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ROTATING AN INTERVAL AND A CIRCLE

ALEXANDER BLOKH AND MICHA L MISIUREWICZ

Abstract. We compare periodic orbits of circle rotations with their coun-
terparts for interval maps. We prove that they are conjugate via a map of
modality larger by at most 2 than the modality of the interval map. The proof
is based on observation of trips of inhabitants of the Green Islands in the Black
Sea.

1. Introduction

Most people will agree that it is easier to rotate a circle than an interval. How-
ever, the latter was made possible by the introduction of over-rotation numbers (see
[BM2]). They allow us to trace how the orbits of an interval map are “rotated”.

Let us consider cycles (periodic orbits) of some simple one-dimensional dynamical
systems. For a circle map of degree one f : S1 → S1 one can measure an average
rotation of a cycle P of period n by taking its point x, measuring its displacement
in a chosen lifting F : R → R after n iterates, and dividing by n. Thus, the rotation
number of P will be (Fn(x) − x)/n (see [P], [NPT], [ALM]). The simplest cycles
with a given rotation number are those that can be found in rotations (or in maps
conjugate to rotations). They are called twist cycles and can be characterized by
the property that there is a circle map for which this is the unique cycle with this
rotation number (see [ALM]).

We can look at those rotation numbers from the two-dimensional perspective. If
the circle whose maps we consider is a subset of a plane, we can imagine connecting
x and f(x) by a piece of string and observing how this string rotates when we
iterate the map. The number of full rotations after n iterates, divided by n, is the
rotation number. When we make a similar construction for an interval map, we get
an over-rotation number of a cycle (see [BM2]). Then a cycle will be over-twist if
there is an interval map for which this is the unique cycle with this over-rotation
number.

The main aim of this paper is to establish connections between over-twist cycles
of interval maps of a given over-rotation number and twist cycles of circle maps of
the same rotation number. Since we can think of a cycle as a cyclic permutation
of a finite set, all cycles (of all maps) with the same period are conjugate. In
our specific case we will show that this conjugacy is quite regular. Namely, it is
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piecewise monotone with the number of pieces larger by at most 2 than the number
of pieces of monotonicity of an interval map with our cycle.

The paper is organized as follows. In Section 2 we define the basic notions and
state some preliminary results. In Section 3 we characterize a class of cycles that
are “twist” for rotation-type theories connected with the dynamics of the map. In
Section 4 we characterize over-twist patterns. In Section 5 we prove the main result
of the paper about conjugacies of over-twist interval cycles with twist circle cycles.
The proof is based on observations of trips of inhabitants of the Green Islands in
the Black Sea.

2. Preliminaries

In this section we state preliminary results. We begin with some definitions.
We will work with cycles (that is, periodic orbits) of continuous interval maps.

The pattern of a cycle is the cyclic permutation we get when we look how the map
acts on the points of the cycle, ordered from the left to the right. A cycle of f of
pattern A is called a representative of A in f . Patterns are partially ordered by
the forcing relation. A pattern A forces pattern B if every continuous interval map
having a cycle of pattern A has a cycle of pattern B.

If there is a (non-strictly) increasing semiconjugacy between a pattern A and
a pattern B, the pattern is said to have a block structure over B. Pre-images of
points from B under this semiconjugacy are called blocks ; each block has the same
number of points. Clearly if a pattern A has a block structure over a pattern B
then A forces B (see, e.g., [ALM, Lemma 2.10.1]).

If all blocks of A except perhaps one are mapped in a monotone way and on some
block the first return map is a cycle with pattern C, then A is called an extension of
B by C. Note that in such a situation C is unique up to the reversal of orientation.
A pattern that is an extension of some pattern by a pattern of period 2 is called
its doubling (or a 2-extension). A cycle P of a map f is called a Štefan cycle if its
period is an odd number n ≥ 3 and there exists x ∈ P such that either

fn−1(x) < fn−3(x) < · · · < f4(x) < f2(x) < x < f(x) < f3(x)

< · · · < fn−4(x) < fn−2(x)

or

fn−2(x) < fn−4(x) < · · · < f3(x) < f(x) < x < f2(x) < f2(x)

< · · · < fn−3(x) < fn−1(x).

A pattern of a Štefan cycle is called a Štefan pattern. An extension of a pattern A
by a Štefan pattern is called a Štefan extension.

A pattern (or a cycle with such a pattern) that has a block structure over the
pattern of period 2 is said to have division. Otherwise we say it has no division.

For a cycle P there are some special classes of maps with this cycle. A map f is
called P -monotone if it is monotone between consecutive (in space) elements of P
and is constant to the left of the leftmost and to the right of the rightmost element
of P . Patterns of all cycles of a P -monotone map are forced by the pattern of P
(see [ALM, Theorem 2.7.7]). For every P there are also P -adjusted maps. They
are P -monotone and have an additional property whereby they do not have other
cycles with the same pattern as P .
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The rotation pair of a cycle is (p, q), where q is the period of the cycle and
p is the number of its elements which are mapped to the left of themselves (for
cycles of period 1 we can take p = 1/2, but it is better to exclude them from our
considerations). The number p/q is called the rotation number of the cycle. We
denote the rotation pair of a cycle P by rp(P ) and the set of the rotation pairs of
all cycles of a map f by RP(f).

Similarly, the over-rotation pair of a cycle is (m/2, q), where q is the period of
the cycle and m is the number of its elements x such that f(x)−x and f2(x)−f(x)
have different signs (note that m is even). The number m/(2q) is called the over-
rotation number of the cycle. We denote the over-rotation pair of a cycle P by
orp(P ) and the set of the over-rotation pairs of all cycles of a map f by ORP(f).
Note that orp(P ) ≤ 1/2.

We introduce the following partial ordering among all pairs of integers (p, q) with
0 < p < q. We will write (p, q) m (r, s) if either 1/2 ≤ r/s < p/q, or p/q < r/s ≤
1/2, or p/q = r/s = m/n with m and n coprime and p/m � r/m (notice that
p/m, r/m ∈ N). Here k � l means that k stands to the left of l in the Sharkovskĭı
ordering:

3, 5, 7, . . . , 3 · 2, 5 · 2, 7 · 2, . . . , 3 · 22, 5 · 22, 7 · 22, . . . , 23, 22, 2, 1.

