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Abstract. Recently, over-rotation pairs and numbers for periodic orbits of interval
maps have been introduced and studied. Here we find minimal entropy of periodic
orbits with a given over-rotation number or pair.

1. Introduction

Combinatorial Dynamics deals with properties of dynamical systems having var-
ious types of periodic orbits (we will use a shorter name cycles for periodic orbits),
see e.g. [ALM]. For interval maps, a natural notion of a type of a cycle is its pattern,
that is the cyclic permutation that we get when we look at how the map acts on
the points of the cycle, ordered from the left to the right.

Patterns are partially ordered by the forcing relation. A pattern A forces pattern
B if every continuous map having a cycle of pattern A has a cycle of pattern B.
Thus, if we know which patterns are forced by a given pattern A, we have enormous
information about the structure of an interval map with a cycle of pattern A.
Unfortunately, the forcing relation is rather complicated. Therefore it makes sense
to consider notions weaker than pattern. This limits the information we get, but
makes it easier to obtain it. One of such notions (the one that in fact started
Combinatorial Dynamics, see [S]) is period. The Sharkovskĭı Theorem gives the
forcing relation among periods. This is a linear ordering, so the characterization of
all the periods forced by the given one is simple. However, knowing only periods of
cycles is much less than knowing their patterns.

In [BM2] we proposed a new notion of a type of a cycle, the over-rotation pair.
If P is a cycle of f of period q, then the over-rotation pair of P is (p, q), where 2p is
the number of points x ∈ P such that f(x)−x and f2(x)−f(x) have different signs
(if f has only one fixed point a, then it is easy to check that p is equal to the number
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of points x ∈ P such that x > a and f(x) < a). The number p/q is called the over-
rotation number of P . It turns out that the forcing relation among over-rotation
pairs is also linear. On the other hand, one gets much more information from the
over-rotation pair than from the period alone. Therefore we consider over-rotation
pairs as an excellent compromise between patterns and periods, and continue their
investigation in the present paper.

Note that cycles with the same pattern have the same over-rotation pairs. Thus,
we can speak of over-rotation pairs and numbers of patterns.

One of the questions that arise immediately after introduction of a notion of a
type of a cycle is how complicated the map has to be if it has a cycle of a given type.
The complexity of a map is usually measured by its topological entropy. Thus, the
question is: if we have an interval map with a cycle of given pattern, period, over-
rotation pair, or over-rotation number, what is the minimal topological entropy of
such a map?

For a pattern, the answer is simple (see [BGMY]). A map f is called P -monotone
if it is monotone between consecutive (in space) elements of P and constant to the
left of the leftmost and to the right of the rightmost element of P . All P -monotone
maps have the same entropy h that can be easily computed. It is less than or
equal to the entropy of any map with a cycle of the same pattern as P . Thus h is
the required minimal entropy. We shall refer to it as the entropy of a cycle or the
entropy of a pattern. The paper [BGMY] provides us also with the minimal entropy
formula for a given period. Here we address the problem of finding minimal entropy
for a given over-rotation pair or number. In fact, the main part of the problem is
to find minimal entropy of patterns with a given over-rotation number. Then the
result for over-rotation pairs follows easily (see Section 4).

A similar problem has been addressed for rotation numbers in [BM1]. Rotation
pairs and numbers have been introduced in [B] (see also [BK]). They are defined
in a way similar to over-rotation numbers, except that the first element of the
pair measures how many points of the cycle are mapped to the left by the map.
As noticed in [BM1], for unimodal maps (i.e. for maps with a unique turning
point) rotation and over-rotation numbers of cycles coincide, and the same is true
for rotation and over-rotation pairs. Clearly, the notion of a turning point makes
sense for patterns, so one can talk of unimodal patterns even without referring to
the corresponding maps; in any case it is obvious that rotation and over-rotation
numbers (and also rotation and over-rotation pairs) of unimodal patterns are the
same.

The main result of this paper is that among patterns of a given over-rotation
number minimal entropy is attained on a unimodal one. This, together with the
results of [BM1], gives the formula for the minimal entropy. Namely, according
to [BM1], the minimal entropy of a cycle with rotation number % is attained on
a unimodal cycle and is equal to log λ(%), where λ(%) is the unique root of the
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equation
∑

%<k/n<1−%

t−n = 1

(the summation is over all pairs of natural numbers k, n such that % < k/n < 1−%).
Thus, the minimal entropy of a cycle with over-rotation number % is also log λ(%).

