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Abstract. We prove that an arbitrary one dimensional smooth dynamical system
with non-degenerate critical points has no wandering intervals.

2.1. Introduction
The present paper is the continuation of [1]. In [1] the absence of wandering
intervals for maps with negative Schwarzian derivative is proved. Here this result
is extended to the smooth case. As a rule, we will use the terminology and notations
from [1] without special explanations.

Let M be a one dimensional compact manifold with boundary. Consider a class
sid of C2-smooth maps f:M-*M having d critical points cke'mtM (''d-modaV)
and satisfying the following conditions.
(Ul) In punctured neighbourhoods of the critical points the following estimates hold

Ax\x-ck\^^\f(x)\^A2\x-ck\^

where Ax, A2, fik >0.
(U2) The critical points ck are extrema.
(U3) (local). In punctured neighbourhoods of its critical points / has negative

Schwarzian derivative.
In particular, a C°° m a p / with non-flat critical points satisfies (Ul) and (U3)

(local).

S e t - s ^ L C o - * -

MAIN THEOREM (the smooth case). A mapf&sd has no wandering intervals.

For the history of this result see [1].
A smooth map fe si may have uncountably many periodic points of a given

period. For that reason the spectral decomposition in the smooth case is more
complicated than in the case of negative Schwarzian derivative..

COROLLARY 2.1. Letf&si. Then
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where Ah Rj have the same sense as in ([1], Corollary 1.1) and S is the union of some
non-limit cycles. For every non-preperiodic x e M either w(x)c/4, or /"xeRjfor
some neN.

COROLLARY 2.2. For generic non-preperiodic xe M the limit set co(x) is either a limit
cycle, a transitive invariant submanifold or a solenoid.

Remark. Clearly, the number of transitive invariant submanifolds and solenoids is
finite. It is unknown whether it is true that / always has only a finite number of
limit cycles.

Further the reference to, say, Lemma 1.3 (or § 1.5) means 'Lemma 1.3 from [1]'
(correspondingly '§ 1.5 from[l]'). The numeration of Sections and Lemmas of the
present paper is as follows: 2.1, 2.2 and so on.

2.2. Distortion lemmas for smooth maps
The main analytical tool in what follows will be the results due to de Melo and van
Strien [2,3]. Now we state them.

Let T, / be two closed intervals, J c int T. Assume T does not contain critical
points of/ Let H± be the connected components of T\J. Set

A(J)A(T)
D(T,J) =

B(f, T, J) =
D(fTJJ)
D(T,J)

Further in this section the sense of T, J and H* is the same as above.
Let 0 > 0. Denote by de the set of maps / e ^ such that B(f T,J)>0 for any T

and i. Note that the maps / e C with negative Schwarzian derivative lie in dl [2].

MINIMUM PRINCIPLE (SMOOTH VERSION) [2]. Letfe d", T = [a, b], x e int T. Then

THE SECOND DISTORTION LEMMA (SMOOTH VERSION) (cf § 1.5). Letfe d". Then
there exists a function ye: R+-»R+ such that if

A(/H+)/A(/7)>a and A(/H")/A(//)& a

then A(H±)/A(y)>?fl(a).

Proof. One may assume A(T) = \(ff) = 1, A(///*)/A(fj) = a. Then A(/T) = l+2a
and

l + 2 a _ A(/J)A(/T) A(J)A(T) A(J)
2 A(/H+)A(/H")" A(tf+)A(H")~ A(H±)'a

Remark. One may show that the Koebe Property (see § 1.5) also holds in class de.
THE THIRD DISTORTION LEMMA [2]. Letfe d. There exists C = C(f) such that if
fm | T has no critical points and

I A(/T)<s
i=0

thenfm\Tede where 0 = exp(-Cs2).
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So we have the uniform estimate of the distortion of all iterates fm on intervals
T satisfying the assumptions of the last Lemma. Further the main problem will be
to verify these assumptions for appropriate intervals.

