ (b, ), while the can’, ¢')x drives from
sj+¢)tos;+¢b)+ ¥, ). Sinces; < p, we haves; + ¢(b) < p + ¢(b). On the
other hand,

si U, ) =sj+eajrg) =sjr1+@a;) =sjs1+ ¥ (b, c) > p+¥(b, o),

and hence; +¢(b) + ¥ (b', ') > p+ ¢ (b) + ¥ (b, ). Therefore the cafb’, ¢'); passes
the car(b, ¢) ,, a contradiction. This proves the claim.

Hence, there is such thats; = p. Denote the vertex at which the arraw begins
by u and the vertex at which the arrow;,,_1 ends byv. Since the values of the
position function¢ on different branches do not differ by an integerand v belong
to the same branch of. Therefore eithew > u or u > v. In the first case the arrows
Qi, 041, ..., Qigg—2, %i+q—1, fOrm a loop of rotation paitp, ¢). In the second case in a
similar way we get a loop of rotation paitm — 1)p, (m — 1)q). In both cases we get a
contradiction, since we assumed tlfais the shortest loop of rotation numbgftq. This
completes the proof of the statement (1) of the proposition.
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(2) It is well known that if(r, s) and(r’, s") are Farey neighbors and'r lies between
r/s andr’/s’ then there exist positive integetsh such thatar + br’ = u, as + bs’ =1.
Hence the concatenation @fcopies of the first loop ankl copies of the second loop, each
starting at the common vertex of both loops, is a loop of rotation(gat), as desired. O

We finish this section with a technical lemma.

Lemma 3.4. Assume that G is transitive, p,qg are coprime, and p/q belongs to the
interior of L(G). Then there exists a loop in G with rotation number p/q which does
not correspond to a pattern with a block structure over any pattern of rotation pair (p, g).

Proof. By [12], there are loopg7, I2 in G with rotation numbers, r2, passing through
a common vertexv, and positive integers:1, m such thaty < p/q < t» and the
concatenation ofz; copies ofly andmy copies ofl» is a loop of rotation numbep/q.
Let I be the concatenation @fm1 copies ofI; followed by gm2 copies of I;. If the
pattern corresponding t6 has a block structure over a pattern of rotation gairg) then
the displacement corresponding to angonsecutive arrows ii” must bep. Therefore
the firstgm1 copies ofl; form a loop of rotation numbew/q, while on the other hand its
rotation number must be # p/q, a contradiction. This completes the proofa

4. Setsof rotation pairsfor cycles

We are mainly interested in the rotation numbers and rotation pairs of cycles (or patterns)
forced by a given cycle (or pattern). Léte U,, letp be a displacement as in the preceding
section. We will denote the set of all paifg, ¢) by V,. Let P be a cycle off of pattern
A. We will denote the set of rotation numbers of all cycles forcedllyy rn(P). Clearly,
it is equal to the set of rotation numbergAn of all patterns forced bwy. Similarly, we
denote the set of rotation pairs of all cycles forcedbiy rp(P), and it is equal to the set
of rotation pairs rpA) of all patterns forced by.

Now it should be clear why in the definition of equivalence of cycles we distinguish
branches. Namely, the displacement may distinguish branches, so if we do not do it, we
cannot give above definitions for patterns.

In the general case we can characterize quite well the &) rior the sake of brevity
we will say thatA is a pattern for (f,¢) € V, when A is a pattern represented ifi
and considered with the displacemen(so, e.g., it makes sense to speak of non-passing
patterns for( f, ¢)).

