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Abstract. We propose a new classification of periodic orbits of interval maps via over-rotation
pairs. We prove for them a theorem similar to the Sharkovskĭı Theorem.

1. Introduction

In the theory of discrete dynamical systems, periodic orbits (called also cycles) play
a very important role. The problem of coexistence of various types of cycles for a given
map admits particularly nice answers in dimension one. However, one has to decide what
to understand by a “type” of a cycle. For interval maps, two choices have been widely
adopted. One is to look only at the period of a cycle. Then the results are very strong.
For instance, the following Sharkovskĭı Theorem holds. To state it let us first introduce the
Sharkovskĭı ordering for the set N of positive integers:

3 � 5 � 7 � · · · � 2 · 3 � 2 · 5 � 2 · 7 � . . . 22 · 3 � 22 · 5 � 22 · 7 � · · · � 8 � 4 � 2 � 1

Denote by Sh(k) the set of all positive integers m such that k � m, together with k, and
by Sh(2∞) the set {1, 2, 4, 8, . . . }. Denote also by Per(f) the set of periods of cycles of a
map f (by a period we mean the least period).

Theorem 1.1 ([S]). If f : [0, 1] → [0, 1] is a continuous map, m � n and m ∈ Per(f), then
n ∈ Per(f). Therefore there exists k ∈ N ∪ {2∞} such that Per(f) = Sh(k). Conversely, if
k ∈ N∪{2∞} then there exists a continuous map f : [0, 1] → [0, 1] such that Per(f) = Sh(k).

Unfortunately, the classification of cycles by period only is very coarse. Another choice
has quite opposite features. If we look at the permutations determined by the cycles then
the classification is very fine, but the results are much weaker than for periods (see e.g.
[ALM]).
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Recently the third possible choice has been discovered ([B1]-[B3], see also [BK]). It gives
better classification than just by periods, and on the other hand, it admits a full description
of possible sets of types. Namely, one defines the rotation pair of a cycle as (p, q), where
q is the period of the cycle and p is the number of its elements which are mapped to the
left of themselves (for cycles of period 1 one can take p = 1/2, but it is better to exclude
them from our considerations). Let us denote the rotation pair of a cycle P by rp(P ) and
the set of the rotation pairs of all cycles of a map f by RP(f). The number p/q is called
the rotation number of the cycle P .

We introduce the following partial ordering among all pairs of integers (p, q) with 0 <
p < q. We will write (p, q) m (r, s) if either 1/2 ≤ r/s < p/q, or p/q < r/s ≤ 1/2, or
p/q = r/s = m/n with m and n coprime and p/m � r/m (notice that p/m, r/m ∈ N).

Theorem 1.2 ([B1]). If f : [0, 1] → [0, 1] is continuous, (p, q) m (r, s) and (p, q) ∈ RP(f)
then (r, s) ∈ RP(f).

This theorem makes it possible to give a full description of the sets of rotation pairs for
continuous interval maps (as in Theorem 1.1, all theoretically possible sets really occur),
see [B1]. This description is similar to the one for circle maps of degree one (see [M1]).

The aim of this paper is to introduce another notion of rotation pairs. Since the name
rotation pairs is already reserved, we will call them over-rotation pairs (similarly to the
rotation pairs they generate over-rotation numbers). Compared to rotation pairs, we gain
in simplicity of both results and proofs. Moreover, the information we get from rotation
and over-rotation pairs is in a general situation different.

In Section 2 we present a definition of over-rotation pairs and discuss this notion from
various points of view. In Section 3 we prove the theorem on classification of possible sets
of over-rotation pairs. In Section 4 we compare briefly rotation and over-rotation numbers.

2. Definition; three points of view

Let f : I → I be a continuous map and let P be a cycle (a periodic orbit) of f of
period q > 1. Let m be the number of points x ∈ P such f(x) − x and f2(x) − f(x) have
different signs. Then the pair (m/2, q) will be called the over-rotation pair of P and will be
denoted by orp(P ) and the number m/(2q) will be called the over-rotation number of the
cycle P . The set of the over-rotation pairs of all cycles of f will be denoted by ORP(f).
Notice that the number m above is even, positive, and does not exceed q/2. Therefore in
an over-rotation pair (p, q) both p and q are integers and 0 < p/q ≤ 1/2.

