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POINTWISE-RECURRENT MAPS ON UNIQUELY ARCWISE

CONNECTED LOCALLY ARCWISE CONNECTED SPACES

ALEXANDER M. BLOKH

Abstract. We prove that self-mappings of uniquely arcwise connected locally

arcwise connected spaces are pointwise-recurrent if and only if all their cut-
points are periodic while all endpoints are either periodic or belong to what

we call “topological weak adding machines”. We also introduce the notion of a

ray complete uniquely arcwise connected locally arcwise connected space and
show that for them the above “topological weak adding machines” coincide

with classical adding machines (e.g., this holds if the entire space is compact).

1. Introduction and the main results

There are two main types of results in interval dynamics. First, these are facts
about periodic points (for a map f , a point x is called (f -)periodic (of period n > 0)
if fn(x) = x and f t(x) 6= x for all 0 < t < n). The first step here was the celebrated
Sharkovsky Theorem [Sha64] on the coexistence among periods of periodic points of
an interval map. The Sharkovsky Theorem started combinatorial one-dimensional
dynamics (see a nice book [ALM00] with an extensive list of references). One
direction in which the field has developed is the study of the coexistence among pe-
riods of periodic points for self-mappings of “graphs”, i.e. one-dimensional compact
branched manifolds.

Results of the second type deal with all limit sets rather than only periodic
orbits. This direction has also been initiated by Sharkovsky, who studied maps of
the interval from this perspective in a number of papers (see, e.g., [Sha64a, Sha66,
Sha66a, Sha67, Sha68]); the scope of our work does not allow us to go into a detailed
description of this series of articles which, in our view, laid the foundation of the
one-dimensional topological dynamics.

It is natural to see if bounds of one-dimensional topological dynamics can be
pushed further to cover other (one-dimensional) spaces. As was mentioned, in
some works one-dimensional topological dynamics is studied for “graphs”(see, e.g.,
[ALM00, Blo80s]). In this paper we consider a specific dynamical problem for
one-dimensional spaces which can be viewed as more complicated than “graphs”.
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All topological spaces considered in this paper are assumed to be Hausdorff. By
an arc we mean a homeomorphic image of [0, 1]; by a Peano subset we mean a
continuous image of [0, 1]. A very good reference here is Chapter 3 of [HY88].

Definition 1.1 (Uniquely arcwise connected spaces). If for any points x, y ∈ X
there exists an arc I ⊂ X with endpoints x, y, then X is called arcwise connected ;
if I is unique, then X is called uniquely arcwise connected.

To give examples we need the following definition.

Definition 1.2 (Endpoints, cutpoints, branchpoints). A point x ∈ X is said to be
of order ordX(x) in X if there are ordX(x) components of X \ {x}. A point x ∈ X
is called an endpoint of X if ordX(x) = 1, a cutpoint of X if ordX(x) > 1, and a
branchpoint of X if ordX(x) > 2.

Dendrites and trees are known uniquely arcwise connected spaces.

Definition 1.3 (Dendrites and trees). A dendrite is a non-degenerated locally con-
nected continuum containing no Jordan curves. A tree is a dendrite with finitely
many branchpoints.

A lot of arcwise-connected spaces are neither trees nor dendrites.

Definition 1.4 (Locally arcwise connected spaces). A topological space X is locally
arcwise connected if any point has a basis of arcwise connected open sets.

We study uniquely arcwise connected locally arcwise connected topological Haus-
dorff spaces. At the suggestion of J. Mayer and L. Oversteegen we call such spaces
generalized dendrites and denote the family of all such spaces by GD (it is easy
to see that dendrites belong to GD). We rely upon various properties of uniquely
arcwise connected spaces and generalized dendrites which we now list together with
useful notation. Despite their sometimes complicated structure, uniquely arcwise
connected spaces allow, by their nature, for nice notation of their subarcs.

Definition 1.5 (Arcs and notation for them). Let X be uniquely arcwise con-
nected. Then for any points a 6= b ∈ X a unique closed arc in X with endpoints
a and b is denoted [a, b]; the notation (a, b), (a, b] and [a, b) is analogous to similar
notation in the interval case. Moreover, a homeomorphism α : [0, 1] → [a, b] with
α(0) = a, α(1) = b induces the order on [a, b].

If K ⊂ X is a Peano subset and a, b ∈ K then [a, b] ⊂ K (e.g., if c, d ∈ [a, b] then
[c, d] ⊂ [a, b]). Thus, any Peano subset of X is uniquely arcwise connected.

Definition 1.6 (Path component). Let X be a topological space. Then a maximal
by inclusion arcwise connected subset of X is called an path component of X. Thus,
for a point x ∈ X, the path component of X containing x is the union of all arcs
in X containing x. Also, if x, a, b ∈ K ⊂ X then we say that x separates a and b
in K if a and b belong to distinct path components of K \ {x}.

If X is uniquely arcwise connected and a, b ∈ X, then u separates a and b in X
if and only if u ∈ (a, b). Hence [a, x] ∪ [x, b] = [a, b] if and only if x ∈ [a, b], and if
y 6= x then either x separates a and y, or x separates b and y. Later in the paper
we will use the following simple fact: if a, b, c, d ∈ X with b ∈ (a, c) and c ∈ (b, d)
then b, c ∈ [a, d].
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Definition 1.7 (Arc cutpoints). For a point x ∈ X, denote by ordX,arc(x) the
number of path components of X \ {x}. Depending on ordX,arc(x), we call x an
arc endpoint of X (if ordX,arc(x) = 1), an arc cutpoint of X (if ordX,arc(x) > 1),
and an arc branchpoint of X (if ordX,arc(x) > 2).

Clearly, x is an arc cutpoint if and only if there exist a, b such that x ∈ (a, b).
Cutpoints are arc cutpoints, but the opposite is not always true.

Example 1.8 (“Warsaw Circle”). The “Warsaw Circle” Wc is defined as follows:
take the graph of the function sin( 1

x ), 0 < x ≤ 1
2π , add to it a vertical segment

from (0,−1) to (0, 1), and then complete the thus constructed continuum C with
an arc I connecting (0,−1) with ( 1

2π , 0) and avoiding C. Then no point of Wc is a
cutpoint of Wc, but any point of Wc \ {(0, 1)} is its arc cutpoint. Observe that Wc

is uniquely arcwise connected, but not locally arcwise connected. For generalized
dendrites the situation is different.

Lemma 1.9. If X is a generalized dendrite then all components of an open set
U ⊂ X are open and are generalized dendrites; thus, path components of X\{x} are
components of X\{x}, are open and locally arcwise connected (so that ordX,arc(x) =
ordX(x)). In particular, the sets of arc endpoints, arc cutpoints, and arc branch-
points of X coincide with the sets of endpoints, cutpoints and branchpoints of X,
respectively. Moreover, if A is a component of X \ {x} then A = A ∪ {x}.

