
ON ROTATION INTERVALS FOR INTERVAL MAPS

A. M. Blokh

Department of Mathematics, University of Alabama at Birmingham,
Birmingham, AL 35294-2060, USA

August 3, 1993

Abstract. Following [B6-B8] we introduce rotation numbers and intervals for
interval maps and prove some of their properties. In particular we study on what
ω-limit sets the endpoints of the rotation intervals may be assumed. We also show
that in piecewise-monotone case a theorem very close to that proven in [M2] for circle
maps holds.

0. Introduction

One of the remarkable results in one-dimensional dynamics is the Sharkovskii
theorem. To state it let us first introduce the Sharkovskii ordering for positive
integers:

(∗) 3 �S 5 �S 7 �S · · · �S 2 · 3 �S 2 · 5 �S 2 · 7 �S · · · �S 8 �S 4 �S 2 �S 1

Denote by Sh(k) the set of all integers m such that k �S m and by Sh(2∞) the set
{1, 2, 4, 8, . . . }. Also denote by P (ϕ) the set of periods of cycles of a map ϕ.

Theorem S[S]. If g : [0, 1] −→ [0, 1] is continuous, m �S and m ∈ P (g) then
n ∈ P (g) and so there exists k ∈ N ∪ 2∞ such that P (g) = Sh(k).

Theorem S characterizes sets of periods of interval maps. Similar result concern-
ing circle maps of degree one is due to Misiurewicz. To state it we need some more
definitions. The most important and historically the first among them is the notion
of the rotation number introduced by Poincaré [P] for circle homeomorphisms. New-
house, Palis and Takens [NPT] extended it onto circle degree one maps, introduced
the notion of rotation interval and proved some properties of rotation intervals;
their work was continued by Ito in [I]. We summarize the properties of rotation
intervals proven in [NPT], [I] in Theorem INPT but first let us introduce necessary
notations and definitions. Let f : S1 −→ S1 be a map of degree 1, π : R −→ S1 be
the natural projection; let us fix a lifting F of f . If x ∈ S1, X ∈ π−1x then we
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denote the set of all limit points of the sequence
Fn(X)

n
by IF (x); the notation is

correct since for a degree one map f the set IF (x) does not depend on the choice of
X ∈ π−1x. If IF (x) = {ρF (x)} is a one-point set then ρF (x) is called the rotation
number of x. Set

⋃

x∈S1 IF (x) ≡ IF ; the following theorem is proven in [NPT], [I]
(properties of circle maps without cycles may also be deduced from [AK]).

Theorem INPT [I],[NPT]. (1) IF is a closed interval.
(2) If f has periodic points then the set of all rotation numbers of periodic points

is dense in IF ; otherwise f is monotonically semiconjugate to an irrational rotation
by angle α and IF = {α}.

Since liftings of the same degree one circle map f differ by integers we may fix F
and use f as a subscript from now on. The set If is called the rotation set (interval)
of f . In fact the rotation set consists of all possible speeds with which points move
to infinity under iterations of F ; in particular if the circle map in question is the
rotation then all points move to infinity with the same speed and the rotation set
is a degenerate interval consisting of this speed only. If x is an f -periodic orbit
of period q and X is its lifting then there exists a well-defined integer p such that
F q(X) = X + p. Denote a pair (p, q) by rp(x) and call it the rotation pair of x;
then ρF (x) = ρ(x) = p/q. Denote by RP (f) the set of all rotation pairs of cycles
of f . For real numbers a ≤ b let N(a, b) = {(p, q) ∈ Z2 : p/q ∈ (a, b)} (in particular
N(a, a) = ∅). For a ∈ R and l ∈ Z+ ∪ {2∞} ∪ {0} let Q(a, l) be empty if a is
irrational or l = 0; otherwise let it be {(ks, ns) : s ∈ Sh(l)} where a = k/n with
k, n coprime (see [M2]). The following beautiful result related to Theorem INPT
was obtained in [M2].

Theorem M[M2]. For a continuous circle map f of degree 1 there exist a, b ∈
R, a ≤ b and l, r ∈ Z+ ∪ {2∞} such that If = [a, b], RP (f) = N(a, b) ∪ Q(a, l) ∪
Q(b, r).

Let us give another well-known interpretation for the rotation numbers and sets
(see, e.g., [MZ]). Namely, let the function φf : S1 −→ R be such that φf (z) = F (Z)−
Z for some Z ∈ π−1z; since F (Z ′) − Z ′ = F (Z ′′) − Z ′′ whenever π(Z ′) = π(Z ′′)
the function φf is well-defined and continuous. Then If (z) is the set of limit points

of the sequence
1
n

∑n−1
i=0 φf (f iz) and If is the union of all such sets taken over

all points of the circle; the above stated theorems describe the properties of the
sets If (z) and If . Once the problem is stated this way it is easy to extend it (for
one-dimensional maps it is done in [B6], see also [Z]). Indeed, given a map one can
choose a function , consider Cesaro averages of this function along orbits of points
and their limits (called functional rotation sets of points) and study the union of all
these limits (called functional rotation set of the map); clearly in this broad form
the question about properties of functional rotation sets may be asked for almost
any maps and functions (see [B6]). One can hope that for some classes of maps
functional rotation sets have nice structure for a large variety of functions. At the
same time choosing specific functions (similarly to the circle case) one can probably
obtain a lot of information about dynamics of the map.

In this paper we are mostly interested in interval maps; more precisely, we are
investigating to what extent Theorem INPT and Theorem M may be generalized for
interval maps with other functions playing the role of φf . In [B6] we give necessary
definitions and state sufficient conditions for the analog of Theorem INPT to be
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true in case of circle or interval maps and bounded measurable functions. We are
not working with measurable functions just for the sake of generality; the results
of [B6] apply to a specific measurable function closely connected to the map (see
[B6-B8] and this paper below). The necessity to deal with measurable functions
contributes to somewhat lengthy definitions but in our view it pays off allowing
to obtain results in rather general form and thus making them widely applicable.
One of our main tools is the “spectral decomposition theorem” for one-dimensional
maps ([B1-B3]). Also we would like to point out that related problems in symbolic
dynamics are considered by K. Ziemian [Z].

Let us state the results of [B6] in a particular case which is in fact our focus
in the present paper. Let f : [0, 1] −→ [0, 1] be a continuous map, L = {x : fx <
x}, R = {x : fx > x} and Fixf = {x : fx = x}. Let the function ξf = ξ be
such that ξ(x) = 1 if x ∈ L, ξ(x) = 0 if x ∈ R and ξ(x) = 1/2 if x ∈ Fixf (we
omit the subscript to simplify the notation). The function ξ(x) certainly depends
on the map f and to some extent characterizes the dynamics of f . In this sense the
function ξ reminds of the function φf : S1 −→ R defined for the circle maps, and
the analogy can be extended further as we are about to see. Indeed, let us apply
the above described approach involving functional rotation sets to the function ξ.
To begin with let us consider ξ-rotation sets for points. For a point x this is the set

If (x) of limit points of the sequence
1
n

∑n−1
i=0 ξ(f ix). It is easy to see that If (x) is

closed and connected; moreover, If (x) ⊂ [0, 1].
In particular if x is a periodic point of period greater than 1 then If (x) shows

how big is the part of its orbit which consists of points mapped to the left. Let us
for the moment assume also that there is a point, say, a such that for any point
z < a from the orbit of x we have z < fz and for any point y > a from the orbit of
x we have fy < a < y (periodic orbits of this kind turn out to be of major interest
for us in what follows). Then intuitively speaking the number If (x) shows with
what speed the point x rotates around the point a under iterations of f (although
this interpretation is not at all precise and we shall not give it precise meaning in
any sense it helps to get some idea about the motivation behind the studying of the
function ξ). For example, it is easy to check that any unimodal periodic orbit is of
this kind (although there are certainly non-unimodal periodic orbits with the same
properties); here by unimodal we mean periodic orbits such that the map on them
has a single extremum which is maximum. An example of a non-unimodal periodic
orbit of period 7 and rotation number 2/7 with these properties is given on Fig. 1.

Parallel to considering rotation sets of points one can consider limit sets of mea-
sures for these points; the limit sets of measures are closely connected to the func-
tional rotation sets. Indeed, let Pf (µ) =

∫ 1
0 ξ dµ for any measure µ and Vf (x) be

the set of all limit points of Cesaro averages of iterates of δ-measure concentrated at
x. If Pf is continuous on Vf (x) then If (x) = Pf (Vf (x)). Certainly if the function ξ
were continuous then Pf would be continuous everywhere and so If (x) = Pf (Vf (x))
would be true for any x. Yet the function ξ has discontinuities; obviously the set Df
of discontinuities of ξ is a subset of Fixf . It is well-known that if µ is a measure and
µ(Df ) = 0 then Pf is continuous at µ. Thus we conclude that in order to guarantee
that for the points we work with we have If (x) = Pf (Vf (x)) we may restrict our-
selves onto points x (we call them admissible) such that for any measure ν ∈ Vf (x)
we have ν(Df ) = 0; then Pf is continuous on Vf (x) and so If (x) = Pf (Vf (x)).
In particular a point whose ω-limit set does not contain fixed points is admissible.
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Figure 1: An example of a non-unimodal periodic orbit.

Denote the set of all admissible points by Adf . Note also that Vf (x) is connected
and closed [DGS].

We call If (x) the rotation set of x; if If (x) = {ρf (x)} is a one-point set then
ρf (x) is called the rotation number of x (not all points have rotation numbers but,
for example, periodic points do). If Vf (x) contains a single measure ν then we call
ρf (x) = Pf (ν) the rotation number of the measure ν. Let Vf =

⋃

x∈Adf
Vf (x). We

call the set Pf (Vf ) =
⋃

x∈Adf
If (x) ≡ If the rotation set of f . In the definition we

take the union only over the set Adf of all admissible points; it is worth mentioning
that this is not that restrictive, for as we will see later in some important cases
the rotation set defined as the union of If (x) over all points (i.e. not only for
admissible ones) simply coincide with the rotation set defined as above. Also, if
Vf (x) = {µ} then the point x is called generic for the measure µ. If it is clear
what map is considered we will omit subscript in notations for rotation numbers
and the like. Although we are giving the definition for the particular function it
is clear that a similar definition can be given for other functions and some of the
results are in fact true for other functions as well ([B6]). Note also that in case of
continuous functions the set of admissible points coincides with the entire manifold
and therefore on the circle our functional rotation sets and classical ones are the
same.

