
THE JULIA SETS OF QUADRATIC CREMER
POLYNOMIALS

ALEXANDER BLOKH AND LEX OVERSTEEGEN

Abstract. We study the topology of the Julia set of a quadratic
Cremer polynomial P . Our main tool is the following topological
result. Let f : U → U be a homeomorphism of a plane domain
U and let T ⊂ U be a non-degenerate invariant non-separating
continuum. If T contains a topologically repelling fixed point x
with an invariant external ray landing at x, then T contains a non-
repelling fixed point. Given P , two angles θ, γ are K-equivalent if
for some angles x0 = θ, . . . , xn = γ the impressions of xi−1 and
xi are non-disjoint, 1 ≤ i ≤ n; a class of K-equivalence is called
a K-class. We prove that the following facts are equivalent: 1)
there is an impression not containing the Cremer point; 2) there is
a degenerate impression; 3) there is a full Lebesgue measure dense
Gδ-set of angles each of which is a K-class and has a degenerate im-
pression; 4) there exists a point at which the Julia set is connected
im kleinen; 5) not all angles are K-equivalent.

1. Introduction

Polynomial dynamics studies trajectories of points under a polyno-
mial map P : C → C of the complex plane C into itself. The most
interesting dynamics takes place on the Julia set J of P which can be
defined as the closure of the set of all repelling periodic points of P .
The set J can be either connected or disconnected, and in this paper
we concentrate upon the case when J is connected.

Let Ĉ be the complex sphere, P : Ĉ → Ĉ be a degree d polynomial
with a connected Julia set JP . Denote by KP the corresponding filled-
in Julia set. Let θ = zd : D→ D (D ⊂ C is the open unit disk). There

exists a conformal isomorphism Ψ : D → Ĉ \KP with Ψ ◦ θ = P ◦ Ψ
[DH85]. The Ψ-images of radii of D are called external rays (to the
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Julia set J) and are denoted Rα where α is the corresponding angle.
If the Julia set is locally connected, the topology and dynamics of JP

are well described. Indeed, if JP is locally connected, then Ψ extends

to a continuous function Ψ : D → Ĉ \KP and Ψ ◦ θ = P ◦ Ψ. Let
S1 = ∂D, σd = θ|S1 , ψ = Ψ|S1 . Define an equivalence relation ∼P on
S1 by x ∼P y if and only if ψ(x) = ψ(y). The equivalence ∼P is called
the (d-invariant) lamination (generated by P ). The quotient space
S1/ ∼P = J∼P

is homeomorphic to JP and the map f∼P
: J∼P

→ J∼P

induced by σd is topologically conjugate to P . The set J∼P
(with the

map f∼P
) is a topological (combinatorial) model of P |JP

and is often
called the topological (combinatorial) Julia set.

Let us call irrational neutral periodic points CS-points. In his fun-
damental paper [K04] Kiwi extended the above construction to all
polynomials P with connected Julia set and no CS-points. For such
polynomials he obtained a d-invariant lamination ∼P on S1. Then
J∼P

= S1/ ∼P is a locally connected continuum and P |JP
is semi-

conjugate to the induced map f∼P
: J∼P

→ J∼P
by a monotone map

m : JP → J∼P
(by monotone we mean a map whose point preimages

are connected). The lamination ∼P generated by P provides a combi-
natorial description of the dynamics of P |JP

. In addition Kiwi proved
that at all periodic points p of P in JP the set JP is locally connected
at p and m−1 ◦m(p) = {p}.

In what follows we consider a quadratic polynomial P with a Cremer
fixed point (i.e. with a neutral non-linearizable fixed point p ∈ J such
that P ′(p) = e2πiα with α irrational). Such a polynomial is said to be a
Cremer polynomial, and its Julia set is called a Cremer Julia set. Let us
have an overview of known results concerning the dynamics of Cremer
polynomials and the topology of their Julia sets. By Sullivan [Sul83], a
Cremer Julia set J is not locally connected (at every point). Still, there
are points in J at which rays are landing (e.g., repelling periodic points
[DH85]), so it makes sense to study in more detail the pattern in which
such landing can occur. In this respect the following important ques-
tion is due to C. McMullen [McM94]: can a Cremer Julia set contain
any points at which at least two rays are landing (so-called biaccessible
points)? This question was partially answered by Schleicher and Zakeri
in [SZ99, Theorem 3] (see also [Zak00, Theorem 3]) where they show
that if a Cremer Julia set contains a biaccessible point then this point
eventually maps to a Cremer point; however it is still unknown if there
exist Cremer Julia sets with biaccessible points (we relate our results
to the problem of biaccessibility of points in Cremer Julia set later on).
Another paper studying the topology of Cremer Julia sets is that of
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Sørensen [Sor98]. In this paper the author constructs Cremer polyno-
mials with rays which accumulate on both the Cremer point and its
preimage and thus gives examples of Cremer polynomials whose Julia
sets have very interesting topological properties.

To some extent our interest in the topology of Cremer Julia sets can
be explained by the fact that the results of Kiwi [K04] do not apply to
the case when P has CS-points. Thus, one needs other tools to study
Cremer Julia sets. The motivation for this paper is to develop such
tools; this is facilitated by studying topological properties (such as be-
ing connected im kleinen at points) of JP . Our main topological result
is Theorem 2.3 below (in its statement we use standard terminology
from continuum theory discussed in detail in Section 2). An easy corol-
lary of Theorem 2.3 applies to maps of continua with periodic (rather
than fixed) points. These results may be of independent interest.

Given a non-separating continuum K, a k-cross cut C of K is an
open arc in C \K whose closure meets K in two distinct points. The
shadow of C, denoted by Sh(C), is the bounded component of C\C∪K.

Theorem 2.3. Suppose that K is a non-separating plane continuum
or a point, and f : K → K is a homeomorphism in a neighborhood V
of K such that the following holds:

(1) f(K) = K;
(2) the containment f(Sh(A)) ⊂ Sh(A) is impossible for any k-

crosscut A with Sh(A) ⊂ V ;
(3) any fixed point y ∈ K is topologically repelling;
(4) (a) there exists a k-crosscut B ⊂ V with f(Sh(B)) ⊃ Sh(B), or

(b) there exists a fixed point in K and a fixed external ray which
lands at this point.

Then K is a point.

Dynamical results of the paper are obtained in Section 3 and deal

with quadratic polynomials. Recall that by Ψ : D→ Ĉ\KP we denote

a conformal (Riemann) isomorphism Ψ : D→ Ĉ\KP with Ψ◦θ = P ◦Ψ
[DH85], and that the Ψ-images of radii of D are called external rays
(to the Julia set J) and are denoted Rα where α is the corresponding
angle. We need to define the impression of an external ray Rθ (slightly
abusing the language, we will sometimes talk about the impression of
an angle). It is well-known (see, e.g., [Pom92], Theorem 2.16 on page
34) that this can be done as follows: the impression Imp(Rθ) is the set
of all limit points of sequences Ψ(zn) where zn → eiθ, zn ∈ D.

