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ABSTRACT. Thurston introduced σd-invariant laminations (where σd(z)
coincides with zd : S → S, d ≥ 2). He defined wandering k-gons as sets
T ⊂ S such that σn

d (T) consists of k ≥ 3 distinct points for all n ≥ 0
and the convex hulls of all the sets σn

d (T) in the plane are pairwise dis-
joint. Thurston proved that σ2 has no wandering k-gons and posed the
problem of their existence for σd, d ≥ 3.

Call a lamination with wandering k-gons a WT-lamination. Denote
the set of cubic critical portraits by A3. A critical portrait, compatible
with a WT-lamination, is called a WT-critical portrait; let WT3 be the
set of all of them. It was recently shown by the authors that cubic WT-
laminations exist and cubic WT-critical portraits, defining polynomials
with condense orbits of vertices of order three in their dendritic Julia
sets, are dense and locally uncountable in A3 (D ⊂ X is condense in X
if D intersects every subcontinuum of X). Here we show that WT3 is a
dense first category subset of A3. We also show that (a) critical portraits,
whose laminations have a condense orbit in the topological Julia set,
form a residual subset of A3, (b) the existence of a condense orbit in the
Julia set J implies that J is locally connected.

1. INTRODUCTION

Let C be the complex plane and C∞ = C ∪ {∞} be the complex sphere.
The following result is a special case of a theorem due to Thurston [Thu08].

Theorem 1.1 (No Wandering Vertices for Quadratics). Let P (z) = z2 + c
be a polynomial with connected Julia set JP . If z0 ∈ JP is a point such that
JP \ {z0} has at least three components, then z0 is either pre-periodic or
eventually maps to the critical point 0.
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In [BO08] we construct an uncountable family of cubic polynomials P
with z0 ∈ JP such that JP \ {z0} has three components and z0 is neither
pre-periodic nor precritical; such a point is called a wandering vertex. In
[BCO10], we improve on these results by finding a collection of polyno-
mials, dense in the appropriate parameter space, with wandering vertices
whose orbits have a property that we call condensity.

Definition 1.2. For a topological space X a set A ⊂ X is continuumwise
dense (abbreviated condense) in X if A ∩ Z ̸= ∅ for each non-degenerate
continuum Z ⊂ X . A map f : X → X is also called condense if there
exists x0 ∈ X such that {fn(x0) | n ≥ 0} is condense in X .

It is not hard to see that condensity is much stronger than density. For ex-
ample, if J is a Julia set from the real quadratic family which is not homeo-
morphic to an interval, the set of endpoints is dense in J , but not condense.
Moreover, in this case the set of transitive points (i.e., points with dense
orbit in J) is a subset of the endpoints of J , so such maps are not condense.

To state the results of [BCO11] precisely, we must indicate in which pa-
rameter space we are working. Polynomials are naturally associated to crit-
ical portraits, introduced by Yuval Fisher in his Ph.D. thesis [Fis89]. Let
σd : S → S be the angle d-tupling map σd(z) = zd. A degree d criti-
cal portrait, loosely speaking, is a maximal collection Θ = {Θ1, . . . ,Θn}
of sets of angles in S which are pairwise disjoint, pairwise unlinked (i.e.,
having disjoint convex hulls in D when angles are interpreted as points in
S), and such that σd(Θi) is a point for each Θi ∈ Θ (it is easy to see that∑

(|Θi| − 1) = d− 1).
This notion is used to capture the location of critical points. The set of all

critical portraits of degree d is denoted Ad, and is naturally endowed with
a topology (see Definition 2.4 for details). We say that a critical portrait Θ
corresponds to a polynomial P with dendritic Julia set if for each Θi ∈ Θ
there is a distinct critical point ci ∈ JP such that the external rays whose
angles are in Θi land at ci (see Section 2.3 for more information). Now we
state the main theorem of [BCO10].

Theorem 1.3 ([BCO10]). A3 contains a dense locally uncountable set {Θα |
α ∈ A} of critical portraits such that for each α ∈ A the following holds:

• Θα corresponds to a polynomial Pα with dendritic Julia set JPα ,
• {Pα|JPα

} are pairwise non-conjugate, and
• JPα contains a wandering vertex with condense orbit.

The aim of this paper is to further investigate the notions and objects
studied in Theorem 1.3, such as condensity and the set of critical portraits
which correspond to polynomials with wandering vertices. To explain our
results, we recall constructions from [Kiw04, BCO11]: given a polynomial
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P with connected Julia set JP , one can construct a corresponding locally
connected continuum J ⊂ C (called a topological Julia set) and branched
covering map f : C → C (called a topological polynomial) so that P is
monotonically semiconjugate to f (i.e., there exists a monotone map m :
C → C such that m ◦ P = f ◦m) and J = m(JP ). We refer to f |J as the
locally connected model of P . It is known [BO10] that in some cases J is a
single point.