We can now state the corollary of the results of [B6] for the above introduced
rotation sets; this corollary is close to Theorem INPT. Note first that it makes
sense to consider only those interval maps which have periodic non-fixed points;
otherwise the dynamics of a map is trivial (any orbit converges to a fixed point)
and also the rotation interval may be not well defined. So from now on let us
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assume that f is a continuous interval map with non-fixed periodic points.

Proposition 0.1[B6]. If ⊂ [0, 1] is an interval, rotation numbers of periodic
points are dense in If and for any c ∈ If there is an admissible point x such
that Vf (x) contains a single measure and ρf (x) = c.

The main difference between Theorem INPT and Proposition 0.1 (one may also
say between the circle case and the interval one) is that in interval case If is not
necessarily closed, and it is easy to suggest corresponding examples. Indeed, let

f : [0, 1] −→ [0, 1] be a map constructed as follows: (1) all points xn =
1
n

are fixed;

(2) all intervals [
1

n + 1
,
1
n

] are invariant; (3) if gn = f |[ 1
n + 1

,
1
n

] then Igi $ Igi+1 for

any i. Then it is easy to see that If is not closed because it is the union of all the
sets Igi . However in an important particular case one can specify Proposition 0.1.
Let G be the family of all interval maps g such that the following holds: (1) if z is
a g-fixed point then there is a neighborhood (a, b) of z such that z /∈ int g(a, z) and
z /∈ int g(z, b), (2) there are finitely many pairwise disjoint closed intervals such that
g is monotone on each of them and all fixed points of g belong to their union (here as
everywhere in the paper by “monotone” we mean “non-strictly monotone”). Note
that the intervals may be chosen so that their endpoints are fixed points; also, we do
not require that these intervals are non-degenerate. In particular, if g has finitely
many fixed points which have the property (1) from above then g ∈ G since in this
case the fixed points form the required family of intervals. Also, if g is piecewise-
monotone then g ∈ G. Indeed, one can divide [0, 1] into intervals of monotonicity,
then choose on each of these intervals the leftmost and the rightmost fixed points
(if any; also these points may coincide) and declare the interval in-between them
one of the intervals we have to find; clearly the family of all such intervals is finite
which proves that g ∈ G.

Proposition 1.12. Let f ∈ G. Then the following holds.
(1) Either If ⊂ (0, 1) is closed, or If = (0, b], b < 1, or If = [a, 1), a > 0, or

If = (0, 1).
(2) If a ∈ If is an endpoint of If then there is a measure µ such that suppµ

contains no fixed points, ρ(µ) = a and f |suppµ is minimal and If (x) = a for any
x ∈ suppµ.

Actually facts similar to Proposition 0.1 hold for a variety of functions playing
the role of ξ in the aforementioned construction (see [B6]). In the present paper
however we deal mainly with the rotation numbers and sets “generated” by the
function ξ in the above sense; the reason is that in this case additional results close
to Theorem M can be obtained (see [B7]). Namely, for a non-fixed periodic point
y of period p(y) the number l(y) = card{orb(y) ∩ L} is well-defined; we call the
pair rp(y) = (l(y), p(y)) the rotation pair of y and denote the set of all rotation
pairs of periodic non-fixed points of f by RP (f). For example, the rotation pair of
any periodic orbit of period 2 is (1, 2). Also, the rotation pair of the periodic orbit

on Fig. 1 is (2, 7). Clearly, ρf (y) =
l(y)
p(y)

. Let us introduce the following ordering

among all pairs of positive integers (k, n) such that k < n:
1) if k/l ∈ (1/2, p/q) then (p, q) m (k, l);
2) if p/q 6= 1/2 then (p, q) m (k, 2k) for any k;
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3) if p/q = k/l = m/n where m,n are coprime then (p, q) m (k, l) if and only if
(p/m) �S (k/m) (note that both (p/m) and (k/m) are integers).

Theorem 0.2 [B7]. If (p, q) m (k, l) and (p, q) ∈ RP (f) then (k, l) ∈ RP (f).

As an example of how Theorem 0.2 may be applied let us show how it implies
a weak version of the Sharkovskii theorem usually stated as “Period 3 implies
chaos” (see [LY]); in other words let us deduce from Theorem 0.2 the fact that if
a interval map f has a periodic orbit of period 3 then it has periodic orbits of all
periods. Indeed, there are only two possible types of periodic orbits of period 3: 1)
x = f3x < fx < f2x; 2) x = f3x < f2x < fx. Let us begin assuming that f has

a periodic point x of the first type. Then rp(x) = (1, 3), ρ(x) =
1
3
. Clearly, for any

odd number 2k+1 bigger than 3 we have (1, 3) m (k, 2k+1) since
1
3

<
k

2k + 1
≤ 1

2
;

therefore the map f has a periodic orbit of period 2k + 1. Moreover, for any even

number 2m we have (1, 3) m (m, 2m) since
1
3

<
m
2m

=
1
2
; hence the map f has

periodic points of all even periods. This finishes consideration of the case when the
map f has period 3 orbits of the first type; the case when it has period 3 orbits of the
second type is similar. Actually, these arguments may be easily extended to show
how the Sharkovskii theorem may be deduced from Theorem 0.2 (see [B7]); note
also that in fact Theorem 0.2 provides not only periods but also some additional
information about orbits (namely, their rotation numbers and pairs).

It is easy to see that Theorem 0.2 implies the following

Corollary 0.3 [B7]. (1) For a continuous interval map f with non-fixed periodic
points there exist 0 ≤ a ≤ 1/2 ≤ b ≤ 1 and l, r ∈ Z+ ∪ {2∞} ∪ {0} such that
int If = (a, b), RP (f) = N(a, b) ∪ Q(a, l) ∪ Q(b, r), if a < b = 1/2 then r = 3, if
a = 1/2 < b then l = 3, if a = b = 1/2 then r = l 6= 0, if a = 0 then l = 0 and if
b = 1 then r = 0.

(2) [B8] If a, b, l, r are numbers satisfying all the properties from the statement
(1) then there is a continuous interval map f such that RP (f) = N(a, b)∪Q(a, l)∪
Q(b, r) and int If = (a, b).

Corollary 0.3 characterizes all possible sets RP (f) of rotation pairs which in-
terval maps may have and establishes the connection between the sets RP (f) and
If similar to that established in Theorem M. There is however some difference be-
tween Theorem M and Corollary 0.3 (i.e. between interval and circle cases) dealing
with this connection; the difference concerns sets Q(a, l) and Q(b, r) which in both
cases consist of rotation pairs of periodic points with rotation numbers a and b
respectively.

First of all the rotation set in the circle case is always a closed interval while
in the interval case it is an interval which is not necessarily closed (we do not
assume in Corollary 0.3 that the map belongs to G). Secondly, in the circle case if
a is rational then Q(a, l) is never empty (the same takes place for b and Q(b, r)).
However unlike in the circle case in the interval case Q(a, l) may be empty even if
a is rational; namely, due to the definition it happens if l is 0. Yet it turns out that
in case of piecewise-monotone maps the connection between the sets RP (f) and
If is closer than in general and reminds that from Theorem M even as far as the
sets Q(a, l) and Q(b, r) are concerned. Namely, for piecewise-monotone maps one
can prove Theorem 2.2. The substance of this theorem is that except for the cases
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when a = 0 or b = 1 it rules out the aforementioned two differences between the
statements of Theorem M and Corollary 0.3; i.e. rotation intervals of piecewise-
monotone maps are closed in (0, 1) and, moreover, if a > 0 is rational then l > 0
and so Q(a, l) 6= ∅ (the same holds for b and Q(b, r)).

Theorem 2.2. Let f be a continuous piecewise-monotone interval map. Then the
following cases are possible.

(1) There exist 0 < a ≤ 1/2 ≤ b < 1 and l, r ∈ Z+ ∪ {2∞} such that If =
[a, b], RP (f) = N(a, b) ∪Q(a, l) ∪Q(b, r).

(2) There exist 1/2 ≤ b < 1 and r ∈ Z+ ∪ {2∞} such that If = (0, b], RP (f) =
N(a, b) ∪Q(b, r).

(3) There exist a ≤ 1/2 and l ∈ Z+ ∪ {2∞} such that If = [a, 1), RP (f) =
N(a, b) ∪Q(a, l).

(4) If = (0, 1), RP (f) = N(0, 1).

Acknowledgments. I would like to thank M. Misiurewicz for useful discussions
of the results of this paper, E. Coven (with whom I first discussed these results) for
encouraging me in my work and the referee for valuable remarks.

1. Preliminaries and properties of maps from G

Throughout the paper we deal with continuous maps of the interval. First we
prove the following

Proposition 1.1. For any continuous f we have 0 /∈ If , 1 /∈ If .

Proof. Indeed, otherwise by Proposition 0.1 there is an admissible point x such
that Vf (x) = {µ} contains a single measure and, say, ρf (x) = 0. By the ergodic
decomposition and the fact that ξ ≥ 0 we may assume that µ is ergodic, x ∈ ω(x) is
its typical point and ω(x) = suppµ is the support of the measure µ (i.e. the smallest
closed invariant set of µ-measure 1). Note that the definition of the support of a
measure implies that if suppµ ∩ U 6= ∅ and U is open then µ(suppµ ∩ U) > 0.
Consider the set A = suppµ ∩ L where L = {x : fx < x}. Then L is open and so
if A 6= ∅ then µ(A) > 0 which implies that Pf (µ) = ρf (x) > 0 contradicting the
assumption. So A = ∅ which means that for any point z ∈ ω(x) we have fz ≥ z,
thus ω(x) = {y} is a fixed point. Since x is admissible it may only happen when
y belongs to an open interval of fixed points; but then ρf (x) = 1/2 which finally
shows that 0 /∈ If . The same way we can show that 1 /∈ If . �

Let If be an interval with an enpoints a ≤ b; we now study the case when a 6= 0
(or b 6= 1). To this end we need a few preliminary facts and definitions; whenever
possible we shall try to state them in less generality in order to (hopefully) simplify
the reading. Let T : X → X be a map of a compact infinite metric space (X, d) into
itself. A dynamical system (X,T ) is said to have the specification property [Bo] if
for any ε > 0 there exists an integer M = M(ε) such that for any k > 1, for any k
points x1, x2, . . . , xk ∈ X, for any integers a1 ≤ b1 < a2 ≤ b2 < . . . < ak ≤ bk with
ai− bi−1 ≥ M, 2 ≤ i ≤ k and for any integer p with p ≥ M + bk − a1 there exists a
point x ∈ X with T px = x such that d(Tnx, Tnxi) ≤ ε for ai ≤ n ≤ bi, 1 ≤ i ≤ k.