2.1. First point of view: two dimensions.
We can think of the map f as an action being performed in two dimensions. The interval

is being bent (perhaps in many places), stretched or contracted (differently in different
places) and put back into itself. This point of view is widely adopted in the study of
homeomorphisms of two-dimensional spaces, whether we look at a horseshoe ([H]), Hénon
map ([BC]), or the inverse limit of an interval map ([Ba]). The first number in the over-
rotation pair shows how many times f(x) goes around x as we move along the orbit (how
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much the orbit is “twisted”). One can visualize this by imagining a point and its image
connected by a piece of elastic string.

In a special case of a map with one fixed point, this picture can be replaced by a point
connected by a string to the fixed point. Therefore in this case we count how many times
the orbit of our periodic point goes around the fixed point.

In this model one point moves over (and under) another. This motivates our name
(over-rotation) for the pair.

2.2. Second point of view: rotation theory.
In most of branches of mathematics one of the central problems is how to classify ob-

jects that are studied in that branch. Usually classifications make use of invariants, that is
characteristics of objects that are the same for isomorphic objects. In the theory of topo-
logical dynamical systems the role of an isomorphism is played by a topological conjugacy,
so we have to look for invariants of topological conjugacy (for interval maps we can require
additionally that the conjugacy has to preserve orientation).

A good example of an invariant is the rotation set for a circle map of degree one. This
notion admits far reaching generalizations (see e.g. [Z]). Namely, if X is a compact space,
f ∈ C(X, X) (a continuous map from X to X), ϕ ∈ B(X,R) (a Borel real function on X),
then we can look at the ergodic averages of ϕ. If they converge at a point x then we call
the limit the rotation number of x. The set of all rotation numbers for a given map f is the
rotation set of f . If ϕ depends on f in such a way that for conjugate systems the function
ϕ is also transported by the same conjugacy, then the rotation set is an invariant.

Some variation of this approach is to look only at the periodic points. For these points
rotation numbers always exist. In such a way we arrive at the following ideas.

Let I be a closed interval and let Φ : C(I, I) → B(I,R) be an operator. If Φ(f)(x) =
Φ(g)(y) for all points x and y such that f restricted to the orbit of x is conjugate via an
orientation preserving homeomorphism to g restricted to the orbit of y, then we call Φ
combinatorially defined. In other words, Φ is combinatorially defined if Φ(f)(x) depends
only on the combinatorics of the f -orbit of x: for every f, g ∈ C(I, I) and x, y ∈ I, if the
sign of fm(x) − fk(x) is the same as the sign of gm(y) − gk(y) for every m, k ≥ 0 then
Φ(f)(x) = Φ(g)(y). If we fix n and replace in the above definition m, k ≥ 0 by m, k ∈ [0, n],
we get Φ n-combinatorially defined. If it is n-combinatorially defined for some n, we call it
finitely combinatorially defined.

Now, if x is a periodic point of f of period n, then ρf,Φ(x) =
1
n

∑n−1
i=0 Φ(f)(f ix) is

the Φ-rotation number of x, and (
∑n−1

i=0 Φ(f)(f ix), n) is the Φ-rotation pair of x. If Φ is
combinatorially defined then the sets of all Φ-rotation numbers and of all Φ-rotation pairs
of periodic points of a map are invariant with respect to orientation preserving conjugacies.

Clearly there is a lot of combinatorially defined operators. We are interested mainly in
those for which the sets of all rotation numbers and of all rotation pairs are relatively easy
to compute. There is a situation when such computation seems to be both easy and natural.
Namely, if the function ϕ = Φ(f) is integer-valued (or cohomologous to an integer-valued
function ψ, i.e. ϕ = ψ+ξ−ξ◦f for a bounded function ξ), then both components p and q of
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the Φ-rotation pair (p, q) of a periodic point x are integers and the Φ-rotation number p/q of
x is rational. The property which simplifies the computation of the set of Φ-rotation pairs is
the following “completeness” property: if p/q < r/s < k/m and f has periodic points with
Φ-rotation numbers p/q and k/m then it has also a periodic point with Φ-rotation number
r/s and period s (that is, with Φ-rotation pair (r, s)). Clearly “completeness” implies that
the closure of the set of all Φ-rotation numbers of periodic points is connected. Thus, it
is important to find combinatorially defined operators that produce sets of rotation pairs
with this completeness property.