Let us describe the organization of the paper and the main results. After
discussing preliminary notions and history in Section 2, we study proper-
ties of condense maps in Section 3. In particular we show in Theorem 3.6
that polynomials which admit condense orbits either in their Julia sets (or in
some circumstances their locally connected models) have locally connected
Julia sets. In Section 4 we prove that the set of cubic critical portraits corre-
sponding to polynomials with condense orbits in their Julia sets is residual
in A3 (Theorem 4.1), while the set of critical portraits which correspond to
polynomials with wandering vertices is meager (Theorem 4.4).

2. PRELIMINARIES

2.1. Laminations. In what follows, we parameterize the circle as S =
R/Z, so the total arclength of S is 1. The positive direction on S is the
counterclockwise direction, and by the arc (p, q) in the circle we mean the
positively oriented arc from p to q. A (strictly) monotone map g : (p, q) → S
is a map (strictly) monotone at each point of (p, q) in the sense of positive
direction on S. By Ch(A) we denote the convex hull of a set A ⊂ C and by
|B| we denote the cardinality of the set B.

Laminations are combinatorial structures on the unit circle, introduced
by Thurston [Thu08] as a tool for studying individual complex polynomials
P : C∞ → C∞ and the space of all of them. Let P be a degree d polyno-
mial with a locally connected (and hence connected) Julia set JP ; we will
recall how to associate an equivalence relation ∼P on S to P , called the
d-invariant lamination generated by P .

The filled-in Julia set KP is compact, connected, and full, so its com-
plement C∞ \ KP is conformally isomorphic to the open unit disk D. By
[Mil06, Theorem 9.5], there is a particular conformal isomorphism Ψ :
D → C∞ \ KP so that Ψ conjugates σd(z) = zd on D to P |C∞\KP

(i.e.,
Ψ(zd) = (P |C∞\KP

◦ Ψ)(z) for z ∈ D). When JP is locally connected,
Ψ extends to a continuous map Ψ : D → C∞ \KP which semiconjugates
z 7→ zd on D to P |C∞\KP

. Let ψ : S → JP denote the restriction Ψ|S.
Define the equivalence ∼P on S so that x ∼P y if and only if ψ(x) = ψ(y);
this equivalence relation is the aforementioned d-invariant lamination gen-
erated by P . The quotient space S/ ∼P= J∼P

is homeomorphic to JP and
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the induced map f∼P
: J∼P

→ J∼P
defined by f∼P

= ψ ◦ σd ◦ ψ−1 is
conjugate to P |JP .

Kiwi [Kiw04] extended this construction to polynomials P with no irra-
tionally neutral cycles and introduced a similar d-invariant lamination ∼P .
Then J∼P

= S/ ∼P is locally connected and P |JP is semi-conjugate to f∼P

by a monotone map m : Jp → J∼P
, i.e., a map m whose point preimages

are connected. This was extended in [BCO11] to all polynomials P with
connected JP . The lamination ∼P combinatorially describes the dynamics
of P |JP .

One can introduce abstract laminations (frequently denoted by ∼) as
equivalence relations on S having properties in common with laminations
generated by polynomials as above. Consider an equivalence relation ∼ on
the unit circle S. Equivalence classes of ∼ will be called (∼-)classes and
will be denoted by boldface letters. A ∼-class consisting of two points is
called a leaf ; a class consisting of at least three points is called a gap (this
is more restrictive than Thurston’s definition in [Thu08]). Fix an integer
d > 1. Then ∼ is said to be a d-invariant lamination if:

(E1) ∼ is closed: the graph of ∼ is a closed set in S× S;
(E2) ∼-classes are pairwise unlinked: if g1 and g2 are distinct ∼-classes,

then their convex hulls Ch(g1),Ch(g2) in the unit disk D are dis-
joint;

(E3) ∼-classes are either totally disconnected (and hence ∼ has uncount-
ably many classes) or the entire circle S is one class;

(D1) ∼ is forward invariant: for a class g, the set σd(g) is also a class;
(D2) ∼ is backward invariant: for a class g, its preimage σ−1

d (g) = {x ∈
S : σd(x) ∈ g} is a union of classes; and

(D3) for any gap g, the map σd|g : g → σd(g) is a covering map with
positive orientation, i.e., for every connected component (s, t) of
S \ g the arc (σd(s), σd(t)) is a connected component of S \ σd(g).

Notice that (D2) and (E3) follow from (D1).
Call a class g critical if σd|g : g → σd(g) is not one-to-one, and precriti-

cal if σj
d(g) is critical for some j ≥ 0. Call g preperiodic if σi

d(g) = σj
d(g)

for some 0 ≤ i < j. A gap g is wandering if g is neither preperiodic nor
precritical. Let J∼ = S/ ∼, and let π∼ : S → J∼ be the corresponding
quotient map. The map f∼ : J∼ → J∼ defined by f∼ = π∼ ◦ σd ◦ π−1

∼ is the
map induced on J∼ by σd. Then we call f∼ a topological polynomial, and
J∼ a topological Julia set.