Lemma 1.2 [B1-B3]. Let f : [0, 1] −→ [0, 1] be continuous and mixing. Then f
has the specification property.

Clearly Lemma 1.2 implies the following
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Corollary 1.3. If f : [0, 1] −→ [0, 1] is mixing, a1, a2, . . . , an ∈ [0, 1] and ε > 0 then
there is a periodic orbit P which visits an ε-neighborhood of ai for every i.

Now we state some results from [B7]. Say that a map f has the right horseshoe
if there are points a, b, c such that fc ≤ a = fa < b < c ≤ fb and the left horseshoe
if there are points a, b, c such that fc ≥ a = fa > b > c ≥ fb. The importance of
horseshoes for interval maps was first discovered in [MS], [M1]. Intuitively speaking
the existence of horseshoes is to some extent equivalent to the richness of the
dynamics of the map. The following lemma to some extent confirms this a bit
vague statement.

Lemma 1.4[B7]. If a map f has the right (resp. the left) horseshoe a, b, c then
(s, t) ∈ RP (f) for any (s, t) such that 0 < s/t ≤ 1/2 (resp. 1 > s/t ≥ 1/2) and
there is a periodic orbit Q with rp(Q) = (s, t) lying completely to the right (resp.
left) of a; in particular if a map f has both the right and the left horseshoe then
RP (f) = {(s, t) : 0 < s < t}.

Suppose that S = {x1 < x2 < · · · < xq} is a periodic orbit and there is l such
that fxi > xi for any 1 ≤ i ≤ l and fxj < xj for any l + 1 ≤ j ≤ q; then S is said
to be forcing a unique fixed point and the family of all periodic orbits of all maps
with these properties is denoted by F . It is easy to give an example of a periodic
orbit from F ; say, any periodic orbit of period 2 or 3 belongs to F , and so does any
unimodal periodic orbit. Also, the orbit on Fig. 1 belongs to F . As shown in [B7]
Lemma 1.4 together with some additional arguments implies the following

Lemma 1.5[B7]. Let f have a periodic orbit P /∈ F . Then f has both the right
and the left horseshoes, If = (0, 1) and RP (f) = {(s, t) : 0 < s < t}.

One of our major focuses in this paper is the set RP (f) of all rotation pairs of
an interval map f . Lemma 1.5 fully describes this set in case when a map admits a
periodic point not belonging to F , so from now on we consider only interval maps
whose periodic points belong to F .

As it has already been mentioned there is a special kind of periodic orbits which
plays an important role in our studying. In order to introduce these periodic orbits
we first need to specialize Theorem 0.2 in a particular case. Due to this theorem if
there is a periodic point P such that ρ(P ) = p/q where p, q are coprime then there
will be a periodic orbit S such that rp(S) = (p, q). The results of [B7] show that
we will always be able to find this orbit S with some specific properties listed in
the following

Lemma 1.6[B7]. Let P be a periodic orbit, ρ(P ) = p/q where p, q are coprime.
Then there is a periodic orbit S such that rp(S) = (p, q). Moreover, we can find
S = {x1 < x2 < · · · < xq} ∈ F such that the following holds.

(1) There is a number l such that fxi > xi for any 1 ≤ i ≤ l and fxj < xj for
any l + 1 ≤ j ≤ q.

(2) If A0(S) = {x ∈ S : x ≤ xl, fx ≤ xl}, A1(S) = {x ∈ S : x ≤ xl, fx ≥
xl+1}, A2(S) = {x ∈ S : xl+1 ≤ x} then:

(a) fx ≤ xl for any x ∈ A2(S);
(b) f is increasing on A0(S) and decreasing on A1(S) ∪A2(S).
(c) f2x ≤ x for x ∈ A1(S) and x ≤ f2x for x ∈ A2(S) where f2x = x if and

only if x is of period 2.
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In fact it is easy to see that (a) and (b) imply (c). We call a periodic orbit S
with all the properties from Lemma 1.6 characteristic for p/q. It is easy to give
examples of characteristic periodic orbits; for instance, the periodic orbit on Fig. 1
is characteristic.

Let us call a finite sequence of points {f ix, f i+1x, . . . , f jx} a time segment of
the orbit of x or simply a time segment. Later we will use the fact that by Lemma
1.6 a characteristic orbit S may be divided into a few alternating time segments of
the following two types.

(1) A time segment of spiral type (in short a spiral) is the sequence of points
z, fz, . . . , f2kz from S such that f2kz < f2k−2z < · · · < z ≤ xl < xl+1 ≤ fz <
f3z < · · · < f2k−1z, maximal by inclusion among all time segments in S with these
properties.

(2) A time segment of shift type is the sequence of points y < fy < · · · < · · · <
fsy ≤ xl from S, maximal by inclusion among all time segments in S with these
properties.

In order to simplify understanding let us discuss the division of a few particular
characteristic orbits into time segments. First let us consider a unimodal orbit of
period 3, i.e. the orbit of a point x such that x = f3x < fx < f2x. Then x < fx
is the only time segment of shift type in the orbit and f3x < fx < f2x is the only
spiral in the orbit. Now let us consider the orbit on Fig. 1, i.e. the orbit Q of
a periodic point x such that x = f7x < fx < f5x < f2x < f3x < f4x < f6x
(although it is easy to follow our arguments on the formal level the picture is also
helpful here). It is easy to see that the points xl and xl+1 which have to divide
the orbit into the set of points mapped to the left and the set of points mapped
to the right are in this case points f3x and f4x. The only spiral in the orbit
is x = f7x < f5x < f3x < f4x < f6x; the only time segment of shift type is
x < fx < f2x < f3x.

We include the spatial structure of a spiral in its definition; however in fact
it is not that necessary since any maximal time segment in a characteristic orbit
in which each point is mapped to the other side of the interval [xl, xl+1] has this
structure. Indeed, by Lemma 1.6(b).(2) when the point is mapped back to the
same side of this interval by f2 it finds itself farther away from [xl, xl+1]. Now, let
{z, fz, . . . , frz} be a maximal time segment of spiral type. If z ≥ xl+1 then one
can take a point ζ ∈ S which is mapped into z; by Lemma 1.6(b).(2) ζ ≤ xl and
f2ζ < ζ, so ζ can be safely added to the existing time segment which will remain
a spiral contradicting the maximality of {z, fz, . . . , frz}. So one can assume that
z ≤ xl. Now, if frz ≥ xl+1 then one can add fr+1z to the time segment in question
and it is just as easy to check that the time segment remains a spiral; the same
contradiction now implies that frz ≤ xl finishing the verification (clearly if z ≤ xl

and frz ≤ xl then r is even).
Finally let us state some technical facts established in [B7]. Consider a periodic

orbit P ∈ F ; we may assume that P = {x1 < · · · < xq} and there is a number l
such that fxi > xi for any 1 ≤ i ≤ l and fxj < xj for any l + 1 ≤ j ≤ q. Then
obviously there is a fixed point z ∈ (xl, xl+1) (may be even more than one). Pick
up such a fixed point z and call it a singled out fixed point for P . Now, let us call a
non-degenerate interval I admissible if one of its endpoints is z and the other one
belongs to P .

One can imagine a piece of rubber rope nailed down at the fixed point z whose
second endpoint, say, w belongs to P ; this rope covers exactly one admissible
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interval. Let us see what happens if one applies the map f to the endpoints of
this piece of rope; this way we explain the appearance of important for us in the
future chains of intervals or simply chains. The point z is fixed so we made no
mistake securing it. Yet w moves into fw, so now the piece of rope covers another
admissible interval; the fact that the rope is made of rubber is essential here. Let
us allow at this point in time shrinking of the rope (obviously the nailed down point
z cannot move in any case) so that in its new position it still covers an admissible
interval; it corresponds to the moving the other endpoint of the piece of rope closer
to z into another point from P keeping it on the same side with respect to z. After
that one can again apply f to the endpoints of the piece of rope and go on with
the process.

A sequence of admissible intervals appearing in this process is called a chain.
More precisely, a sequence of admissible intervals I0 = [y0, z], I1 = [y1, z], . . . is
called a chain (of intervals) if Ij+1 ⊂ [z, fyj ] for all j ≥ 0. If a chain of intervals
is periodic we call it a loop (of intervals); sometimes we also call a finite chain of
intervals I0 = [y0, z], . . . , Ik = [yk, z] a loop (of intervals) if in addition to the usual
properties of chains I0 ⊂ [z, fyk]. Let us discuss elementary properties of chains.
First of all it is easy to see that if I0, . . . , Ik−1 is a loop then k > 1 since the image
of an admissible interval cannot contain this interval. Also, we do not require that
intervals in a chain all are distinct; the same is true for loops.

Let φ be a function defined on the family of all admissible intervals such that
φ([x, z]) = 0 if x < z and φ([z, x]) = 1 if z < x. For any loop ᾱ = {I0, . . . , Ik−1} let
us call the pair of numbers (p, k) the rotation pair of ᾱ where p =

∑k−1
j=0 φ(Ij); also

let us call the number ρ(ᾱ) = p/k the rotation number of ᾱ. We finish this series of
definitions with the following one: a sequence {y1, . . . , yl} is called non-repetitive if
it cannot be represented as several repetitions of a smaller sequence.

Lemma 1.7[B7]. Let ᾱ = {I0, . . . , Ik−1} be a loop. Then there are the following
possibilities.