Theorem 4.1. Let A beapatternfor (f, ¢) € V,. Thenrn(A) istheintersection of a closed
interval L(A) (perhaps degenerate) with the set Q of rational numbers. The endpoints of
L(A) arerotation numbers of some patternsforced by A of period not exceeding the period
of A.
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Proof. As we noticed in the preceding section, the oriented gi@given by the pattern

A is transitive, and thus by [12], its rotation set is a closed inteh\(glerhaps degenerate)
with endpoints equal to the rotation numbers of some elementary lo@psand for every
rational number fron¥ there is a loop inG with that rotation number. The number of
vertices ofG is equal to the period o4 and an elementary loop cannot have larger length.
Thus, by Theorem 2.2 and Lemma 3.2 applied t®-Bnear map for a representativeof

A, the theorem follows. O

Now we would like to know more about ¢a). By the definition, for everyp/q €
rn(A) with p,q coprime, there isn > 1 such thatimp, mq) € rp(A). Then we can use
Theorem 2.4 to get other numbers with this property. However, without additional
assumptions we will not get all of them. The situation is much better for non-passing
displacements. Let us stress that whether a given displacement is non-passing, may depend
strongly on the grapld;, that is on the patterd. Therefore, when we fix a displacement
function for the transitions between the branchesXofwe may speak ohon-passing
patterns (and cycles). Clearly, a pattern forced by a non-passing one is also non-passing.

Lemma 4.2. If A is a non-passing pattern for (f, ¢) € V, forcing a pattern of rotation
number p/q with p, g coprimethen it forces a pattern of rotation pair (p, ¢).

Proof. It follows from Theorem 2.2, Proposition 3.3(1) and Lemma 3.2 applied fo a
linear mapf for a representativ® of A. O

Theorem 4.3. Let A be a non-passing pattern for (f, ¢) € V,. Then for every coprime
p, q with p/q fromtheinterior of the interval L(A) and every m > 1 thereisa pattern B
forced by A with rotation pair (mp, mq). The same holds if p/q is an endpoint of L(A)
but is not equal to the rotation number of A.

Proof. Let p, g be coprime withp/q € L(A). If p/q € int(L(A)) is equal to the rotation
number ofA, then by Lemma 3.4, Theorem 2.2 and Lemma 3.2 appliedRdiaear map
for a representativ® of A, the patterm forces a patterd@ of rotation numbep /g which
has no block structure over any pattern of rotation airg). If p/q is not equal to the
rotation number ofd then A itself has no block structure over any pattern of rotation pair
(p,q) and we seC = A.

By Lemma 4.2,C forces a patterrB of rotation pair(p, ¢). We know already thaf
has no block structure ovet. Sincep, g are coprime B is not a doubling. Therefore by
Theorem 2.4 for everyn > 1 the patternC forces a pattern of rotation paimp, mq).
SinceA forcesC, this completes the proof.C

Let us now investigate the case whefy is the rotation number od and an endpoint of
L(A). For any positive integer we denote bys (k) the set consisting df and all numbers
standing to the right of in the SharkovsKiordering.
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Theorem 4.4. Let A be a non-passing pattern for (f, ¢) € V,. Assume that its rotation
number p/q, where p, q are coprime, is an endpoint of L(A). Then the set of all i for
which A forces a pattern of rotation pair (ip,iq) is of the form S(k) for some positive
integer k.

Proof. By Lemma 4.2 A forces a patter® of rotation pair(p, ¢). If A forces a patter@
of rotation numbep /g without a block structure ove® then by Theorem 2.B forcesC.
By Lemma 4.2 forces a patteri of rotation pair(p, q). SinceB # C, by Theorem 2.1
B # D, and thereforeB has no block structure oveéd. Sincep, ¢ are coprimeD is not
a doubling. Therefore by Theorem 2.4 for every= 1 the pattermB (and thus the pattern
A) forces a pattern of rotation paitp, mq), and the theorem holds with= 3.