Completeness Theorem ([B], [BM2]). If f : [0, 1] → [0, 1] is continuous, (p, q)m
(r, s) and (p, q) ∈ RP(f) (respectively ORP(f)) then (r, s) ∈ RP(f) (respectively
ORP(f)).

A pattern that does not force any other pattern with the same rotation (respec-
tively over-rotation) number is called a twist pattern (respectively an over-twist
pattern). A cycle whose pattern is twist (respectively over-twist) is called a twist
cycle (respectively an over-twist cycle).

A cycle (and the pattern it represents) is divergent if it has points x < y such
that f(x) < x and f(y) > y. A cycle (pattern) that is not divergent will be called
convergent . The set of all convergent patterns is denoted by CP . There is an
equivalent way to define convergent patterns. Namely, let U be the family of all
interval maps with a unique fixed point (we will always denote this fixed point by
a). If f is a P -monotone map for a cycle P then P is convergent if and only if
f ∈ U .

The following lemma shows that (over-)twist patterns are convergent.

Lemma 2.1 ([B], [BM2]). Let A be a divergent pattern. Then A forces patterns
of all rotation pairs as well as patterns of all over-rotation pairs.

When dealing with convergent patterns, we will be using the following terminol-
ogy. Let P be a convergent cycle of a P -monotone map f . Those points x ∈ P for
which x and f(x) lie on the same side of a are called green, and those for which x
and f(x) lie on the opposite sides of a are called black. A cycle P (and its pattern)
is called green if it is convergent and f is increasing on the set of green points
and decreasing on the set of black points of P . In Figure 2.1, the black points are
marked “B” and the green ones “G”. The cycle depicted there is green.

Before we state the next lemma, note that by the Sharkovskĭı Theorem (see
e.g. [ALM]) the only (over-)twist pattern of (over-) rotation number 1/2 is that of
period 1. Hence, from now on we consider only (over-)twist patterns of (over-)-
rotation numbers different from 1/2.
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Figure 2.1. A green cycle

Lemma 2.2 ([B]). A twist pattern A of rotation number ρ 6= 1/2 is green. More-
over, if P is a representative of A in a P -adjusted map f , then f is monotone on
one side of the fixed point a. In particular, if ρ < 1/2, then all points mapped to
the left are black and if ρ > 1/2, then all points mapped to the right are black.

Note that by reversing the order one can make a pattern of rotation pair (r, s)
and rotation number ρ = r/s into a pattern of rotation pair (s− r, r) and rotation
number 1 − ρ. In particular, any twist pattern of rotation number greater than
1/2 can be obtained from the appropriate twist pattern of rotation number smaller
than 1/2 by reversing the order. Therefore sometimes it makes sense to work with
twist patterns of rotation numbers smaller than 1/2 and then extend the results to
all patterns by reversing the orientation.

Now, let A be a convergent pattern, let P be a representative of A in a P -
monotone map f and let f be monotone on one side of the fixed point a. This
means that all points of P lying on this side of a are black. Then for any cycle
Q of f all points lying to the same side of a are black too which is implied by
the definition that over-rotation pairs and numbers of these cycles coincide with
their rotation pairs and numbers. Together with Lemma 2.2 this proves that twist
patterns are also over-twist. On the other hand, if A is an over-twist pattern such
that either all its points mapped to the left are black or all its points mapped to
the right are black, then the same property holds for all patterns forced by A. So
for all these patterns over-rotation pairs and numbers coincide with rotation ones.
Therefore by the same arguments, A is a twist pattern. In this way, we obtain the
following lemma.

Lemma 2.3. Twist patterns are those over-twist patterns for which either all points
mapped to the right are black or all points mapped to the left are black.

For a map f with a unique fixed point a it is useful to look at admissible loops
of intervals α = J0 → J1 → · · · → Jq−1 → J0, where → means f -covering (that
is, J → K if K ⊂ f(J)) and every interval Ji has a as one of its endpoints. If p
is the number of arrows J → K in α such that J is to the right of a and K is to
the left of a, then we say that the over-rotation number of α is p/q. A cycle Q
(other than {a}) for which there is a point x ∈ Q with f q(x) = x and f i(x) ∈ Ji for
i = 0, 1, . . . , q − 1, is associated to α. Clearly, its over-rotation number is the same
as that of α. It turns out that in most cases associated cycles do exist. Therefore,
the following lemma holds.

Lemma 2.4 ([B], [BM2]). Let α = J0 → J1 → · · · → Jq−1 → J0 be an admissible
loop. Then there exists a cycle associated to α, unless q is even, all intervals Ji with
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even i are located on one side of a, and all the intervals Jk with odd k are located
on the other side of a, in which case there exists a cycle of period 2. In particular,
a cycle associated to α exists if the over-rotation number of α is not 1/2.

Let us denote by Jy the interval with endpoints a and y. If P is a cycle of f of
period q and x ∈ P , then we call the loop Jx → Jf(x) → · · · → Jfq−1(x) → Jx the
fundamental admissible loop of P .

3. Green patterns are sequential twist patterns

In the next section we will characterize over-twist patterns as green patterns
with some additional properties. It is natural to ask whether all green patterns can
be described as a kind of twist patterns. That is, we want to choose some invariant
(like an over-rotation number for over-twist patterns or a rotation number for twist
patterns) and then prove that green patterns are forcing minimal patterns with the
given value of this invariant. To answer this question we need more definitions.