(1) Let k be even, φ(Ij) = 0 if j is even and φ(Ij) = 1 if j is odd. Then f has a
point x of period 2.

(2) Let the first possibility fail. Then there is a periodic point x ∈ I0 such that
x 6= z, f jx ∈ Ij(0 ≤ j ≤ k − 1), fkx = x and so ρ(x) = ρ(ᾱ). Moreover, if the
sequence of numbers {φ(I0), . . . , φ(Ik−1)} is non-repetitive then rp(x) = rp(ᾱ).

Any point x with the properties from Lemma 1.7 is said to be generated by ᾱ.
There is also another obvious connection between periodic orbits forcing a unique
fixed point and loops which works the other way round. Namely, if x ∈ F is
a periodic point of period k and z is the singled out fixed point for orb x then
[x, z], [fx, z], . . . , [fk−1x, z] is a loop of intervals. We denote it by ᾱ(orb x) = ᾱ(x)
and say that the loop ᾱ(orb x) is generated by x (or orb x). Note that if a loop of
intervals is generated by a periodic oorbit then it is non-repetitive.

Before we pass on to the proof of Proposition 1.12 we need to state some results
from [B1-B3]. The invariant probability measure concentrated on a periodic orbit
(and thus equidistributed) is called a CO-measure [DGS]; denote the set of all such
measures CO(f) and the CO-measure concentrated on a periodic orbit S by ν(S).
Theorem 1.8 is a simplified version of the result obtained in [B1,B3] for interval
maps and in [B2] for graph maps.

Theorem 1.8[B1-B3]. Let f : X −→ X be a continuous circle map with Per f 6=
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∅ or non-strictly periodic map, µ be an invariant probability measure. Then the
following statements are equivalent:

(1) there exists x such that µ(ω(x)) = 1;
(2) there exists a generic point for µ;
(3) µ can be approximated arbitrary well by a CO-measure.

In fact Theorem 1.8 follows from the spectral decomposition constructed in [B1-
B3]; we will state here two more results from [B1-B3] which are parts of the spectral
decomposition, but first let us briefly describe how limit sets are classified in [B1-
B3]. An interval I is called periodic (of period k) or k-periodic if J, . . . , fk−1J are
pairwise disjoint and fkJ ⊂ J ; the set M =

⋃k−1
i=0 f iJ ≡ orb J is then called a cycle

of intervals (we write also per(J) = per(M) = k). A map restricted on a cycle
of intervals is called non-strictly periodic. Fix an infinite set ω(x) and consider
the family A of all cycles of intervals orb I such that ω(x) ⊂ orb I. There are two
possibilities.

1) Periods of sets orb I ∈ A are not bounded. Then there exists a nested family
of cycles of intervals containing ω(x) with periods tending to infinity. This allows
to semiconjugate f |ω(x) to a transitive translation in a compact group and implies
many properties of f |ω(x); in particular ω(x) cannot contain periodic points.

2) Periods of sets orb I ∈ A are bounded. Then there exists a minimal cycle of
intervals orb J ∈ A. It is easy to see that all points y ∈ ω(x) have the following
property: if U is a neighborhood of y in orb J then orb U = orb J (otherwise orb U
generates a cycle of intervals orbK such that ω(x) ⊂ orbK $ orb J which is a
contradiction). The idea is to consider all the points z ∈ orb J with this property.
They form a set B which turns out to be a maximal by inclusion limit set with
some important properties.

The limit sets of the second type are described in Proposition 1.9. To state it we
need more definitions. Let ξ : K −→ K and ξ′ : K ′ −→ K ′ be non-strictly periodic, K
and K ′ be homeomorphic. Let φ : K −→ K ′ be a monotone semiconjugacy between
ξ and ξ′ and F ⊂ K be a ξ-invariant closed set such that φ(F ) = K ′, for any x ∈ K ′

we have int φ−1(x)∩F = ∅ and so φ−1(x)∩F ⊂ ∂φ−1(x), 1 ≤ card{φ−1(x)∩F} ≤ 2.
Then we say that φ almost conjugates ξ|F to ξ′. Finally let M be a cycle of
intervals; consider a set {x ∈ M : for any relative neighborhood U of x in M we
have orbU = M}; it is easy to see that this is a closed invariant set. It is called a
basic set and denoted by B(M, f) provided it is infinite; if B(M, f) exists we say
that M generates a basic set.

Proposition 1.9[B1-B3]. Let B = B(M, f) be a basic set. Then f |M is surjective
and there exist a transitive map g : M ′ −→ M ′, M ′ homeomorphic to M , and a
monotone map φ : M −→ M ′ such that φ almost conjugates f |B to g. Furthermore,
the following holds:

(a) B ⊂ Per f is a perfect set;
(b) f |B is transitive and if ω(z) ⊃ B then ω(z) = B (≡ B is a maximal limit

set);
(c) h(f |B) > 0;
(d) if x ∈ B is not isolated in B from a side T then for any T -semi-neighborhood

U ⊂ M of x we have orb U = M .

The following proposition follows immediately from [B1-B3].
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Proposition 1.10[B1-B3]. Suppose that ω(x) contains a periodic orbit of period
n but does not coincide with it. Then there is a unique basic set B(M) ⊃ ω(x) and
the period of M is not bigger than n.

We will also need the following

Proposition 1.11. If f : [0, 1] −→ [0, 1] is a transitive map and there are two fixed
points y and z then the following holds:

1) if there is a point x ∈ (y, z) such that x < fx then 0 ∈ If ;
2) if there is a point x ∈ (y, z) such that x > fx then 1 ∈ If .

Proof. Suppose first that there are open disjoint intervals U < V < W such that
either

1) fx > x if x ∈ U , fx < x if x ∈ V and fx > x if x ∈ W or
2) fx < x if x ∈ U , fx > x if x ∈ V and fx < x if x ∈ W .
By Corollary 1.3 there is a periodic orbit which visits U, V and W ; clearly this

orbit does not force a unique fixed point. Therefore by Lemma 1.5 the map f
has the rotation interval If = (0, 1) and we are done. So from now on we may
assume that there are no intervals U, V, W with the properties from above; this
only can happen if there is a fixed point z ∈ (0, 1) such that for any x < z we have
fx ≥ x and for any x > z we have fx ≤ x. Consider this situation in more details
assuming that the first case from the proposition takes place (one can deal with
the second case similarly). Then we may also assume that there is another f -fixed
point y < z. Consider the set f [y, z]; clearly there is a point ζ ∈ (z, 1) such that
f [y, z] = [y, ζ] (ζ has to lie strictly to the right of z since otherwise [y, z] 6= [0, 1]
is contradicting transitivity). Let us show that y ∈ f [z, ζ]. Indeed, otherwise the
interval [z, ζ] ∪ f [z, ζ] is invariant and at the same time it does not contain y so it
does not coincide with the entire [0, 1] which again contradicts transitivity. Thus
one can find a point x ∈ (y, z) so that fx > z and f2x = y; clearly it shows that f
admits a right horseshoe and so by Lemma 1.4 0 ∈ If completing the proof. �

Let us consider as an example of how Proposition 1.11 may be applied the case
when M is a periodic interval of period 1 which generates a basic set. The existence
of a monotone semiconjugacy between f |M and a transitive map g : [0, 1] −→ [0, 1]
implies that If ⊃ Ig. Thus if g has at least two fixed points then either 0 ∈ If or
1 ∈ If ; we will make use of this observation later on.

We can now prove Proposition 1.12 which is the central result of this section.

Proposition 1.12. Let f ∈ G. Then the following holds.
(1) Either If ⊂ (0, 1) is closed, or If = (0, b], b < 1, or If = [a, 1), a > 0, or

If = (0, 1).
(2) If a ∈ If is an endpoint of If then there is a measure µ such that suppµ

contains no fixed points, ρ(µ) = a and f |suppµ is minimal and If (x) = a for any
x ∈ suppµ.

Proof. Due to Propositions 0.1 and 1.1 in order to prove the first statement it is
enough to show that if a > 0 is the left endpoint of If then a ∈ If . By Corollary
0.3 a ≤ 1/2, and if a = 1/2 then Proposition 1.12 follows from Corollary 0.3. So
we may assume that a < 1/2. If there is at least one f -periodic orbit which does
not belong to F then by Lemma 1.5 If = (0, 1). Thus if P is an f -periodic orbit
then P ∈ F ; in other words P = {x1 < x2 < · · · < xk} and for some l we have
that fxi > xi if i ≤ l and fxi < xi if i > l. Also, let J = {J1, . . . , Jr} be the
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intervals containing all fixed points of f whose endpoints are fixed points such that
f is monotone on each of them; the existence of these intervals follows from the
definition of G. Let J =

⋃r
i=1 Ji. The set J ∩ [xl, xl+1] = C(P ) is a finite union of

intervals from J since neither xl nor xl+1 belong to J. Let z(P ) and z′(P ) be the
leftmost and the rightmost points of C(P ) respectively; then both are fixed, and
we consider z(P ) as the singled out point for P . As an example let us consider the
case when there is a unique f -fixed point, say, ζ (for instance it may happen if the
map f is unimodal); then the family F consists of a single degenerate interval [ζ, ζ]
and obviously z(P ) = ζ.

If there is a periodic point x such that ρf (x) = a then we have nothing to prove.
So we assume that such a periodic point does not exist. Let 1/2 > a0 > a1 > . . .
be a sequence of numbers such that limi→∞ ai = a. By Corollary 0.3 there are
periodic orbits of rotation numbers smaller than or equal to ai. Let the smallest
among their periods be qi and the smallest rotation number of a point of period qi

be pi/qi ≤ ai; we may assume that a periodic orbit Si is characteristic for pi/qi.
Consider the smallest number j > i such that qj > qi and aj < pi/qi, find a
number pj and a periodic orbit Sj and then continue. Also, we can get rid of all
the numbers ai+1, . . . , aj−1 and renumber aj into ai+1. Therefore finally we will
have a sequence of numbers 1/2 > a0 ≥ p0/q0 > a1 ≥ p1/q1 . . . and periodic orbits
Si characteristic for pi/qi where qi is the smallest period of a periodic point with
the rotation number less than or equal to ai and

pi

qi
is the smallest rotation number

of a periodic point of period qi. Furthermore, there are only finitely many possible
sets C(Si) (all these sets are finite unions of intervals taken from a finite family of
intervals F), so considering a subsequence we may assume that C(Si) =

⋃t
j=1 J ′j

for any i (here all J ′j belong to J ). Let z(Si) = z, z′(Si) = z′.
Let us study spirals in Si. Let x, fx, . . . , f2kx be one; then by the definition

f2kx < · · · < f2x < x < z < fx < · · · < f2k−1x. By the properties of characteristic
orbits and the maximality of spirals if v ∈ Si is the point such that fv = x then
v < x; also let u ∈ Si be such that fu = v. Let m be the biggest among 0, 1, . . . , k
number such that v < f2mx. Fix n such that

n
2n + 1

> a0 and show that m ≤ n.