Proof. We claim that, for x ∈ X andA, a path componentA ofX\{x} is open. Take
a point a ∈ A. Since X is locally arcwise connected, we can find a neighborhood U
of a in X such that U is arcwise connected and x /∈ U . This implies that U ⊂ A and
shows that A is open and locally arcwise connected. The set X \ {x} decomposes
into pairwise disjoint path components of X \ {x} each of which is open, connected
and locally arcwise connected. Hence path components of X \ {x} are components
of X \ {x} with desired properties. Let U ⊂ X be open and let C ⊂ U be a
component of U . Every point x ∈ C comes into C with a small arcwise connected
neighborhood. Thus, C is locally arcwise connected and open. If x, y ∈ C but there
exists z ∈ [x, y] \ C then x, y belong to distinct path components of X \ {z} and
C is not connected, a contradiction. Finally, if A is a component of X \ {x} then
the complement of A ∪ {x} is open as the union of all other path components of
X \ {x}. Hence A ∪ {x} is closed; since x ∈ A we get the desired. �

Few dynamical results were obtained for continuous maps on dendrites (see, e.g.
[MT89, AEO07]). So-called R-trees give another example of generalized dendrites;
however results on R-trees are either not dynamical (see, e.g., [Nik89], [MO90] or
[MNO92]) or arise in the study of groups of isometries of hyperbolic space [Thu88,
MS84, MS88, Bes88] and do not deal with the dynamics on R-trees. The author
is not aware of any dynamical results for generalized dendrites. However their
one-dimensional nature allows one to consider for them some classical problems of
topological dynamics. To describe a particular problem which we tackle in this
paper, we need more definitions. Recall that a point z is called a limit point of a
sequence x0, x1, . . . if in any neighborhood of z there exists a point xi 6= z.

Definition 1.10 (Recurrent points; pointwise-recurrent maps). Let f : X → X.
Given a point x ∈ X, the sequence (x, f(x), . . . ) = Of (x) = O(x) is called the
(f -)orbit of x. The set ωf (x) = ω(x) of all limit points of O(x) is said to be the
(ω-)limit set of x. A point which belongs to its own limit set is said to be recurrent
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(in other words, a point x such that f(x) visits any neighborhood of x is said to be
recurrent). A map such that all points are recurrent is called pointwise-recurrent.

An important and nice property of recurrent points is the following theorem due
to Gottschalk, Erdös and Stone.

Theorem 1.11 ([ES45, Got44]). If g is a continuous map of a Hausdorff topological
space then, for any positive integer n, the set of recurrent points of g and the set of
recurrent points of gn coincide.

The most obvious example of a recurrent point is a periodic point; in this case
the recurrence manifests itself in the most transparent way. Accordingly, an easy
example of a pointwise-recurrent map is a one-to-one map of a finite set as in this
case all points are periodic. A more complicated case is that of a minimal map,
i.e. such a map g : X → X that all points of X have dense orbit in X. This shows
that in general pointwise-recurrent maps can have a complicated nature.

However with some additional restrictions on the space (often assumed a man-
ifold or a continuum) and the map (often assumed a homeomorphism) one can
establish a close connection between pointwise-recurrent maps and maps whose
all points (or vast majority of points) are periodic. In some cases it is even pos-
sible to show that their periods are uniformly bounded; a lot of classic results
are obtained for pointwise-recurrent homeomorphisms along these lines (see, e.g.,
[KP98, Mon37, OT90, Wea72]). The aim of this paper is to show that if we replace
the restriction on the map (normally required to be a homeomorphism) by that
on the space (required by us to be from GD) we can still obtain similar results.
This reconfirms a heuristic observation according to which in a lot of cases results
valid for homeomorphisms of higher dimensional spaces have analogs for continuous
maps of one-dimensional spaces.

Given a map f : X → X, define the grand orbit GOf (x) = GO(x) as the set
of all points which eventually map to O(x). A set A ⊂ X is invariant if x ∈ A
implies O(x) ⊂ A (equivalently, f(A) ⊂ A). A set B ⊂ X is fully invariant if
y ∈ B implies GO(y) ⊂ X (equivalently, f(B) ∪ f−1(B) ⊂ B). Our arguments
will be based, in particular, on the fact that pointwise-recurrent maps have some
restrictive properties which can be used in their description. Indeed, suppose that
f : X → X is pointwise-recurrent. Let us show that then for any point x ∈ X we
have GO(x) ⊂ ω(x). Indeed, let y ∈ GO(x). Then ω(y) = ω(x) while, on the other
hand, the fact that y is recurrent implies that y ∈ ω(y). Hence y ∈ ω(x). Also, it

follows that f(X) is dense as otherwise a point from X \ f(X) is not recurrent. In
particular, if f(X) is closed then f(X) = X. This yields the following property.

Property A. Let f : X → X be a pointwise-recurrent self-mapping of X. Then
f(X) = X and GO(x) ⊂ ω(x) for any x ∈ X so that any periodic orbit is fully
invariant under f . In particular, if it is known that f(X) is closed then f(X) = X.

Property A can be used to characterize pointwise-recurrent self-mappings of X.

Lemma 1.12. A continuous map f : [0, 1] → [0, 1] is pointwise-recurrent if and
only if f2 is the identity map.

Proof. Suppose that f is not the identity map. We may assume that one of the
following two cases holds: (1) there exists an interval (a, b) which is fixed point free
and such that at least one of the points a, b is fixed and f(a, b) ∩ (a, b) 6= ∅, or (2)
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such interval does not exist, the set of all fixed points is a point d, and the map f
“flips” [0, d] and [d, 1].

Indeed, [0, 1] = Y ∪ Z where Y 6= ∅ is the set of all fixed points of f and Z 6= 0
is an at most countable union of open intervals whose endpoints are fixed except
possibly for the intervals with endpoints 0 or 1. If Y is not connected, we can find
a component (a, b) of Z whose both endpoints are fixed, and (1) holds. Otherwise
suppose that Y = [u, v]. We may assume that 0 < u. If f(0, u) ∩ (0, u) 6= ∅ then
again (1) holds. Otherwise f [0, u) ⊂ [u, 1]. If u < v this implies by continuity
that there are points in (0, u) which are not fixed but map to fixed points in [u, v],
a contradiction with Property A. Hence in this case u = v and f(0, u) ⊂ (u, 1].
Therefore u < 1 and similar arguments show that f(u, 1] ⊂ [0, u), i.e. in the end
case (2) holds. Consider these cases separately.

(1) Let a be fixed; assume that (a, b) is maximal by inclusion interval with listed
properties. By Property A and since f(a, b) ∩ (a, b) 6= ∅ we see that f((a, b)) > a.
Since (a, b) is fixed point free, all its points map in the same direction by f . If they
map towards a then they are attracted by a and clearly there are non-recurrent
points. If f(x) > x for any x ∈ (a, b) then, since (a, b) is maximal, either b < 1
is fixed or b = 1 which also forces b to be fixed. Similar to the above this implies
that, by Property A, f((a, b)) < b and hence all points of (a, b) are attracted by b
and there are non-recurrent points.