Assume now thatt does not force any pattern of rotation numipgy; without a block
structure overB. Let P be a representative of in a P-linear mapf and letm be the
period of B. By Theorem 2.3, any patteii of rotation numberp/q and periodig has a
representativ® in f contained in the union of convex hulls of blocks®f If I is one of
these convex hulls angd= f™|; theng is a map from/ to I satisfying the assumptions
of Lemma 2.5 and such thg@ = RN I is a cycle ofg of periodi. Now the existence
of k as in the statement of the theorem follows from the Sharkdusieorem forg and
Lemma2.5. O

When we put together Theorems 4.3 and 4.4, we see that thg 4¢tfgp a non-passing
patternA has the same form as for a circle map of degree 1. We can visualize it easily
when we use the modified rotation pairs, defined in the introduction. Using them we can
restate Theorems 4.3 and 4.4 as follows.

Theorem 4.5. Let A be a non-passing pattern for ( f, ¢) € V,. Then there are patterns By
and B> forced by A, of modified rotation pairs (¢1, m1) and (r2, m2), respectively, such that
mrp(A) = [(t1, m1), (t2, m2)]. Moreover, m; = 3 unless the rotation number of A is¢;. In
particular, if t1 # 12 then at least one of m1, m2 isequal to 3.

The next two lemmas, dealing wittrod maps, are only loosely related to rotation
numbers. Sometimes it is very important to know the periods of primitive patterns forced
by a given patterri. It turns out that there has to be at least one such pattern.

Lemma 4.6. Each pattern forces a primitive pattern.

Proof. Let I be the shortest loop in the graph given by a pattérdf it passes twice
through the same branch, there are arrewand g in I" ending on the same branch.
Assume that8 ends closer ta: then«, and replacer with an arrow beginning at the
same place ag, but ending wherg ends. With this replacement we get a shorter loop, a
contradiction. Thus]” gives us a primitive pattern.

In fact, to find a loop corresponding to a primitive pattern forceddby is enough to
consider points closest toon their respective branches.
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We apply Lemma 4.6 to obtain the following result.

Lemma4.7. Assumethat a pattern A forces no primitive pattern of period larger than 2.
Then the set of periods of patternsforced by A is S(k) for some k.

Proof. Denote bym the period ofA and byK the set of periods of patterns forced Ay
Suppose first thad forces a pattern of period 1. i has a block structure over a pattern of
period 1 then all points of a representativedlie on the same branch and th&n= S(k)

for somek. Otherwise, by Theorem 2.4, forces patterns of all periods, $6= S(3).

Thus, we can assume thatforces no primitive patterns of period other than 2. Then
any patternB forced byA has the same property. However, by Lemma 4.6 stittas to
force some primitive pattern, so it forces a primitive pattern of period 2.

Suppose that: is even andd has a block structure over a primitive pattern of period 2.
If P is arepresentative of in a P-linear mapf then for /2 P decomposes into 2 cycles,
each of them contained in one branch. Thereféreonsists of elements of some s$&f)
multiplied by 2, and of 1 (fronfa}). This set is equal t§'(2/), and the proof is complete
in this case.

Assume now that is even andd does not have a block structure over a primitive pattern
of period 2. Then by Theorem 24 forces patterns of all even periods (and the pattern of
{a} of period 1). ThusK containsS(6). If K = S(6), we are done; otherwisé forces a
pattern of odd period larger than 1.

The last case we have to consider is wieforces a pattern of odd period larger than 1
(this contains the case of odd). Lets be the smallest such period, and Bbe a pattern
of periods forced byA. Consider aP-linear mapf whereP is a cycle of patterrB. Take
a pointx € P. Let I" be the loopx — f(x) = f2(x) — --- — f*(x) = x and lety be
the loop which by Lemma 3.2(2) corresponds to a primitive pattern of period 2. Then a
concatenation of” andy is a loop of lengtty + 2 for which by Lemma 3.2(1) there exists
an associated periodic point a such thatfs1t2(y) = y. Let C be the pattern of the orbit
of y. By Theorem 2.2B forcesC. Therefore the period af', which is a divisor ofy + 2,
can be onlys + 2. If C forces a patterB’ of periods, we repeat the above construction
with b replaced byB’ and get a patterd’ of periods + 2 forced byB’, etc. We claim
that after finitely many such steps we get a pattBrrof periods + 2 which does not
force any pattern of period+ 2. Indeed, otherwise we get an infinite sequence of patterns
B,C,B’,C’,B”,C",...inwhich every pattern forces the next one and their periods are
s,s+2,5,5+2,5,5+2,.... By Theorem 2.1 those patterns are all distinct, and since
there are only finitely many patterns of a given period, we get a contradiction.