By a circular sequence we will understand a finite sequence modulo rotations.
That is, sequences

(r0, r1, . . . , rk−1, rk, rk+1, . . . , rn−1) and (rk, rk+1, . . . , rn−1, r0, r1, . . . , rk−1)

are equal as circular sequences.
Let f ∈ U and let P 6= {a} be a cycle of f . Define the rotation sequence of P

as the circular sequence r(P ) = (r0, r1, . . . ) that is obtained by choosing x ∈ P
and setting ri = 0 if f maps f i(x) to the right and ri = 1 otherwise. We call a
convergent pattern A a sequential twist if it does not force any other pattern with
the same rotation sequence.

Theorem 3.1. A pattern A ∈ CP is a sequential twist if and only if it is green.

We start with the simpler part of the proof.

Lemma 3.2. Let a pattern A ∈ CP be a sequential twist. Then it is green.

Proof. The proof is similar to the proof of Theorem 2.1 of [BM3].
Let P be a representative of A in a P -adjusted map f . Then clearly f ∈ U .
If A has a division, then the rotation sequence of P is 010101 . . . . On the other

hand, by the Sharkovskĭı Theorem either A itself is of period 2 or it forces a pattern
of period 2. Thus the only sequential twist pattern with division is that of period
2 and from now on we may assume that A has no division.

Let α be the fundamental admissible loop of P . Suppose that f is not increasing
on the set of green points of P or not decreasing on the set of black points of P .
Then there are points x, y ∈ P such that x >a y and f(x) <a f(y). We can modify
α by replacing the interval Jx by Jy. Then the new loop β is admissible and has
the same rotation sequence as α. Since we assumed that A has no division then by
Lemma 2.4 f has a cycle Q of the same over-rotation number, associated to β.

Let us show that Q 6= P . Suppose that P is associated to β. Let z be the point
of P closest to a from the right. Since z 6= x, the same interval Jz appears in α
and β. Moreover, z is the unique point of P belonging to Jz. Therefore for i such
that x = f i(z), by starting at Jz and following the orbit of z and the loop β for i
steps we get x ∈ Jy. This is false since x >a y. Hence P is not associated to β, so
Q 6= P .

Since f is P -adjusted, the pattern of Q is different from A. Thus, A forces a
different pattern with the same rotation sequence, so it is not a sequential twist, a
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contradiction. This proves that f is increasing on the set of green points of P and
decreasing on the set of black points of P , that is P (and therefore A) is green.

Let f ∈ U . We will say that a cycle P of f dominates a cycle Q of f if there are
x ∈ P and y ∈ Q such that fn(x) ≥a f

n(y) for every n. Notice that in such a case
the cycles P and Q have the same rotation sequence.

Lemma 3.3. Assume that P is a green cycle of a P -monotone map f and that it
dominates a cycle Q. Then P and Q have the same patterns.

Proof. By the definition of domination, there are points x ∈ P and y ∈ Q such
that fn(x) ≥a f

n(y) for every n. If there are no points of P between (by this we
mean strictly between) fn(x) and fn(y) for any n then the orderings of the points
of both cycles on the interval is the same, that is they have the same pattern.

Suppose that for some i there is a point z ∈ P between f i(x) and f i(y). We claim
that there is a point of P between f i+1(x) and f i+1(y). If f is monotone between
f i(x) and f i(y), then f(z) is such a point. If f is not monotone on [f i(x), f i(y)],
then there is a point z′ ∈ P between f i(x) and f i(y), which has a different color
than f i(x). Let w be the furthest from point a of f(Jz′) on the same side as f i+1(x).
It is an image of a point of P , so it belongs to P . Since f i(x) >a z

′ and P is a green
cycle, we have f i+1(x) >a w. Since f i(y) ∈ Jz′ , we have f i+1(y) ∈ f(Jz′). The
points f i+1(y) and w lie on the same side of a, so w ≥a f

i+1(y). The point f i+1(y)
does not belong to P , while w does. Therefore they are different, so w >a f

i+1(y).
This proves the claim.

By induction it follows that there is a point of P between fn(x) and fn(y) for
all n ≥ i. However, for some n ≥ i the point fn(x) is the closest point to a from
the left among all points of P , so we have a contradiction. This completes the
proof.

Lemma 3.4. Assume that P is a green cycle of a P -monotone map f . If x ∈
P, x ≥a y, and f(x), f(y) lie on the same side of a, then f(x) ≥a f(y). Conse-
quently, if Q is a cycle of f with the same rotation sequence as P , then P dominates
Q.

Proof. Suppose that x ∈ P, x ≥a y, and f(x) <a f(y). Then, since f is P -
monotone, there exists a point z ∈ P such that x ≥a z and f(x) <a f(z). This
is impossible since P is green. This proves the first statement of the lemma. The
second part follows immediately from the first part by induction (to start induction,
notice that all points of Q are between the left-most and the right-most points of
P ).

Now Theorem 3.1 follows immediately from Lemmata 3.2, 3.3 and 3.4.

4. Over-twist patterns

We are interested in a characterization of over-twist patterns similar to the char-
acterization of twist patterns (see [BK], [BM1]). For this we have to introduce
a code for cycles, similar to the code that was introduced in the case of rotation
numbers. Such a code depends on the function that was used to get over-rotation
(or rotation) numbers. In case of over-rotation numbers if we restrict our attention
to convergent cycles (we may do it) we have a choice of two functions. One of them
is 1/2 at black points and 0 at green ones. The other one is 1 at black points to
the right of a and 0 otherwise. Our theorem will hold for any of those functions.
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If P is a cycle of f ∈ U and ϕ is any of the above functions then we introduce
the code for P as follows. The code is a function L : P → R, defined as L(x) = 0
for the left-most point x of P and then by induction as L(f(y)) = L(y) + ρ−ϕ(y),
where ρ is the over-rotation number of P . When we get back to x along the orbit
P , we add ρ n times (n is the period of P ) and subtract the sum of ϕ along P ,
which is nρ, so we get again 0. Therefore the definition is correct. Clearly, we can
also speak of codes for patterns.

The cycle depicted in Figure 2.1 has period 14 and over-rotation number 3/14.
With the second choice of ϕ we get codes of its points k/14, where from left to right
the values of k are 0, 2, 4, 5, 7, 15, 13, 12, 11, 10, 9, 8, 6, 3.