2.3. Collections of homtervah
Let J^, Jmt,... be the sequence of all nearest to critical point c homtervals. Assume
that for some k < I we have
(Cl ) mk+x-mk = mk+2-mk+x = • • • = m , - m , _ , = a;

(C2) f\[Jmk,Jmi] is monotone.
In such a case we say that {Jmi}'i=k is the collection of homtervals. In particular, a

collection may consist of a unique homterval. Observe that the sequence {Jmi}T=0 is
divided into the union of maximal collections.

Provided {/„,}!=* is the maximal collection and s = m, for some ie[k,l], the
value of min (i — k, l — i) we call the depth ofJs (or s) and denote by dp(Js) = dp(s).
In particular, for a collection {/,} consisting of the unique homterval we have
dp(s) = 0.

Let H, be some interval on which/' is monotone, J c int H,, Hf be the components
of H,\J. Set M, = / ' / / „ Mf =f'Hf. Provided J, lies near a critical point c, denote
by MT that interval which lies farther from c than /,.

We want to apply the Distortion Lemmas to / ' | //,. To this end we must estimate
intersection multiplicity of intervals f'H, (i = 0 , 1 , . . . , t). It is this problem that
leads to the above introduced concept of the collection of homtervals.

LEMMA 2.1. Let J, be the nearest to c homterval. Suppose M, does not contain any
interval Js for s<t. Then
(a) I U A(/ '" ,) <(2d/>(/) + 7)A(M);
(b) if additionally M* <= (J,, Jn] where Jn is the nearest to c homterval following J,, then

I A (/'//,) <9A(M).
;=o

Proof. Let us define the orientation in a neighbourhood of c such that J, < c. We
want to estimate the intersection multiplicity of the intervals f'H (i = 0 , 1 , . . . , t)
where H = HJ, y = ±\. Let xeC\l=-lf'

kH. We may assume that intervals/'1// for
k = 1 , . . . , r lie on the one side of x and for k = r+1,... ,x they lie on the other
side of x. We may assume also that

[Ji,,x]=>lJh,x]=>---lJlr,x-].

Then it follows from the assumption of the lemma that it < i2 < • • • < ir =£ t.
Note also that if •/„,<=[//,, x] for m<i r then m = ik for some fc = l , . . . , r .

Indeed, /"""''[./,,,x\<£ [/,,, x] since otherwise the orbit of J tends to a cycle.
Besides, the assumption of the lemma implies that fm~''[Jil,x]PJil. Hence
xefm-i>[Jil,x]cfmH and we are done.

Now let us estimate r. Applying / ' " ' ' we may assume also that ir — t. First let
y = -\. Suppose r > 2. Then set K = [Jiy ,J,],p=t-1,. Since/PK <= M 7, we conclude
that fK lies on the same side of J, as K. But fK <£ K because otherwise the orbit
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of J tends to a cycle. Consequently fK => K and hence MJ => J,,. This contradicts
the assumption of the Lemma.

Thus r < l . Of course, the same estimate holds for x — r and hence x s 2 . Con-
sequently

£ \{fH-)^2k{M). (2.1)

(ii) Further, let y = +\, H = Ht. Suppose r > 3 . Set a = i - i r _ , . Then fa+l is
monotone on K = [Jil,Jir_t]c.filH. Hence fKSc. Besides 4,+,, £ [/,, c] since / ,+
a < t. Therefore / j | + a < J,. On the other hand, the assumption of the lemma implies
that fK Z> Ju. Consequently

/ o K = [J,1+a,J,]<= ( / , „ / , ] .

The interval fK contains at least r - 1 homtervals / , with s<t, namely Jiw+a

(m = 1 , . . . , r -1). On the other hand, the interval (/,,, J,] contains exactly r - 1 such
homtervals Jh,..., Jir = /,. Consequently im + a = im+l (m = l , . . . , r - l ) .