2.2. Bounds for wandering classes. J. Kiwi [Kiw02] extended the No
Wandering Triangles Theorem by showing that a wandering gap in a d-
invariant lamination is at most a d-gon. Thus all infinite ∼-classes (and
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Jordan curves in J∼) are preperiodic. In [Lev98] G. Levin showed that lam-
inations with one critical class have no wandering gaps. For a lamination
∼, let k∼ be the size of a maximal collection of non-degenerate ∼-classes
whose σd-images are points and whose orbits are infinite and pairwise dis-
joint. Also, let N∼ be the number of cycles of infinite ∼-classes plus the
number of cycles of Jordan curves in J∼.

Theorem 2.1 ([BL02]). Let ∼ be a d-invariant lamination and let Γ be
a non-empty collection of wandering dj-gons (j = 1, 2, . . . ) with distinct
grand orbits. Then

∑
j(dj − 2) ≤ k∼ − 1 and

∑
j(dj − 2) +N∼ ≤ d− 2.

In particular, in the cubic case if Γ is non-empty, then it must consist of one
non-precritical ∼-class with three elements, all ∼-classes are finite, J∼ is a
dendrite, and both critical classes are leaves with disjoint forward orbits.

2.3. Critical portraits. Following [Thu08] and [DH84] we look at the set
Cd from infinity and consider the shift locus, which is the set Sd of poly-
nomials whose critical points escape to infinity. The set Sd is the unique
hyperbolic component of Pd consisting of polynomials with all cycles re-
pelling. It is not known if all polynomials with all cycles repelling be-
long to the set Sd. Looking at Cd from infinity means studying locations of
polynomials in Sd depending on their dynamics and using this to describe
the polynomials belonging to Sd ∩ Cd. A key tool in studying Cd is crit-
ical portraits, introduced in [Fis89], and widely used afterward (see, e.g.,
[BFH92, Poi93, GM93] and [Kiw05]). We now recall some standard mate-
rial; here we closely follow [Kiw05, Section 3]. Call a chord with endpoints
a, b ∈ S critical if σd(a) = σd(b).

Definition 2.2. A critical portrait is a collection Θ = {Θ1, . . . ,Θn} of
finite subsets of S such that the following hold:

(1) the boundary of the convex hull Ch(Θi) of every set Θi consists of
critical chords (under σd);

(2) the sets Θ1, . . . ,Θn are pairwise unlinked (that is, convex hulls of
the sets Θi are pairwise disjoint); and

(3)
∑

(|Θi| − 1) = d− 1.

The sets Θ1, . . . ,Θn are called the initial sets of Θ (or Θ-initial sets).
Denote by A(Θ) the union of all angles from the initial sets of Θ. The
convex hulls of the Θ-initial sets divide the rest of the open unit disk into
components. In Definition 2.3, points of S \ A(Θ) are declared equivalent
if they belong to the boundary of one such component; we do not assume
that Θ is a critical portrait because we need this equivalence later in a more
general situation.

Definition 2.3. Let Θ be a finite collection of pairwise unlinked finite sub-
sets of S. Angles α, β ∈ S\A(Θ) are Θ-unlinked equivalent if {α, β},Θ1,
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. . . , Θn are pairwise unlinked. The equivalence classes L1(Θ), . . . , Ld(Θ)
are called Θ-unlinked classes. Each Θ-unlinked class L is the intersection
of S \ A(Θ) with the boundary of a component of D \

∪
Ch(Θi). In the

degree d case, each Θ-unlinked class of a critical portrait Θ is the union of
finitely many open arcs of total length 1/d. Thus, there are d Θ-unlinked
classes.

Definition 2.4 (compact-unlinked topology [Kiw05]). Define the space Ad

as the set of all critical portraits endowed with the compact-unlinked topol-
ogy generated by the subbasis VX = {Θ ∈ Ad : X ⊂ LΘ} where X ⊂ S is
closed and LΘ is a Θ-unlinked class.

Note for example that A2 is the quotient of S with antipodal points iden-
tified, so it is homeomorphic to the unit circle. For a critical portrait Θ,
a lamination ∼ is called Θ-compatible if all Θ-initial sets are contained
in ∼-classes; if there is a Θ-compatible WT-lamination, Θ is said to be a
WT-critical portrait. The trivial lamination, identifying all points of S, is
compatible with any critical portrait.

To define critical portraits with aperiodic kneading, let us introduce the
notion of a one-sided itinerary for t ∈ S (see [Kiw05]). Given a critical
portrait Θ = {Θ1, . . . ,Θd} with Θ-unlinked classes L1(Θ), . . . , Ld(Θ) and
θ ∈ S, define i+(θ) (respectively, i−(θ)) as the sequence (i0, i1, . . . ), with
ij ∈ {1, . . . , d} such that there are yn ↘ θ (respectively, yn ↗ θ) with
σj
d(yn) ∈ Lij(Θ) for n sufficiently large. Also, define the itinerary i(θ) as a

sequence I0I1 . . . such that each Ij is the set from Θ∪{L1(Θ), . . . , Ld(Θ)}
to which σj(θ) belongs. An angle θ ∈ S is said to have a periodic kneading
if i+(θ) or i−(θ) is periodic. A critical portrait Θ is said to have aperiodic
kneading if no angle from A(Θ) has periodic kneading. The family of all
degree d critical portraits with aperiodic kneading is denoted by APd.