Rotation numbers mentioned in Section 1 are produced by such operator. It is defined
by setting Φr(f)(x) equal to 0 if f(x) > x, to 1/2 if f(x) = x, and to 1 if f(x) < x. It is
1-combinatorially defined. The operator that produces over-rotation numbers is given by
Φor(f)(x) equal to 1/2 if (f2(x)−f(x))(f(x)−x) ≤ 0 and 0 otherwise. It is 2-combinatorially
defined. In the case when f has a unique fixed point a, the function Φor(f) is cohomologous
to the function ψ such that ψ(x) is 1 if x > a and f(x) < a, 1/2 if x ≥ a and f(x) = a, and
0 otherwise (take ξ(x) equal to 1/2 if x ≥ a and 0 otherwise).

Hence, proving completeness of the sets of over-rotation pairs is a step in the realization
of our program of looking for useful combinatorially defined operators.

2.3. Third point of view: forcing.

According to the general scheme (see e.g. [M2]), we consider the set of all cycles of f ∈
C(I, I) with various equivalence relations. We get various equivalence classes, determined
for instance by period, rotation pair, over-rotation pair, or the cyclic permutation when the
points of a cycle are numbered from left to right (in this case we will speak of a pattern of a
cycle; it is called a cycle in [MN] and an oriented pattern in [ALM]). For each relation, we
say that an equivalence class A forces an equivalence class B if every continuous interval
map with a representative of A (that is, a cycle belonging to A) has a representative of
B. In such a way we get forcing among periods, rotation pairs, over-rotation pairs, and
patterns. Then the question of coexistence of various types of cycles can be addressed via
investigation of those forcing relations.

Forcing among periods gives us the Sharkovskĭı ordering. This ordering is linear, so the
situation is fairly simple. However, the equivalence classes are very large. For patterns, the
equivalence classes are decently small, but forcing gives only a partial ordering, difficult to
investigate. For rotation and over-rotation pairs the equivalence classes are not as large as
for periods. Forcing is given for them by the relation m (this is proved for rotation pairs
in [B1]; for over-rotation pairs we prove it in this paper). The difference is that whereas
for the rotation pairs forcing is only a partial ordering, for the over-rotation pairs it is a
linear one. Thus, using over-rotation pairs we get a situation that is basically not more
complicated than the situation for periods, but we dig much deeper into the structure of
cycles.

Clearly, cycles with the same pattern have the same over-rotation pairs. Therefore we
can speak of over-rotation pairs and over-rotation numbers of patterns.
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3. Classification theorem for sets of over-rotation pairs

We want to state our main theorem in a form similar to Theorem 1.1. For this we need
notation similar to Sh(n). Let M be the set consisting of 0, 1/2, all irrational numbers
between 0 and 1/2, and all pairs (α, n), where α is a rational number from (0, 1/2] and
n ∈ N∪{2∞}. Then for η ∈M the set Ovr(η) is equal to the following. If η is an irrational
number, 0, or 1/2, then Ovr(η) is the set of all over-rotation pairs (p, q) with η < p/q ≤ 1/2.
If η = (r/s, n) with r,s coprime, then Ovr(η) is the union of the set of all over-rotation pairs
(p, q) with r/s < p/q ≤ 1/2 and the set of all over-rotation pairs (mr,ms) with m ∈ Sh(n).
Notice that in the latter case, if n 6= 2∞, then Ovr(η) is equal to the set of all over-rotation
pairs (p, q) with (nr, ns) m (p, q), plus (nr, ns) itself. Notice also that Ovr(1/2) is the empty
set (this is necessary since we excluded the fixed points).