(2) By Property A we see that f2([0, d]) ⊂ [0, d] and f2([d, 1]) ⊂ [d, 1]. Now (1)
leads to a contradiction unless f2 is the identity map. �

I. Naghmouchi [Nag12] recently obtained far more general results. Namely, let D
be a dendrite whose set of endpoints End(D) is countable; the first result of [Nag12]
is that f : D → D is pointwise-recurrent if and only if f is a pointwise-periodic
homeomorphism. Suppose now that the set B(D) of branchpoints of D is discrete.
Then it is proven in [Nag12] that f : D → D is pointwise-recurrent if and only if
all cutpoints of D (i.e., all points of D \ End(D)) are periodic.

The aim of this paper is to consider pointwise-recurrent maps on generalized
dendrites. We need a few definitions. Observe that in Definitions 1.13 and 1.14 we
include no topological requirements on either a set or a map.

Definition 1.13 (Periodic sets). A set A is said to be (f -)periodic if A, f(A), . . . ,
fn−1(A) are pairwise disjoint while fn(A) ⊂ A. More generally, the union of n
pairwise disjoint sets A0, . . . , An−1 is said to be an (f -)cycle of sets (of period n)
if f(Ai) ⊂ Ai+1, i = 0, . . . , n− 2 and f(An−1) ⊂ A0. Each set Ai is then said to be
a set from a cycle of sets.

Periodic singletons (orbits) are the simplest periodic sets (cycles of sets).

Definition 1.14 (Adding machines). Let C = {C0 ⊃ C1 ⊃ . . . } be a nested
sequence of f -cycles of sets of periods mn ↗ ∞ (clearly, mi+1 is a multiple of mi

for any i). We say that C generates a weak adding machine C∞ =
⋂∞
n=0 Cn (of type

(m0,m1, . . . ). If the intersection of each nested sequence of sets from the cycles of
sets Cn is non-empty, then we call C∞ a full weak adding machine.

A weak adding machine is an f -invariant set. For a nested sequence C = C0 ⊃ . . .
of cycles of sets of periods mi, choose a nested sequence of sets from these cycles
R = {T 0 ⊃ . . . } and call it the root of C∞; there are infinitely many ways to choose
the root. Once it chosen each set X in each cycle Cn of sets from C acquires a
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natural index from 0 to n− 1 depending on the least power of f mapping Tn into
X. We denote sets from the cycle Ci by setting T 0

n = T 0 and then T in, 0 ≤ i ≤ n−1

so that f i(T 0
0 ) ⊂ T in. Clearly, a sequence {T jii , i = 0, 1, . . . } is nested if and only if

ji+1 ≡ ji (mod mi+1) (if, for some i, ji+1 6≡ ji (mod mi+1), then T
ji+1

i+1 ∩T
ji
i = ∅).

Some nested sequences {T jii , i = 0, 1, . . . } may have empty intersections.
Set Z∞ = Zm0

× Zm1
× . . . and define H(m0,m1, . . . ) = H ⊂ Z∞ as the set

of all sequences (j0, j1, . . . ) ∈ Z∞ with ji+1 ≡ ji (mod mi+1). Let τ : H → H
be such that τ(j0, j1, . . . ) = (j0 + 1 (mod m0), j1 + 1 (mod m1), . . . ). The map
τ models f |C∞ for an adding machine C∞ of type (m0,m1, . . . ) generated by f -

periodic sets C0 ⊃ C1 ⊃ . . . ; to each non-empty intersection
⋂
T jii we associate

the sequence j = (j0, j1, . . . ). By the above j ∈ H(m0, . . . ). This gives a map
ψ : C∞ → H(m0, . . . ) of a weak adding machine to an invariant subset ψ(C∞) of
H(m0, . . . ). Clearly, ψ semiconjugates f |C∞ with τ |ψ(C∞).

Definition 1.15 (Models of adding machines). Suppose that cycles of sets C0 ⊃ . . .
generate a weak adding machine C∞ of type (m0, . . . ). Then C∞ is said to be a
topological weak adding machine if ψ is continuous and one-to-one onto image, and
topological adding machine if ψ is a homeomorphism onto H(m0, . . . ).

Lemma 1.16 uses terminology and notation from Definitions 1.13 - 1.15.

Lemma 1.16. Suppose that f : X → X is a map of a topological space X and that
cycles of sets C0 ⊃ C1 ⊃ . . . generate a weak adding machine C∞. Then:

(1) if for each i and for all J > i the sets of Ci are open in the relative topology
of of the corresponding sets of Ci then the map ψ is a continuous map of
C∞ onto ψ(C∞) ⊂ H(m0, . . . );

(2) if for each j all sets in Cj are compact then ψ is a continuous map and
ψ(C∞) = H(m0, . . . ).

Proof. (1) As the basis in H(m0, . . . ) we can choose cylinders (sets consisting of
sequences in H(m0, . . . ) for which a few initial parameters are fixed). Then for
each such cylinder K its ψ-preimage is the appropriate set B from Ci intersected
with C∞. By the assumption there is an open set U ⊂ X such that U ∩Ci = B. It
follows that U ∩ C∞ = B ∩ C∞ = ψ−1(K). Hence ψ−1(K) is open in C∞.

(2) Follows from (1), from the fact that nested sequences of compact sets have
non-empty intersections, and from the assumptions of the lemma. �

Observe that H(m0, . . . ) - and therefore any topological weak adding machine
associated with H(m0, . . . ) - is uncountable.

Definition 1.17. A ray R is the image of R+ ∪ {0} under an embedding F into
a topological space X. If F (t) converges as t → ∞, we say that R converges at
infinity. If X is a uniquely arcwise connected locally arcwise connected topological
space, then we say that X is ray complete if every ray in X converges at infinity.

For a map f , set Fn(f) = Fn = {x : fn(x) = x} and Dn(f) = Dn =
⋃n
i=1 Fi.

Theorem 1.18. Let X be a uniquely arcwise connected locally arcwise connected
topological space. Then a continuous map f : X → X is pointwise-recurrent if and
only if all its cutpoints are periodic. Moreover, in this case the following holds.

(1) The map f is one-to-one; the set of all cutpoints of X is fully invariant.
(2) The sets Fn(f) and Dn(f) are arcwise connected and closed for any n.
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(3) An endpoint x of X is periodic or belongs to a topological weak adding
machine (then x is a limit point of a sequence of branchpoints of X).

(4) If X is ray complete (e.g., if X is compact) then an endpoint of X is periodic
or belongs to a topological adding machine. If X is a tree then there exists
N such that fN is the identity map.