Thus,B forces a patter® of periods + 2 which does not force any pattern of odd period
less thary + 2 but larger than 1. Now this construction can be repeated and by induction
we get thatB (and thereforet) forces patterns of all odd periods larger than or equal to
Hence,K = S(s). O

A map fromi4, that has no primitive cycles of period larger than 2 behaves very similar
to a map fromiso (or Uy), that is an interval map. Thus, Lemma 4.7 is basically the
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Sharkovski Theorem for those maps. The essential step in the proof is to show that a
pattern of odd period larger than 1 forces patterns of all larger odd periods. We did it by
looking at the loops in the graph given by this pattern. Alternatively, one can use rotation
numbers, in the way very similar to the proof of the SharkovEkeorem from [7,8]. An
example of how this could be done is given in the following proposition.

Proposition 4.8. The following properties hold.

(1) Ifapattern A for (f, ¢) € V, hasrotation pair (r, s) and forces a pattern of rotation
pair (r',s’) such that (r,s) and (+/,s") are Farey neighbors then the set mrp(A)
contains[(r/s, 1), (/' /s’, )] ifr/s <¥'/s',or [(r'/s',3), (r/s, D]ifr' /s <7r/s.

(2) If Alisatriod pattern of period 2k + 1 forcing no primitive pattern of period other
than 2 then the set of modified rotation pairs of patternsforced by A contains either
[(k/(2k+1),1),(1/2,3)] or [(1/2,3), ((k+ 1)/(2k + 1), 1)], and hence A forces
patterns of all periodsfrom S(2k + 1).

Proof. (1) Assume that/s < r’/s’; the proof forr’/s’ < r/s is similar. By Proposi-
tion 3.3(2), for any paiKu, ) of positive integers with/s < u/t <r’/s’ there is a loop
with rotation pair(u, ¢). If u, t are coprime, then the corresponding cyclefdias rotation
pair (u, t). Now Theorem 2.4 implies thétr/s, 1), (r'/s’, 3)] C mrp(A).

(2) Let f be aP-linear map whereP is cycle of pattermA. Let n be the largest in the
Sharkovski ordering period of a pattern forced by and letB be a pattern of period
forced byA. Thenn < 2k + 1 is odd. LetG be the graph associated withand letl” be
the loop inG corresponding t@. SinceB does not force a primitive pattern of period 1,
all green arrows ™ point towardsz. Hence, after removing them froii we get a loop
I'’, corresponding to a non-passing patt€rof periodm < n. By Lemma 4.6 forces a
primitive pattern which must be of period 2.

Now, if C has rotation number/m # 1/2 then the conclusion follows from Theo-
rem 4.5. Assume that/m = 1/2. We show that the number of arrows removed frbm
was 1. Indeed, the cage= 3 is straightforward, while if: > 3 then after removing 2 ar-
rows we would get a loop corresponding to a pattern of period dividirg2. It cannot
be of period 1 by assumptions and has therefore an odd persath that 3< u < n, a
contradiction. Since at least one arrow was removed, it was exactly one, so the rotation pair
of Bis ((n — 1)/2,n). This is a Farey neighbor df., 2), so the conclusion follows now
from (1). O

5. Application to thetriod maps

Now we are able to explain an intriguing phenomenon, noticed over 10 years ago, about
the coexistence of periods for maps fréf This theorem (see [1]) is very similar to the
Sharkovski Theorem.