Indeed, in the loop ᾱ(Si) there is a subsequence [v, z], [x, z], . . . , [f2m−1x, z]; if we
omit this subsequence from the loop and start the rest from [f2mx, z] we will be left
with β̄ = {[f2mx, z], [f2m+1x, z], . . . , [u, z]}. Let us show that this is a loop. Indeed,
it is enough to see that [fu, z] = [v, z] ⊃ [f2mx, z] which follows immediately, for
by the choice of m we have v < f2mx < z. Clearly the rotation pair rp(β̄) is
(pi −m, qi − 2m − 1). Assume that m > n; then

m
2m + 1

> a0 > ai ≥
pi

qi
which

implies that
pi −m

qi − 2m− 1
<

pi

qi
. By Lemma 1.7 the loop β̄ generates a periodic orbit

R of period r ≤ qi− 2m− 1 < qi and the rotation number
pi −m

qi − 2m− 1
<

pi

qi
which

contradicts the properties of the sequence a0 ≥ p0/q0 > a1 ≥ p1/q1 . . . established
in the previous paragraph. So m ≤ n.

Furthermore, let w be the closest from the left to z point of A0(Si) (i.e. the
closest to z point w from Si such that w < z and fw < z). Let us show that there
is at least one point among points x, fx, . . . , f2n+2x which lies to the left of z and
is farther away from z then w. Consider two cases. If m < k then by the choice of
m we see that f2m+2x ≤ v; at the same time v < z, fv < z (i.e. v ∈ A0(Si)) and
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so by the choice of w we have v ≤ w. Since m ≤ n we get the required. Now, if
m = k then by the maximality of a spiral f2kx ∈ A0(Si) and again the required
statement holds because m ≤ n. Let us show now that w cannot lie arbitrary close
to z. Indeed, fw < z and at the same time if y is the closest from the left to z point
of Si then fy > z by the properties of characteristic orbits. So, z ∈ int f [w, y]. On
the other hand f ∈ G and so there is ε > 0 such that z /∈ int f [z − ε, z]. Therefore
w < z − ε. Note also that if z < z′ then choosing ε to be small enough we may
assume z /∈ int f [z′ + ε, z′] (let us remind the reader that z′ is the rightmost point
of the union of intervals C(P )). If however z = z′ we still may make the same
assumption because of the properties of maps from G. So in any case we may
assume that z /∈ int f [z′ + ε, z′].

Now we can show that there is a neighborhood U of [z, z′] such that Si ∩ U = ∅
for large i. Indeed, notice that by the assumption Si ∩ [z, z′] = ∅ for any i. Let U
be a neighborhood of [z, z′] such that if U ′ = U ∩ ((0, z)∪ (z′, 1)) and W = (z−ε, 1)
then U ′ ⊂ W, fU ′ ⊂ W, . . . , fn+2U ′ ⊂ W . Note that the point w ∈ Si defined
in the previous paragraph does not belong to W since w < z − ε. Consider the
spiral y, fy, . . . , f2ly in Si which starts at the closest from the left to z point y of
Si. Then by the properties of characteristic orbits fy is the closest from the right
to z′ point of Si. At the same time by what was shown in the previous paragraph
among points y, fy, . . . , fn+2y there is a point lying farther away from z then w
and so definitely not belonging to W . The choice of U shows now that if y ∈ U or
fy ∈ U then this is impossible. Therefore, y /∈ U and fy /∈ U , or, in other words,
Si is disjoint from U .

Considering a subsequence we may assume that ν(Si) → µ. By Theorem 1.8
there is a point x′ such that suppµ ⊂ ω(x′) and moreover µ has a generic point x′′.
Let us show that suppµ contains no fixed points and so x′′ ∈ Adf is an admissible
point. First we prove that there is no fixed point in [z′, 1] ∩ suppµ. Indeed, let
ζ > z′ be a fixed point; choose δ < ε so that if any two points are δ-close then
their f -images are ε-close. Now, if a point x ∈ Si is δ-close to ζ then fx must be
ε-close to fζ = ζ which is impossible for by the properties of characteristic orbits
fx < z and hence by the properties of Si we have fx < z − ε. In other words we
see that orbits Si do not come even δ-close to the point ζ, therefore there are no
fixed points in the set suppµ ∩ [z′, 1].

Suppose that ζ ∈ suppµ∩ [0, z) is a fixed point and show that then 0 ∈ If which
is a contradiction. First let us show that Si ∩ [ζ, z] 6= ∅. To this end it is enough to
show that if yi is the closest from the left to z point of Si then ζ < yi for large i, and
indeed by the properties of maps from G and because C(Si) =

⋃t
j=1 J ′j for any i

we see that there are no fixed points in (yi, z). Let us show now that suppµ 6= {ζ}.
Indeed, by the properties of characteristic orbits and since ν(Si)-measure of (z′, 1]
is

pi

qi
> a > 0 we have that µ(z′, 1] ≥ a. At the same time ζ < z which proves

that supp µ 6= {ζ}; therefore the ω-limit set ω(x′) which contains suppµ contains
a fixed point ζ but does not coincide with {ζ}. Thus Proposition 1.10 implies that
there is a basic set B = B(M) containing ω(x′) (and so containing ζ), and M is of
period 1 because ζ ∈ B is a fixed point; also, as we have just seen µ(z′, 1] ≥ a > 0
and so [ζ, z′] ⊂ M .

Let φ be a monotone semiconjugacy between f |M and a transitive map g :
[0, 1] −→ [0, 1]. Then φ(z′) = α is a g-fixed point and φ(ζ) = β is a g-fixed point. W
e may assume that none of the points from Si is mapped by φ into a g-fixed point.
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Indeed, otherwise the semiconjugacy implies that the whole orbit Si is mapped into
the same fixed point; since ζ ∈ suppµ and at the same time there are points of Si

to the right of z′ we see that α = β is this fixed point. Then an f -invariant interval
φ−1(α) = [b, d] contains [ζ, z′] and also all the orbits Si. Therefore the way we
define µ implies that suppµ ⊂ B ∩ [b, d] = {b, d} where b ≤ ζ and d ≥ z′. We know
that ν(Si)-measure of (z′, 1] converges to a and at the same time ν(Si)-measure of
the neighborhood U of [z, z′] is 0 since U is disjoint from Si for any i. Hence z′ < d
and µ(d) = a < 1/2. Together with suppµ ⊂ {b, d} it implies that d is a fixed point
belonging to [z′, 1] which was shown to be impossible.

Thus all points of the orbits Si are mapped by φ into points which are not fixed
for the map g. Clearly it implies that α > β because if α = β then an f -invariant
interval φ−1(α) contains all the orbits Si since Si ∩ [ζ, z] 6= ∅ for any i and all sets
Si are mapped by φ into a g-fixed point α which is a contradiction. All points of
Si lying between ζ and z′ are mapped by f to the right; hence their φ-images are
mapped to the right by g. Now by Lemma 1.11 0 ∈ Ig ⊂ If which is a contradiction
showing that suppµ contains no fixed points. Hence the above chosen generic for µ
point x′′ is admissible. Moreover, all periodic non-fixed points are admissible too,
so we conclude that ρ(µ) = limi→∞ ρ(Si) = limi→∞

pi

qi
= a. This proves the first

statement of Proposition 1.12.
Let us pass on to the second statement; we will use the construction and notation

from the proof of the first one. If periods qi of orbits Si do not grow then clearly
we may assume that Si converge to a periodic orbit Q with the rotation number
ρ(Q) = a; since we suppose that such a periodic orbit does not exist (if it exists
the proposition is trivial) we may assume that qi grow to infinity. We saw that
all the points from suppµ are admissible. Let K ⊂ suppµ be a minimal set and
prove that for any invariant measure ν such that supp ν = K we have ρ(ν) = a;
since at least one such measure exists we get the required. Indeed, suppose that
ρ(ν) > a. Choose a generic for ν point x ∈ K,x < z. Clearly there is a big number
s such that x < fsx < z and if r is the number of those of points x, fx, . . . , fs−1x
which lie to the right of z then r/s > a (here we use the fact that ρ(ν) > a).
Working with a subsequence we may assume that there is a sequence of points xi ∈
Si, limi→∞ xi = x. Thus for large i we have xi < fsxi. Omitting the subsequence
[xi, z], . . . , [fs−1xi, z] from the loop ᾱ(Si) we get a new chain of intervals β̄ which
turns out to be a loop because xi < fsxi. Now if i is so large that

pi

qi
<

r
s

then

ρ(β̄) =
pi − r
qi − s

<
pi

qi
and by Lemma 1.7 there is a periodic point y of rotation number

ρ(y) = ρ(β̄) =
pi − r
qi − s

of period smaller than or equal to qi − s which contradicts

the choice of the sequence 1/2 > a0 ≥ p0/q0 > a1 ≥ p1/q1 . . . . This completes the
proof of Proposition 1.12. �

Propositions 0.1 and 1.12 allow to give an alternative and simpler definition of
the rotation set for maps from G; in particular this definition is applicable in case
of piecewise monotone interval maps.

An alternative definition of the rotation interval for maps from G. Let
f ∈ G. Then the closure in (0, 1) of the set of all rotation numbers of f -periodic
points is the rotation set of f . In particular if rotation numbers of f -periodic points
are bounded away from 0 and 1 then the rotation set of f is the closure of the set
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of all rotation numbers of periodic points of f in the usual sense.