Now, in the quadratic case, the Julia set J can be either a continuum
(if the critical point c does not converge to infinity under iterations of
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the map) or a Cantor set (if the critical point c converges to infinity
under iterations of the map). Fix a Cremer polynomial P with the Julia
set J . Then J is connected and the Cremer point p belongs to ω(c)
(this follows from [Mn93] and [Per97], see also [C05, Theorem 1.3]).
Following Kiwi [K04] we say that two angles θ, γ are K-equivalent if
there are angles x0 = θ, . . . , xn = γ such that the impressions of xi−1

and xi are non-disjoint, 1 ≤ i ≤ n; a class of K-equivalence is called a
K-class, and an angle which forms a degenerate K-class is said to be
K-separate. Our main dynamical result is Theorem 3.11. To state it we
need the following definition: a continuum X is connected im kleinen
at a point x provided for each open set U containing x there exists a
connected set C ⊂ U with x in the interior of C.

Theorem 3.11. For a quadratic Cremer polynomial P the following
facts are equivalent:

(1) there is an impression not containing the Cremer point;
(2) there is a degenerate impression;
(3) the set Y of all K-separate angles with degenerate impressions

contains all angles with dense orbits (Y contains a full Lebesgue
measure Gδ-set dense in S1) and a dense in S1 set of periodic
angles, and the Julia set J is connected im kleinen at the landing
points of these rays;

(4) there is a point at which the Julia set is connected im kleinen;
(5) not all angles are K-equivalent.

The following corollary complements Theorem 3.11.

Corollary 3.12. Suppose that J is a quadratic Cremer Julia set. Then
the following facts are equivalent:

(1) All impressions are non-degenerate.
(2) The intersection of all impressions is a non-degenerate subcon-

tinuum of J containing the Cremer point and the limit set of
the critical point.

(3) J is nowhere connected im kleinen.

Finally we discuss how the conditions from Theorem 3.11 relate to
the biaccessibility of points of Cremer Julia sets. Namely, we show
that if J satisfies the conditions of Corollary 3.12 then it cannot have
biaccessible points. Hence if there are biaccessible points in J then J
satisfies the conditions of Theorem 3.11 and thus, in particular, there
exists a full measure dense Gδ-set of angles such that the impressions
of their rays are degenerate and, moreover, J is connected im kleinen
at the landing points of these rays.
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In conclusion we would like to thank the referee for thoughtful re-
marks and suggestions.

2. Fixed point type theorems

By a continuum we mean a non-degenerate compact, connected and
metric space. A continuum K ⊂ C is non-separating if C \K is con-
nected. In Section 2 we assume that we are given a non-separating
continuum K with a map f defined on its neighborhood (other proper-
ties of f will be detailed in the statements). The main applications deal
with polynomials, so the reader can think of f as being the restriction
of a polynomial; however, the results apply to a larger class of maps.

The topological hull T (X) of a plane continuum X is the complement
to the unbounded component of C \X (i.e., the union of X and all of
the bounded components of C \ X). Observe that T (X) is always
a non-separating continuum. A simply connected open set U whose
boundary is a Jordan curve is said to be a Jordan disk. Given a point z
we denote by Br(z) an open ball of radius r centered at z and by Sr(z)
the boundary of Br(z). An f -periodic point x of (minimal) period
n is said to be topologically repelling if there exists a Jordan disk U
containing x and a homeomorphism ψ : D→ U such that for any r < 1
the curve ψ(Sr(0)) = Qr is mapped outside ψ(Br(0)) = T (Qr) by fn

(in other words, the simple closed curves Qr are repelled from x by
the map fn). For brevity in what follows we say t-repelling instead
of “topologically repelling”. Slightly abusing the language we call the
disk U , and curves Qr, t-repelling (at x).

Consider a uniformization ϕ : C \ D = D∞ → C \K taking infinity
to infinity (the notation ϕ for this map is fixed throughout). The
uniformization plane is denoted by Cu. As a rule, for objects in Cu we
use the ′-notation (e.g., points on S1 are denoted a′, b′, . . . etc). The
radial ray in D∞, corresponding to an angle α, is denoted R′

α. The
images of radial rays in Cu are called external (conformal) rays (to K).
Given an external ray R we define the (induced) order on it so that
x <R y (x, y ∈ R) if and only if |ϕ−1(x)| < |ϕ−1(y)| (in other words,
x <R y in the induced order on R means that the point x is “closer” to
K on the ray R than y). The impression of the ray Rα is denoted by
Imp(α). For more information see, for example, [Mil00] or [Pom92].

Let X be a non-separating plane continuum. A crosscut (of W =
C \X) is an open arc A ⊂ W such that A is an arc with exactly two
distinct endpoints in ∂ W . A crosscut separates W into two disjoint
domains, exactly one of which is unbounded. The (open) shadow Sh(C)
of a crosscut C is the bounded component of W \ C. For crosscuts in
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Cu (called u-crosscuts) we take X = D; for crosscuts in C ⊃ K (called
k-crosscuts) we take X = K. If from the context it is clear which type
of crosscuts we consider we call them simply crosscuts. Given a ray
(radial, external) R to X, a crosscut is R-transversal if it crosses a ray R
transversally and only once. A crosscut is R-essential if it is homotopic
(with endpoints fixed) outside X to an R-transversal crosscut. If C ′

is a u-crosscut then the positively oriented arc [a′, b′] ⊂ S1 ⊂ Cu with

[a′, b′] = Sh(C ′) ∩ S1 is called the basic arc (of C ′). If R′ = R′
θ′ is

a radial ray in D∞ then a u-crosscut is R′-essential if and only if its
basic arc contains θ′ in its interior. A sequence of crosscuts {Ci} is said
to be a fundamental chain if Sh(C1) ⊃ Sh(C2) ⊃ . . . , the closures Ci

are pairwise disjoint, and diam(Ci) → 0. Fundamental chains can be
introduced for both k-crosscuts and u-crosscuts.

We begin with the following geometric lemma (see, e.g., [Mil00, Main
Lemma 17.9, p. 164]).

Lemma 2.1. Given an angle α there is a fundamental chain of R′
α-

transversal u-crosscuts C ′
i converging to the point eiα ∈ S1 ⊂ Cu such

that the corresponding Rα-transversal k-crosscuts Ci = ϕ(C ′
i) also form

a fundamental chain.

We will say that the u-crosscuts C ′
i form a fundamental chain at eiα.

Lemma 2.2 will be useful in what follows.