Theorem 3.1. If f : [0, 1] → [0, 1] is a continuous map, (p, q) m (r, s) and (p, q) ∈
ORP(f) then (r, s) ∈ ORP(f). Therefore there exists η ∈ M such that ORP(f) = Ovr(η).
Conversely, if η ∈ M then there exists a continuous map f : [0, 1] → [0, 1] such that
ORP(f) = Ovr(η).

We devote the rest of this section to the proof of this theorem.
Recall that if (p, q) is an over-rotation pair then we have 0 < p/q ≤ 1/2. Therefore the

ordering m on the set of all over-rotation pairs is a linear ordering and the sets Ovr(a) are
exactly the sets that with each pair (p, q) contain all pairs (r, s) such that (p, q) m (r, s).
Hence “therefore” in the statement of the theorem is justified.

We divide the proof of Theorem 3.1 into 6 steps.

(1) If f has a cycle with points x < y such that f(x) < x and f(y) > y then ORP(f) =
Ovr(0).

(2) If f has a cycle with over-rotation number α and β ∈ [α, 1/2] is rational then f has
a cycle with over-rotation number β.

(3) If p, q are coprime and f has a cycle with over-rotation number p/q then f has a
cycle with over-rotation pair (p, q).

(4) If f has a cycle with over-rotation number α and α < r/s ≤ 1/2 then f has a cycle
with over-rotation pair (r, s).

(5) If p, q are coprime, n � m, and f has a cycle with over-rotation pair (np, nq) then
it has a cycle with over-rotation pair (mp,mq).

(6) For every η ∈M there is f ∈ C(I, I) with ORP(f) = Ovr(η).

We shall call a cycle (and the pattern it represents) divergent if it has points x < y such
that f(x) < x and f(y) > y (as in (1)). A cycle (pattern) that is not divergent will be of
course called convergent .

We shall use in the proofs the standard technique of loops of intervals. An interval J
f -covers an interval K (we write then J → K) if K ⊂ f(J). If we have a loop of intervals
J0 → J1 → · · · → Jn−1 → J0 then there is a periodic point x such that f i(x) ∈ Ji for
i = 0, 1, . . . , n− 1 and fn(x) = x. We will say that the orbit of x is associated to the loop.
Any piece Ji → · · · → Jj (or Jj → · · · → J0 → · · · → Ji) of the loop will be called a block.
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Lemma 3.2. If f has a divergent cycle then ORP(f) = Ovr(0).

Proof. It is proved in [LMPY] (the proof of Lemma 3.1; see also [B1]) that if a cycle P
is divergent then there are points x < y < z of P such that f(x) < x, f(y) ≥ z and
f(z) ≤ x. Then there are fixed points a, b of f such that x < a < y < b < z and
f(t) > t for every t ∈ (a, b). Moreover, there is a point c ∈ (a, y) such that f(c) = b.
Set J = [a, c], K1 = [c, y], K2 = [y, b], and L = [b, z]. Then the interval J f -covers
J,K1,K2, the interval K1 f -covers L, the interval K2 f -covers L, and the interval L f -
covers J,K1,K2. For an over-rotation pair (p, q) we take the periodic orbit Q associated to
the loop J → J → · · · → J → K1 → L → K2 → L → K2 → L → · · · → K2 → L → J
with q − 2p J ’s followed by a block K1 → L and p − 1 blocks K2 → L. This loop passes
only once through K1. The only points of K1 that belong to other intervals of the loop are
c and y, and they clearly do not belong to Q. Therefore the period of Q is equal to the
length of the loop, that is q. The points of Q that are mapped to the right and then to the
left or vice versa are obtained by starting the loop at K1, K2 and L. There are 2p of them,
so the over-rotation pair of Q is (p, q), as desired. Hence, f has cycles with all possible
over-rotation pairs.