The paper is organized as follows. In Section 2 we introduce the simplest patterns
with a given over-rotation number, over-twist patterns and prove their properties
that will be useful later. In Section 3, we provide necessary estimates of the entropy
of over-twist patterns. In Section 4 we obtain the formula for minimal entropy of
patterns with a given over-rotation number and with a given over-rotation pair.

2. Over-twist patterns

If a pattern A forces a pattern B then h(A) ≥ h(B). Therefore when we are
looking for patterns with minimal entropy among those with over-rotation number
%, it is enough to consider those that do not force any other pattern of over-rotation
number %. Similarly to twist patterns for rotation numbers, we call them over-
twist patterns (and accordingly we will speak of over-twist cycles). By [BM2], if
p/q < p′/q′ ≤ 1/2 then any pattern of over-rotation number p/q forces a pattern of
over-rotation number p′/q′. Since the forcing relation is antisymmetric, we see that
an over-twist pattern cannot force a pattern of a smaller over-rotation number. In
particular, if f is P -monotone and f has a cycle of a smaller over-rotation number
than P , then P cannot be over-twist.

Restricting our attention to over-twist patterns allows us to use in the proofs spe-
cific properties of those patterns. The rest of this section is devoted to establishing
those properties.

Let P be a cycle of a P -monotone map f . As in [BM2] we call P (and its
pattern) convergent if there are no x, y ∈ P such that f(x) < x < y < f(y). This is
equivalent to f having only one fixed point. We will always denote this fixed point
by a. Those points x ∈ P for which x and f(x) lie on the same side of a are called
green, and those for which x and f(x) lie on the opposite sides of a are called black.
The cycle P (and its pattern) is called green if it is convergent and f is increasing
on the set of green points and decreasing on the set of black points of P .

For a map f with a unique fixed point a it is useful to look at admissible loops
of intervals α = J0 → J1 → · · · → Jq−1 → J0, where → means f -covering (that
is, J → K if K ⊂ f(J)) and every interval Ji has a as one of its endpoints. If p
is the number of arrows J → K in α such that J is to the right of a and K is to
the left of a, then we say that the over-rotation number of α is p/q. A cycle Q
(other than {a}) for which there is a point x ∈ Q with fq(x) = x and f i(x) ∈ Ji
for i = 0, 1, . . . , q − 1, is associated to α. Clearly, its over-rotation number is the
same as that of α. By [B] (cf. Lemma 3.4 of [BM2]), if the over-rotation number
of α is not 1/2 then there exists a cycle associated to α.
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Let us denote by Jy the interval with endpoints a and y. If P is a cycle of f of
period q and x ∈ P then we call the loop Jx → Jf(x) → · · · → Jfq−1(x) → Jx the
fundamental admissible loop of P .

To avoid problems with the pattern of period 1 (what is its over-rotation num-
ber?; is it green?) and because by [BM2] the only over-twist pattern of rotation
number 1/2 is that of period 2, we consider over-twist patterns only for over-rotation
numbers different from 1/2 (without repeating it explicitly). Anyway, the minimal
entropy of patterns with over-rotation number 1/2 is clearly equal to 0.

Theorem 2.1. Over-twist patterns are green.

Proof. Let A be an over-twist pattern. There is a map f and a cycle P of pattern A
such that f is P -monotone and there is no other cycle of pattern A (such f is called
P -adjusted, see e.g. [MN], [ALM]). By [BM2] if A is divergent (not convergent) then
it forces a pattern of a smaller over-rotation number than that of A, a contradiction.
Therefore A is convergent, so f has a unique fixed point (a, as always).

Let α be the fundamental admissible loop of P . Suppose that f is not increasing
on the set of green points of P or not decreasing on the set of black points of P .
Then (by the symmetry) we may assume that there are points x, y ∈ P such that
x < y < a and either f(y) < f(x) < a or a < f(x) < f(y). We can modify α by
replacing an interval Jx by Jy. Then a new loop β is admissible and has the same
over-rotation number as α. Since we assume that this number is not 1/2, f has a
cycle Q of the same over-rotation number, associated to β.