If f ∈ U , we say that the code for P is monotone if for any x, y ∈ P , x >a y
implies L(x) < L(y). Our cycle from Figure 2.1 is monotone.

Theorem 4.1. A pattern is over-twist if and only if it is convergent and has mono-
tone code.

For clarity, we prove Theorem 4.1 through a sequence of lemmata. First, the
easy part.

Lemma 4.2. Any over-twist pattern is convergent and has monotone code.

Proof. An over-twist pattern is convergent by Lemma 2.1. Now, let f be a P -
admissible map for a cycle P with an over-twist pattern. Suppose that the code for
P is not monotone. Then there exist x, y ∈ P such that x >a y and L(x) ≥ L(y).
We have x = fm(y) for some m smaller than the period of P . The loop Jy →
Jf(y) → · · · → Jfm−1(y) → Jy is admissible. Its over-rotation number is equal to
1/m times the sum of ϕ along the orbit of y from y to fm−1(y). Since L(x) ≥ L(y),
this sum is smaller than or equal to mρ, where ρ is the over-rotation number of P .
Thus, the over-rotation number of our loop (and therefore of a cycle Q associated
to it) is smaller than or equal to ρ. By the Completeness Theorem for over-rotation
numbers it implies that there exists a cycle Q′ of over-rotation number ρ. Since
f is P -adjusted and P is over-twist, this is a contradiction, unless Q′ = Q = P .
However the period of Q is at most m while the period of P is greater than m, so
Q 6= P .

Now we start proving the opposite implication.

Lemma 4.3. Any convergent pattern with monotone code is green.

Proof. Let f be a P -monotone map for a convergent cycle P with monotone code.
Take any points x, y ∈ P such that x >a y, and f(x) and f(y) are on the same
side of a. Then x and y are on the same side of a and have the same color.
Therefore ϕ(x) = ϕ(y), and since L(x) ≤ L(y), we get L(f(x)) ≤ L(f(y)). Hence
f(x) ≥a f(y). Since x 6= y and both x and y are in P , we get f(x) 6= f(y). Thus
f(x) >a f(y). This proves that P is green.

We will call an admissible loop a P -loop if its elements are intervals of the form
Jx with x ∈ P and f(x) ≥a y whenever Jx → Jy is an arrow in the loop.

Lemma 4.4. Assume that f is a P -adjusted map for a green cycle P . Let Q be a
cycle of f , different from P and {a}. Then there is an admissible P -loop with the
same rotation sequence as Q (and therefore with the same over-rotation number as
Q), but different from the fundamental loop of P and its repetitions.
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Proof. For any point x with f(x) 6= a we define a point ξ(x) ∈ P as follows. If
x ∈ P , then ξ(x) = x. If x /∈ P , then x belongs to a unique (P ∪{a})-basic interval
J . At least one endpoint of J has the same color as x. If there is only one such
endpoint, we choose it as ξ(x). If both endpoints of J have the same color as x,
then we choose ξ(x) as the one that is further from a.

Notice that with our choice if also f2(x) 6= a, then f(ξ(x)) ≥a ξ(f(x)). Therefore
if x ∈ Q, then Jξ(x) → Jξ(f(x)) → Jξ(f2(x)) → · · · → Jξ(x) is an admissible P -loop.
Call it β. Clearly β has the same rotation sequence as Q.

For each y ∈ P the set {x : ξ(x) = y} is an interval. Those intervals are pairwise
disjoint and of course are ordered in the same way as points of P . Therefore, if β
is the fundamental loop of P or its repetition, then Q has the same pattern as P
or has a block structure over P which due to the remark before the lemma implies
that f has a cycle different from P whose pattern coincides with that of P . Since
f is P -adjusted, this is impossible.

Lemma 4.5. Assume that f is a P -monotone map for a green cycle P with mono-
tone code. Then any admissible P -loop with the same over-rotation number as P
is equal to the fundamental loop of P or its repetition.

Proof. Let β = Jv0 → Jv1 → · · · → Jvn−1 → Jvn , where vn = v0, be an admis-
sible P -loop β with the same over-rotation number as P (call it ρ). Whenever
vi+1 6= f(vi), we have vi+1 = f j(vi) for some j > 1 and we can replace the arrow
Jvi → Jvi+1 by the block Jvi → Jf(vi) → · · · → Jfj−1(vi) → Jvi+1 . With those
replacements we get a new admissible P -loop γ. In this loop all arrows are of the
form Jx → Jf(x) with x ∈ P , so it has to be either the fundamental loop of P or
its repetition. In particular, the over-rotation number of γ is equal to ρ.

Let us compare the over-rotation numbers of β and γ. The over-rotation number
of γ is a weighted average of the over-rotation numbers of β and the inserts. Here by
the over-rotation number of an insert → Jf(vi) → · · · → Jfj−1(vi) → we mean the
average of the values of the function ϕ at the points f(vi), . . . , f j−1(vi) (call this av-
erage t). Notice that the increment of the code L(vi+1)−L(f(vi)) is equal to j times
ρ minus the sum of the values of the function ϕ at the points f(vi), . . . , f j−1(vi),
that is to j(ρ − t). Since β is a P -loop and vi+1 6= f(vi), we have f(vi) >a vi+1.
Since the code for P is monotone, this implies L(vi+1)−L(f(vi)) > 0. Hence ρ > t.
Therefore the over-rotation numbers of all the inserts are smaller than ρ.

Thus, the only way we can obtain ρ as the weighted average of the over-rotation
numbers of β and the inserts, is to have no inserts. This means that β = γ, so β is
equal to the fundamental loop of P or its repetition.

Now Theorem 4.1 follows immediately from Lemmata 4.2-4.5.
We noted in Section 2 (Lemma 2.3) that twist patterns are in fact over-twist

patterns such that the map is monotone on one side of the fixed point. Therefore
Theorem 4.1 applies to twist patterns as well, and so results of [BK] and [BM1]
follow from Theorem 4.1.