Let us describe a map f from Theorem 1.18. For each n with Dn $ Dn+1, cycles
of connected sets of periods n + 1 are added to Dn. Let A be one of sets from
such cycle of sets C. Then A is attached to Dn at a point x of period m ≤ n with
n + 1 = km. There are k > 1 sets from C attached to x; they “rotate” around
x under iterations of fm and have no points mapped to Dn (in particular, x is a
branchpoint of X as there are at least two sets from C and the set Dn which meet
at x). As n increases, the growth of Dn can stop at some place to never resume;
then the corresponding part of X consists of periodic points only (with bounded
from above periods). Otherwise the periods of sets like A grow to infinity which
results in creation of recurrent points from topological weak adding machines.

Theorem 1.18 does not hold for uniquely arcwise connected spaces which are not
locally arcwise connected. Indeed, consider a compact topological space X formed
by a set of radii of the unit circle whose arguments form a Cantor set C ⊂ S1.
Define a minimal map f on C and then extend it onto X so that each radius Rx
defined by a point x ∈ C maps to the radius Rf(x) defined by the point f(x), and
the map is an isometry on Rx. Then all points of X are recurrent.
Acknowledgments. The author would like to thank J. Mayer, L. Oversteegen
and L. Snoha for useful discussions of the results of the paper. The author also
would like to express his gratitude to the referee whose report led to a significant
improvement of the paper and development of new tools allowing one to better deal
with maps continuous on arcs.

2. Uniquely arcwise connected topological spaces

From now on we always consider a uniquely arcwise connected space X. Call
a map f : X → X continuous on arcs if, for any arc I ⊂ X, the restriction f |I is
continuous. From now on we always consider a map f : X → X continuous on
arcs. Continuity on arcs does not imply continuity.

Example 2.1. Set X ⊂ C to be the union of a closed interval I connecting (0,−1)
and (0, 0) and a countable collection of closed intervals Jk of lengths 1

k emanating

from (0, 0) and forming the angles 2π
k , k ≥ 2 with the positive direction on x-axis.

Clearly X is a dendrite. Now, define a map f : X → X as follows. First set
f(I) = (0,−1); in other words, we assume that I collapses to the point (0,−1). To
define f on each Jk, denote by xk the midpoint of Jk for each k. Denote by Ak
and Bk the two closed subintervals into which xk divides (except for the common
endpoint xk) the interval Jk so that (0, 0) ∈ Bk. Set f |Ak

to be the identity map
and f |Bk

to be a linear (with respect to the plane metric restricted on X) map
which stretches Bk onto I ∪Bk). Then not only is our map f not continuous, but
also even the set of all f -fixed points is (−1, 0) ∪ (

⋃
Ak) which is not closed while

f is clearly continuous on arcs. This shows the limitations of conclusions which we
can make by only assuming that f is continuous on arcs.
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Another unpleasant property of maps continuous on arcs is that they need not
have continuous on arcs iterates. The author is grateful to the referee for the
following example.

Example 2.2. Take the dendrite X from Example 2.1. Take a sequence {yk =
(0,−1 + 2−k) : k = 0, 1, . . . } and set Ik = [yk, yk+1]. Construct now our map f as
follows. Let f take the points {yk, k = 1, 2, . . . } to (0, 0) while taking y0 = (0, 0) to
(0,−1). Map I0 linearly onto I and each Ik onto Jk+1 so that the midpoint of Ik
maps to the endpoint of Jk+1 and linearly otherwise. Thus, as t moves down along
Ik, the point f(t) moves along Jk+1 first from (0, 0) out to the other endpoint of
Jk+1 and then back down to (0, 0). Finally, map (0,−1) to (0, 0), and leave f as it
was defined in Example 2.1 on

⋃∞
k=1 Jk+1.

Clearly, f is continuous on arcs. However f2|I is not continuous. To see that,
observe that for any s ∈ I there is a point sk ∈ Ik with f2(sk) = s. Notice also
that f |I is continuous and maps I onto the entire X (so that X is a Peano subset).

This shows that results on maps continuous on arcs require special tools. As
we see below, these tools are of one-dimensional nature. They and based upon the
fact that some other standard facts still hold for maps continuous on arcs. E.g., let
A ⊂ X be arcwise connected. Then f(A) is also arcwise connected. Indeed, take
two points f(x) ∈ f(A), f(y) ∈ f(A) and consider f |[x,y]. Since f is continuous
on arcs, the set f([x, y]), as a continuous image of an arc, is arcwise connected as
desired. Observe also, that if f is continuous on arcs then it is continuous on trees
(finite unions on arcs in X).

Definition 2.3. A set Z is said to be closed on arcs if for any arc [a, b] the
intersection [a, b] ∩ Z is closed in [a, b].

As an example of how this notion is used, let us prove Lemma 2.4.

Lemma 2.4. Suppose that X is uniquely arcwise connected, f : X → X is con-
tinuous on arcs, and Y ⊂ X is an arcwise connected set such that fk(Y ) ⊂ Y . If
the set Fn = {x : x ∈ Y, fkn(x) = x} is arcwise connected, then for any closed arc
I = [a, b] ⊂ Y the intersection Fn ∩ I is a closed arc.

In other words, Fn is closed on arcs if it is considered as a subset of Y .

Proof. Clearly, Fn ∩ I is an interval with endpoints, say, u and v, where u (v)
either belongs to Fn ∩ I or not. Observe that f |I is continuous and one-to-one on
(u, v). Hence f(I) is an arc with endpoints f(u), f(v) such that (f(u), f(v)) ⊂ Pf .
Moreover, f |[f(u),f(v)] is continuous and hence f2|[u,v] is continuous. Repeating this
argument n times, we see that fn|[u,v] is continuous and identity on (u, v). Hence
fn(u) = u, fn(v) = v and u, v ∈ Fn as desired. �

Lemma 2.5 allows us to “project” points in X to its subsets closed on arcs.

Lemma 2.5. Let Y ⊂ X be an arcwise connected set closed on arcs. Let z /∈ Y be
a point of X. Then there exists a unique point w ∈ Y such that (w, z] ∩ Y = ∅.
Moreover, if z and z′ belong to the same path component of X\Y , the corresponding
point w serves both z and z′.

In the proof we repeatedly use the fact that X is uniquely arcwise connected.
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Proof. Choose a point x ∈ Y and consider [x, z]. Then for some point w we have
that [x,w] ⊂ Y while (w, z] ∩ Y = ∅. Let us show that w with these properties is
unique. Suppose that w′ ∈ Y,w′ 6= w is such that (w, z] ∩ Y = ∅. Then for some
point u ∈ [z, w] ∩ [z, w′] we must have that (u,w] ∩ (u,w′] = ∅. Connecting w and
w′ with an arc inside Y we will get a contradiction with the fact that X is uniquely
arcwise connected as [u,w] ∪ [w,w′] and [w′, u] are two distinct arcs connecting w′

and u and . Thus, w is well-defined. The remaining claim is left to the reader. �

Lemma 2.5 leads to the following definition.