Definition 2.5 ([Kiw04, Kiw05]). The lamination ∼Θ is the smallest closed
equivalence relation identifying any pair of points x, y ∈ S where i+(x) =
i−(y). By Kiwi [Kiw04, Kiw05], for any critical portrait Θ the relation ∼Θ

is a Θ-compatible lamination; it is said to be generated by Θ.

Critical portraits reflect the landing patterns of the external rays at the
critical points. By Kiwi [Kiw05], a nice correspondence between critical
portraits of degree d and the set Sd ∩ Cd associates to each critical portrait
Θ ∈ Ad a connected set I(Θ) ⊂ Sd ∩ Cd, called the impression of Θ, such
that the dynamics of a polynomial in I(Θ) is closely related to the proper-
ties of Θ. The relation is especially nice when Θ has aperiodic kneading.
The following fundamental result of Kiwi [Kiw04, Kiw05] explicitly lists
properties of critical portraits with aperiodic kneading and their connections
to polynomials.
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Theorem 2.6. Let Θ ∈ APd. Then ∼Θ is the unique Θ-compatible in-
variant lamination. The quotient J∼Θ

is a non-degenerate dendrite, and all
∼-classes are finite. Furthermore, there exists a polynomial P whose Julia
set JP is a non-separating continuum in the plane and P |JP is monoton-
ically semiconjugate to f∼Θ

|J∼Θ
. The semiconjugating map mΘ,P = m :

JP → J∼Θ
maps impressions of external angles to points and maps the

set of P -preperiodic points in JP bijectively to the set of f∼Θ
-preperiodic

points. Moreover, JP is locally connected at all P -preperiodic points.

In the situation of Theorem 2.6 polynomials P such that P |JP is mono-
tonically semiconjugate to f∼Θ

|J∼Θ
are said to be associated to the critical

portrait Θ.

2.4. Monotone models for connected Julia sets. As was explained in
Section 1, the main results of [Kiw04, BCO11] yield a locally connected
model for the restriction of a polynomial to its connected Julia set. We will
need a detailed version of these results stated below in Theorem 2.7.

Theorem 2.7 ([Kiw04, BCO11]). Let P be a degree d polynomial with
connected Julia set JP . Then there exists a d-invariant lamination ∼ and a
monotone onto map MP : C → C with the following properties.

(1) J∼ =MP (JP ) and JP ⊂M−1
P (J∼) ⊂ KP .

(2) MP sends impressions of JP to points.
(3) mP = MP |JP is the finest monotone map of JP onto a locally con-

nected continuum (i.e., if ψ : JP → T is a monotone map onto
a locally connected continuum T , then there is a monotone map
ψ′ : J∼ → T such that ψ = ψ′ ◦mP ).

(4) MP semiconjugates P to a branched covering map gP : C → C
under which J∼ is fully invariant so that gP |J∼ is conjugate to the
topological polynomial f∼.

Remark 2.8. Suppose that Θ ∈ APd is associated to the polynomial P ; let
us show that the lamination ∼Θ defined in Theorem 2.6 and the lamina-
tion ∼P defined in Theorem 2.7 coincide. Indeed, by Theorem 2.7 there
exists a monotone map ψ′ : J∼P

→ J∼Θ
. If this map is not a homeomor-

phism, it will collapse a non-degenerate subcontinuum Q ⊂ J∼P
to a point

x ∈ J∼Θ
. Since impressions map to points of J∼P

, infinitely many distinct
impressions of external rays are contained in the fiber m−1

Θ,P (x) which by
Theorem 2.6 implies that the ∼Θ-class corresponding to x is infinite. This
contradicts Theorem 2.6, which states that ∼Θ-classes are finite.

Theorem 2.7 establishes the semiconjugacy mP on the entire complex
plane, so that mP -images of external rays to JP are curves in C accumu-
lating on points of J∼P

. For x ∈ J∼P
, the set m−1

P (x) ∩ JP is the union of
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impressions of angles α such that mP (Rα) lands on x . The order of x in
J∼P

is the number of components of J∼P
\ {x} and can be either a finite

number or infinity. By Theorem 2.7 if the order of x in J∼P
is finite then

it equals the number of angles with impressions in m−1
P (x) (or equivalently

the number of angles whose impressions intersect m−1
P (x)). If the order of

x in J∼P
is infinite, then there are infinitely many angles with impressions

in m−1
P (x).

3. CONDENSITY

We begin with a few lemmas concerning the dynamics of a condense
topological polynomial. If J is a dendrite, by [a, b]J we mean the unique
arc in J connecting the points a, b ∈ J . A continuum X ⊂ C is called
unshielded if it coincides with the boundary of the unique unbounded com-
ponent of C \ X . Note that all connected Julia sets of polynomials and all
topological Julia sets are unshielded continua. A point x ∈ X is called
a cutpoint of X if X \ {x} is not connected. In what follows a lamina-
tion ∼ such that f∼ is condense is called condense; also, a critical portrait
compatible with a condense lamination is said to be condense.