Lemma 2.2. Let R be an external ray, {Ci} be a fundamental chain
of R-transversal k-crosscuts which converges to a point x, and Q be a
simple closed curve containing x in its topological hull and such that
K ∩Q is non-degenerate. Then there is an arc C complementary to K
in Q, non-disjoint from R and such that C is an R-essential k-crosscut.

Proof. Clearly each component of Q \ K is a k-crosscut. It remains
to show that one of these arcs is the required R-essential k-crosscut.
To this end consider all corresponding u-crosscuts. They are pair-
wise disjoint, and their shadows are either disjoint or contain one an-
other. We can order the crosscuts by inclusion of their shadows. De-
note by E ′

1, E
′
2, . . . maximal crosscuts in the sense of this order, and

by Sh′1, Sh′2, . . . their respective shadows. The ϕ-images of these u-
crosscuts and their shadows are k-crosscuts E1, E2, . . . and their shad-
ows Sh1, Sh2, . . . .

If the collection {Ei} of k-crosscuts is infinite, the diameters of
E1, E2, . . . converge to 0, then so do the diameters of u-crosscuts
E ′

1, E
′
2, . . . (see Corollary 17.11 from [Mil00]). Hence the set F ′ =

S1 ∪ (∪Sh′i) is compact. Since x ∈ intT (Q) then there exists ε > 0
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such that the 9ε-ball centered at x is contained in int T (Q) and so
d(x,Q) > 9ε.

Let the radial ray R′ correspond to the external ray R. By the choice
of x we can choose a point z′ ∈ R′ such that d(ϕ(z′), x) < ε, and there
is an R-transversal k-crosscut C at z = ϕ(z′) of diameter at most ε.
By the choice of ε and the previous paragraph z′ ∈ F ′ and there exists
a unique j such that z′ ∈ Sh′j. We may assume that E ′

j is not R′-
essential. Then there are points s′, t′ ∈ R′ ∩ E ′

j so that the subarc L′

of R′ with endpoints s′, t′ is contained inside Sh′j and contains z′. The
points s′, t′ ∈ E ′

j define a subarc M ′ of E ′
j connecting them. Then the

union N ′ = L′ ∪M ′∪{s′, t′} is a simple closed curve whose topological
hull we denote W ′. Similar picture holds in the K-plane after the map
ϕ is applied; as always, denote the corresponding objects - ϕ-images of
just introduced ones - by s, t, L, M,N and W . Then W ∩K = ∅.

The crosscut C is transversal to R, hence one “half” of C, denoted
H, enters W . On the other hand, since d(z, x) < ε then d(z,Q) > 8ε,
hence diam(C) < ε implies that C is disjoint from Q. This implies that
H ⊂ W (H cannot get out of W through R because C is transversal
to R, H cannot get out of W through Q because C is disjoint from Q).
Thus the corresponding endpoint of H belongs to both K and W , a
contradiction. ¤

The following theorem relies upon Lemma 2.2.

Theorem 2.3. Suppose that K is a non-separating plane continuum
or a point and f : K → K is a homeomorphism in a neighborhood V
of K such that the following holds:

(1) f(K) = K;
(2) for any k-crosscut A such that Sh(A) ⊂ V the containment

f(Sh(A)) ⊂ Sh(A) is impossible;
(3) any fixed point y ∈ K is topologically repelling;
(4) (a) there exists a k-crosscut B ⊂ V with f(Sh(B)) ⊃ Sh(B), or

(b) there exists a fixed point in K and a fixed external ray which
lands at this point.

Then K is a point.

Proof. We may assume that V is simply connected and its boundary
is a Jordan curve. By way of contradiction assume that K is not
a point. There exists an open annulus U around S1 = ∂ D∞ such
that U = ϕ−1(V \ K) and ϕ maps U onto V \ K homeomorphically.
Hence there exists an induced map g : U → D∞. By the arguments
similar to the proof of [FMOT02, Theorem 2.1], g continuously extends
over S1 as a homeomorphism (g is a homeomorphism on the dense
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set of angles corresponding to the accessible points of K). Denote
this extension onto the circle by G while keeping the notation g for
the map g : U → D∞; observe that by (1) G(S1) = S1 and g is
a homeomorphism on a small closed annulus around S1 since f is a
homeomorphism on V .

Let us prove that there are fixed points of G. Indeed, it is obvious if
(4)(b) holds. Otherwise by (4)(a) f(Sh(B)) ⊃ Sh(B). Let B′ = ϕ−1(B)
and let [a′, b′] be the basic arc of B′. Then g(Sh(B′)) ⊃ Sh(B′) which
implies that G([a′, b′]) ⊃ [a′, b′]. Since G is a homeomorphism this
implies that there exist fixed points of G.

Let us prove that there are no arcs in S1 consisting of fixed points.
Suppose that an arc I ′ ⊂ S1 is such that G(y′) = y′ for any y′ ∈ I ′.
Choose a point y′ ∈ int(I ′) such that ϕ(y′) is an accessible point in K.
Then clearly ϕ(y′) is a fixed point of f . By (3) we can choose a nested
sequence of simple closed curves {Qi} such that ϕ(y′) = ∩iT (Qi) and
f(Qi)∩ T (Qi) = ∅. Choose a radial ray R′

y′ ⊂ D∞; then its ϕ-image R
lands at ϕ(y′). Let Ci be a component of Qi \K which contains a point
of R. Then Ci has two endpoints each of which is an accessible point
of K, and diam(Ci) → 0. Consider ϕ−1(Ci) = C ′

i. Then by Corollary
17.11 from [Mil00] diam(C ′

i) → 0. Since each C ′
i intersects R′

y′ this
implies that the limit of C ′

i is y′. Hence eventually the endpoints of C ′
i

belong to I ′ and therefore are fixed under G. Then the corresponding
endpoints of Ci are also fixed under f , a contradiction with the fact
that Qi maps off itself. Hence the set of all fixed points of G is a
non-empty zero-dimensional compact subset of S1.

Since G is a homeomorphism of S1, it follows that there exists a G-
fixed point t′ ∈ S1 which is attracting from at least one side. Then by
the assumptions for any small u-crosscut C ′ with basic arc [a′, b′], a′ <
t′ < b′ whose image is a k-crosscut we have g(C ′) ∩ C ′ 6= ∅ because
otherwise the shadow Sh(ϕ(C ′)) maps into itself, a contradiction. By
Lemma 2.1 we can choose a fundamental chain of R′

t′-transversal u-
crosscuts C ′

i at t′ such that Ci = ϕ(C ′
i) form a fundamental chain of

Rt′-traversal k-crosscuts. By taking a subsequence we may assume that
Ci converge to a point k ∈ K. Since f(Ci)∩Ci 6= ∅, we have f(k) = k.
As before, let R′ = R′

t′ and R = ϕ(R′). Observe that by the choice of
the point k Lemma 2.2 applies to the external ray R and the point k.