Remark 3.3. Notice that in the proof above we did not really use the fact that the
points x, y, z belong to the same periodic orbit. The same proof works for instance if
x < y < z, f(x) = f(z) = x and f(y) = z (that is, f has a 2-horseshoe see e.g. [MN]). In
particular, for the tent map f (given by f(x) = 1− |2x− 1|) we get ORP(f) = Ovr(0). �

The properties (2)-(5) are really about forcing of patterns. To check whether pattern A
forces pattern B it is enough to consider a P -linear map f (linear between points of P and
constant to the left and to the right of the smallest interval containing P ), where P has
pattern A. If A is divergent then by Lemma 3.2 properties (2)-(5) hold. Therefore we may
assume that A is convergent. In such a case f has a unique fixed point. Thus, when proving
(2)-(5) we may assume that f ∈ U , where U is the family of all maps from C(I, I) having a
unique fixed point (we will always denote this fixed point by a). On the other hand, every
cycle of f ∈ U is convergent, so once we assume that f ∈ U , we do not have to assume that
P is convergent.

As we already noticed (at the end of Subsection 2.2), if f ∈ U then the first element in
the rotation pair of a cycle Q is the number of points x ∈ Q such that f(x) < a < x.

If f ∈ U then we will use loops made of intervals of a special type. We will call an
interval with one of the endpoints equal to a admissible (since one of the endpoints of
the word “admissible” is “a”). A loop consisting of admissible intervals will be also called
admissible. Clearly, loops can be concatenated, provided they have a common interval. We
will say that a loop has over-rotation pair (p, q) if it has length q and there are p blocks
J → K with J to the right of a and K to the left of a. The ratio p/q will be called the
over-rotation number of the loop.

Lemma 3.4. Let f ∈ U . Then for every admissible loop there is a cycle of length at least
2 with the same over-rotation number as the loop.
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Proof. It is proved in [B1] that either there is a cycle P of period at least 2 associated to
the loop or the intervals in the loop lie alternately to the left and to the right of a and then
f has a cycle Q of period 2. In the first case the over-rotation numbers of the loop and the
cycle P coincide. In the second case they are both 1/2, so they also coincide.

Let f ∈ U and let P be a cycle of period n ≥ 2 of f . If we denote by Jz the interval
with endpoints a and z then for x ∈ P , Jx → Jf(x) → · · · → Jfn−1(x) → Jx is an admissible
loop. We will call it the fundamental admissible loop of P .

Notice that to determine the over-rotation number of a loop we look only at the blocks of
length 2 in the loop (one can think about them as the arrows in the loop). Therefore if we
concatenate loops of over-rotation pairs (p, q) and (r, s) then we get a loop of over-rotation
pair (p + r, q + s).

Lemma 3.5. If f ∈ U has a cycle with over-rotation number α and β ∈ [α, 1/2] is rational
then f has a cycle with over-rotation number β.

Prof. Let P be a cycle of f ∈ U with over-rotation number α and let β ∈ [α, 1/2] be
rational. Denote the period of P by n. Then there are non-negative integers r, s such that
(rnα + s)/(rn + 2s) = β. Let x and y be the points of P closest to a from the left and
right respectively. Since x is mapped to the right and y to the left, Jx → Jy → Jx is an
admissible loop. The concatenation of s copies of this loop with r copies of the fundamental
admissible loop of P (it exists since Jx appears in both loops) is a loop of over-rotation
number β. By Lemma 3.4 f has a cycle of over-rotation number β.

Lemma 3.6. Let p, q be coprime. If f ∈ U has a cycle with over-rotation number p/q, then
f has a cycle with over-rotation pair (p, q).

Proof. Let f ∈ U and let P be a cycle of the smallest period among the cycles of f with
over-rotation number p/q. The over-rotation pair of P is (mp,mq) for some m ≥ 1. Suppose
that m > 1.

Consider the fundamental loop of P . This time we compute the first element of the
over-rotation pair adding 1/2 for every arrow that starts and ends on opposite sides of a.
Look at such sums for q consecutive arrows of the loop. If we move with our block by one
arrow along the loop then this sum can change at most by 1/2. Since the average sum over
such blocks is p, this means that there is a block over which that sum is exactly p. This
block starts with some interval Jx and ends with Jy. When we compute the sum over the
block, we add 1/2 each time we move across a. Since this sum is an integer, x and y must lie
on the same side of a. Therefore either Jx ⊂ Jy or Jy ⊂ Jx. Hence, either our block forms
a loop of over-rotation pair (p, q) or its complement to the fundamental loop of P forms a
loop of over-rotation pair ((m− 1)p, (m− 1)q). This contradicts minimality of period of P .
Thus, m = 1, so the over-rotation pair of P is (p, q).