Definition 2.6. Denote the point w from Lemma 2.5 by pY (z). Moreover, for any
point z ∈ Y we set pY (z) = z.

In general the map pY (z) is not continuous. E.g., take the “Warsaw circle”
(see Example 1.8) and choose Y = [a, b] to be a closed arc inside I. Then choose
z ∈ [(0, 0), (0, 1)] = K. It follows that if for points of K the “projection” to Y is,
say, a, then for all other close by points of Wc the “projection” to Y is b.

However it is easy to see that if the set X ′ ⊂ X is locally connected then pY |X′

is continuous. Thus, if Y ⊂ X ′ then pY |X′ is a retraction.

Definition 2.7. Let E = {e1, . . . , ek} be a collection of points of X. Then the
smallest connected set Ch(E) containing E is called the connected hall of E.

Before we prove the next lemma observe that if Y ⊂ X is a tree then f(Y ) is
a dendrite (i.e., a locally connected uniquely arcwise connected compactum). In
particular this implies that for any dendrite D ⊂ f(Y ) all components (equivalently,
path components) of f(Y ) \D are open in f(Y ).

Lemma 2.8. Let E = {e1, . . . , en} ⊂ X and set Y = Ch(E). Let Z = Ch(f(E))
and let T = Y ∩f−1(Z). Then f(T ) = Z and f |T can be extended over the entire Y
as a continuous map F so that on any component of Y \T the map F is a constant.

Notice that f |T is continuous. Also, if y ∈ Y is such that F is not a constant on
a neighborhood of y then y ∈ T and so in fact F (y) = f(y).

Proof. The dendrite f(Y ) contains Z. Hence the map pZ on f(Y ) is a retraction.
Define the map F as (pZ◦f)|Y . Then F coincides with f on T . Moreover, continuity
of f on Y , the fact that f(Y ) is a dendrite, and the above listed properties of
“projections” imply the rest of the lemma. �

The construction of the map F from Lemma 2.8 can be iterated. This immedi-
ately yields Corollary 2.9.

Corollary 2.9. Let E = {e1, . . . , en} ⊂ X and set Y = Ch(E). Let Zi =
Ch(f i(E)), i = 0, 1, . . . . Let Tn ⊂ Y be a set of all points y ∈ Y such that
f i(y) ∈ Zi, i = 0, 1, . . . , n. Then fn(Tn) = Zn and fn|Tn can be extended over
the entire Y as a continuous map Fn so that on any component of Y \ Tn the map
Fn is a constant.

This leads to Lemma 2.10.

Lemma 2.10. Let E = {e1, . . . , en} ⊂ X and set Y = Ch(E). Suppose that
Ch(fn(E)) ⊃ Y . Then there are periodic points of f in Y whose entire fn-orbit is
contained in Y .



10 A. M. BLOKH

Proof. Consider a map Fn : Y → Ch(fn(E)) constructed in Corollary 2.9. Then
compose it with pY to construct a continuous map g = pY ◦ Fn : Y → Y . Take a
fixed point x of g (it is well known [Nad92] that such point exists). If g is not a
constant on a neighborhood of x in Y then it follows from the construction that
fn(x) = g(x) as desired. Otherwise choose the open set W of points attracted to
x (since g is a constant on a neighborhood of x, the set W is open), and then the
component U of W containing x. It is well-known that the (finite) boundary of U
maps to itself. This implies that there are g-periodic points in Bd(U). If one such
point belongs to an open set on which g is a constant, then close by points of U will
not be attracted to x, a contradiction. Hence g and fn coincide on all g-periodic
points in Bd(U) which completes the proof. �

Lemma 2.10 allows one to make conclusions about the fn-orbits of points under
certain circumstances. To make such conclusions we need the following definition.

Definition 2.11. Given a map g : X → X, and a point y ∈ X with g(y) 6= y, let
Ag(y) be the path component of X \ {y} containing g(y). It follows that z ∈ Ag(y)
if and only if y /∈ [z, g(y)].

In Corollary 2.12 we study maps without periodic arc cutpoints.

Corollary 2.12. Let f : X → X be a map continuous on arcs without periodic arc
cutpoints and x ∈ X be a point with fn(x) 6= x. Then the entire fn-orbit of x is
contained in Afn(x) ∪ {x}, so that if x is not periodic then Ofn(fn(x)) ⊂ Afn(x).

Proof. First observe that if x is an arc endpoint then the claim holds because then
Afn(x) = X \ {x}. Assume now that x is not an arc cutpoint. Suppose by way of
contradiction that there exists the minimal m such that fmn(x) /∈ Afn(x). By the

assumption fmn(x) 6= x. Set E = {x, fn(x), fn(m−1)(x)} and Y = Ch(E). Then
Ch(fn(E)) ⊃ Y . By Lemma 2.10 there is a periodic point y ∈ Y with Ofn(y) ⊂ Y .
Since fmn(x) /∈ Afn(x) then y /∈ E which implies that y is an arc cutpoint, a
contradiction. �

In the interval case Corollary 2.12 deteriorates to an obvious statement according
to which if there are no interior periodic points of f : [0, 1]→ [0, 1] then all points
of (0, 1) map in the same direction under f .

3. Proofs of main results

We need the following definition inspired by that of a recurrent point.

Definition 3.1. Consider a point x of a uniquely arcwise connected space X.
Suppose that a map g : X → X is given. If for any y ∈ X, y 6= x there exists n > 0
such that x and gn(x) belong to the same path component of X \{y} then x is said
to return (to path components, under g) (or to be a returning (to path components,
under g) point). If x returns to components under any power of g then we say that
x totally returns (to path components, under g) (or is a totally returning (to path
components, under g) point).

By a preperiodic point we mean a non-periodic point which eventually maps to
a periodic point. We need the following simple observation.

Lemma 3.2. If g : X → X is given and a point x ∈ X is such that x 6= g(x) =
g2(x) then x is not returning to path components under g. If y is totally returning
then y is not preperiodic.
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Proof. Choose z separating x from g(x); it follows that g(x) does not return to the
path component of X \ {z} containing x and proves the claim. Applying this claim
to y and gN with sufficiently large N completes the proof of the lemma. �

To prove lemmas leading to the proof of Theorem 3.6 which implies Theorem 1.18
we make the following Standing Assumption about the map we are working with.

Standing Assumption. We assume that f : X → X is a continuous on arcs map
such that all points totally return to path components.

Suppose that Y ⊂ X is arcwise connected and such that fN (Y ) ⊂ Y . Then fN |Y
is such that all points totally return to path components. However as example 2.2
shows we cannot guarantee that fN |Y is continuous on arcs. Still, Lemma 2.8 and
Corollary 2.9 allow us to work with powers of f .