Let us show that Q 6= P . Suppose that P is associated to β. Let z be the point
of P closest to a from the right. Since z 6= x, the same interval Jz appears in α
and β. Moreover, z is the unique point of P belonging to Jz. Therefore for i such
that x = f i(z), by starting at Jz and following the orbit of z and the loop β for
i steps we get x ∈ Jy. This cannot be the case, since x < y < a. Hence P is not
associated to β, so Q 6= P .

Since f is P -adjusted, the pattern of Q is different from A. Thus, A forces
a different pattern with the same over-rotation number, so it is not over-twist, a
contradiction. This proves that f is increasing on the set of green points of P and
decreasing on the set of black points of P , that is P (and therefore A) is green.

3. Estimates of entropy

For the estimates of topological entropy from below we will use the standard
technique (see e.g. [BGMY]). Let f : I → I be a continuous interval map. If
Ji (i = 1, . . . , k) are intervals with pairwise disjoint interiors then we look at the
transition matrix M , that is the n×n matrix (mij) such that mij = 1 if Ji f -covers
Jj and mij = 0 otherwise. Then h(f) ≥ log r(M), where r(M) is the spectral
radius of M .

Now we derive some estimates for the entropy of non-unimodal over-twist pat-
terns.
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Lemma 3.1. Let f be a P -monotone map for a convergent cycle P such that both
the leftmost and the rightmost points of P are green. Then h(f) ≥ log 2.

Proof. Denote the leftmost and the rightmost points of P by el and er respectively.
Then there are points cl, cr ∈ P such that f(cl) = er and f(cr) = el. Since
P is convergent, we have el < cl < a < cr < er. Moreover, f(el) < a and
f(er) > a. Therefore both intervals [el, cl] and [cl, a] f -cover intervals [a, cr] and
[cr, er], and both intervals [a, cr] and [cr, er] f -cover intervals [el, cl] and [cl, a]. The
corresponding transition matrix has 2 as an eigenvalue (〈1, 1, 1, 1〉 is an eigenvector).
Therefore h(f) ≥ log 2.

Lemma 3.2. If A is a non-unimodal green pattern then h(A) ≥ log
√

3.

Proof. Let P be a cycle of non-unimodal green pattern A, and let f be a P -
monotone map. Look at the distribution (in space) of the green and black points of
P . Unimodality means that there is one block of green points and one block of black
points. Since P is non-unimodal, this is not the case. Therefore either both the
leftmost and the rightmost points of P are green or there is a green point between
black ones. In the first case we get by Lemma 3.1 h(A) = h(f) ≥ log 2 > log

√
3.

Let us consider the second case. There is k ≥ 1 and consecutive (in space) points
y0 < y1 < · · · < yk < yk+1 of P such that y0 and yk+1 are black and y1, . . . , yk are
green. Since the points of P closest to a are black, all points yi lie on the same side
of a. By symmetry, we can assume that they are to the left of a. Set z = f(yk+1).
Since the cycle P is green, the right endpoint of the interval f([yk+1, a]) is z.
Moreover, all the points y1, . . . , yk are green, so the right endpoint of f([y1, a]) is
also z. The interval [y1, z] is not invariant (only a part of P belongs to it), so the
left endpoint of f([y1, z]) (which is the same as the left endpoint of f([a, z])) is to
the left of y1. The closest point of P to y1 from the left is y0. Therefore f([a, z])
contains [y0, a]. Thus, [a, z] f-covers all three intervals [y0, yk], [yk, yk+1], [yk+1, a].
On the other hand, f(yk) < a < z = f(yk+1) < f(y0), so each of those three
intervals f -covers [a, z]. Thus, each of those three intervals f2-covers each one, so
h(f2) ≥ log 3. Therefore h(A) = h(f) ≥ log

√
3.

Lemma 3.3. Let f be a P -monotone map for an over-twist cycle P of over-rotation
number % < 1/3. Then there is no point x ∈ P with either x < f3(x) < f(x) < a <
f2(x) or x > f3(x) > f(x) > a > f2(x).