Instead of talking about forcing-minimal (i.e., minimal with respect to the forc-
ing relation) patterns of given a over-rotation number we can talk about forcing-
minimal patterns of given over-rotation pair. It turns out that by combining The-
orem 4.1 and some well known results one can easily characterize such patterns.

We will need the following lemma, easily deducible from [ALM]. Since its proof
is a minor variation of the proofs from Section 2.11 of [ALM] (which are rather
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technical), we will omit it here. Note that the situation here is very similar to the
case of lifted patterns for degree one circle maps (see Theorem 3.12.17 of [ALM]).

Lemma 4.6. Let A be a pattern of period n and let k be a positive integer. Then
a pattern B of period kn is forcing-minimal among patterns of period kn that have
block structure over A if and only if B can be obtained from A by a finite number
(possibly zero) of doublings and then at most one Štefan extension.

Clearly, if k = m · 2r, where m is odd, then there are r doublings necessary, and
an extension by a Štefan pattern of period m is necessary if m ≥ 3.

Now we can prove the following theorem. Let us note that it holds as well for
rotation pairs instead of over-rotation pairs.

Theorem 4.7. Let k,m, n be positive integers with 2m ≤ n and m,n coprime. A
pattern of period kn is forcing-minimal among all patterns of over-rotation pair
(km, kn) if and only if it can be obtained from an over-twist pattern of an over-
rotation pair (m,n) by a finite number (possibly zero) of doublings and then at most
one Štefan extension.

Proof. Assume first that a pattern B of period kn is forcing-minimal among all
patterns of an over-rotation pair (km, kn). By the Completeness Theorem, B forces
an over-twist pattern A with over-rotation pair (m,n). Since m,n are coprime, A is
not a doubling. Hence, if B has no block structure over A, then by Theorem 9.12 of
[MN] B forces a pattern of an over-rotation pair (km, kn) which has block structure
over A, a contradiction. Therefore B has block structure over A. Thus, every
pattern of period kn forced by B and forcing A has block structure over A, so it
has an over-rotation pair (km, kn). Therefore B is forcing-minimal among patterns
with block structure over A. By Lemma 4.6, B can be obtained from A as in the
statement of the theorem.

Assume now that B has period kn and can be obtained from an over-twist
pattern A as in the statement of the theorem. Then B has block structure over
A, so it has an over-rotation pair (km, kn). If B forces a pattern C 6= B of an
over-rotation pair (km, kn), then by Theorem 3.7 of [MN] either A forces C or C
has block structure over A. In the first case, since A is over-twist and C has an
over-rotation number m/n, we get C = A. Therefore k = 1, so B = A = C, a
contradiction. The second case is impossible by Lemma 4.6. This completes the
proof.

5. Conjugating with rotations

It is not a coincidence that we are using names that involve the word rotation.
In particular, in this section we will see how over-twist cycles of the over-rotation
number p/q are connected with circle rotations by the angle 2πp/q. Suppose we
want to find a conjugacy between such a cycle and a cycle of a circle rotation.
Since we are thinking of a conjugacy on finite sets, this poses no problem. Any
two cycles of the same period q are conjugate. However, since we are working with
one-dimensional dynamical systems, we have an additional structure connected
with the ordering of the points. Therefore, we can expect our conjugacy to be
order-preserving to some extent. It cannot be order-preserving globally, but it can
be piecewise order-preserving with a reasonable number of pieces. The lack of
monotonicity for a conjugacy is connected to the lack of monotonicity of the over-
twist cycle we are working with. Therefore “reasonable” should mean the number
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of pieces for the conjugacy that is bounded by a constant depending only on the
number of pieces of monotonicity of the over-twist cycle. In this section we prove
the existence of such a bound (Theorem 5.9).

This bound is closely connected with a bound for the code of over-twist cycles,
and we will work on the latter throughout most of this section. We will be using only
some properties of the over-twist patterns. Therefore, we will formulate and prove
our results in a more general context, in particular dealing with arbitrary functions
rather than with only those which generate the code for over-twist patterns. On
the other hand the main application of the results is related to over-twist patterns.
Thus, alongside general results we will include particular cases concerning over-twist
patterns. We will also show what we get for twist patterns.

Let P be a cycle of an interval map f with the unique fixed point a. To generate
the code for P , we used in Section 4 the function ρ − ϕ, and we were summing it
along the orbit of the left-most point of P . Here, we will replace this function by a
more general function ψ for which we make the following assumptions:

(1)
∑

x∈P ψ(x) = 0.
(2) The cycle P is green and has period larger than 2.
(3) The code L is monotone, that is for x, y ∈ P , x >a y implies L(x) < L(y).

Here the code L : P → R is defined by fixing the value of L at some point of P and
then by induction setting L(f(x)) = L(x) + ψ(x) for every x ∈ P . As in Section 4,
assumption (1) guarantees that L is well defined. As long as we will be interested
only in the differences L(y)−L(x), it does not matter what value and which point
we choose initially.

In the special case of over-rotation numbers, we can use (as explained in Sec-
tion 4) one of two functions: ϕor, that is 1/2 at black points and 0 at green ones;
or ϕ′or, that is 1 at black points to the right of a and 0 otherwise. Thus, instead of
ψ we use ψor = ρ− ϕor or ψ′or = ρ− ϕ′or, respectively, where ρ is the over-rotation
number of the pattern (or the cycle). Corresponding codes will be denoted Lor and
L′or, respectively.

Let us order the cycle P in space: x1 < x2 < · · · < xq . The modality of P
is the number of its turning points, that is points xi such that 1 < i < q and
(f(xi)− f(xi−1))(f(xi)− f(xi+1)) > 0.

Theorem 5.1. Under assumptions (1)-(3), for every x, y ∈ P we have

L(y)− L(x) < (2n+ 5)M,

where n is the modality of P and M = max{|ψ(x)| : x ∈ P}. For the code Lor we
have

Lor(y)− Lor(x) < (n/2 + 1)(1− ρ),

where ρ is the over-rotation number of P .