Further, set ik = t + (k-r)a (k = r, r+l,...). A s / ' " ' • = / < r " u " is monotone on

Ui,,Ji],f is monotone on

Consequently, / " is monotone on the interval L = [Jh, Jh:_2] containing the set of
homtervals {Jin}

2m=\. In particular Lie.
Now let us prove by induction that JK is the ( i t + 1 - l)-nearest to c homterval for

fc = l , . . . , 2 r - 3 .
' Assume Jm c (Jh, T(J ( I ) ) for m<i2. Clearly Jm ̂  (/,,, T(J,)]. Hence Jm c T(Jh, 7,,+l)

for some / e [ 1 , . . . , r - 1 ] . Applying/" we obtain

Jm+««=(/|(+1,Ji(+2). (2-2)

If / < r - 1 , then (2.2) is impossible since m + a<t and there are no homtervals with
such indices in [Ji,,Jt] except Jik. If / = r - 1 , then (2.2) is impossible since J, is the
nearest homterval. So Jit is the (i2- l)-nearest homterval.

Let Jik t is the ( i t - l ) -neares t homterval. Assume Jjk+hc(Jik,T(Jk)) for some
be (0 , a) . Then (Jik_,+b,Jik+b) contains Jikl or r(Jik ,). Applying/"^^ we see that
(Jjk, Jk+l) ^ Ji^,+a-b which contradicts the induction conjecture.

So {Jik}lrJi is the set of all nearest to c hometervals Jm with indices m e [i,, i2 r-2].
Consequently, {/jJiTi2 is the collection of homtervals.

Thus r-2<dp(t). The same estimate holds for x -r. Hence x<2dp{t) + 4. Finally
we obtain

£ A(/'//;)<(2dp(r) + 4)A(M). (2.3)
r=0

Estimates (2.1), (2.3) and l U A( / ( )^ A(M) imply (a).
To prove (b) observe that as we have proved Mi => {J,+a,..., J,+{r-2)a}- Hence

under the condition of (b) we have r < 3 and x < 6 . Now (b) follows. •

LEMMA 2.2. Let {Jm:}'i=k be the collection of homtervals, mi+i- m{ = a, T = [Jmk,Jm,^],
G = [Jmk, r(Jmk)]. Then the intervals G, fT,... ,f~lT are pairwise disjoint.
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Proof. Clearly, it is sufficient to show that f'T r\ G = 0forj=l,...,a — 1. Suppose
f'x e G for some x e T,je[l,a — 1]. Since Jmk is the (mk + a — l)-nearest homterval,
x e T\Jmk and fJ[Jmk, x] intersects Jmk or r{Jmk). Consequently, there exist points
y e [Jmk, x], z e Jmk u r(Jmk) such that f'y = z. Finally we have

f°-Jz=f"yeG

which is impossible as we already mentioned. •

COROLLARY. In the notations of Lemma 2.2.

Y A(/T)<A(M).
i = 0

Due to this Corollary we may apply to / " | T the Distortion Theorems and the
Minimum Principle.

Let Jn and Jn+, lie near critical points c,, c2 correspondingly. We say that f'\Jn

preserves the orientation if for x, y e Jn, y e (x, c,) we have f'y e (/ 'x, c2).
To analyse unimodal decompositions we need two more lemmas.

LEMMA 2.3. Letnx < n2< • • • < nk,{Jn.}^=l be the sequence of the nk-nearest homtervals
(to different critical points c;). Then

(a) dp(nj)sdp(nk) + l;
(b) iff"k~"'\Jnl reverses the orientation then dp(nj) = 0.

Proof. Assume that r = dp(nj)>0. Let {Jnj+kaYk = -r be the collection of homtervals,
-̂s = [Jnrsa, Jn,+sa\- Since Jn. is the «fc-nearest homterval, we have nk<ni

Jta. Con-
sequen t ly , / " 1 " ' !^ does not contain ck (since f\Lr is monotone).

Now, if /"*""' \Jn. reverses the orientation then Jnk__a lies nearer to ck than Jnt.
This contradiction proves (b).

Let/"1""' | j n . preserve the orientation. Consider the interval K =/"t~'1'Lr_1. Then
homtervals Jnk+sa lie in K for |s| < r - 1 and approach monotonously ck with increas-
ing of s. Besides,/" | K is monotone. Finally, Jnk+sa is the (7j(( + ( s+ l ) a - l ) -nea res t
homterval for \s\ < r - 1. This follows easily from the observation that K lies nearer
to ck than other intervals / 'Lr_i for i = 0 , . . . , a -1 (by Lemma 2.2).