If we have an ordering of natural numbers (or its subset), we dall any non-empty
subset that with any numbercontains all numbers smaller tharin this ordering. Thus,
the setsS(k), k € N’ are exactly the tails of the Sharkovs&idering.
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In [1] two other orderings were introduced, namelgraen ordering
5-8>4>11>14>7>17=20> 10> 23> 26> 13> ---

followed by the Sharkovskiordering multiplied by 3 (that is, numbers of the forra 3
ordered according to the Sharkoviskidering ofk’s) and 1 at the end; andrad ordering

7>10>5>13>16>8> 19> 22> 11> 25> 28> 14> --.
followed by the Sharkovskordering multiplied by 3 and 1 at the end.

Theorem 5.1 [1]. If f € U3 then the set of periods of cycles of f isequal to the union of
some tails of the SharkovskiT, green and red orderings.

As we mentioned in the introduction, this theorem was later generalized by Baldwin [4]
to all continuous maps of the triod.

The intriguing phenomenon, mentioned at the beginning of this section, is a striking
similarity of the tails of the green and red orderings to the sets of denominators of numbers
from an interval whose one endpoint ig3L Observe, that similar phenomenon relating the
tails of SharkovsKiordering and the denominators of numbers from an interval whose one
endpointis ¥2 has already been explained in [8] by means of rotation theory for interval
maps. Also, let us remind the reader that similar phenomenon was discovered for maps of
n-od (see, e.g., [3]).

Lemma5.2. Any tail of the green (respectively, red) ordering containing a number larger
than 1 and not divisible by 3isequal to the set of periods of all modified rotation pairsfrom
the set [(a, m), (1/3, 3)] (respectively, [(1/3, 3), (a, m)]) for some modified rotation pair
(a,m) with 0 < a < 1/3 (respectively, 1/3 < a < 1/2). Conversely, any set of the above
formisatail of the green (respectively, red) ordering.

Proof. Let us prove this for the green ordering, the proof for the red one is similar. First
notice that the green ordering is given by the periods of the following modified rotation
pairs:

(5:2.(.2. (3.9 (£9-(5.2.(3 9. (% 1.
Moreover, we have

R R e !
Odd terms of this sequence of fractions are of the fe2in— 1)/(6k — 1), and the even
ones are of the form/(3k + 1). Thus, we have to prove that there is no number of the
form j/(6k — 1) in ((2k — 1)/(6k — 1), 1/3) and no number of the formi/2(3k + 1)
in (k/(3k + 1), 1/3). These statements are equivalent to the nonexistence of an iriteger
satisfying & —2 < 3j <6k — 1 and & < 3j < 6k + 2 respectively, which is obvious.O

As shown in [1], green and red orderings are given by so called green and red patterns.
Letus list some important properties of these patterns. Suppose that a green or redipattern
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has representativR in a mapf € Us. ThenP has points on all three branches of the triod.
There is an ordering of these branchgs b1, b> such that for the poinp; of P, closest to
a on the brancth; we havef(p;) € b;+1, where the addition in the subscripts is modulo
3. Let us use the displacemeptsuch that the transition from; to b;4; (j =0,1,2)
corresponds to the displacemgiB. Then we get a loop of length 3 and rotation number
1/3, s0A forces a pattern of period 3 and rotation numbg.1

With this displacement, arrows of oriented graphs of green patterns have displacements
only 0 and ¥3, and of red patterns only/3 and 23. Thus, they are all non-passing.
Now Theorem 4.5 and Lemma 5.2 explain the described phenomenon. Presence of the
Sharkovskiordering multiplied by 3 at the end of the green and red orderings corresponds
to the fact that the rotation numbers of green and red patterns is/Bpsa we get these
periods from Theorem 4.5. Moreover, we get period 1 at the end, giigca fixed point.

We know by Lemma 4.6 that the collection of primitive patterns forcedibig non-
empty. It turns out that it is an important characteristiciof

Theorem 5.3. For triod mapsfixing a, if a pattern forces primitive patterns of at least two
different periods then it forces patterns of all periods (except perhaps 1).