In fact techniques developed in the proof of Proposition 0.12 allow us to show
that sometimes considering all points (i.e. not only admissible ones) does not add
anything to the rotation set of a map. Namely, one can prove the following

Proposition 1.13. Suppose a is the only f -fixed point and there is an ε > 0 such
that f [a− ε, a] ⊂ [a, 1], f [a, a + ε] ⊂ [0, a]. Then the union

⋃

x If (x) coincides with
the rotation set If of f .

Proof. In the definition of the rotation set the union of sets If (x) is taken over all
admissible points. So it is enough to show that even for a non-admissible point x
we have If (x) ⊂ If . Assume otherwise; then without loss of generality we may

assume that α ∈ If (x) \ If , α 6= 1
2
. Since x is not admissible then a ∈ ω(x). Let

us show that for any δ neither f [a − δ, a] nor f [a, a + δ] is degenerate. Indeed,

otherwise we may assume that f [a − δ, a] = {a}. Since If (x) 6= 1
2

it implies that

the orbit of x does not enter [a−δ, a] which by the continuity implies that the orbit
of x does not enter [a, a + δ] either contradicting the fact that a ∈ ω(x). Now, if
there are no preimages of c in [0, a) then let c′ = 0, if there is the closest from the
left to a preimage of a then denote it by c′, and if there is a sequence of preimages
of a approaching a from the left choose a preimage of a in [a− ε, a) and denote it
by c′. Similarly we find a preimage c′′ of a to the right of a. Denote [c′, c′′] by J ;

the choice of c′, c′′ implies that f [a, c′′] ≤ a ≤ f [c′, a]. Then since If (x) 6= 1
2

we see
that the orbit of x enters and leaves J infinitely many times.

Consider a nested sequence of chains of intervals β̄ = {[x, a], [fx, a], . . . , } and
construct a new sequence of chains of intervals as follows. Mark those pairs of times
ek, lk when the orbit of x enters J and leaves it (in other words, fek−1x /∈ J, fek ∈
J, . . . , f lkx ∈ J, f lk+1 /∈ J). If ek ≥ lk − 1 we will not change β̄ at this place at all.
If ek < lk − 1 then there are two cases.

1) fek−1x and f lkx lie to the same side of a.
Then obviously f lkx is closer to a than fek−1x. In this case omit from β̄ all

the intervals [f ix, a], ek − 1 ≤ i ≤ lk − 1 so that the corresponding part of the
new sequence of intervals is . . . , [fek−2x, a], [f lk , a], . . . . Clearly the new sequence
of intervals is still a chain of intervals.

2) fek−1x and f lkx lie to the distinct sides of a.
Then the properties of f at a imply that f lk−1x is closer to a than fek−1x.

Similarly to the first case let us omit from β̄ all the intervals [f ix, a], ek − 1 ≤
i ≤ lk − 2 so that the corresponding part of the new sequence of intervals is
. . . , [fek−2x, a], [f lk−1x, a], . . . . Again, the new sequence of intervals is a chain of
intervals.

In the end we will get a new chain of intervals γ̄ = {[fnkx, a] = Ik} such that
there are no three subsequent intervals in γ̄ which would belong to J . The fact that
this is a chain of intervals means that [fnk+1x, a] ⊃ Ik+1 for any k. Let us now
change this chain of intervals once again as follows: if the number k is such that
fnkx /∈ J then replace Ik by [fnk , c′] if fnkx lies to the left of a and by [c′′, fnkx] if
it lies to the right of a. Denote the resulting sequence of intervals by I ′0, I

′
1, . . . . By

the construction fI ′k ⊃ I ′k+1, all intervals in the new sequence lie either to the left
or to the right of a and there are no three subsequent intervals in it which intersect
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J . As usual in one-dimensional dynamics it allows to find a nested sequence of
closed intervals R0 ⊃ R1 ⊃ . . . such that for any 0 ≤ i ≤ k − 1 we have f iRk ⊂ I ′k
and also fkRk = I ′k.

Let z ∈ ∩Rk. There is a subsequence {mk} such that
1

mk

∑mk−1
i=0 ξ(f iz) → b

where b is farther away from
1
2

than α but lies to the same side of
1
2

as α. Indeed,

refining the chain of intervals β̄ in order to get γ̄ we were in fact omitting pieces of β̄
within which intervals to the left and to the right of a were alternating; getting rid

of these pieces could only move limits of the partial sums
1
m

∑mk−1
i=0 ξ(f iz) farther

away from
1
2
. At the same time by the properties of the sequence I ′0, I

′
1, . . . there

are no three consecutive iterates of z belonging to J and so a /∈ ω(z). Therefore

z is admissible and If (z) ⊂ If which implies that α ∈ [b,
1
2
] ⊂ If completing the

proof.

2. Rotation intervals for piecewise-monotone maps

For the sake of completeness let us begin this section with the sketch of the proof
of Corollary 0.3 which as we have already mentioned in Introduction follows from
Theorem 0.2; the analysis we are about to make will also explain what problem has
to be solved in order to pass on from Corollary 0.3 to Theorem 2.2.

Note first that the rotation pair (1, 2) is the m-weakest and so always (1, 2) ∈
RP (f) (let us remind the reader that we consider only the interval maps with non-
fixed periodic points). Thus 1/2 ∈ If for any f . Assume that If = {1/2}. Then
by Theorem 0.2 there exists a number l such that RP (f) = Q(1/2, l). Now let
us assume that If 6= {1/2} and int If = (a, b). Again by Theorem 0.2 we may
conclude that RP (f) ⊃ N(a, b). A more difficult problem concerns the endpoints
of If , i.e. a and b, although in some cases obvious reasons show that the situation
is similar to that of Theorem M. Indeed, if a is irrational then there are no periodic
points x such that ρ(x) ≤ a; the similar fact holds for b. Taking into account that
Q(c, l) = ∅ for an irrational c and any l we conclude that if both a, b are irrational
then RP (f) = Q(a, 3)∪N(a, b)∪Q(b, 3) = N(a, b). Moreover, if a /∈ If then again
there are no periodic points x such that ρ(x) ≤ a, and the similar fact is true for b.
Thus taking into account that Q(c, 0) = ∅ for any c we see that if If = (a, b) then
RP (f) = Q(a, 0) ∪ N(a, b) ∪ Q(b, 0) = N(a, b). Summarizing this analysis we get
Corollary 0.3.

Moreover, the analysis helps in dealing with Theorem 2.2 and in fact allows to
state a problem closely connected to this theorem. Indeed, consider the following

Problem 1. Let If be an interval containing its endpoint a 6= 1/2, a be rational.
Is there a periodic point x such that ρf (x) = a? What are classes of maps for which
such a periodic point exists?

Suppose the answer to the first question is affirmative for a particular map f .
Then the parts of Theorem 2.2 concerning interior points of the rotation interval
If and the periodic points having the corresponding rotation numbers follow from
Corollary 0.3; the parts concerning endpoints of the rotation interval will follow
from Theorem 0.2 and the affirmative (for the map f) answer to the first question
of Problem 1. Therefore if one can answer the second question of Problem 1, i.e.
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find a class of maps for which the periodic point from this problem exists then
Theorem 2.2 holds for this class of maps.

The major result of the rest of the paper is that a periodic point mentioned
in Problem 1 exists for any piecewise-monotone map and so the arguments from
above apply proving for piecewise-monotone maps Theorem 2.2. From now on we
consider only piecewise-monotone maps. For any such map f a lap is its interval
of monotonicity I such that any other interval of monotonicity J ⊃ I has the
same f -image (in other words a lap is an interval on which f is monotone with the
maximal image). Clearly if the map f has some flat spots (i.e. intervals on which f
is a constant) then for any maximal image there may well be infinitely many laps
which differ from one another by pieces of flat spots. Let l(f) be the number of
laps of f which have distinct images; clearly l(f) is well-defined. In what follows
we need some well-known facts which we state next.

The following are slightly modified definitions from [BCMM]. Let n ≥ 2. The
horseshoe map H : [0, 1] −→ [0, 1] of type n+ is defined as follows: for x ∈ [i/n, (i +
1)/n](i = 0, . . . , n−1) let H(x) = n(x−i/n) if i is even and 1−n(x−i/n) if i is odd.
Then H is continuous, maps each of the n laps I1 = [0, 1/n], . . . , In = [(n− 1)/n, 1]
linearly onto [0, 1] and is increasing on the first lap (see Fig. 2 where example of a
horseshoe of type 4+ is given). The horseshoe map of type n− is defined similarly
but it is decreasing on the first lap. In either case we denote by l(H) the number
of laps of f . Now, let P ⊂ [0, 1] be finite. For i = 0, . . . , n (n = l(H)), define
di = min{|p− i/n| : p ∈ P} and let p̄i be a point in P such that |p̄i− i/n| = di. We
say that P fits H if n = 2 or n ≥ 3 and di + di+1 ≤ 1/n (i = 1, . . . , n− 2). In either
case, the P -truncation or simply truncation HP of H, defined by HP (x) = H(p̄i) if
|x − i/n| ≤ di(i = 0, . . . , n) and H(x) otherwise, is well-defined (see Fig. 2 which
contains an example of the graph of a trunctaion; the graph of the truncation
wherever it is different from that of the horseshoe is shown in dashed lines).

The importance of truncations of horseshoes (simply truncations in what follows)
follows from the fact that any piecewise-monotone map f may be modeled by a
truncation H in the sense that H has the same number of intervals of monotonicity
as f and exhibits the same limit behavior. This actually follows from Milnor-
Thurston kneading theory [MT] and may be stated in terms of kneadings; the result
itself has been relied upon in literature (see [BCMM], [BC], [MN]) and definitely
belongs to “folklore knowledge”, so one can state it without proof. Since in this
paper we deal with periodic orbits, their rotation pairs and numbers, we give the
following weak version of the result which shows that to prove Theorem 2.2 it is
enough to work with truncations.

Proposition 2.1. Let f be a piecewise-monotone map. Then there is a truncation
H such that l(f) = l(H), RP (f) = RP (H), If = IH .