So {Jnk+sa}s='-r+\ is the collection of homtervals and hence dp(nk)sir-l. D

By k-collection of Jn we call the collection of /„ in the orbit {Jm}Z=k (here n > k).
Denote by dpk(n) = dpk(Jn) the depth of /„ in the /c-collection.

LEMMA 2.4. / / / c< n then dpk(n)< dp(n).

Proof. Let Js be the homterval (n - l)-nearest to c. If fcs s then the fc-collection of
yn is the part of 0-collection of Jn and the desired estimate follows.

Otherwise it is easy to show that dp(n) = 0. •

2.4. The estimate of the distorition of unimodal factors
Looking through the proof of Main Theorem f o r / e 6 we see that Lemma 1.2 (§ 1.6)
is the only result which is not generalized directly to the smooth case. Here we
establish the modified version of Lemma 1.2.
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Consider the unimodal decomposition {G,, n,}f=o- Recall that by Qi we denote
that component of Gi\Jn. which does not contain c, and by Qt the other component.

LEMMA 2.5. There exist functions o-r(a)> 0 such that provided dp(nk) S r the following
implication holds

Proof. Following the proof of Lemma 1.2 let us consider the interval Tj=fQTu
Jni+X u Ri where R, = R, n/~"'Gi +, (for notations see § 1.4). Then/" + ' " r " f ; = Gj+1.

By Lemmas 2.3 and 2.4 dpn.+x(ni+l)^ r+1 (i = 0 , . . . , k — 1). As G1+1 does not
contain intervals /; for /<«,-+,, Lemma 2.1(a) implies

So using the Third and the Second Distortion Lemmas (smooth version) we obtain
the estimate from below for X(fxQJ)/\(Jn:+x). Application of the First Distortion
Lemma (see [1]) completes the proof. •

LEMMA 2.6. Let Js, Jn, J, be the successive nearest to c homtervals, Mn <= [Js, / , ] . Then
there exists the function £(a)>0 such that

Proof. This is the immediate consequence of the Distortion Lemmas and Lemma

•

2.5. Absence of non-solenoidal homtervals for f e si
Further we modify the argument of [1].

Let Jn be some nearest to c homterval with dp(n)<l, Js be the (n -l)-nearest
to c homterval. Fix a large £ Let us construct the unimodal decomposition {G,, M,}?^,

nk = n is the same way as in § 1.3.
Now repeating the argument of § 1.8, using Lemma 2.5 instead of 1.2, we obtain

the estimate

A (Jn )&&(/ , ) (2.4)

for n, s sufficiently large, dp(n)s 1.
Further, let {Jm}T=o be all nearest to c homtervals. Let us consider the collection

of homtervals {Jm)f=q, m,+,-/n, = a. Set T = [Jm,Jm ]. Due to Lemma 2.2 the
Minimum Principle holds for f \ T:

\(f°y(x)\ > v min {\(f°y(x,)\, |(/V(x2)|}, (2.5)

where x € [x,, x2]
c T, -q does not depend on the collection under consideration.

But (2.4) implies that for some xxeJm<i, x2eJmr_, we have

l(/fl)'U-)|sf.
Consequently | ( / a ) ' ( * ) l & £ j for xe {Jm<i, JmpJ. Hence A(Jm,+1) > ^k{Jm) for i = q,

q+l,... , p - l . But we may a priori choose £, such that frj > l .Then A(/m + | ) > A(Jm )

(i = q,...,p-l).
So A(/m,+1)> A(Jm ) for all sufficiently large /'. Certainly this is impossible.
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2.6. Absence of solenoidal homtervals for f e si
As in [1] we use induction in d. The base of induction (d =0) is non-trivial now:
it follows from the Denjoy theorem.

Let Jm -» c be the sequence of all nearest to c homtervals. As in § 1.10 consider
two cases.

(i) There exists arbitrary large s such that

A(4JsA(/ m j t | ) . (2.6)

Looking through the argument of § 1.10 using Lemma 2.5 instead of Lemma 1.2,
we see that dp(s) must be large for large s satisfying (2.6).