Before we prove this theorem, we consider how to use most effectively the rotation
theory in the case when our patte4rforces a primitive patter@ of period 3. LetP be a
representative ol in a P-linear mapf € Usz. Thenf has a cycleR of patternC. This cycle
has one point on each branch of the triod. There is an ordering of these branrchesh,
such that for the point; of R on the brancth; we havef (p;) € b;+1. As before, we will
use the displacemeatsuch that the transition frod to b;; (j =0, 1, 2) corresponds to
the displacement/3. ThenR has rotation number/B.

Lemma 5.4. In the above situation, if a pattern A does not force a primitive pattern of
period 1, then the graph given by A contains a transitive non-passing subgraph containing
loops corresponding to C and all patterns of maximal rotation number forced by A (that
is, the right endpoint of L(A)).

Proof. Let f and P be as above. Sinca does not force a primitive pattern of period
1, all arrows in the grapls given by P which begin and end on the same branch, point
towardsa. Hence, if we remove these arrows, we get a gr@phvhich is transitive (we
can pass from any vertex to any vertex along the loop correspondiRgitith arrows of
displacement 0 removed). This graph has only displacemegBtaid 23, so it is non-
passing.

To complete the proof we have to show ti@tand all patterns of maximal rotation
number forced byd correspond to loops i whose arrows have no displacement 0. For
C itis obvious, since all arrows of that loop have displaceme¢®t If a loopI” in G has
an arrow with displacement 0 then this arrow can be removed from the loop and since this
arrow pointed towardsg, what is left is also a loop. It has the same total displacement as
but smaller length, so it has larger rotation number thahereforel” cannot correspond
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to a pattern with maximal rotation number among patterns forcetl. Gyhis completes the
proof. O

Remark 5.5. Let us consider the displacement such that the transition troto b; ;

(7 =0,1,2) corresponds to the displacemegnB. Then the loop corresponding to any
primitive cycle of period 2 has displacemen{8land 23 (and so this cycle has rotation
number ¥2). Thus, if we assume in Lemma 5.4 th@tis a primitive pattern of period 2
instead of 3, its proof will still work.

Proof of Theorem 5.3. If a patternA forces a primitive patterrB of period 1 and a
primitive patternC of period 2 or 3, then it has no block structure ov@r and by
Theorem 2.4 it forces patterns of all periods.

Assume now tha#i forces primitive patterns of periods 2 and 3. By a similar argument
as aboveA forces patterns of all even periods. Lebe the right endpoint of.(A). By
Lemma 5.4 there is a transitive non-passing subgraphbf the graphG given by A with
L(G") containing[1/3, b]. Thenb > 1/2 since A forces a primitive pattern of period 2
and all such patterns have rotation numbg2.1For every odd > 1 we have 13 <
((k—1)/2)/k < 1/2 and the integer6 — 1)/2, k are coprime. Hence by Proposition 3.3
there is a loop inG’ with rotation pair((k — 1)/2), k). This loop corresponds to some
pattern of period forced byA.

6. Moreabout triod maps

Actually, for the triod maps we can prove more than in the preceding section. In
Lemma 5.4 we considered a situation when a patteforces a primitive pattern of period
3, but does not force a primitive pattern of period 1. Then we used rotation theory to get
patterns forced byl with rotation number larger thary3. Now we replace period 1 by
period 2 and look at the other side of3l

Thus, as in Lemma 5.4, we assume that a pattetiorces a primitive pattertC of
period 3;P is a cycle of patterm of a P-linear mapf € Us; f has a cycler of pattern
C; the displacement is chosen in the same way as there. Thus, possible displacements are
0,1/3,2/3 and all arrows corresponding fbhave displacement/B.