Since k is fixed then it is t-repelling. Take a nested sequence of
t-repelling pairwise disjoint simple closed curves Qi such that k =
∩iT (Qi). By Lemma 2.2 for any i there is a complementary to K arc Hi

in Qi such that Hi is an R-essential k-crosscut. Then the u-crosscuts
ϕ−1(Hi) = H ′

i are R′-essential. Since the diameter of Qi → 0, the
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diameter of H ′
i → 0 (see by Corollary 17.11 from [Mil00]). Since the

crosscuts H ′
i are R′-essential we may assume, by taking a subsequence

if necessary, that H ′
i+1 ⊂ Sh(H ′

i) and the sequence H ′
i is a fundamental

chain. Thus, H ′
i → t′ as i →∞. Since t′ is attracting from at least one

side this implies that for i sufficiently big at least one endpoint of the
basic arc of H ′

i is mapped by G inside this basic arc. Since all curves
Qi are disjoint from their images then so are all u-crosscuts H ′

i. Thus
we can conclude that for any sufficiently big i the u-crosscut H ′

i maps
inside Sh(H ′

i) by g which implies that g maps the entire shadow Sh(H ′
i)

into itself. Applying the map ϕ we observe that then the shadow in
the k-plane Sh(ϕ(H ′

i)) maps by f into itself, a contradiction to (2).
Thus our assumption that K is not a point fails and the theorem is
proven. ¤

Theorem 2.3 can be applied to powers of the map as well. Thus,
Corollary 2.4 follows (in this corollary whenever speaking of powers of
f we consider them on sufficiently small neighborhoods of K on which
they are well-defined).

Corollary 2.4. Suppose that K is a non-separating plane continuum
or a point, and f : K → K is a homeomorphism in a neighborhood V
of K such that the following holds:

(1) f(K) = K;
(2) for any k-crosscut A with Sh(A) ⊂ V and any power m the

containment fm(Sh(A)) ⊂ Sh(A) is impossible;
(3) any periodic point y ∈ K is topologically repelling;
(4) (a) there exists a k-crosscut B ⊂ V and a positve integer l such

that f l(Sh(B)) ⊃ Sh(B), or
(b) there exists a periodic point in K and a periodic external
ray which lands at this point.

Then K is a point.

Observe that without condition (4) of Theorem 2.3 (or condition (4)
of Corollary 2.4) the conclusion that K is a point fails. A simple
example is a homeomorphism of the unit disk which is an irrational
rotation on the angles such that all points not at the center of the disk
are attracted to its boundary. A tree-like continuum with analogous
properties can be constructed similarly (recall that a planar continuum
is tree-like if it is non-separating and has empty interior).
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3. Quadratic polynomials

Fix a quadratic Cremer polynomial P = z2 + v with the Julia set
J and the Cremer fixed point p. In this case J is a tree-like contin-
uum and, hence, each subcontinuum of J is a non-separating, one-
dimensional plane continuum. It follows that the intersection of any
two subcontinua of J is connected. Denote the critical point 0 of P
by c, and the restriction of z2 onto S1 by σ. Denote the external ray
(to J) with argument γ by Rγ (while this notation was used above
for external rays to a non-separating continuum K, now it is used for
J), and denote the impression Imp(Rθ) by Imp(θ). In what follows
speaking of points we mean points in the dynamic plane while angles
mean arguments of external rays. We investigate the topology of J ;
even though it is well known that a Cremer Julia set is not locally con-
nected as a set [Sul83], still there are other topological notions (such as
being connected im kleinen at points), studied below in the dynamical
context.

In a recent paper [CMR05, Theorem 1.1] the following theorem is
proven for all polynomials.

Theorem 3.1. The Julia set of a polynomial P is indecomposable if
and only if there exists an angle γ such that Imp(γ) = J(P ); in this
case the impressions of all angles coincide with J(P ).

From the topological standpoint, if the Julia set is indecomposable
then one cannot use impressions to further study its structure: the
latter assumes representing J = J(P ) as the union of smaller more
primitive continua which is impossible in the case when J is indecom-
posable. Thus, for the most part the main results of this section will
be informative only when the Julia set is decomposable.

Theorem 3.2. Suppose that γ is a σ-periodic angle. If Imp(γ) does
not contain p then Imp(γ) is a singleton.

Proof. We will use the well-known fact that p ∈ ω(c) (see [Mn93, Per97]
and also [C05, Theorem 1.3]). Let n be the period of γ, T = Imp(γ).
Then P n(T ) = T . Suppose that p 6∈ T . Then P n|T is a homeomor-
phism. Indeed, otherwise some iterate of T contains c because if all
iterates of T does not contain c then P n|T will be a homeomorphism,
a contradiction. This in turn will imply that ∪n−1

i=0 P i(T ) contains ω(c)
and hence p. In this case the Cremer point p will belong to T , a con-
tradiction. So, indeed P n|T is a homeomorphism. Also, all periodic
points in T are repelling. Now by Theorem 2.3 applied to P n|T we see
that T is a point. ¤
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Lemma 3.3 studies how impressions of rays intersect.

Lemma 3.3. Let u, v be two angles such that X = Imp(u)∩Imp(v) 6= ∅
and denote the two components of C \ [Ru ∪ Imp(u) ∪Rv ∪ Imp(v)] by
M and H. Suppose that T ⊂ J is a continuum which satisfies one of
the following conditions:

(1) T is non-disjoint from M and from H;
(2) T = Imp(θ) ∪ Imp(γ) where θ ∈ (u, v), γ ∈ (v, u).

Then X ⊂ T .

Proof. If T satisfies (1) then there exists an open arc Am whose closure
is a closed arc connecting a point y ∈ T ∩M with infinity inside M ;
clearly, there exists an analogous arc Ah ⊂ H. If T satisfies (2) then
from now on we assume for definiteness that the rays of angles from
(u, v) fill out M while the rays of angles from (v, u) fill out H. Set
Am = Rθ, Ah = Rγ. Then in either case from above Z = Am ∪Ah ∪ T
is a connected set whose complement consists of two connected open
sets N ⊃ Ru and S ⊃ Rv (recall that all continua involved are non-
separating).