In order to make use of Proposition 2.1 we need to study general properties of
truncations. As it follows from the definition if H is a truncation then there may
be some (no more than l(H) − 1 though) flat spots, i.e. intervals on which H is a
constant; moreover, f has distinct directions of monotonicity on both sides of any
flat spot. Thus there are spots-maxima and spots-minima. Clearly the orbits of all
points from a spot are the same. Now, if I is an interval such that fnI ⊂ I (e.g.,
periodic interval of period n) then fn|I may have some flat spots; on the other
hand, on any interval J ⊂ I on which f does not have flat spots and is monotone
it is in fact linear with the slope bigger than of equal to 2. Let us show that there



ON ROTATION INTERVALS FOR INTERVAL MAPS 19

1 2 3 4

1

2

3

4

Figure 2: A horseshoe and its truncation.

are preimages of periodic points in int I. Indeed, if not then we may assume that
I = [a, b] and fn|int I moves all the points to the right. Thus b is fn-fixed. If fn

has a flat spot which ends up at b then fn maps points of this flat spot into b which
is a contradiction to the assumption that there are no preimages of periodic points
in int I. At the same time if b is not an endpoint of a flat spot then points from
a small neighborhood of b are mapped away from b by fn (for the slope is bigger
than 1) which is a contradiction to the fact that fn|int I moves all the points to
the right. This proves the following

Proposition 2.2. If H is a truncation and I is an interval such that Hn(I) ⊂ I
then I contains preimages of periodic points in its interior.

It is easy to see that Proposition 2.2 implies the following

Proposition 2.3. Let H be a truncation, x be a point which is never mapped into
a flat spot of f . Then x can be approximated from either side by preimages of
periodic points of H and so these preimages are dense outside the set of preimages
of flat spots of f .

Proof. Let U be a compact semi-neighborhood of x. Let us consider the orbit of
U . We claim that there are iterates n < m such that fnU ∩ fmU 6= ∅. First, no
iterate of I is degenerate since x is never mapped into flat spots. Now, if infinitely
many iterates of U intersect flat spots of H or its extrema which do not belong to
flat spots then the fact that there are only finitely many flat spots of H and the
above mentioned extrema implies that some of the iterates of U are not disjoint.
So we may assume that fkU intersects neither flat spots nor the above mentioned
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extrema for big k. But then for any big k we have λ(fk+1U) ≥ 2λ(fkU) where λ(G)
is the Lebesgue measure of G which is clearly impossible. Thus there are n < m
such that fnU ∩ fmU 6= ∅. Consider the set

⋃∞
i=0 f (m−n)i(fnU); obviously this is

an fm−n-invariant interval with the closure, say, K. By Proposition 2.2 there are
preimages of periodic points in K; so there are preimages of periodic points in U
which is the required. �

Any flat spot of a truncation assumes either locally maximal or locally minimal
value of f ; then we call it spot-maximum or spot-minimum respectively. Suppose
that H ′ and H ′′ are two truncations of the horseshoe map of the same type. Suppose
also that flat spots of H ′′ contain those of H ′; then if I ′ ⊂ I ′′ are maximal flat spots
of H ′,H ′′ respectively then H ′(I ′) > H ′′(I ′′), and if I ′ ⊂ I ′′ are minimal flat spots
of H ′,H ′′ then H ′(I ′) < H ′′(I ′′). We say then that H ′ forces H ′′. The term is
justified since for example all periodic points of H ′′ are certainly periodic points
of H ′, so in particular RP (H ′′) ⊂ RP (H ′). In the rest of the paper talking about
close maps we mean close in C0-topology maps. Also, if a truncation H has the
property that all its local extrema are eventually mapped into periodic points (we
call these local extrema eventually periodic) say that H is a Markov truncation.

Proposition 2.4. Let H be a truncation. Then there is an arbitrary close to H
Markov truncation H ′ with l(H) = l(H ′) which forces H.

Proof. The definition of a truncation implies that some of local extremal values of
a map may be assumed on its flat spots. The only local extremal values which
are not assumed on flat spots are 0, 1. Let us show that if every flat spot of a
truncation H ′ is eventually periodic then H ′ is Markov. Indeed, it is enough to
show that 0 and 1 are eventually periodic. If none of them belongs to a flat spot
it follows immediately from the definition of a horseshoe. If, say, 0 belongs to a
flat spot and 1 does not then 0 is eventually periodic by the assumption about H ′

and 1 is either mapped into 0 (and so is eventually periodic too) or is a fixed point.
Finally if both 0 and 1 belong to flat spots then they both are eventually periodic
due to the assumption about H ′.

Thus it is enough to show that there is a truncation H ′ with all its flat spots
eventually periodic which is arbitrary close to H and forces H. To this end we will
step by step change H on its flat spots getting H ′ in the end of this process. First
let us agree not to change the map on all its eventually periodic flat spots. Now,
let I be such a flat spot that Hk(I), k > 0, is disjoint from any flat spot. Then by
Proposition 2.3 there is an eventually periodic point in any semi-neighborhood of
H(I). If I is a spot-maximum then let us pick up an eventually periodic point y in
a small right semi-neighborhood of H(I); if I is a spot-minimum let us pick up an
eventually periodic point y in a small left semi-neighborhood of H(I). Clearly one
can now change H only on I and get a new truncation H ′ which forces H, has the
flat spot I ′ which belongs to I and is such that H ′(I ′) = y. Clearly this decreases
the number of non-eventually periodic flat spots of H at least by one. Therefore
if we keep doing this we will in finitely many steps make all the flat spots of H
eventually periodic which completes the proof. �

Markov truncations and in fact all maps of the interval with eventually periodic
local extrema (we will call these maps Markov too) have been studied for years; in
particular it is very well known that their properties are strongly connected with
those of a Markov subshift of a finite type which can be constructed for any Markov
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map (see, e.g. [MN] or [ALM]). Let us describe one of the ways it can be done. Let
f be a Markov map of the interval, 0 = c0 < c1 < · · · < 1 = cn be a set of eventually
periodic points such that f |[ci, ci+1] is monotone for any i. Let C ′′ = {c′′0 , c′′1 , . . . , c′′m
be the union of all finite orbits of points c0, . . . , cn. For any [c′′i , c′′i+1] let [αi, βi] be
the convex hall of the intersection Fix f ∩ [c′′i , c′′i+1]; now let us add αi and βi to C ′′

unless they already belong to C ′′. Finally we get a set C such that: 1) f(C) ⊂ C;
2) if c′ < c′′ are the adjacent points from C then f |[c′, c′′] is monotone; 3) if c′ < c′′

are adjacent points from C and there is a fixed point in [c′, c′′] then c′, c′′ are fixed
points too.

Consider the partition I of [0, 1] into intervals generated by the set C. Then for
any interval I ∈ I its image fI coincides with the union of a few intervals from the
same partition I. Let us consider an oriented graph whose vertices are intervals of I
and whose arrows connect two vertices I ′ and I ′′ if and only if fI ′ ⊃ I ′′; this graph
generates a subshift of finite type σ : Af −→ Af . The properties of this subshift are
related to those of f . In particular the problem of finding the sets RP (f) and If

may be restated in terms of σ : Af −→ Af . Before we do this let us remind the reader
that we consider only maps with at least some periodic non-fixed points (otherwise
the dynamics of the map is trivial and very well known). Moreover, if If = {1/2}
then the description of the set RP (f) follows immediately from Corollary 0.3, so
we assume that If 6= {1/2}. Let us assign a number χ(I) to any of intervals from
I. Namely, if both endpoints of I are fixed then let χ(I) = 1/2. Otherwise there
are no fixed points in int I and so the direction in which f moves points on I is
well-defined; if points get mapped to the left let χ(I) = 1, otherwise let χ(I) = 0.

Let us consider for σ : Af −→ Af the same construction which led to the definition
of a rotation number and a rotation pair; similar approach is due to K. Ziemian [Z]
who studies rotation numbers for arbitrary Markov subshifts of finite type. Namely,
if k = {I0, . . . } ∈ Af then let χ(k) = χ(I0). Now, for any k ∈ Af one can consider
its χ-rotation set Iσ(k) exactly like it has been done before for interval maps. The
function χ is obviously continuous on Af so all points are admissible in our sense
and it is natural to call the union of sets Iσ(k) over all k ∈ Af the χ-rotation set
(or simply rotation set) of σ|Af . In particular for an n-periodic point k of σf one
can define its rotation pair rp(k) = (p, n) where p =

∑n−1
i=0 χ(σik), and the rotation

number ρ(k) = p/n of k. Notice that if n > 1 then the construction implies that
χ(σik) 6= 1/2 for any i.

There is a well-known connection (see, e.g., [MN]) between the dynamics of σ|Af

and that of f , in particular between their periodic orbits, which is obtained if we
code the orbits on the interval by the elements of the partition I. We will state a
weak version of the corresponding folklore result in terms of rotation numbers of
periodic orbits.

Proposition 2.5. The sets of rotation numbers of periodic non-fixed points of f
and σ are the same.

The following result from [Z] is an important tool for us; we state it in the above
described situation but in fact it holds for much broader defined rotation numbers.

Proposition Z [Z]. Let B be the closure of the set of all rotation numbers of
periodic points of Af . Then for any rational number r ∈ B there is a periodic point
x ∈ Af .

We are ready now to give the affirmative answer to the first question of Problem 1
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for piecewise-monotone maps. Note first that by Proposition 1.12 either If ⊂ (0, 1)
is closed, or If = (0, b], b < 1, or If = [a, 1), a > 0, or If = (0, 1). In the next
Proposition 2.6 we consider the question of existence of a periodic orbit with the
rotation number which is equal to an endpoint of If in these cases. Clearly the
question makes sense only if the endpoint of If is neither 0 nor 1; also, without loss
of generality we consider only the left endpoint of If . Moreover, Proposition 2.6
also contains for piecewise-monotone maps the inverse statement to that of Lemma
1.6 showing that if 0 or 1 belong to the rotation set of a piecewise-monotone map
then the map has a horseshoe.

Proposition 2.6. Let f be a piecewise-monotone map. Then the following holds.
(1) Let If = [a, b] ⊂ (0, 1) or If = [a, 1). If a is rational then there is a periodic

point x such that ρf (x) = a.
(2) Let If = (0, b], b < 1 or If = (0, 1). Then f has the right horseshoe.