Lemma 3.1. If X ⊂ C is an unshielded locally connected continuum and
A ⊂ X is connected and dense in X , then A is condense in X and contains
all cutpoints of X .

Proof. If Z ⊂ X is a closed set with X \ Z disconnected, then all compo-
nents of X \ Z are open. Hence all such components intersect A. Since A
is connected, this implies that A ∩ Z ̸= ∅. Suppose that A is not condense
in X . Then there exists an arc I ⊂ X disjoint from A. Note that X \ I is
open and connected (by virtue of containing A). Therefore X \ I is path
connected and locally path connected. It follows that there exists a simple
closed curve S ⊂ X which contains a non-degenerate subsegment I ′ with
endpoint a′, b′ of I . The curve S encloses a topological disk U . Clearly, any
two-point set {a, b} ⊂ S separates X (two external rays landing at a and b
and an arc inside U from a to b disconnect C). Hence A ∩ {a′, b′} ̸= ∅, a
contradiction.

�

Let us now study condensity in the context of laminations. We call a
lamination ∼ degenerate if the whole S forms a ∼-class (and so J∼ is a
point); we call ∼ trivial if all ∼-classes are singletons (and J∼ = S).

Lemma 3.2. Let ∼ be a condense lamination. Then either ∼ is degenerate,
or ∼ is trivial, or J∼ is a dendrite.
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Proof. Suppose J∼ is non-degenerate and let x ∈ J∼ be a point with con-
dense orbit. If J∼ is not a dendrite, then it contains a Jordan curve. By
[BL02] it follows that J∼ contains a periodic Jordan curve B of period, say,
k. Since x must enter B, it follows that the union of

∪k
i=1 f

i
∼(B) = J∼.

Since J∼ is a topological Julia set, it is easy to see that then J∼ is the unit
circle and the lamination ∼ is trivial. �
Lemma 3.3. Suppose that K ⊂ J∼ is a continuum with dense orbit and
that fn(K) ∩K ̸= ∅. If t ≥ 0 is an integer, the union

∪∞
j=0 f

nj+t
∼ (K) is a

condense connected subset of J containing all cutpoints of J∼. Further, if
fn(K) ⊂ K, then K = J∼.

Observe that in this lemma we do not assume that f is condense.

Proof. Under the hypotheses, A0 =
∪
fnk
∼ (K) is a connected subset of

J∼, and so are the sets Al =
∪
fnk+l
∼ (K) where 1 ≤ l ≤ n − 1. By the

assumption, the union A = ∪n−1
l=0 Al is dense in J . Observe that f∼(Al) ⊂

Al+1, where indices are interpreted modulo n.
Since

∪n−1
l=0 Al = J∼ it follows from the Baire Category Theorem that

some As contains an open subset of J∼. Since f∼ eventually maps any open
set onto J∼, it follows that f r

∼(As) = J∼ for some r ≥ 0. Hence, for all
i ≥ 0, f r+i

∼ (As) = As+i = J∼, and so for any t the set At is connected and
dense in J∼. Then Lemma 3.1 implies that At is condense and contains all
cutpoints of J∼.

In the case that fn
∼(K) ⊂ K, it follows that A0 ⊂ K; that K is closed

and A0 is dense implies that K = J∼. �
The next lemma shows that condense maps resemble transitive maps. Re-

call that any topological polynomial on a dendrite must have fixed cutpoints
(see, e.g., [Thu08, BFMOT11]).

Lemma 3.4. For any topological polynomial f∼, the following claims are
equivalent.

(1) f∼ is condense.
(2) The orbit of every continuum K ⊂ J∼ is dense.
(3) The orbit of every interval I ⊂ J∼ is dense.
(4) There are no proper periodic continua in J∼.

Moreover, if these conditions are satisfied, then the set of all points with
condense orbits is residual in every interval I ⊂ J∼.

Proof. Since every subcontinuum of J∼ contains an interval, it is clear that
(3) and (2) are equivalent. If a point x ∈ J∼ has condense orbit andK ⊂ J∼
is a continuum, then xmust enterK, and the orbit ofK is dense. This shows
that (1) implies (2). Moreover, by Lemma 3.3, (1) implies (4).
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Let us show that (2) and (4) are equivalent. Suppose that (2) holds and
let K be a periodic continuum K. Then K has to have a dense orbit which
by Lemma 3.3 implies that K = J∼. Suppose that (4) holds and let L ⊂ J∼
be a continuum. By [BL02] there exist m and n > 0 such that fm

∼ (L) ∩
fm+n
∼ (L) ̸= ∅. Then the set

∪∞
i=0 f

m+ni
∼ (L) = T is a periodic continuum

which by the assumption coincides with J∼. Hence L has a dense orbit as
desired.

Let us show that (2) implies (1). If J∼ has a bounded complementary
domain U , then we may assume that Bd(U) is periodic. By Lemma 3.3 we
conclude that Bd(U) = J∼, so f∼ is conjugate to z 7→ zd and condense.
Therefore we may assume that J∼ is a dendrite. Let {Ai | i ≥ 0} be
a countable collection of closed arcs such that any continuum K ⊂ J∼
contains some As. For convenience, we choose the sequence {Ai} so that
no element of the sequence contains an endpoint of J∼.