Let us prove that Imp(v) ⊂ S. Consider cases (1) and (2).
(1) Observe that by the choice of Am and Ah we have that Imp(v) is

disjoint from Am and Ah. Thus we can choose an Rv-essential crosscut
C of J such that the closure Sh(C) of its shadow Sh(C) is disjoint from
Am ∪ Ah (note also, that C is disjoint from T since T ⊂ J). Then

Sh(C) ⊂ S and hence Imp(v) ⊂ Sh(C) ⊂ S.
(2) Since in this case Am and Ah are external rays then the claim

that Imp(v) ⊂ S follows from the fact that Rv ⊂ S.
Similarly, Imp(u) ⊂ N . Hence X ⊂ (N ∩ S) \ (Am ∪ Ah) ⊂ T . ¤
Let us now state a few more facts about Cremer polynomials (see,

e.g., [GMO99]). The notation introduced here will be used from now
on. It is well-known that given a Cremer polynomial P with P ′(p) =
e2πρi, there exists a special rotational Cantor set F ⊂ S1 such that σ
restricted on F is semiconjugate to the irrational rotation by the angle
2πρ [BS94, Theorem 1]; the semiconjugacy ψ is not one-to-one only
on the endpoints of countably many intervals complementary to F (ψ
maps the endpoints of each such interval into one point). Of those
complementary intervals to F the most important one is the critical
leaf (diameter) with the endpoints denoted below by α and β = α+1/2
(for definiteness we assume that 0 < α < 1/2). The set F = ω(α) is
exactly the set of points whose entire orbits are contained in [α, β].

Important properties of F are that p ∈ Imp(γ) for every γ ∈ F , and
{p, c,−p} ⊂ Imp(α) ∩ Imp(β) = K ⊂ B (Theorem 4.3 of [GMO99]).
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Let B ⊂ J be the union of all impressions of angles of F . Then B
is a continuum because impressions are upper-semicontinuous (i.e. if
θi is a sequence of angles, θi → θ, and xi ∈ Imp(θi) is a sequence of
points converging to a point x, then x ∈ Imp(θ)). Moreover, B is a
non-separating continuum because so is J . Finally, P (B) = B because
σ(F ) = F and impressions map onto impressions. Hence, and since
c ∈ B, we see that the orbit of c (and thus the entire ω-limit set of c)
is contained in B. Set Q = ∩γ∈F Imp(γ) (the set Q is non-empty since
p belongs to all impressions of angles γ ∈ F ).

A continuum X is connected im kleinen at x if for each open set U
containing x there exists a connected set C ⊂ U with x in the interior
of C. A continuum X is locally connected at x ∈ X provided for
each neighborhood U of x there exists a connected and open set V
such that x ∈ V ⊂ U . Observe that sometimes different terminology
is used. For example, in Milnor’s book [Mil00, p. 168] the property
of local connectivity is called “open local connectivity” while to the
property of being connected im kleinen at a point Milnor refers to as the
property of being “locally connected at a point”. On the other hand,
in the textbook by Munkres [Mun00, p. 162] connected im kleinen is
called “weakly locally connected”. Using our terminology, if a space is
locally connected at x, then it is connected im kleinen at x. It is well
known that if a continuum is connected im kleinen at each point, then
it is locally connected (see, e.g., [Mun00, p. 162, Ex. 6]). However,
a continuum can be connected im kleinen at a point without being
locally connected at this point.

As an example consider the so-called infinite broom (see [Mun00,
p. 162, Ex. 7]). Consider an interval I ⊂ C with the endpoints
x0 = a = (0, 0) and b = (1, 0). Also, set xi = (2−i, 0) and yi

j =

(2−i, 2−i−j), i = 1, . . . , j = 0, . . . . In other words, consider “vertical”
sequences of points so that each i-th sequence hovers right above xi,
converges to xi and begins at the height which equals the distance
between xi and xi−1. Now, connect each xi to all the points from the i1-
st “vertical” sequence, i.e. to the points yi+1

j , j = 0, . . . , with segments
of straight lines, and consider the union Y of all these segments and the
original interval I. It is easy to check that Y is connected im kleinen
at a. To see that it is not locally connected at a, suppose that there
is an open connected set W containing a of diameter less than 1 . We
may assume that k > 0 is the smallest number such that xi ∈ W if
i ≥ k. Then together with xk the set W must contain points yk

j for
big enough j. Hence, being connected, the set W must contain xk−1 as
well, a contradiction.
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We show that J is connected im kleinen at certain points. To do so
we prove a series of lemmas in which the following terminology is used.
A point x is said to be remote if fn(x) 6∈ B for all n. A recurrent (e.g.,
periodic) point x 6∈ B is remote because B is invariant and closed.
Also, all remote periodic points are repelling.

Lemma 3.4. The following claims hold.

(1) If γ is a periodic angle and x is the landing point of Rγ then x
is remote if and only if x 6∈ Q = ∩θ∈F Imp(θ).

(2) If x ∈ Imp(γ) is remote then x 6∈ Imp(θ) for any angle θ 6= γ.

Proof. (1) It is enough to show that if x 6∈ Q then x 6∈ B. By way of
contradiction let x ∈ Imp(θ) for some θ ∈ F . Suppose that P n(x) = x.
Choose ξ ∈ F . Then by the well-known properties of the restriction
of σ onto F there exists a sequence ij such that σnij(θ) → ξ. Since
impressions are upper-semicontinuous and x ∈ Imp(σnij(θ)) for every
n this implies that x ∈ Imp(ξ). Since ξ ∈ F is chosen arbitrarily, then
x belongs to impressions of all angles from F , thus it belongs to Q.

(2) Suppose otherwise. Since x never maps into B then γ and θ never
map into F . Since θ 6= γ then we may assume that σm(θ) ∈ (α, β) and
σm(γ) ∈ (β, α) for some m. By Lemma 3.3, Pm(x) ∈ Imp(σm(θ)) ∩
Imp(σm(γ)) ⊂ K ⊂ B, a contradiction with x being remote. Observe
that by (1) the above holds for a periodic γ such that the landing point
x of Rγ does not belong to Q. ¤

Now we prove that there are “short connections” in the Julia set
which cut impressions consisting of remote points off the rest of the
Julia set (in particular this applies to periodic remote points) and apply
it to prove that J is connected im kleinen at some points.

Theorem 3.5. Suppose that θ is an angle such that Imp(θ) consists of
remote points. Then the following holds.

(1) Imp(θ) is disjoint from the impressions of all other angles.
(2) Arbitrarily close to θ there are angles s < θ < t such that

Imp(s) ∩ Imp(t) 6= ∅.
(3) If Imp(θ) = {x} is a point then J is connected im kleinen at x.

Proof. (1) Follows immediately from Lemma 3.4
(2) Suppose otherwise. Consider all angles s, t such that Imp(s) ∩

Imp(t) 6= ∅. Then there are angles l1 ≤ l2 < θ < r1 ≤ r2 such that the
following holds:

(1) Imp(l1) ∩ Imp(r1) 6= ∅;
(2) Imp(l2) ∩ Imp(r2) 6= ∅;
(3) if l ∈ (l2, θ) and r ∈ (θ, r2) then Imp(l) ∩ Imp(r) = ∅;
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(4) if l ∈ (l1, θ) and r ∈ (θ, r1) then Imp(l) ∩ Imp(r) = ∅.
Set N = Imp(l1)∪ Imp(l2)∪ Imp(r1)∪ Imp(r2). By Lemma 3.3 N is

a continuum. Set A = N ∪ (∪z∈[l2,θ]Imp(z)), B = N ∪ (∪z∈[θ,r1]Imp(z)).
Then A and B are subcontinua of J , while A∩B = N ∪ Imp(θ) is not
connected because Imp(θ) ∩N = ∅ by (1), a contradiction.