The next key lemma is an important technical result.

Lemma 3.3. Suppose that x′ ∈ X is such that fn(x′) = x′. Then it is impossible
that for some t 6= x′ we have [x′, t] ⊂ [x′, fn(t)).

Proof. Suppose otherwise. Then by Corollary 2.9 there exists a point z = z0 ∈
(x′, t) such that fn(z) = t, a point z1 ∈ (x, z) such that fn(z1) = z, etc. The
sequence zi is ordered on [x′, t] in the sense of induced order so that zi+1 separates
zi = fn(zi+1) from x′ on [x′, t], and zi → x for some point x ∈ [x′, t]. By Corol-
lary 2.9 fn([zi+1, zi]) ⊃ [zi, zi−1]. Thus for any m we have fnm(x, zm) ⊃ (x, z).

Consider the union Y =
⋃
i f

ni(x, z]. Since (x, z] ⊂ fn(x, z], it follows that
fn(Y ) = Y . Clearly, Y ⊂ X is uniquely arcwise connected. Let us show that Y
contains no periodic points. Indeed, suppose that Y contains a periodic point u.
Then we can choose N so big that zN is very close to x and (x, zN ] contains no
points of Of (u). Since fNn(x, zN ] ⊃ (x, z], then the periodic point u has eventual
preimages which do not belong to Of (u). As this contradicts Lemma 3.2, we see
that indeed Y contains no periodic points. By Corollary 2.9 this implies that, e.g.,
z1 does not totally return to path components, a contradiction. �

We will need the following simple fact.

Lemma 3.4. A continuous map of a tree to itself has a fixed point. In particular,
suppose that Z ⊂ X is a tree with all its cutpoints periodic such that fn maps its
endpoints map to Z. Then there is an fn-fixed point in Z.

Proof. The first claim of the lemma is well-known (see, e.g., [Nad92]). To prove
the second observe that f is one-to-one on its cutpoints. Since by the assumption
f is continuous on Z, it follows that in fact f maps Z homeomorphically onto its
image f(Z). Hence, the f -images of endpoints of Z are the endpoints of f(Z).
Repeating this argument n times we see that fn|Z is a homeomorphism of Z onto
fn(Z) and that the fn-images of the endpoints of Z are the endpoints of fn(Z).
By the assumption this implies that fn(Z) ⊂ Z. Hence by the first claim of the
lemma there are fn-fixed points in Z. �

Though assumptions on continuity of f are weak, we prove for f some standard
properties; recall, that Fn(f) is the set of all fn-fixed points of f . Thus, if Y ⊂ X
is such that fn(Y ) ⊂ Y , then Fk(fn|Y ) is the set of all fnk-fixed points in Y .

Lemma 3.5. Let Y ⊂ X be arcwise connected and such that fk(Y ) ⊂ Y . Then
the set Fn(fk|Y ) is arcwise connected and closed on arcs. The set F1(fk|Y ) is
non-empty (and so all sets Fn(fk|Y ) are non-empty).
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If z /∈ Fn(fk|Y ) then by Lemma 3.5 we can define the point pFn(fk|Y )(z) = xn(z)
for which the path component of Y \ {xn(z)} which contains z contains no points
of Fn(fk|Y ) (in particular, [z, xn(z)) ∩ Fn(fk|Y ) = ∅).

Proof. For brevity throughout the proof we set Fi(f
k|Y ) = Fi, i = 1, 2, . . . . Let us

assume that Fn 6= ∅. First we show that Fn is arcwise connected. Indeed, otherwise
there are two points x, y ∈ Fn such that [x, y] 6⊂ Fn. Choose a point z ∈ (x, y)
such that fkn(z) 6= z. Clearly, then at least one these two statements holds: (1)
[x, z] ⊂ [x, fkn(z)), or (2) [y, z] ⊂ [y, fkn(z)). By Lemma 3.3 this contradicts our
Standing Assumption. Thus, Fn is arcwise connected. By Lemma 2.4 this implies
that Fn is closed on arcs.

We claim that Fn 6= ∅ for some n. Assume otherwise and consider x ∈ Y . Then
fk(x) 6= x, and by Corollary 2.12 Ofk(x) ⊂ Afk(x). If for a point y /∈ Afk(x) there

exists an integer n with fnk(y) = x, then Ofk(x) ⊂ Afk(x) implies that y does not

return to path components under fk, a contradiction. Hence x /∈ fkn(Y \ Afk(x))

for every n. We claim that then fkn(Y \ Afk(x)) ⊂ Afk(x) for every n. Indeed,

otherwise we can choose a point y ∈ Y \Afk(x) with fkn(y) /∈ Afk(x)∪{x}. Since

fkn(x) ∈ Afk(x) then by Lemma 2.8 there exists a point z ∈ [y, x] with fkn(z) = x,
a contradiction. Hence Fn 6= ∅ for some n.

Now, take x ∈ Fn and consider the set Ofk(x) ⊂ Fn. Then Z = Ch(Ofk(x)) ⊂
Fn is a tree. By Lemma 3.4 there are fk-fixed points in Z. Hence F1 6= ∅. �

Recall that Dn(f) = Dn is the union of set Fn(f) = Fn, n = 1, . . . , n.

Theorem 3.6. If X is uniquely arcwise connected and f : X → X is continuous
on arcs then all points of X totally return to path components under f if and only
if all arc cutpoints of X are periodic. Moreover, then the following holds.

(1) The map f is one-to-one; the set of all arc cutpoints of X is fully invariant.
(2) The sets Fn(f) and Dn(f) are arcwise connected for any n.
(3) An endpoint x of X is periodic or belongs to a weak adding machine gener-

ated by cycles of arcwise connected sets (then x is a limit point of a sequence
of branchpoints of X).

(4) If X is ray complete (e.g., if X is compact) then an endpoint of X is periodic
or belongs to a full weak adding machine. If X is a tree then there exists
N such that fN is the identity map.

Proof. Denote by Ar the set of all arc cutpoints of X. Also, let Pf =
⋃
Dn be the

set of all periodic points of f . First we prove that if all points of X totally return to
path components under f then Ar ⊂ Pf . By Lemma 3.5 F1 6= ∅ and since F1 ⊂ Fi,
then Dn is arcwise connected for any n. Hence Pf is invariant and uniquely arcwise
connected. Let us show that Ar ⊂ Pf .

Indeed, otherwise there exists an arc cutpoint x /∈ Pf and a non-degenerate path
component A of X \ {x} disjoint from Pf . Take a point y ∈ A. Since y returns
to path components under f , there exists N such that fN (y) ∈ A. Connect x
and a fixed point a ∈ Pf to create an interval [a, x] which intersects Pf over an
interval [a, b] or over an interval [a, b). Denote by B the path component of X \ {b}
containing x.