Proof. By symmetry, it is enough to consider only the case x < f3(x) < f(x) <
a < f2(x). Let α be the fundamental admissible loop of P . Consider the loop β
obtained by deleting from α the intervals Jx, Jf(x) and Jf2(x). Since x < f3(x) < a,
β is an admissible loop. If the period of P is q and its over-rotation number is p/q
then the over-rotation number of β is (p − 1)/(q − 3). Since p/q < 1/3, we have
(p−1)/(q−3) < p/q. Therefore f has a cycle of over-rotation number smaller than
the over-rotation number of P . Since f is P -monotone, it means that P cannot be
over-twist.
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Lemma 3.4. Let f : I → I be a continuous interval map. Assume that there are
points u, v, w ∈ I such that u < v < f(v) < w, f(u) ≥ w, f2(v) ≥ w, and f(w) ≤ u
(or u > v > f(v) > w, f(u) ≤ w, f2(v) ≤ w, and f(w) ≥ u). Then h(f) ≥ log 2.

Proof. By symmetry it is enough to consider only the first case. Both intervals
[u, v] and [v, f(v)] f -cover [f(v), w], while [f(v), w] f -covers all three intervals [u, v],
[v, f(v)], and [f(v), w]. The characteristic polynomial of the corresponding transi-
tion matrix is λ3 − λ2 − 2λ = λ(λ + 1)(λ− 2). Therefore the spectral radius of the
matrix is 2, so h(f) ≥ log 2.

Lemma 3.5. If A is a non-unimodal over-twist pattern with over-rotation number
smaller than 1/3 then h(A) ≥ log 2.

Proof. Suppose that the over-rotation number of a non-unimodal over-twist pattern
A is smaller than 1/3, but the entropy of A is smaller than log 2. Let P be a cycle of
pattern A, and let f be a P -monotone map. Then h(f) < log 2. Denote the leftmost
and the rightmost points of P by eg and eb (without saying which one is which).
Since we agreed to forget of over-twist patterns of over-rotation number 1/2, we
know that the period of P is larger than 2. By Theorem 2.1, P is green. Hence, if
both points eg and eb are black, they form a period 2 cycle, a contradiction. If they
are both green then h(f) ≥ log 2 by Lemma 3.1, also a contradiction. Therefore
one of them is green and one black. We may assume (as the reader could have
guessed) that eg is green and eb is black. Notice that f(eb) = eg.

In the following part of the proof the reader is strongly advised to make drawings
indicating the ordering of the points involved and where they are mapped by f .
Such interactive reading can be much more useful than just looking at the static
drawings that we could provide.

Let c be the point of P that is mapped by f to eb. It is also black and lies
on the same side of a as eg. Let us move backwards along the preimages of c
belonging to P until we first meet a green point lying between c and eb (denote
it by d). The existence of such a point follows from the assumption that P is not
unimodal. Indeed, suppose that there are no green points between c and eb. Then
since there are no black points between eg and c (because P is a green cycle) we
conclude that P is unimodal, a contradiction. By symmetry we may assume that
d < a. Then by the choice of d we get that f(d) is black, so d < f(d) < a < f2(d).
Again by the choice of d, if f2(d) is green then it lies between eg and c (and
thus to the right of c, since d lies between eb and c). Then by Lemma 3.4 (with
u = eb, v = d, w = c) we get h(f) ≥ log 2, a contradiction. Therefore f2(d)
is black, so f3(d) < a. If f3(d) > f(d) then the interval [f(d), f2(d)] is invariant,
which is impossible. If d < f3(d) < f(d) then we get a contradiction by Lemma 3.3.
It cannot also happen that f3(d) = d since then P would be of period 3 and over-
rotation number 1/3. Hence f3(d) < d, so we get f3(d) < d < f(d) < a < f2(d).
Once more by the choice of d, if f3(d) is green then it lies between eg and c (and
thus to the left of c, since d lies between eb and c). Then by Lemma 3.4 (with
u = c, v = d, w = f2(d)) we get h(f) ≥ log 2, a contradiction. Therefore f3(d)
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is black. Since both points f3(d) and f(d) are black and f3(d) < f(d), we get
f2(d) < f4(d). Hence, f3(d) < d < f(d) < a < f2(d) < f4(d). Using Lemma 3.4
for the last time (with u = f3(d), v = d, w = f2(d)), we get as always h(f) ≥ log 2,
a contradiction. This completes the proof.