Proof. 1) Let a = p/n where p, n are coprime; by Theorem 0.2 we may assume

that a 6= 1
2

and so n > 2. By Proposition 2.1 there exists a truncation H with the

same number m of laps as the map f itself such that RP (f) = RP (H), If = IH .
Therefore we may assume from the very beginning that f = H. Now, making use
of Proposition 2.4 we can find a sequence of Markov truncations Hi → H each
of which forces H; Hi converge to H in C0-topology. Thus as we noticed before
Proposition 2.4 RP (Hi) ⊃ RP (H). For every Hi let us consider the corresponding
subshift of finite type σi : Ai −→ Ai and the closure Bi of the set of rotation
numbers of all its periodic points of periods greater than 1. By Proposition 2.5 Bi
coincides with the closure of the set of rotation numbers of all Hi-periodic points
of periods greater than 1 which contains a by Proposition 0.1, the assumptions
made in case (1) and the choice of Hi. Now Proposition Z implies that there is a
σ-periodic point of the rotation number a which by Proposition 2.5 implies that
there is an Hi-periodic point xi of rotation number a; moreover by Theorem 0.2 we
may assume that rpHi(xi) = (p, n) so that in particular all points xi are of period
n > 2.

We may also assume that xi → x. Let us prove that x is in fact an H-periodic
point and rpH(x) = (p, n); this will mean that x is the required point. Indeed,
Hi → H in C0-topology. Clearly it is enough to show that there is an ε > 0 such
that the minimal distance between points from orb xi is greater than ε. It is easy
to see that to prove this it is enough to show that for some δ > 0 the diameter
of orb xi is greater than δ. Indeed, let such δ exist and yet the minimal distance
between points from orb xi is not bounded away from 0. Then we may assume that
there is a number r such that |Hr

i (xi) − xi| → 0 as i → ∞ for some r which does
not depend on i. The fact that p and n are coprime implies that among n pairs
of points {xi,Hr

i (xi)}, {Hixi,Hr+1
i (xi)}, . . . , {Hn−1

i xi,Hn−1+r
i xi} there is at least

one pair such that the two points in it are mapped by Hi into different directions,
which means that the interval between them contains an Hi-fixed point. At the
same time by the continuity the distance between the points in this pair is very
small, and so they are very close to the fixed point; again by the continuity we see
that the whole orbit of xi is close to this fixed point and so the diameter of orb xi

is also very small contradicting the assumption.
So let G be a horseshoe. Choose δ > 0 so that for any turning point d ∈ (0, 1) of

G we have G[d−δ, d+δ]∩[d−δ, d+δ] = ∅. Now, let F be a trunctaion of G, Q be an
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F -periodic orbit of period k > 2, J be the smallest interval containing Q; assume
that the length of J is less than δ and show that it leads to the contradiction. Since
k is bigger than 2 we conclude that F has at least one extremum in int J , and
the definition of a truncation implies that so does G. Denote a turning point of G
which belongs to int J by c; clearly c 6= 0, 1 and by the assumption J ⊂ [c−δ, c+δ].
Since J contains a periodic orbit of period k then J does not belong to a flat spot
of F . Therefore by the definition of a truncation F (J) ⊂ G(J). At the same time
J ⊂ [c − δ, c + δ] and so by the choice of δ we have G(J) ∩ J = ∅ implying that
F (J) ∩ J = ∅ which is impossible since J contains a periodic orbit of F . The
contradiction completes the proof of the first statement of Proposition 2.6.

2) Assume that If = (0, b], b < 1 or If = (0, 1). If there is an f -periodic orbit
which forces more than one fixed point (see the definition in Section 1) then by
Lemma 1.5 f has both the left and the right horseshoes. So we may assume that
all periodic orbits of f force a unique fixed point. By Proposition 0.1 there is a
sequence of periodic points yi such that ρ(yi) → 0. Moreover, by Lemma 1.6 we
may choose all periodic orbits of yi to be characteristic. Clearly we may assume
that periods of yi grow to infinity. Also, the fact that ρ(yi) → 0 implies that
there are longer and longer time segments in orbits of yi such that all the points
from the beginning to the end of the time segment are mapped to the right by f .
We may assume that yi < f(yi) < · · · < f i2(yi) for any i. Clearly there is a time
segment of the length i within {yi, f(yi), . . . , f i2(yi)} such that the distance between

its leftmost and rightmost points is no more than
1
i
; choosing the corresponding

points zi from the orbits of yi we may assume that in fact for any i we have

zi < f(zi) < · · · < f i(zi) ≤ zi +
1
q
i and also that zi → z. Clearly f(z) = z.

Let us consider possible kinds of local behavior at z. Since f is piecewise mono-
tone then there are only few different types of such behavior; namely, if we choose
small left semi-neighborhood Ul and right semi-neighborhood Ur of z then f(Ul) lies
either to the right or to the left of z and the same holds for Ur. We may assume that
zi approach z from the right. Indeed, suppose otherwise. If f(Ul) lies to the left of z
then clearly none of the points zi ∈ Ul is periodic which contradicts the choice of zi.
So f(Ul) lies to the right of z; replacing zi by f(zi) we can find the required sequence
of periodic points approaching z from the right, thus we may assume it from the
very beginning. Then f(Ur) has to lie to the right of z because z < zi < f(zi). Let
us show that if there is a point ζ ∈ orb zi such that ζ < z then f has the right horse-
shoe. First let us choose a fixed point z′ closest from the left to zi; then f maps all
the points in (z′, zi] strictly to the right. Obviously z ≤ z′, so there is the smallest
non-negative j such that f j(zi) > z′ and f j+1(zi) < z′; clearly j > 0 and f j(zi) > zi

since otherwise f j(zi) ∈ (z′, zi) while by the choice of z′ all the points from (z′, zi)
are mapped to the right. Now, let k be the smallest non-negative number such that
fk(zi) ≥ f j(zi). Then by the choice of k we have z′ < fk−1(zi) < f j(zi), so that in
the end we have f(f j(zi)) ≤ z′ = f(z′) < fk−1(zi) < f j(zi) ≤ f(fk−1(zi)) which
shows that f has the right horseshoe. Hence we may assume that all the orbits of
zi lie to the right of z. Denote the leftmost point of the orbit of zi by αi and the
rightmost point of the same orbit by βi.

Let us prove that diameters of the orbits of zi cannot converge to 0. Indeed,
clearly there is at least one turning point of f between the leftmost and the right-
most points of orb zi for any i. If diameters of the orbits of zi converge to 0 then we
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can refine a sequence of {zi} so that intervals [αi, βi] approach z and are pairwise
disjoint; since every such interval contains a turning point we get a contradiction
with the fact that f is piecewise monotone. Let us show now that the fact that
diameters of the orbits of zi do not converge to 0 implies that f has the right
horseshoe. Indeed, let ε > 0 be such that diam (orb zi) > ε. All the orbits of zi

are characteristic; thus if z′′i is the rightmost point of the orbit of zi then f(z′′i )
is the leftmost point of this orbit, and we may assume that z′′i converge to some
point z′′ ≥ z + ε and f(z′′i ) converge to z. Every point z′′i has the preimage z′′′i
in the orbit of zi such that z < z′′′i < f(z′′′i ) = z′′i and we may assume that z′′′i
converge to some point z′′′ ∈ (z, z′′) (the fact that z < z′′ < z′′′ easily follows from
the continuity arguments). Finally we have f(z′′′) = z = fz < z′′ < f(z′′) = z′′′

which means that f has the right horseshoe completing the proof. �

As an example let us consider unimodal maps. For the sake of simplicity and
without loss of generality we will assume that there is a point c ∈ (0, 1) such that
f |[0, c] is increasing, f |[c, 1] is decreasing, f(c) = 1, f(1) = 0 and there is no more
than one f -fixed point in [0, c]. By the unimodality there are no two consecutive
iterates mapped to the left in any orbit. Therefore all rotation numbers of periodic

orbits are less than or equal to
1
2
; moreover, if we consider the rotation set If (x)

of an arbitrary point x then as usual If (x) is an interval and because of the same

reason we see that If (x) ≤ 1
2
. In any case by Theorem 0.2 the right endpoint of the

rotation interval of f is
1
2
; moreover, the union

⋃

x If (x) = Tf in this case contains
1
2

and lies to the left of
1
2
.

Consider a few possibilities. If there is a fixed point d ∈ [0, c] then f has the
right horseshoe since 0 = f(1) < d = f(d) < c < f(c) = 1, so the rotation interval

If of f is (0,
1
2
]. It is easy to see that in this case we have Tf = [0,

1
2
]. Indeed,

there is a point x whose orbits stays for longer and longer periods of time in small
neighborhoods of d to the right of d; the definition of the set If (x) now implies that

If (x) = {0} and so Tf = [0,
1
2
]. If there is no fixed point in [0, c] then f does not

have the right horseshoe and the rotation interval If = [µ,
1
2
], µ > 0 of f coincides

with the usual closure of the rotation numbers of f -periodic points. Note that by
Theorem 0.2 for any rational number from the interior of the rotation interval there
are infinitely many periodic points of different periods and this rotation number,
so if If is not degenerate then for any finite set of periodic orbits A the rotation
interval coincides with the closure in (0, 1) of the set of rotation numbers of periodic
points from Per f \ A. Moreover, if a unimodal map f has a degenerate rotation

interval If then by Theorem 0.2 If = {1
2
} and if f has periodic points of infinitely

many periods then again the rotation interval coincides with the closure in (0, 1)
of the set of rotation numbers of periodic points from Per f \ A. Relying upon
proposition 1.13 in the proof of its second statement we thus obtain the following

Corollary 2.7. Let f be a unimodal map with periodic points of infinitely many
periods, A ⊂ Per f be a finite set of periodic points. Then the following holds.

(1) If there is a fixed point in [0, c] then
⋃

x∈Adf
If (x) = If = (0,

1
2
]; moreover, in
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this case
⋃

x If (x) = Tf = [0,
1
2
] coincides with the closure of the set of all rotation

numbers of periodic points from Per f \A.
(2) If there is no fixed point in [0, c] then If = Tf coincides with the closure of

the set of all rotation numbers of periodic points from Per f \A.
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