We say that a cycle P of period n > 1 is a reduction of a cycle Q of period kn with k > 1
(cf. [MN]) if for the Q-linear map f there are pairwise disjoint intervals K1,K2, . . . ,Kn such
that f(Ki) ⊂ Ki+1 for i < n, f(Kn) ⊂ K1 and P ∪Q ⊂

⋃n
i=1 Ki. Notice that since Ki are
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pairwise disjoint and P has period n, there is one element of P and k elements of Q in each
Ki. The direction in which the points of Q are mapped is the same as for the corresponding
points of P . Therefore if P has over-rotation pair (p, n) then Q has over-rotation pair
(kp, kn). Hence the over-rotation numbers of P and Q are equal.

We will call a cycle that has no reduction irreducible. Clearly, irreducibility of a cycle
depends only on its pattern, so we can speak of irreducible patterns.

A cycle has a division (see [LMPY]) if either it has period 2 or it has a reduction of
period 2. Otherwise a cycle has no division. The same terminology is used for patterns.
The points along a cycle with a division are mapped alternately to the left and right (as in
the proof of Lemma 3.2). Clearly, a pattern with a division has over-rotation number 1/2.

Lemma 3.7. If f ∈ U has a cycle P with over-rotation number α and α < r/s ≤ 1/2 then
f has a cycle with over-rotation pair (r, s). The same is true if α = r/s ≤ 1/2 and P is
irreducible, unless the over-rotation pair of P is (p, q) with p, q coprime.

Proof. Let P be a cycle of f ∈ U of over-rotation number α and pattern A, and let α ≤ r/s.
Assume first that r/s < 1/2. By Lemmas 3.5 and 3.6 (and since for the P -linear map

all cycles of this map represent patterns forced by A, see e.g. [ALM]) A forces a pattern
B with over-rotation pair (p, q), where p/q = r/s and p, q are coprime. If α < p/q, B is
not a reduction of A and B 6= A. This is also true if P (and therefore A) is irreducible
and the over-rotation pair of P is not (p, q). Since p, q are coprime, B is irreducible. Since
p/q < 1/2, the period of B is larger than 2. Hence the assumptions of Theorem 9.12 of
[MN] are satisfied. By this theorem, for every n the pattern A forces a pattern C of period
nq such that B is a reduction of C. For n = s/q the pattern C has over-rotation pair (r, s).
Hence, there is a representative of C in f and it has over-rotation pair (r, s).

Assume now that r/s = 1/2. Then s = 2r, so s is even. If α < 1/2 then P has no
division. If α = 1/2, P is irreducible and its rotation pair is not (1, 2) then also P has no
division. Theorem 2.3 of [LMPY] yields that if f has a periodic orbit with no division then
it has a periodic point of period odd and larger than 1. Hence, f has a cycle of an odd
period k > 1. Since k � s, f has a cycle of period s. In particular, f has a cycle Q of
period s and of pattern that does not force any pattern of period odd and larger than 1.
Then, again by the same theorem of [LMPY], Q has a division. Therefore the over-rotation
number of Q is 1/2, so the rotation pair of Q is (r, s).

Lemma 3.8. Let p, q be coprime, let n � m, and let f ∈ U have a cycle with over-rotation
pair (np, nq). Then f has a cycle with over-rotation pair (mp,mq).

Proof. Let P be a cycle of f of over-rotation number (np, nq) and pattern A. We may
assume that m 6= n, so in particular n > 1. We may also assume that f is P -linear. If P is
irreducible then by Lemma 3.7 f has a cycle of over-rotation pair (mp,mq).

Assume that P is reducible. Then P has an irreducible reduction Q. The over-rotation
pair of Q is (kp, kq) for some k. If k > 1 then again by Lemma 3.7 f has a cycle of
over-rotation pair (mp,mq).