4. Patterns of minimal entropy

By [BM2], there are unimodal patterns of all over-rotation rational numbers
from (0, 1/2). Since the forcing relation restricted to the unimodal patterns with
a turning point of the same kind (maximum or minimum) is a linear ordering,
there is a unique over-twist unimodal pattern for each over-rotation number (up
to symmetry). Therefore (if we identify patterns that differ by symmetry or think
only of the unimodal maps that are increasing to the left of the turning point) we
can speak of the over-twist unimodal pattern of a given over-rotation number.

Theorem 4.1. Any non-unimodal over-twist pattern has entropy larger than the
unimodal over-twist pattern of the same over-rotation number.

Proof. Let A be a non-unimodal over-twist pattern of over-rotation number % 6= 1/2
and let B be the unimodal over-twist pattern of the same over-rotation number. If
% ≥ 1/3 then h(B) ≤ h(C), where C is the unimodal pattern of period 3. A simple
computation yields h(C) = log((1 +

√
5)/2). On the other hand, by Lemma 3.2,

h(A) ≥ log
√

3. Since
√

3 > (1 +
√

5)/2, we get h(A) > h(B). If % < 1/3 then by
Lemma 3.5, h(A) ≥ log 2, whereas h(B) < log 2, so again h(A) > h(B).

Let λ(%) be the number defined in the introduction. Then we get the following
corollary to Theorem 4.1.

Theorem 4.2. Minimal topological entropy of patterns of over-rotation number %
is log λ(%).

Now we consider the problem of minimal entropy of a pattern with a given over-
rotation pair. In order to deal with all cases we introduce the notation λn for the
largest zero of the polynomial tn − 2tn−2 − 1 for n ≥ 3 odd and λ1 = 0. With
this notation, the minimal entropy of all patterns of period n2k, where n is odd, is
(1/2k) log λn (see [BGMY]).

Theorem 4.3. Minimal topological entropy of patterns of over-rotation pair (p, q)
is log λ(p/q) if p/q < 1/2 and (1/2k) log λn if p/q = 1/2 and q = n2k with n odd.

Proof. Let us deal first with the case of over-rotation numbers smaller than 1/2.
Look at the over-rotation pair (nk, nm) with k, m coprime and k/m < 1/2. Let A
be the unimodal pattern of over-rotation number k/m and entropy log λ(%). We
claim that there exists a unimodal pattern B of period nm that is an extension of
A (see e.g. [ALM]). This means that if Q is a cycle with pattern B then the points
of Q come in m blocks of consecutive (in space) points, each block is mapped onto
a block, if we collapse each block into a point then we get a cycle with pattern A,
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and the map is monotone on all blocks except perhaps one. When we look at the
first return map on one block, we get some pattern C and then we say that B is
an extension of A by C. Notice that we can construct A from B and C. If both
A and C are unimodal, we can choose the non-monotone block to be the one that
becomes the turning point after collapsing, and then B will be also unimodal. This
proves our claim.

In such a situation we have h(B) = max(h(A), (1/m)h(C)) (see e.g. [ALM]).
Since k/m < 1/2, we have h(A) > (1/2) log 2, whereas m > 2 and h(C) < log 2,
so (1/m)h(C) < (1/2) log 2. Therefore h(B) = h(A) = log λ(k/m). Together with
Theorem 4.2 this proves our theorem in the first case.

Instead of trying to understand the above construction, the readers familiar with
the theory of unimodal maps (see e.g. [CE]) may notice that all this is well known.
In particular, the kneading sequence of B is the asterisk product of the kneading
sequences of A and C.

Now, if p/q = 1/2 then q is even. By [BGMY] (see also [ALM]), minimal possible
entropy of a pattern of period q is (1/2k) log λn, where q = n2k with n odd. The
cycles with this entropy have division, that is if we follow the orbit then the points
lie alternately to the left and to the right of the fixed point. Therefore their over-
rotation number is 1/2. This proves the theorem in the second case.

Remark 4.4. For every rotation pair there is a unimodal pattern realizing minimal
entropy. �

Remark 4.5. Since for unimodal maps rotation and over-rotation pairs coincide,
Theorem 4.3 is valid also for rotation pairs instead of over-rotation ones. �
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