Let I ⊂ J∼ be an arc; we will show for each s ≥ 0 that Bs = {x ∈ I |
fk
∼(x) ∈ As for some k} is an open and dense subset of I . Let α denote a

fixed cutpoint of J∼. It follows that, for i sufficiently large, α ∈ f i(I). This
is because no subcontinuum of J∼ is wandering, i.e., there exists s, n such
that f s

∼(I) ∩ f s+n
∼ (I) ̸= ∅ [BL02]. By Lemma 3.3, for some M ≥ 0 we

have α ∈ f s+Mn(I); since α is fixed, α ∈ f i(I) for all i ≥ s+Mn.
There exist components K of J∼ \As such that every arc intersecting K

and containing α also contains a subinterval of As. Since every continuum
in J has a dense orbit, there exists k ≥ 0 such that α ∈ fk

∼(I) and fk
∼(I) ∩

K ̸= ∅. Hence, fk
∼(I) intersects As in an open subset. Since fk

∼ is finite-to-
one, this implies that an open subset of I maps into As. Since we can repeat
this argument on any subinterval of I , Bs is a dense open subset of I .

By the Baire Category Theorem,
∩

s≥0Bs is then a residual (and hence
non-empty) subset of I; this is the set of points in I which eventually map
into each As, and therefore into every subcontinuum of J∼ as desired. �

Powers of condense maps are condense, too.

Lemma 3.5. If f∼ is condense and s ≥ 1, then f s
∼ is condense.

Proof. By Lemma 3.4 we need to show that any continuum K ⊂ J∼ has
dense f s

∼-orbit in J∼. By Lemma 3.2 we only need to consider the case that
J∼ is a dendrite. Let α ∈ J∼ be a fixed cutpoint. By Lemma 3.3 there exists
i ≥ 0 such that α ∈ f i

∼(K); since α is fixed we may assume that i = ks for
some integer k. Clearly, (f s

∼)
k+1(K) ∩ (f s

∼)
k(K) ̸= ∅, since it contains α.

By Lemma 3.3,
∪∞

j=0 f
js
∼ (fks

∼ (K)) is a connected condense subset of J , so
the fks

∼ -orbit of K is condense. Since K was an arbitrary continuum in J∼,
f s
∼ is condense by Lemma 3.4. �
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Theorem 3.6. Let P be a polynomial with connected Julia set. Then the
following claims hold.

(1) Suppose that the finest model J∼ of JP , given by a lamination ∼,
is non-degenerate, all points of J∼ are of finite order, and f∼ is
condense. Then JP is locally connected and P |JP is conjugate to
f∼.

(2) Suppose that P |JP is condense. Then P has no proper periodic
subcontinua (in particular, P is non-renormalizable), JP is locally
connected and P is conjugate to gP from Theorem 2.7.

Observe, that by this theorem P |JP satisfies Lemmas 3.2 - 3.5. Observe
also, that by Theorem 2.6 (1) holds for polynomials associated with con-
dense critical portraits having aperiodic kneading.

Proof. (1) Let m : JP → J∼ be the finest monotone map to a locally con-
nected continuum defined in Theorem 2.7. Since the order of any periodic
point p ∈ J∼ is finite, by [BCO11, Lemma 37] the set m−1(p) is a repelling
or parabolic periodic point. Hence, P has no Cremer points: if U were a
periodic Siegel domain of P , then m(Bd(U)) would be a periodic subcon-
tinuum of J∼ homeomorphic to a circle on which the appropriate power of
the map is an irrational rotation, and hence a proper subcontinuum.

Now we show that P is non-renormalizable. Indeed, if P is renormaliz-
able, then there exists a polynomial-like connected Julia set J ′ $ JP which
is a periodic continuum. If m(J ′) is a point, then it is periodic and again by
[BCO11, Lemma 37] the set m−1(m(J ′)) is a point, a contradiction. Hence
m(J ′) is a periodic continuum in J∼. Clearly, m(J ′) ̸= J∼. This contra-
dicts Lemma 3.3 and Lemma 3.4 and shows that P is non-renormalizable.
Hence JP is locally connected [KvS09]. By Theorem 2.7, P |JP and f∼ are
conjugate as required.

(2) Assume now that P |JP is condense. Let us show that JP has no proper
periodic subcontinua. Indeed, let A ⊂ JP be a periodic continuum. Then
the (finite) union B of its images must coincide with JP (because P |JP is
condense). As at least one of these images must have non-empty interior, A
must coincide with JP .

This fact has several consequences. To begin with, let us show that JP
cannot have Cremer points. Indeed, suppose that z0 ∈ JP is a periodic
Cremer point of period p. Then, for any small neighborhood U of z0, the
component of the set {z | P kp(z) ∈ U for all k} containing z0, called a
hedgehog, is a proper periodic subcontinuum of JP [PM97], contradicting
that P |JP has no proper periodic subcontinuum.