To prove this theorem, we will need some geographical notions. The points of
P come in blocks of consecutive (in space) points of the same color. We will call
the blocks of green points islands (it may happen that an island consists of one
point only). Thus, we have the Green Islands in the Black Sea. Wherever an island
meets the sea, there is a point of f−1(a) between them. There are n+1 such points.
However, a itself separates two black points, so it does not count. Thus, there are
at most n/2 + 1 islands.
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The point a is the most important point of the region and is referred to as the
Center of the World, or the Center for short.

Green Islanders have several means of transport. The two most popular are a
green arrow that takes them from a green point x to f(x), and a balloon that takes
them from any x to any y >a x (the winds blow only from the Center outward).
Note that this is enough to get from any point on an island to any other point on
the same island. However, one can also travel between islands. This divides the
set of all islands in a natural way into archipelagos. Two islands I and J belong to
the same archipelago if one can get from I to J and from J to I using only green
arrows and balloons. One can easily see that an archipelago consists of one or more
adjacent islands on the same side of the Center, and that two distinct archipelagos
have no common islands.

In our example from Figure 2.1 there is one green island to the left and two
to the right of the Center. However, on each side of the Center there is only one
archipelago.

Another way of getting around is to use black arrows that take one from a black
point x to f(x). They take a traveler to the other side of the Center. They also
make interarchipelagian travel (other than by a balloon that carries its passengers
further from the Center) possible. However, black arrows cannot replace green ones,
as we see in the next lemma.

Lemma 5.2. If a trip by black arrows and perhaps balloons begins at b and ends
at e on the same side of the Center, then e >a b.

Proof. For such a trip, the number of black arrows taken is even. Let us divide
them into consecutive pairs. In such a pair, if the beginning of the first black arrow
is x and the beginning of the second one is y, then y ≥a f(x). If x ≥a f(y), then
one of those inequalities is strict, since we assumed that the period of P is larger
than 2. Hence, we may assume that x >a f(y) (otherwise we switch x and y).
Then, since P is green, the set of points of P between x and y (including y, but
excluding x) is invariant, a contradiction. Thus x <a f(y), that is, one can travel
from x to f(y) by balloon. In this way we can eliminate all pairs of black arrows,
so the whole trip can be made by balloon; hence e >a b.

The code L indicates how good the living conditions are at a given point. There-
fore, it is natural for a Green Islander to try to get closer to the Center. To do
this effectively, one has to get to a different archipelago. To get from archipelago
A to a different one that is as close to the Center as possible, one should do the
following. First, try to get as close to the Center as possible using only green arrows
and balloons. Such a trip terminates at a black point that we will denote by c(A).
It is the end of the green arrow starting at the closest to the Center point of the
closest to the Center island of A. Then use a black arrow. If its end f(c(A)) is a
black point, use a balloon to get to the nearest island. Such a trip ends at some
archipelago η(A) on the other side of the Center. On Green Islands this type of trip
is commonly referred to as an interarchipelagian jump, or an i.a. jump for short.

It may also happen that there is no η(A). A balloon taken at f(c(A)) will drift
beyond the Black Sea and its despairing passengers will not see any island. We
will show that this can happen only if there is no island at all on that side of the
Center.
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For archipelagos we will use the same notation as for points of P . Namely,
A >a B will mean that A is on the same side of the Center as B, but farther from
the Center.

Lemma 5.3. (1) If for some archipelago A there is no η(A), then all islands lie at
one side of the Center and they form one archipelago.

(2) For every archipelago A we have A >a η
2(A), unless there is no B such that

A >a B.

Proof. Assume that for some archipelago A there is no η(A). This means that every
point y such that y ≥a f(c(A)) is black. By Lemma 5.2, when returning to the
side of the Center where the trip started, one cannot get closer to the Center than
c(A). Since P is green, this means that the set of points t ∈ P , such that either
t ≥a c(A) or t ≥a f(c(A)), is invariant. Therefore, the points c(A) and f(c(A)) are
the closest to the Center points of P from both sides. Thus, all points of P on the
same side of the Center as f(c(A)) are black.

In such a case, by Lemma 5.2, a trip between islands which includes black arrows
can be also done without using them, i.e., only by green arrows and balloons.
However, since P is a cycle, one can get from every point of P to any other point
of P using only green and black arrows. Therefore, one can get from every island
to every other one with green arrows and balloons. This means that there is only
one archipelago, so the proof of (1) is complete.

To prove (2), assume that there is an archipelago B such that A >a B. By (1),
in such a case η is defined at every archipelago. Suppose η2(A) ≥a A. Let d1 be
closer to the Center of the points c(η(A)) and f(c(A)). Similarly, let d0 be closer
to the Center of the points c(A) and f(c(η(A))). If d1 = c(η(A)), then it is black
(remember that c(C) is black for every archipelago C). If d1 = f(c(A)), then it
cannot be green, since, in such a case, we would have c(η(A)) <a f(c(A)), contrary
to the definition of d1. Thus, d1 is always black. In a similar way one can check
that d0 is black (the assumption η2(A) ≥a A has to be used here).

If d1 = c(η(A)), then f(d1) ≥a d0 by the definition of d0 and the assumption
η2(A) ≥a A. If d1 = f(c(A)), then we get the same conclusion by Lemma 5.2.
Thus, in both cases f(d1) ≥a d0. Similarly, f(d0) ≥a d1. In other words, if starting
at d0, d1, or farther from the Center, one cannot get closer to the Center than those
points when using black arrows. By the definitions of d0 and d1, green arrows and
balloons also will not help. This is a contradiction since d0 is not the closest to the
Center point of P from its side.

The costs of travel are designed to create incentives to move to less desirable
places. Namely, the cost of getting from x to y is L(y) − L(x). Thus, one has to
pay for getting closer to the Center, but one earns money by moving farther from
the Center. Round trips are free. Now we will be estimating (from above) costs of
various trips. Note that the cost of a balloon trip is always negative, while each
trip by one arrow costs at most M (and at least −M). For Lor it costs ρ to take a
green arrow and ρ− 1/2 to take a black arrow.