When talking about the arrows in the graghgiven by P, referring constantly to the
displacements is cumbersome, so as in other papers (e.qg., [1]) we will color-code them, and
for the sake of making pictures (by the reader), we adopt the convention that the branches
are numbered counterclockwise. Thus, arrows with displacem@nivill be black. They
lead to the next branch. The arrows with displacement (Qgesen, and they lead to the
same branch. They come in two varietigsiound andoutbound, depending on whether
the beginning is further frora than the end or not. The arrows ending where they began
will be counted as outbound. The arrows with the displacemghafered and they lead to
the previous branch (we draw them in the clockwise direction, although the displacement
is 2/3, not—1/3).
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We make an additional assumption, namely thatoes not force a primitive pattern of
period 2. This has an immediate consequence.

Lemma 6.1. In the above situation, there are no points x, y € P and arrows: black from
xtox’ andred fromy to y’ suchthatx’ > y and y’ > x.

Proof. If there were such points and arrows, then there would be arrows.frtmry and
from y to x. Sincex andy lie on different branches, this would imply that there is a
primitive cycle of period 2, a contradiction.O

A loop consisting of black arrows will be calledoéack loop. Similarly, we will speak
of black paths. A pointx € P will be calledblack recurrent if there is a black loop passing
through it. By our assumptions, there are black recurrent poiniR.ikor example, by
Lemma 3.2(2) for any cycle of there exists a loop associated with it; then the loop
associated with the cycl® is black and hence all points @ in this loop are black
recurrent.

Lemma 6.2. If a point x € P is black recurrent then there is a black loop of length 3
passing throughit.

Proof. Look at the branch to which belongs. The black loop to whichbelongs passes
through finitely many points on this branch. If we write these points in the order of their
appearance in the black loop then there must be two consequent poyngich that

y = x > z. In other words, there is a black path of length 3 beginning ahd ending

at y. We can replace the beginning of the first arrow in this path land the end of the
last arrow also by, and we get a black loop of length 3 passing through O

We will say that two black recurrent points drkack equivalent if there is a black loop
passing through both of them. Clearly, black equivalence is an equivalence relation. We
will call a graphH asupergraphif it consists of a black loop of length 3 and a green arrow
from a vertex of this loop to itself.

Lemma 6.3. Either all pointsof P are black equivalent or G contains a supergraph.

Proof. Let B be an equivalence class of the black equivalence relation. Denote by
xo0, X1, x2 the elements oB furthest froma on consecutive branches and by, y1, y2
the elements oB closest ta: on those branches. Talkes {0, 1, 2}. There is a black arrow
x" — xj41, wherex” € B. Thenx; > x’, so there is a black arrow; — x;1. Similarly,
there is a black arrow; — y’ for somey’ € B. Theny’ > y; 1, so there is a black arrow
yj = yj+1. Thus, B is bounded from outside and inside by black loops of length 3. All
points of P between these loops belong Bo(if, for instance,xg > z > yo then there are
black arrowscy; — z — y1).

No black arrow beginning inside or on the outer loop can end outside the outer loop,
since then the end of this arrow would belonggtoBy Lemma 6.1, no red arrow beginning
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inside or on the outer loop can end outside the outer loop. Thus, if there is a pant of
outside the outer loop, there is a green arrow beginning inside or on the outer loop and
ending outside the outer loop, and hence there is a point on the outer loop and a green
arrow beginning and ending at it.

Similarly, no black arrow ending outside or on the inner loop can begin inside the inner
loop, since then the beginning of this arrow would belongtoBy Lemma 6.1, no red
arrow ending outside or on the inner loop can begin inside the inner loop. Thus, if there is
a point of P inside the inner loop, then there is a green arrow beginning inside the inner
loop and ending outside or on the inner loop, and hence there is a point on the inner loop
and a green arrow beginning and ending at it. This completes the proof.

Lemma 6.4. The graph G contains either a supergraph or a transitive non-passing
subgraph containing loops corresponding to C and all patterns of minimal rotation number
forced by A (that is, the left endpoint of L(A)).