Assume that k = 1. Then look at fq restricted to the interval K1 from the definition
of reduction. This interval is fq-invariant and fq|K1 has a cycle P ∩ K1 of period n. By
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Theorem 1.1 it has a cycle of period m. Then the f -orbit of any point of this cycle is a
cycle of f of over-rotation pair (mp,mq).

Now we are ready to prove the first part of Theorem 3.1. As we noticed, because of
Lemma 3.2 we may assume that f ∈ U . Suppose that (p, q) m (r, s) and (p, q) ∈ ORP(f).
If p/q < r/s then f has a cycle of rotation pair (r, s) by Lemma 3.7. If p/q = r/s, we get
the same conclusion by Lemma 3.8.

To prove the second part of Theorem 3.1, we use the family of truncated tent maps, as
in the proof of the second part of the Sharkovskĭı Theorem in [ALM]. If f1 is the tent map
(see Remark 3.3) then ft(x) = min(f1(x), t) defines the tent map truncated at level t.

Lemma 3.9. For every η ∈M there is t ∈ [0, 1] such that ORP(ft) = Ovr(η).

Proof. Fix η ∈ M. By Remark 3.3 Ovr(η) ⊂ ORP(f1). For each ζ ∈ Ovr(η) there are
finitely many cycles of f1 with over-rotation pair ζ. Therefore there exists the smallest
tζ such that ftζ still has at least one of them. Let t be the supremum of tζ over all
ζ ∈ Ovr(η). Clearly, Ovr(η) ⊂ ORP(ft). Suppose that ft has a cycle P with rotation
pair ζ /∈ Ovr(η). Then P is also a cycle of fv, where v = max P is the rightmost point
of P (notice that v ≤ t). From the definition of the ordering m it follows that there
exists ϑ 6= ζ such that ζ m ϑ and Ovr(η) ⊂ Ovr(p/q, n), where ϑ = (np, nq) and p, q are
coprime. We know already that this implies that fv has a cycle Q with over-rotation pair
ϑ. Hence if u = max(Q) then u < v ≤ t (the inequality between u and v is strict because
Q 6= P ) and Ovr(η) ⊂ Ovr(p/q, n) = ORP(fu). This contradicts the definition of t. Hence,
ORP(ft) = Ovr(η).

This completes the proof of Theorem 3.1.

4. Comparison with rotation numbers

We start by an example showing that in a general situation rotation numbers and over-
rotation numbers are completely different. We speak of numbers rather than of pairs, since
the second component of a pair – the period – remains the same. We can also speak of the
rotation and over-rotation sets, defined as the closure of the set of the rotation (respectively
over-rotation) numbers of all cycles of the map. By the completeness theorems, those sets
are intervals.

Let I = [1, 5] and let f be the P -linear map, where P = {1, 2, 3, 4, 5} and f(1) =
2, f(2) = 3, f(3) = 5, f(4) = 1, f(5) = 4. One can easily check that the over-rotation
number of P is 1/5, whereas the rotation number of P is 2/5. Moreover, the over-rotation
set of f is [1/5, 1/2], but the rotation set of f is [1/4, 2/3].

Nevertheless, there is some connection between over-rotation sets and rotation sets. It is
proven in [B1] that every pattern of rotation number α forces a convergent pattern of the
same rotation number and such that if P is its representative in the P -linear map f ∈ U
then f is decreasing on one side of a. For such a pattern it is easy to check that its over-
rotation number is min(α, 1− α) (in particular, the rotation and over-rotation numbers in
unimodal maps coincide).
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This has two consequences. The first is that if the over-rotation interval of a map is
[α, 1/2] then its rotation set is contained in [α, 1−α]. In particular, one can observe that in
our example [1/4, 2/3] ⊂ [1/5, 4/5]. This illustrates the fact that the pieces of information
about the map contained in the sets RP(f) and ORP(f) complement each other. The
second consequence is that one can deduce the completeness theorem for rotation pairs of
[B1] from our Theorem 3.1.
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