Now let us show that P cannot have Siegel domains either. Since JP
contains no proper periodic subcontinua, then any periodic Siegel domain
U of P must be such that Bd(U) = JP . By J. Rogers’ result [Rog92], there
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are two cases. In the first case, P |Bd(U) is monotonically semiconjugate
to an irrational rotation which contradicts the fact that Bd(U) = JP . In
the second case, Bd(U) is an indecomposable continuum (i.e., cannot be
represented as A ∪ B where A and B are proper subcontinua of Bd(U)).
Then, given a point x ∈ Bd(U), one can define the composant of x in
Bd(U), that is the union of all proper subcontinua of Bd(U) containing
x. Then it is known [Nad92, Theorem 11.15] that distinct non-degenerate
composants of Bd(U) are pairwise disjoint and there are uncountably many
of them. Since the orbit of x can only enter countably many composants of
Bd(U), we have a contradiction with the assumption that P |JP is condense.
Hence, P does not have Siegel domains.

Since JP has no proper periodic subcontinua, P is non-renormalizable.
Thus, as before, all this implies that JP is locally connected [KvS09]. The
rest follows from Theorem 2.7. �

4. FAMILY OF CRITICAL WT-PORTRAITS

First we show that condense laminations are residual in A3.

Theorem 4.1. Let Θ ∈ Ad be a critical portrait which consists of d − 1
critical chords whose orbits are dense in S. Then Θ has aperiodic kneading,
is condense, and any polynomial P associated to Θ has locally connected
Julia set JP so that P |JP is conjugate to f∼Θ

|J∼Θ
.

Proof. Let us show that Θ has aperiodic kneading. Indeed, the orbit of any
critical leaf ℓ comes arbitrarily close to the fixed point 0. Hence, if C is
the Θ-unlinked class of 0, then the itinerary of ℓ includes arbitrarily long
segments consisting of C. This implies that Θ has aperiodic kneading, and
Theorem 2.6 applies. Let ∼ denote the lamination generated by Θ.

Let us show that Θ is condense. Take an arc I ⊂ J∼ and consider its orbit.
By [BL02] there are positive numbers m, k with fm

∼ (I) ∩ fm+k
∼ (I) ̸= 0.

Consider the connected set A0 =
∪∞

i=0 f
m+ki
∼ (I). Clearly, A0 = B ⊂ J∼ is

a subdendrite of J∼ and fk
∼(B) ⊂ B. Let us show that fk

∼|B has a critical
point c. Indeed, by Theorem 7.2.6 of [BFMOT11] there are infinitely many
periodic cutpoints of fk

∼|B; letQ ⊂ B be an arc joining some pair x and y of
such periodic cutpoints. If fk

∼|B has no critical points, then some power of
fk
∼|Q is a homeomorphism and there must exist a point z ∈ Q attracting for
g from at least one side, which is impossible. Hence, B contains a critical
point of fk

∼. By the assumptions on Θ, B contains a point with dense orbit,
so I has a dense orbit. Since I was arbitrary, we conclude by Lemma 3.4
that Θ is condense.

Since Θ satisfies Theorem 2.6, and since ∼=∼P by Remark 2.8, it fol-
lows from Theorem 3.6 (1) that J∼ is locally connected and that P |JP is
conjugate to f∼.
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�
Since the set of critical portraits consisting of d − 1 critical leaves with

dense orbits in S is residual in Ad, we obtain the following corollary.

Corollary 4.2. A residual subset of critical portraits in Ad correspond to
polynomials whose restrictions to their Julia sets are condense.

Recall that a lamination with wandering k-gons (k ≥ 3) is called a WT-
lamination. A critical portrait, compatible with a WT-lamination, is called
a WT-critical portrait; WT3 is the set of all cubic WT-critical portraits. By
Theorem 1.3, WT3 is a dense and locally uncountable subset of A3.

Now we show that WT3 is a meager subset of A3. We will do so by
showing that the set of critical portraits in WT3 compatible with a wander-
ing triangle of area at least 1

n
is disjoint from a particular dense subset of

critical portraits. The dense subset we consider, called K, is the set of crit-
ical portraits consisting of two leaves {c,d} ∈ A3 such that the orbits of c
and d are dense, neither c nor d maps to an endpoint of the other, and c and
d eventually map to the same point.

Lemma 4.3. The set K is dense in A3. All orbit portraits Θ ∈ K have
aperiodic kneading. The critical classes of the lamination ∼Θ generated by
Θ are leaves.

Proof. The fact that K is dense in A3 is easy and left to the reader. Consider
some Θ = {c,d} ∈ K. By Theorem 4.1, Θ has aperiodic kneading. Let
g be the critical ∼Θ-class containing c, and h the critical class containing
d. It is easy to see that if g contains at least three points, then |σ(g)| ≥ 2.
Indeed, consider two cases. If g maps to its image in the two-to-one fashion,
then |σ(g)| ≥ 2 is obvious. If g maps to its image in the three-to-one
fashion then g = h contains four endpoints of the leaves c and d, so again
|σ(g)| ≥ 2. Similarly, if |h| ≥ 3 then |σ(h)| ≥ 2.