(2) Suppose that U is an open set in J containing x. Since impres-
sions are upper semicontinuous, by (1) and (2) there exist s < θ < t
such that for all γ ∈ [s, t], Imp(γ) ⊂ U , x 6∈ Imp(s) ∪ Imp(t) and
Imp(s) ∩ Imp(t) 6= ∅. Let C = ∪a∈[s,t]Imp(a). Then C ⊂ U is con-
nected. We claim that x is in the interior of C.

Indeed, set A = Rs ∪ Imp(s) ∪ Rt ∪ Imp(t). Then C \ A consists of
two components. Denote the one containing x by W and the other one
V . Let d(x,A∪∂U) = ε. Consider the ε/2-disk D centered at x. Then
D ⊂ W is disjoint from A ∪ V , and D ∩ J ⊂ C since points of D ∩ J
cannot belong to impressions of angles not from (s, t). Thus, x belongs
to the interior of C as desired. ¤

As an example consider a periodic angle θ such that the landing point
x of Rθ does not belong to Q and p 6∈ Imp(θ); then by Theorem 3.2
and Lemma 3.4 we see that Lemma 3.5 applies to θ and its impression.

It is well known that quadratic Cremer Julia sets are not locally
connected [Sul83]. However it is not known at which points the Julia
set is connected im kleinen. Theorem 3.5 contains conditions under
which the Julia set is connected im kleinen at a point. In Theorem 3.11
we study when these conditions are satisfied. In fact, Theorem 3.11
establishes a strong connection between local and global properties of
a Cremer Julia set. We prove that there exist points at which the Julia
set is connected im kleinen (local property) if and only if the polynomial
has one of a number of global properties (such as the existence of
impressions not containing the Cremer point). First we establish that
a quadratic Cremer Julia sets J is never connected im kleinen at the
Cremer point p (and hence never locally connected at p).

Theorem 3.6. Let J be a quadratic Cremer Julia set, then J is not
connected im kleinen at the Cremer fixed point p.

Proof. If there exists θ with Imp(θ) = J then by Theorem 3.1 J is an
indecomposable continuum. Then J is nowhere connected im kleinen.
Hence we may assume that each impression is proper in J . By Theorem
4.3 from [GMO99] (see also [Per94]) {p, c,−p} ⊂ Imp(α) ∩ Imp(β).
Hence there are external rays which approach p and have arguments
converging to β, and there are external rays which approach −p and
have arguments converging to β. To prove our theorem we specify this
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and show that there are rays which approach both p and −p and have
arguments converging to β.

To do so we need to the following well-known facts from [BS94,
Theorem 1]. Suppose that P ′(p) = e2πρi and F ⊂ S1 is the Cantor
set with rotation number ρ. Then 1) for a rational number p/q < 1,
given in lowest terms, there exists a rotational periodic orbit Q of σ of
rotation number p/q (there is an order preserving conjugacy between
σ|Q and a rigid rotation by p/q restricted on its periodic orbit); 2) if
θ is the least element of Q and γ is the greatest element of Q then
Q ⊂ [θ, θ + 1/2]∩ [γ − 1/2, γ]; 3) if p/q < ρ then θ < α, and if p/q > ρ
then θ > α; 4) if p/q → ρ then θ → α.

By Yoccoz’s Theorem [Yoc95] (see also [Per94, Proposition II.12]
and [BS94]), if pn/qn are the convergents to α in its continued fraction
expansion, then there exists a subsequence pnk

/qnk
such that P has a

periodic orbit Ck of period qnk
, and without loss of generality we may

assume that Ck have the following properties: 1) Ck → p; 2) pnk
/qnk

<
ρ; 3) for each k the arguments of rays landing at points of Ck form a
rotational periodic orbit Qk ⊂ S1 with the least element of Qk denoted
αk < α; 4) αk → α; 5) there are points of F between αk + 1/2 and
αk+1 + 1/2 for every k. Then the external ray Rαk

lands on a point
xk ∈ Ck with lim xk = p. Set βk = αk + 1/2. Then βk < β, βk → β,
the rays Rβk

land on points −xk with lim−xk = −p, and there are
points of F in (βk, βk+1). Choose a crosscut Ik from −xk to −xk+1 so
that it is contained in the open “strip” E ′

k between the rays Rβk
, Rβk+1

,
and the Julia set J (E ′

k consists of external rays of angles from the arc
(βk, βk+1)). Denote by Ek the closure of the unbounded component of
E ′

k \ Ik, and let the distance between Ek and p be εk (slightly abusing
the definitions which apply only to the continua, i.e. bounded sets, but
invoking one’s geometric intuition we can call Ek the topological hull
of the set Rβk

∪Ik∪Rβk+1
). Do this construction for all k. Observe that

by the construction for any angle γ ∈ (βk, βk+1) the ray Rγ is disjoint
from all constructed crosscuts except for Ik.

Choose 0 < ε < d(p,−p)/9 and fix k such that d(−xi,−p) < ε for
i ≥ k. Let η = 1/2 min{ε, εk, εk+1, εk+2}. Let H be the round circle of
radius η centered at p. Since (βi, βi+1)∩F 6= ∅ and because p ∈ Imp(θ)
for all θ ∈ F then there exists γi ∈ (βi, βi+1) such that the ray Rγi

comes much closer to p than η. Hence we can find two points bi <Rγi
ai

on Rγi
(according to the order on external rays this means that bi is

farther from infinity on Rγi
than ai) such that ai ∈ Rγi

∩ Ii, bi ∈ H,
and the open segment Si of the ray Rγi

between ai and bi is disjoint
from either Ii or H.



16 ALEXANDER BLOKH AND LEX OVERSTEEGEN

Observe that the ray Rγi
is disjoint from the crosscut Ij when i 6= j;

also, all rays are pairwise disjoint. Hence the appropriate pieces of
the crosscuts (from ai to xi+1 in Ii and from xi+1 to ai+1 in Ii+1),
ray-segments Sj, j = i, i + 1, and the appropriate arc Hi from bi to
bi+1 in the circle H enclose a simply connected domain Wi. Note that
Wk ∩Wk+1 = ∅. For i = k, k + 1, let Xi ⊂ J ∩Wi be a subcontinuum
which is irreducible with respect to containing xi+1 and a point yi+1 ∈
H. Then the continua Xk and Xk+1 are disjoint since they are contained
in the closures of Wk and Wk+1 respectively, and these closures only
intersect over a part of the ray Rβk+1

which is disjoint from J . Since
Xk∩Xk+1 ⊂ H, either Xk or Xk+1 does not contain c. Assume, without
loss of generality, that c 6∈ Xk.