Considerthe collection of homtervals {/m;}f=(J containing /v. We want to show that

A[/m,_2,/m>.,)/A(Jmi.1)s:p>0, (2.7)

where p is independent of s. For this end considerthe maximal unimodal decomposi-
tion {Gj, n,}f=0 of/m'+1~m-||/m>_, constructed as in §1.3, nk = ms+1 -m,_, . Lemma
1.4 and the definition of a collection imply k<2d, dpm l(m,!+1)^2.

But k(Ql)/K(Jm+x)> 1/2 by (2.6). Using Lemna 2.5 we obtain the estimate from
below for A(<2o)/A(/m,_,). Since Q o c [A,, ,,-/„,,_,), (2.7) follows.

Further, consider the maximal interval Hn=> J on which / " is monotone, Mn =
f"Hn. Then

Mm^r>[Jm 2,Jml (2.8)

Indeed, by (2.6) and the Minimum Principle

A ^ J / A f V J s , - 1 or A (/Mp)/A (/„„.,) s i , ' 1 . (2.9)

If the first estimate holds then by the standard argument ord(mq+1) is large.
Consequently, by Lemma 1.5 Mm+T

 3 [ / m , ( , /m ]. Applying/*""1"-1-'""1 to this inclusion
we obtain (2.8).

If the second estimate (2.9) holds then ord(mp) is large. So there exists the
unmodial decomposition {G,, M,}f=0 of high order such that nk = mp. Using Lemma
1.4 and the definition of a collection it is easy to verify that all numbers m, for
j = q + l,... ,p belong to the set {n,-}?=i. So Lemma 1.5 implies (2.8) again.

By (2.8) there exists Hm< , <= Hm ̂  such that/m- 'Hm , = [/„,_,, 7mJ. Then Lemma
2.6 and estimates (2.6), (2.7) imply K{Hm_l\7)>^(p)A(J). But this is impossible
for large s.

(ii) The sequence {A (Jm )}f=, is monotone for sufficiently large i {for each critical
point c). Set /*) = [/„,., r(Jmi)]. Looking through the argument of § 1.10 (and using
Lemma 2.5 instead of 1.2) we see that if dp(Jm) < 1 then

/"- .—./?.cFi + 1 . (2.10)

So if {Jm)f=q is the collection of homtervals, mi+, -m, = a, then/aFp_, c Fp. Hence
for each i e [q, p] we have

f»..,-»,F. =f°(Fp_l u [/„„ Jmi, ,) u r[Jmi, Jmp_,))

<=Fpv[Jmi+l,Jmr)<=Fl+i.

Thus (2.10) holds for sufficiently large /. But this implies that c is a periodic point
(see [1]) and we arrive at a contradiction.
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2.7. Concluding remark
We have completed the proof of the Main Theorem under the following assumption
(see § 1.2)

ASSUMPTION A. There are no wandering intervals containing singular points.

In § 1.11 we pointed out how to modify the argument to obtain the proof without
this assumption. A significantly simpler approach was proposed by the referee. Now
we describe it.

Let J be a wandering interval containing a singular point a, Jm be the maximal
wandering interval containing fmJ. Taking an appropriate iterate of J one may
assume that the intervals Jm do not contain singular points (m = 1, 2, . . .) .

At first suppose a e <9M. Let [a, t ] c M b e a connected component of M. Then
let us consider an interval [a, b]=>[a, b] and extend / onto [a, b] in such a way
that a becomes preperiodic and there are no new extrema on J = [a, J]. Hence J
is a non-wandering interval of the constructed d-model map. If a is an extremum
then by chainging f on J one may turn a into a preperiodic point.

By finite number of such surgeries one will construct a new map / having a
wandering interval and satisfying Assumption A.

Added in proof. Martens, de Melo and van Strien by modifying the argument of
the present paper have removed the restriction (U2) on critical points ('Julia-Fatou-
Sullivan theory for real one-dimensional dynamics', preprint). So, every Cx-map
with non-flat critical points has no wandering intervals. They also have proved the
finiteness theorem for limit cycles (cf. Remark in § 2.1).
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