Suppose for contradiction that g contains at least three points. We will
first show that then all forward images of all critical classes of ∼Θ are non-
degenerate. Indeed, note that neither g nor h may eventually map onto
itself, since the orbits of c and d are dense in S. This further implies that, if
g maps onto h, then h cannot map onto g. We consider three cases.

(1) Suppose that g = h. Since |σ(g)| ≥ 2 and g is not periodic, it is
not pre-critical, so |σl(g)| = |σl(h)| ≥ 2 for all l ≥ 0.

(2) Suppose that σk(g) = h for some k ≥ 1. Since |σ(g)| ≥ 2 and
c never maps into d, we see that h contains at least three points
(the endpoints of d and the point σk(c)). Therefore by the above
|σ(h)| ≥ 2. As noted before, h is not pre-critical, so |σk(g)| and
|σk(h)| are both at least two for all k.
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(3) If g never maps onto h, then |σk(g)| ≥ 2 for all k, since g is not
pre-critical and contains at least three points. Since c and d have a
common image, so do g and h, and |σk(h)| ≥ 2 for all k.

We will use the metric where the distance between two points on S is the
length of the shortest arc in S joining them. By the diameter of a chord we
will mean the distance between its endpoints. Let us show that diam(σk(g))
is bounded away from 0. It is easy to see that, for any chord ℓ′,

(4.1) diam(σ(ℓ′)) =

{
3 diam(ℓ′) if diam(ℓ′) ≤ 1/6

3| diam(ℓ′)− 1/3| if 1/6 ≤ diam(ℓ′).

This implies that diam(σ(ℓ′)) ≥ diam(ℓ′) if and only if diam(ℓ′) ≤ 1/4.
Hence, every class of diameter less than 1/4 maps to a class of larger di-
ameter. Let ℓ be the chord on Bd(Ch(g)) ∪ Bd(Ch(h)) of length closest to
1/3; since σ(g) and σ(h) are non-degenerate, ε = | diam(ℓ)− 1/3| is pos-
itive. Since ∼-classes are unlinked, | diam(ℓ′) − 1/3| ≥ ε for any chord ℓ′

from the boundary of the convex hull of a ∼-class. Hence, by Equation 4.1
no class of diameter at least 1/4 has an image of diameter less than 3ε. In
particular, diam(σk(g)) ≥ 3ε for all k.

Since the convex hulls of classes are dense in D, we can choose a class k
so that there exists a component A of S \ k of diameter less than ε. Since
diam(σk(g)) ≥ 3ε, the orbit of g can never enter A. This contradicts that
the orbit of c is dense. We conclude that the classes g and h are leaves. �

Theorem 4.4. The set WT3 is of first category in A3.

Proof. Let Wn be the set of critical portraits Θ ∈ WT3 such that there is a
∼Θ-class T which is a wandering triangle and Ch(T) has area at least 1/n.
We will show that Wn is nowhere dense by showing that Wn ∩ K = ∅.

By Theorem 2.1, Wn is disjoint from K. Suppose that there is a se-
quence (Θi)

∞
i=1 of elements of Wn which converges to a critical portrait

Θ = {c,d} ∈ K. For each i set ∼i=∼Θi
and let Ti be a wandering triangle

in ∼i such that Ch(Ti) has area at least 1/n. We may assume that (Ti)
∞
i=1

converges to a triangle T = {a, b, c}, with area of Ch(T) at least 1/n.
Let us prove that T is contained in some ∼Θ-class T′; it is enough to

show that a ∼Θ b, i.e., that one-sided itineraries of σm
3 (a) and σm

3 (b) co-
incide (see Definition 2.5). Since σn

3 (Ti) is contained in a Θi-unlinked
class for each i and Θi-unlinked classes converge to Θ-unlinked classes, the
points σm

3 (a) and σm
3 (b) belong to the closure of the same Θ-unlinked class.

Since Θ ∈ K, the orbit of a (or b) intersects c ∪ d no more than once. It is
now evident that a ∼Θ b.

Thus for some ∼Θ-class T′ we have T ⊂ T′. By Theorem 2.6, T′ is
finite. Since Θ ∈ K, T′ is not wandering by Theorem 2.1, and T′ is not
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precritical by Lemma 4.3. Hence, T′ is preperiodic. This implies that either
T itself is preperiodic or its future images cross each other inside D. As the
latter is impossible by continuity, we may assume that there exist powers
n and m > 0 such that σn

3 (T) = σn+m
3 (T). Again by continuity σm

3 (Ti)
and σn+m

3 (Ti) approach σm
3 (T) in the Hausdorff metric while the area of

Ch(T) is at least 1/n. For geometric reasons this contradicts that σm
3 (Ti)

and σn+m
3 (Ti) are disjoint for all i. Therefore, Θ /∈ K.

We have established that Wn is nowhere dense in A3, so
∪∞

n=1 Wn =
WT3 is a first category subset of A3. �
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