Lemma 5.4. (1) Any trip that begins and ends on the same island costs less than
2M . For Lor it costs less than 1− 2ρ.

(2) Any trip that begins and ends in the same archipelago consisting of m islands
costs less than (3m− 1)M . For Lor it costs less than m(1− ρ)− ρ.
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(3) One can travel from any archipelago A to η(A) (if η(A) exists) for 2M or
less. For Lor one can do it for 2ρ− 1/2 or less.

Proof. (1) Let x be the point farthest from the Center point of an island I. The
Center is surrounded by sea, so we can take the point y closest to x among black
points t <a x. The set of points of P between x and f(y) (excluding x but including
f(y)) is not invariant, so there is a point z ≤a f(y) such that f(z) ≥a x. Thus,
L(f(y)) ≤ L(z) and L(f(z)) ≤ L(x), so

L(y)− L(x) = [L(f(y))− ψ(y)]− L(x) + [L(f(z))− L(z)− ψ(z)]

≤ −ψ(y)− ψ(z) ≤ 2M.

For any points b, e ∈ I we have x ≥a b and e >a y, so L(e)−L(b) < L(y)−L(x) ≤
2M . This proves (1) in the general case. For Lor we have ψor(y) = ψor(z) = ρ−1/2,
so the estimate is 1− 2ρ.

(2) One can get from one island to the next island closer to the Center island of
the same archipelago by one green arrow and then perhaps a balloon. This costs
at most M . The most expensive trip within one archipelago that has m islands
consists of m− 1 such interisland legs and m trips within islands, so by (1) its cost
is less than 2mM + (m− 1)M = (3m− 1)M . This proves (2) in the general case.
For Lor we replace 2mM by m(1 − 2ρ) and (m − 1)M by (m − 1)ρ = mρ − ρ, so
the estimate is m(1− ρ)− ρ.

(3) The method of getting from an archipelago A to η(A), described earlier, con-
sists of using one green arrow, one black arrow, and perhaps a balloon. Therefore,
its cost is at most 2M . This proves (3) in the general case. For Lor the estimate is
ρ+ (ρ− 1/2) = 2ρ− 1/2 (note that this number, and therefore the cost of the trip
in question, may be negative).

Lemma 5.5. Assume that x ∈ P is a black point.
(1) There is a green point y such that the cost of a trip from x to y is M or less.

For Lor this cost is negative (and ρ− 1/2 or less if x and y lie on opposite sides of
the Center).

(2) There is a green point z such that the cost of a trip from z to x is 2M or
less. For Lor this cost is ρ or less (and 2ρ− 1/2 or less if x and z lie on opposite
sides of the Center).

Proof. Suppose there is no green point y such that either y >a x or y ≥a f(x). Then
f(x) is black, so f2(x) lies on the same side of the Center as x. By Lemma 5.2,
f2(x) >a x, so the set of those t ∈ P for which either t >a x or t ≥a f(x) is
invariant, a contradiction. Therefore, such a green point y has to exist. One can
travel from x to y by taking at most one black arrow and perhaps a balloon. The
cost of such a trip is at most M . This proves (1) in the general case. For Lor it
costs ρ− 1/2 < 0 to take a black arrow, so the total cost is negative. If x and y lie
on opposite sides of the Center, then we have to take a black arrow, so the cost is
ρ− 1/2 or less.

Assume that t ∈ P and f(t) is one of the two points of P closest to the Center.
If t and f(t) lie on the same side of the Center, then t is green. If they lie on
opposite sides of the Center, then t is black, and since P is green, t is the closest to
the Center point from its side. In such a case we repeat the above argument with
f(t) replaced by t, and since the period of P is larger than 2, we see that t is the
image of a green point. Thus, any point of P closest to the Center from its side can
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be reached from a green point by taking a green arrow and perhaps a black one.
By completing our trip by balloon we can reach each point of P from a green point
paying at most 2M . This proves (2) in the general case. For Lor the maximal cost
of such a trip is the cost of taking a green arrow (note that it costs ρ− 1/2 < 0 to
take a black arrow), which is ρ. If x and z lie on opposite sides of the Center, then
we have to take a black arrow, so the cost is 2ρ− 1/2 or less.

Proof of Theorem 5.1. We have to prove that any trip within the Green Islands
and the Black Sea costs less than (2n+ 5)M . Note that the cost of a trip depends
only on the origin and destination points, so we can arrange the itinerary in the
way that makes the estimates simple.

Suppose that the trip begins and ends at green points b and e, respectively. We
can arrange it in such a way that we can divide it into parts involving travel within
one archipelago and i.a. jumps. If we get to x <a e, then we take a balloon from
x to e. With such an itinerary we visit each archipelago at most once. Hence, if
we visit k islands and l archipelagos, the cost is at most the sum of maximal costs
of travel within each archipelago visited plus l− 1 times the cost of i.a. jumps. By
Lemma 5.4 (2), the first part of this sum is less than (3k−l)M , and by Lemma 5.4 (3)
the second part of this sum does not exceed 2(l− 1)M . Hence, the total cost is less
than (3k + l − 2)M . Each archipelago contains at least one island, so l ≤ k. Thus
(3k + l − 2)M ≤ (4k − 2)M . As we noticed after the statement of the theorem,
k ≤ n/2 + 1. Therefore, the cost of any trip beginning and ending at green points
is less than (2n+ 2)M .

For Lor the first part of the sum is less than k(1 − ρ) − lρ and the second part
does not exceed (l − 1)(2ρ− 1/2) (this may be negative, but we may include it in
our estimate since we count only i.a. jumps actually made). Thus, the total cost is
less than k(1− ρ)− l(1/2− ρ)− 2ρ+ 1/2. We visit at least one archipelago, so this
cost is less than k(1−ρ)− (1/2−ρ)−2ρ+1/2 = k(1−ρ)−ρ ≤ (n/2+1)(1−ρ)−ρ.