We claim that fN (b) = b. Indeed, [a, b) ⊂ Pf , hence f |[a,b) is one-to-one which
implies that in fact f |[a,b] is one-to-one. Repeatedly applying this, we see that

fN [a, b] = [a, fN (b)] and that [a, fN (b)) ⊂ Pf . If fN (b) ∈ B then there are points
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of Pf close to fN (b) which belong to B, a contradiction. If fN (b) /∈ B then, since
fN (y) ∈ A, we have [fN (b), fN (y)] ⊃ [fN (b), x] ⊃ [fN (b), b]. Since X is uniquely
arcwise connected, an interval (z, b) of points of [a, b) is contained in (fN (b), b) and
hence in fN [b, y]. Since by Lemma 3.2 the map f has no preperiodic points, we
arrive at a contradiction.

This implies that no point of B ever maps to b. We claim that fN (B) ⊂ B.
Indeed, fN (y) ∈ A ⊂ B. If now there is a point d ∈ B with fN (d) /∈ B then by
Lemma 2.8 there is a point u ∈ B with fN (u) = b again contradicting Lemma 3.2.
Thus, fN (B) ⊂ B. Since A contains no periodic points of fN , by Lemma 3.5 it
contains some points which do not totally return to path components under fN |A,
and hence do not totally return to path components under f , a contradiction. This
completes the proof of the fact that if all points of X return to path components
under f then Pf contains all arc cutpoints of X.

We denote by Ar the set of all arc cutpoints of X. Assume now that all points
x ∈ Ar are periodic. Then f is one-to-one on Ar. Let x 6= y but f(x) = f(y) = z. If
no point t ∈ (x, y) maps to z we can choose t ∈ (x, y) and observe that points z and
f(t)] can be connected with two arcs, f [x, t] and f [t, y]. If there exists t ∈ (x, y)
with f(t) = z we can apply the same argument to [t, y]. Thus, f is one-to-one, and
hence all powers of f are one-to-one (in particular, for any closed arc I = [a, b] ⊂ X
and any N , the map fN |I is a homeomorphism onto image).

This immediately implies that Ar is forward invariant. On the other hand if an
arc endpoint x maps to an arc cutpoint f(x) then f(x) is periodic of period, say, n,
and f(x) has two distinct preimages: x and fn−1(f(x)) (by the above fn−1(f(x))
is an arc cutpoint of X and hence fn−1(f(x)) 6= x), a contradiction. Hence Ar is
fully invariant (both its image and its preimage are contained in it).

We claim that the set FN is arcwise connected for any N . Indeed, if x, y ∈ FN ,
then FN |[x,y] is a homeomorphism onto [x, y] with all points being periodic. By

Lemma 1.12 this implies that fN |[x,y] is the identity map and hence [x, y] ⊂ Fn.
Thus, FN is arcwise connected. By Lemma 2.4 this implies that FN is closed on
arcs. Moreover, Pf 6= ∅ implies by Lemma 3.4 that F1 6= ∅. Then Dn is arcwise
connected for any n. Since each Fi is closed on arcs, then so is Dn for any n.

Let us show that all points of X totaly return under f . We may assume that
x is an arc endpoint of X. Suppose that a number n and a point y 6= x are
given. Choose points u, v ∈ (x, y) so that x < u < v < y in the induced order on
[x, y]. Choose a number k such that fk(u) = u, fk(v) = v. Then f ik is identity on
[u, v]. Sincef ik is continuous on arcs and one-to-one then f ik(x) belongs to the arc
component of X \ {y} containing x. Hence, x totally returns to path components
under f as desired.

Let us prove claims (1)-(4) assuming that Ar ⊂ Pf (and hence, by the above, all
points of X totally return to path components under f). We have already proven
(1) and (2) for such maps. To prove (3) we first make some observations. Take a
path component An of X \ Dn. Choose the smallest N with fN (An) ∩ An 6= ∅.
Choose z′ ∈ An and let pDn

(z′) = t0n. Then An is a path component of X \ {t0n}
disjoint from Dn. Since f has no preperiodic points, no point of An ever maps to
Dn, and so fN (An) ⊂ An. Clearly, f i(An) is a subset of a path component T in of
X \Dn and by the choice of N the sets T in, i = 0, . . . , N−1 are all pairwise disjoint.
Thus, the sets An = T 0

n , T
i
n, . . . , T

N−1
n form a cycle of sets. Similar to the above,
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for each set T in there is a unique point tin = pDn
(T in) ∈ Dn such that T in is a path

component of X \ {tin}.
Let the period of t0n be m. To prove that t0n is an arc branchpoint, choose a point

u ∈ T 0
n and set I = [t0n, u]. Since u is an arc cutpoint, u is periodic of period km

with k > 1. It follows that fkm|I is the identity map and the set Y =
⋃k−1
i=0 f

im(I)
is a finite tree on which fkm is the identity map. If t0n is not an arc branchpoint of
Y , then the fact that fm(t0n) = t0n implies that a small subarc of Y with an endpoint
t0n consists of fm-fixed points, a contradiction with the fact that all fm-fixed points
are contained in Dn. Thus, t0n is an arc branchpoint of X. Similarly, all points tin
are branchpoints of X.

Now, let z be an arc endpoint of X which is not periodic. By the above for
any n we can choose an arc component T 0

n of X \Dn so that z ∈ T 0
n and then the

cycle of the sets Cn = T 0
n ∪ · · · ∪ TN−1n for some N . As the number n grows, we

will find a nested sequence of cycles of sets C0 ⊃ C1 ⊃ . . . containing z of periods
m0 < m1 < . . . . To show that C∞ =

⋂
Ci is a weak adding machine, it suffices to

show that a nested sequence of sets T j00 ⊃ T j11 ⊃ . . . from cycles of sets Ci is such

that the intersection Z =
⋂
T jii is either empty or a singleton. Indeed, otherwise

Z is a non-degenerate arcwise connected subset of X which is wandering (i.e., all
its images are pairwise disjoint). Clearly, there are arc cutpoints of X in Z. This
contradicts the periodicity of all arc cutpoints of X and completes the proof of (3).

To prove (4), take a nested sequence of sets T j00 ⊃ T j11 ⊃ . . . and the points

tjii defined above. Then there is a unique ray R connecting the points tjii . If X

is ray complete then the intersection Z =
⋂
T jii is non-empty because it contains

the point to which R converges at infinity. Finally, the claim in (4) about trees
immediately follows from (3) because trees have finitely many branchpoints. �

Now let us prove that Theorem 3.6 implies Theorem 1.18. Lemma 3.7 shows
how recurrent and totally returning points are related.

Lemma 3.7. If f : X → X is a continuous map of X ∈ GD and x is a recurrent
point of f then x is totally returning.