Since max{d(Xk, p), d(Xk,−p)} < ε < d(p,−p)/9 then we have
diam(Xk) > d(p,−p)/2. Now the map P is a homeomorphism on
Xk, hence the continuum P (Xk) is irreducible between P (−xk+1) =
P (xk+1) and P (yk+1). On the other hand, since diam(Xk) > d(p,−p)/2,
then there exists δ > 0 such that diam(P (Xk)) > δ. Thus, P (Xk) is an
irreducible continuum in J of diameter larger than δ, connecting points
P (xk+1), P (yk+1) each of which can be arbitrarily close to p. It is easy
to see that then J is not connected im kleinen at p as desired. Indeed,
suppose otherwise. Choose a neighborhood U of p of diameter smaller
than δ, and then choose a continuum C ⊂ U such that p ∈ intC.
Now, by the established properties of J around p there are two points
q, q′ ∈ intC such that the irreducible continuum between them in J is
of diameter greater than δ. However C contains them both and is of
diameter less than δ, a contradiction. ¤

If the Julia set is locally connected (see Section 1), all impressions of
external rays are points, and the combinatorial properties of the Julia
sets can be described with the help of laminations and the pinched
disk model. Moreover, Kiwi showed that similar notions can be used
to study polynomials without CS-points [K04]. These tools do not
apply to Cremer polynomials in their entirety, still we can mimic them
using the obtained results. Namely, given two angles s, t ∈ S1, connect
them with a chord Ch(s, t) inside the unit disk if and only if Imp(s) ∩
Imp(t) 6= ∅, and call them connected ; call chords like Ch(s, t) legitimate.
Suppose that x, y ∈ S1 and that there are finitely many angles x0 =
x, x1, . . . , xn = y such that xj and xj+1 are connected for each j =
0, . . . , n − 1. Then we say that x and y are K-equivalent ; also, K-
equivalence classes are called simply K-classes. Below we study the
properties of K-equivalence for Cremer polynomials; observe that a
similar equivalence was introduced in [K04] for polynomials without
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CS-points. A broken line consisting of a finite union of legitimate
chords is called a K-path. The fact that points x, y are K-equivalent
can be given the following geometric interpretation: if angles x, y are
K-equivalent then there is a K-path between them.

Lemma 3.7. Let x, y be K-equivalent. Then there exists a finite col-
lection of points x0 = x, x1, . . . , xn = y which are ordered, either all
belong to the arc [x, y] or all belong to the arc [y, x], and are such that
xj and xj+1 are connected for each j = 0, . . . , n − 1. In other words,
there exists a non-self-intersecting K-path from x to y.

Proof. Suppose that u, v ∈ S1 are connected, θ, γ are connected, and
the chords Ch(u, v) and Ch(θ, γ) intersect. We show that at most
two of the angles u, v, θ, γ are not connected. Indeed, by Lemma 3.3
Imp(u) ∩ Imp(v) ⊂ Imp(θ) ∪ Imp(γ). Assume for definiteness that
there exist common points of Imp(u) ∩ Imp(v) and Imp(θ). Then θ is
connected with both u and v. Then the only way there are two pairs of
non connected angles among u, v, θ, γ is when γ is connected to neither
u, nor v. However by Lemma 3.3 Imp(θ)∩ Imp(γ) ⊂ Imp(u)∪ Imp(v),
a contradiction.

Consider now all K-paths from x to y, and choose one containing
the least number of vertices. If in this K-path there are two chords
intersecting not at their endpoints then by the previous paragraph this
collection of points can be reduced to a new collection with the same
properties, a contradiction. Thus, any K-path with the least number
of vertices is non-self-intersecting as desired. ¤

In Lemma 3.8 we describe the K-class of α (we call it the critical K-
class). To do so denote by E the set of all angles θ such that Imp(θ)∩
B 6= ∅. Clearly, E ⊃ F is a closed invariant set of angles which are
all K-equivalent to each other; moreover, for each angle γ ∈ E there
is an angle θ ∈ F such that Imp(θ) ∩ Imp(γ) 6= ∅ and p ∈ Imp(θ).
Let E∞ = ∪n≥0σ

−n(E). Also, set T = ∪θ∈EImp(θ). Then T ⊂ C is
connected and invariant. Let T∞ = ∪n≥0P

−n(T ). These sets are used
in the proof of the following lemma; to state it we introduce the notion
of a K-separate angle, i.e. an angle which forms a degenerate K-class
(i.e., whose impression is disjoint from all other impressions).

Lemma 3.8. The critical K-class coincides with E∞. All other angles
are K-separate. Both E∞ and its complement are fully σ-invariant.

Proof. Let us prove the first claim. To begin with we show that all
angles in E∞ are K-equivalent. The entire finite set P−i(p) is contained
in P−i(T ) (clearly, P−i(p) consists of 2i points); we use this to show
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that all angles in σ−i(E) are K-equivalent. Indeed, let γ ∈ σ−i(E).
Then σi(γ) ∈ E and there exists an angle θ ∈ F such that Imp(θ) ∩
Imp(σi(γ)) 6= ∅ and p ∈ Imp(θ). The set A = Imp(θ) ∪ Imp(σi(γ)) is
a continuum, so we can find a continuum H = Imp(γ) ∪ Imp(θ′) with
θ′ ∈ σ−i(θ) which maps onto A by P i (this follows by induction over i).
Then there exists a P i-preimage p′ of p which belongs to H, and so γ
belongs to the set N(p′) of all angles for which there exists θ′ ∈ σ−i(F )
with Imp(γ) ∩ Imp(θ′) 6= ∅ and p′ ∈ Imp(θ′). By upper-semicontinuity
of impressions the set N(p′) and the set Z(p′) = ∪γ∈N(p′)Imp(γ) are
closed. Since γ ∈ σ−i(E) is chosen arbitrarily we see, that the entire
continuum P−i(T ) is the union of at most 2i continua Z(p′′), p′′ ∈
P−i(p). This easily implies that all angles in σ−i(E) are K-equivalent
as claimed. Hence, all angles in E∞ are K-equivalent.