By Lemma 5.5, to estimate the cost of any trip within the Green Islands and
the Black Sea, we have to add 3M to the above estimate. This completes the proof
in the general case. For Lor we add ρ to the estimate we got in this case, and we
obtain (n/2 + 1)(1− ρ).

Remark 5.6. For Lor, suppose that the origin and destination points lie on opposite
sides of the Center. If during the standard trip described in the proof of Theorem 5.1
we visit islands on both sides of the Center, then l ≥ 2, so the estimate becomes
k(1 − ρ) − 2(1/2 − ρ) − 2ρ + 1/2 = k(1 − ρ) − 1/2 ≤ (n/2 + 1)(1 − ρ) − 1/2.
Otherwise, we have to go to the other side of the Center at the beginning or
at the end of the trip, so when applying Lemma 5.5, we use one of the esti-
mates in parentheses. Thus, in the last step of the proof, instead of adding ρ,
we add 2ρ − 1/2. This gives the final estimate (n/2 + 1)(1 − ρ) + ρ − 1/2. Since
(n/2 + 1)(1− ρ) + ρ− 1/2 > (n/2 + 1)(1− ρ)− 1/2, we see that in any case when
the origin and destination points lie on opposite sides of the Center, the cost of the
trip is less than (n/2 + 1)(1− ρ) + ρ− 1/2.

If we want to get estimates for the code L′or, we can use Theorem 5.1 and the
fact that ϕ′or = ϕor + ζ − ζ ◦ f , where ζ is 1/2 to the right of a and 0 to the left of
a.
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Proposition 5.7. Let P be an over-twist cycle of over-rotation number ρ. Then

L′or(y)− L′or(x) < (n/2 + 1)(1− ρ) + ρ

for every x, y ∈ P .

Proof. We have ψ′or = ψor−ζ+ζ ◦f , so L′or(f(x))−L′or(x) = Lor(f(x))−Lor(x)+
ζ(f(x)) − ζ(x) for x ∈ P . By the “telescopic rule” we get L′or(y) − L′or(x) =
Lor(y) − Lor(x) + ζ(y) − ζ(x) for x, y ∈ P . If x and y lie on the same side of
a, then ζ(y) = ζ(x), so by Theorem 5.1 L′or(y) − L′or(x) < (n/2 + 1)(1 − ρ) ≤
(n/2+1)(1−ρ)+ρ. If they lie on opposite sides of a, then ζ(y)− ζ(x) ≤ 1/2, so by
Remark 5.6 L′or(y)−L′or(x) < (n/2+1)(1−ρ)+ρ−1/2+1/2 = (n/2+1)(1−ρ)+ρ.

Let us now investigate another special case—of rotation numbers. As noted in
Section 2, we may assume that the rotation number ρ of a twist cycle P is less than
1/2. Then we use the function ϕr that is 0 to the left of a and 1 to the right of a.
Instead of ψ we use ψr = ρ− ϕr, where ρ is the rotation number of P . We denote
the corresponding code by Lr.

Proposition 5.8. Let P be a twist cycle of rotation number ρ. Then

Lr(y)− Lr(x) < (n/2 + 1/2)(1− ρ) + ρ

for every x, y ∈ P .

Proof. By Lemma 2.2, all islands are to the left of the Center. Then ϕr = ϕ′or, so
ψr = ψ′or, and consequently Lr = L′or. It remains to notice that since the period of
P is larger than 2, the left-most point of P is green. Thus, in this case the number
of islands is (n + 1)/2. Hence, the estimate is the same as in Proposition 5.7,
except that n/2 + 1 (the estimate for the number of islands) can be replaced by
n/2 + 1/2.

Let us now turn to the investigation of conjugacies between over-twist cycles
and cycles of circle rotations. Let P be an over-twist cycle of rotation number p/q
with p and q coprime, and let f be a P -monotone map. We want to conjugate P
with a cycle of the circle rotation by the angle 2πp/q. If we cut this circle at one
point, and rescale the interval obtained in such a way to [0, 1) (this is the usual
procedure), we get the map g : [0, 1) → [0, 1) given by g(x) = x+p/q (mod. 1). Let
Q be the orbit of 0 for this map. Then both P and Q are cycles of period q, so we
can define a conjugacy Ψ between them in a natural way. We use the code L′or for
P , and we normalize it by setting L′or(b) = 0 at the point b ∈ P with the minimal
code. Then we set Ψ(b) = 0 and extend it to the rest of P by Ψ(f(x)) = g(Ψ(x)).
Note that if Ψ(x) = L′or(x) (mod 1) for some x ∈ P , then

L′or(f(x)) ≡ L′or(x) + p/q ≡ Ψ(x) + p/q ≡ g(Ψ(x)) ≡ Ψ(f(x)) (mod 1).

Moreover, L′or(b) = 0 = Ψ(b). By induction we get Ψ(z) = L′or(z) (mod 1) for
every z ∈ P . This is, perhaps, an explanation of why the role of the code is so
important in the investigation of over-twist numbers of cycles of interval maps.

Theorem 5.9. The conjugacy Ψ between the cycles P and Q defined above is piece-
wise monotone with at most n + 3 pieces, where n is the modality of P . It is in-
creasing on the pieces to the left of a and decreasing on the pieces to the right of
a.
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Proof. By the monotonicity of the code, Ψ is monotone (increasing to the left of a
and decreasing to the right of a) on each block of points of P on which the integer
part of L′or is constant. Now we use Proposition 5.7. On each side of a we get at
most m blocks on which the integer part of L′or is constant, where m is the smallest
integer larger than or equal to (n/2 + 1)(1 − ρ) + ρ = n/2(1 − ρ) + 1 < n/2 + 1.
We have m ≤ (n + 3)/2, so overall there are at most n+ 3 pieces of monotonicity
of Ψ.

Remark 5.10. We can get a better estimate in Theorem 5.9 if we take the rotation
number ρ of P into account. Note that if ρ is not too small, then the number of
pieces of monotonicity of the conjugacy is smaller than the number of pieces of
monotonicity of a P -monotone map.

References
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