Proof. Choose y 6= x and denote by A the component of X \ {y} containing x.
Choose a small neighborhood B of x so that B ⊂ A. Finally, suppose that a
positive integer N is given. Since y is recurrent, then by Theorem 1.11 there exists
n such that fNn(x) ∈ B ⊂ A as desired. �

Proof of Theorem 1.18. First observe that continuous maps are continuous on arcs.
This and Lemma 3.7 imply that Theorem 3.6 holds in our setting. By Lemma 1.9,
Theorem 3.6(1) implies Theorem 1.18(1). Clearly, Theorem 3.6(2) and continuity
of f imply Theorem 1.18(2). To prove Theorem 1.18(3) we need to show that
the weak adding machine C∞ from Theorem 3.6(3) is topological. Suppose that
C∞ is generated by cycles of sets Ci, i = 0, 1, . . . of periods Ni, i = 0, 1, . . . . By
Lemma 1.16 it suffices to show that sets from cycles of sets Ci are open in Ci
in relative topology for any i. However this follows from Lemma 1.9. Finally,
Theorem 1.18(4) immediately follows from Theorem 3.6(4). �

In conclusion observe that a generalized dendrite X admits a canonical ray com-

pletion X̂. A sketch of the construction follows. Consider all rays in X which
do not converge at infinity. Two such rays R1, R2 have either coinciding (from
some moment on), or disjoint (from some moment on) tails. In the former case we
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consider them equivalent. To each class of equivalence we associate a point of X̂

called a point at infinity. Define X̂ as the union of X and the just defined points
at infinity; as neighborhoods of those points we take components C of sets X \ {b}
where b is a point of X united with all points at infinity defined by rays contained

in C. It is easy to see that the space X̂ is a ray complete generalized dendrite.
A pointwise-recurrent continuous map f : X → X can be extended to a point-

wise-recurrent continuous map f̂ : X̂ → X̂ of the ray completion X̂ of X. Then

f : X → X can be viewed as a result of removing from X̂ of a few backward
orbits of endpoints of X. It is not necessarily so that removed points belong to
topological adding machines; some removed points my be periodic. Removing a
periodic endpoint creates a ray in X which does not converge at infinity and is such

that its tail consists of points of the same period. The space X̂ may be a dendrite
or even a tree.

References

[AEO07] G. Acosta, P. Eslami, L. Oversteegen, On open maps between dendrites, Houston Journal

of Mathematics 33 (2007), 753–770.
[ALM00] L. Alseda, J. Llibre, M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimen-

sion One, Adv. Ser. in Nonlinear Dynamics 5, World Scientific, Singapore (2000).

[Bes88] M. Bestvina, Degenerations of the hyperbolic space, Duke Math. J. 56 (1988), no. 1,
143-161.

[BFMOT11] A. Blokh, R. Fokkink, J. Mayer, L. Oversteegen, E. Tymchatyn Fixed point theorems

for plane continua with applications, Memoirs of the AMS 224 (2013), no. 1053.
[Blo80s] A. Blokh, On Dynamical Systems on One-Dimensional Branched Manifolds. 1, 2, 3 (in

Russian), Theory of Functions, Functional Analysis and Applications, Kharkov, 46 (1986),

8–18; 47 (1986), 67–77; 48 (1987), 32–46.
[ES45] R. Erdös, A. H. Stone, Some remarks onalmost periodic transormations, Bull. Amer.

Math. Soc. 51(1945), 126–130.
[Got44] W. H. Gottschalk, Powers of homeomorphisms with almost periodic properties, Bull.

Amer. Math. Soc. 50(1944), 222–227.

[HY88] J. Hocking, G. Joung, Topology (Dover Books on mathematics), Dover (1988).
[KP98] B. Kolev, M.-C. Pérouème, Recurrent surface homeomorphisms, Math. Proc. Cambridge

Philos. Soc. 124 (1998), 161–168.

[MO90] J. Mayer, L. Oversteegen, A topological characterization of R-trees, Trans. Amer. Math.
Soc. 320 (1990), no. 1, 395-415.

[MNO92] J. Mayer, J. Nikiel, L. Oversteegen, Universal spaces for R-trees, Trans. Amer. Math.

Soc. 334 (1992), 411–432.
[Mon37] D. Montgomery, Pointwise periodic homeomorphisms, Amer. J. Math. 59 (1937), 118–

120.
[MS84] J. Morgan, P. B. Shalen, Valuations, trees, and degenerations of hyperbolic structures: I

, Ann. of Math. (2) 122 (1984), 401–476.

[MS88] J. Morgan, P. B. Shalen, Degenerations of hyperbolic structures. II. Measured laminations
in 3-manifolds, Ann. of Math. (2) 127 (1988), no. 2, 403-456.

[MT89] P. Minc, W. Transue, Sharkovskii’s theorem for hereditarily decomposable chainable con-

tinua, Trans. Amer. Math. Soc. 315(1989), 173–188.
[Nad92] S. Nadler, Continuum theory: An Introduction, Chapman and Hall (1992)

[Nag12] I. Naghmouchi, Pointwise-recurrent dendrite maps, Erg. Th. and Dyn. Syst. 33 (2013),

1115–1123.
[Nik89] J. Nikiel, Topology on pseudo-trees and applications, Mem. Amer. Math. Soc. 416 (1989).

[OT90] L. G. Oversteegen, E. D. Tymchatyn, Recurrent homeomorphisms on R2 are periodic,

Proc. Amer. Math. Soc. 110 (1990), 1083–1088.
[Sha64] A. N. Sharkovsky, Co-existence of the cycles of a continuous mapping of the line into

itself, Ukrain. Mat. Zh. 16 (1964), 61–71.

[Sha64a] A. N. Sharkovsky, Non-wandering points and the center of a continuous map of the line
into itself (in Ukrainian), Dop. Acad. Nauk Ukr. RSR, Ser. A (1964), 865–868.



16 A. M. BLOKH

[Sha66] A.N. Sharkovsky, The behavior of a map in a neighborhood of an attracting set (in Rus-

sian), Ukr. Math. J., 18 (1966), 60–83.

[Sha66a] A.N. Sharkovsky, The partially ordered system of attracting sets, Soviet Math. Dokl., 7
(1966), 1384–1386.

[Sha67] A. N. Sharkovsky, On a theorem of G. D. Birkhoff, (in Russian), Dop. Acad. Nauk Ukr.

RSR, Ser. A (1967), 429–432.
[Sha68] A.N. Sharkovsky, Attracting sets containing no cycles (in Russian), Ukr. Math. J., 20

(1968), 136–142.

[Thu88] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer.
Math. Soc. (N.S.) 19 (1988), no. 2, 417-431.

[Wea72] N. Weaver, Pointwise periodic homeomorphisms of continua, Ann. Math. 95 (1972),

83–85.

(Alexander M. Blokh) Department of Mathematics, University of Alabama at Birming-

ham, Birmingham, AL 35294-1170

E-mail address, Alexander M. Blokh: ablokh@math.uab.edu