Proof. If not all points of P are black equivalent then by Lemma 6@ contains a
supergraph. Assume that all points 6f are black equivalent. Le/ be a subgraph
obtained fromG by removing all red arrows. Clearly, it is transitive and it contains a loop
corresponding t@. Let I be a loop inG corresponding to a pattern of minimal rotation
number forced byd. Suppose that there is a red arrow> y in I". By Lemma 6.2, there

is a black loopx — x1 — x2 — x. By Lemma 6.1x2 > y, and thus the arrow — y in

I’ can be replaced by two black arrows> x1 — y. This gives a loop with the same total
displacement but longer thah, that is a loop with a smaller rotation number theinha
contradiction. Thereforé” is also a loop inH . This completes the proof.0

Note that a supergraph is transitive and non-passing. Moreover, if it is present then by
Theorem 2.44 forces patterns of rotation paif8, ¢) for all g. Thus, in the same way as
we obtained Theorems 4.3 and 4.4 (restated as Theorem 4.5), we get immediately from
Lemmas 5.4 and 6.4 the following result. We denoteVy(a) and M~ () the set of all
(modified rotation) pairgt, m) with r > o andz < «, respectively.

Theorem 6.5. Let A bea pattern for (f, ¢) € Uz. Assume that there isthe ordering of the
branches bo, b1, b> of the triod such that the transition fromb; to b;; (j =0,1,2) is j/3
(the addition in the subscriptsis modulo 3). Assume also that A forces a primitive pattern
of rotation pair (1, 3).

(1) If A does not force a primitive pattern of period 1 then there is a pattern B>
forced by A, of modified rotation pair (t2, m2), and a positive integer mo, such that
mrp(A)NM™ = [(1/3, mo), (t2, m2)]. Moreover, m; = 3 unlessthe rotation number
of Aist; (hererg=1/3).

(2) If A does not force a primitive pattern of period 2 then there is a pattern B;
forced by A, of modified rotation pair (¢1,m1), and a positive integer mo, such that
mrp(A)N M~ = [(t1, m1), (1/3, mo)]. Moreover, m; = 3 unlessthe rotation number
of Aist; (heretg=1/3).
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Thus, if A does not force primitive patterns of periods 1 and 2, we get the same result
as in Theorem 4.5. We conjecture that appropriate versions of rotation theory can be
constructed for patterns on theod forcing primitive patterns of only one period.

If A forces a primitive pattern of period 2, but not of period 1, we apply Remark 5.5 and
get the following result.

Theorem 6.6. Let A bea pattern for (f, ¢) € Usz. Assume that there isthe ordering of the
branches bo, b1, b, of the triod such that the transition fromb; to b;; (j =0,1,2) is j/3
(the addition in the subscriptsis modulo 3). Assume also that A forces a primitive pattern
of period 2, but does not force a primitive pattern of period 1. Then there is a pattern
B> forced by A, of modified rotation pair (¢2, m2), and a positive integer mo, such that
mrp(A) N MT =[(1/2, mo), (t2, m2)]. Moreover, m; = 3 unless the rotation number of A
ist; (hererg=1/3).

Our tools allow us to obtain a new independent proof of Theorem 5.1.

New proof of Theorem 5.1. Clearly, it is enough to show that periods of cycles forced by
a patternA form the union of tails of the Sharkovskgreen and red orderings.

If A does not force a primitive pattern of period 3, this follows from Lemma 4.7. Assume
thatA forces a pattern of period 3. X forces a primitive pattern of some other period, then
it forces patterns of all periods by Theorem 5.3 (we get period 1 fuon Otherwise, by
Theorem 6.5 rotation theory appliesAoand by Lemma 5.2 the set of periods of patterns
forced byA is the union of tails of green and red orderingss

Of course, there is a converse to Theorem 5.1, as in case of Theorems 1.1, 1.2 and 1.3.
That is, for every union of tails of the Sharkovkkjreen and red orderings, there is a
map f € Us with this set of periods. However, this is only a matter of constructing simple
examples (see [1]).
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