Let us now show that if an angle γ is K-equivalent to α then γ ∈ E∞.
Indeed, for the angle γ there exists an angle θ such that γ and θ are
connected. Choose a point x ∈ Imp(γ) ∩ Imp(θ). Then by Lemma 3.4
x is not remote, i.e. P n(x) ∈ B for some n. Hence γ ∈ E∞ as desired.
The same argument shows that if impressions of two angles intersect
then these angles belong to E∞. Hence besides E∞ there are only
K-classes consisting of single angles. ¤

By Lemma 3.8 the Julia set is partitioned into the union of impres-
sions of angles from the critical K-class on the one hand, and pairwise
disjoint impressions of K-separate angles on the other. An example of
a K-separate angle is a periodic angle whose impression does not con-
tain the Cremer point and whose landing point (which by Theorem 3.2
coincides with its impression) is not in Q (and hence, by Lemma 3.4,
does not belong to any other impression). Our main theorem stud-
ies the case when there are K-separate angles. We will first prove the
following lemmas.

Lemma 3.9. Suppose that X is a non-separating one-dimensional
plane continuum for which there exists δ > 0 such that for each θ ∈ S1,
diam(Imp(θ)) > δ. Then X is nowhere connected im kleinen.

Proof. Suppose that X is connected im kleinen at x. Choose a contin-
uum K with diam(K) < δ/3 and 0 < ε < δ/3 such that B(x, ε)∩X ⊂
K. Choose a crosscut C ⊂ B(x, ε/2), then C ∩ X ⊂ K. Hence,
diam(Sh(C)) ≤ diam(K ∪ C) ≤ 2δ/3, a contradiction. ¤

Lemma 3.9 yields Lemma 3.10; for a Cremer polynomial P denote
by ZP the intersection of all impressions.

Lemma 3.10. Suppose that ZP 6= ∅ for a Cremer polynomial P . Then
ω(c) ⊂ ZP and J is nowhere connected im kleinen.
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Proof. Take an angle θ and consider the set A = Imp(θ)∩Imp(θ+1/2).
The set A is a non-empty non-separating continuum or a point. Since
−A = Imp(θ + 1/2) ∩ Imp(θ) = A then the map z → −z maps A
onto itself, and so A must contain the fixed point of this map. Since
the fixed point 0 = c of this map is unique then c ∈ A. Applying
this argument to all angles, we conclude that c ∈ ZP . Since ZP is
an invariant compact set then ω(c) ⊂ ZP . Hence there is δ > 0 such
that diam(Imp(θ)) > δ for any angle θ. By Lemma 3.9, J is nowhere
connected im kleinen. ¤

We are ready to prove our main theorem.

Theorem 3.11. For a quadratic Cremer polynomial P the following
facts are equivalent:

(1) there is an impression not containing the Cremer point;
(2) there is a degenerate impression;
(3) the set Y of all K-separate angles with degenerate impressions

contains all angles with dense orbits (Y contains a full Lebesgue
measure Gδ-set dense in S1) and a dense in S1 set of periodic
angles, and the Julia set J is connected im kleinen at landing
points of these rays;

(4) there is a point at which the Julia set is connected im kleinen;
(5) not all angles are K-equivalent.

In this case a unique infinite K-class and K-classes of K-separate
angles form the entire family of K-classes.

Proof. Let us prove that (1) implies (2). Indeed, suppose that there is
an angle not containing p in its impression. Then by upper semiconti-
nuity of impressions we can find a periodic angle γ not containing p in
its impression. By Theorem 3.2 then Imp(γ) is degenerate as desired.

Let us show that (2) implies (3). Suppose that Imp(γ) = {x} is a
point. Considering Imp(γ) and Imp(γ + 1/2) = {−x} we may assume
that x 6= p and hence for all angles from a small arc U containing γ their
impressions do not contain p either. So, there are no angles of F in U .
Let us show that we may shrink U to a smaller open arc U ′ = (τ ′, τ ′′)
with Imp(τ ′) ∩ Imp(τ ′′) 6= ∅. Indeed, since F∞ = ∪σ−i(F ) is dense in
S1, we can find a number n such that σ−n(F )∩U is infinite. Now, there
are only finitely many P−n-preimages of p, and each impression in the
union ∪γ∈σ−n(F )Imp(γ) = P−n(B) contains at least one P n-preimage
of p (observe that P−n(B) is a continuum). Thus, there are two angles
τ ′ < τ ′′ from σ−n(F ) ∩ U (the order is considered within U) such that
impressions of both angles contain the same P−n-preimage of p and so
Imp(τ ′) ∩ Imp(τ ′′) 6= ∅. Set U ′ = (τ ′, τ ′′).
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Consider the two connected open components of C \Rτ ′ ∪ Imp(τ ′)∪
Imp(τ ′′)∪Rτ ′′ ; let V be the component containing rays of angles from
U ′. Then there are points of J in V . Indeed, otherwise Imp(τ ′) ∪
Imp(τ ′′) contains the impressions of all angles from U ′ which yields
that a forward σ-image of τ ′ or τ ′′ will coincide with J implying by
Theorem 3.1 that J is indecomposable and all impressions coincide
with J , a contradiction. Since F ⊂ S1 \ U ′ then B = ∪γ∈F Imp(γ)
is contained in the union of impressions of angles from S1 \ U ′ which
implies that B is disjoint from V . Take a periodic point z ∈ V and
an angle γ ∈ U ′ such that Rγ lands at z. Then Imp(γ) = {z} by
Theorem 3.2, and z 6∈ B by the above. Hence z never maps into B
(recall that B is invariant) which by Lemma 3.8 implies that γ is K-
separate. So (2) implies the existence of (periodic) K-separate angles
with degenerate impressions in any open set U which contains an angle
with degenerate impression not coinciding with {p}.

Let us prove that if γ is a K-separate angle and θ is an angle with
γ ∈ ωσ(θ) then θ is K-separate and its impression is a point. Indeed,
by Theorem 3.5 and since Imp(γ) and B are disjoint we can find angles
τ ′ < θ < τ ′′ such that Imp(τ ′) ∩ Imp(τ ′′) 6= ∅ and the connected open
component V of C \Rτ ′ ∪ Imp(τ ′) ∪ Imp(τ ′′) ∪Rτ ′′ which contains the
rays of angles of (τ ′, τ ′′) is positively distant from B. Observe that
since V is in fact simply connected then we can find two Jordan disks
W ′ ⊃ W ′′ ⊃ J ∩ V which are both positively distant from B. On the
other hand, B is a forward invariant closed set containing c, hence the
closure of the entire orbit of c is contained in B. Therefore all pull-backs
of W ′ and W ′′ are univalent. By well-known results of Mañé [Mn93]
this implies that the diameter of the pull-backs of W ′′ converge to 0 as
the power of the map approaches infinity. Observe that as σ-images of θ
approach γ, the corresponding P -images of Imp(θ) get closer and closer
to Imp(γ) (because of upper semicontinuity of impressions) and thus
we may assume that infinitely many P -images of Imp(θ) are contained
in W ′′. Pulling W ′′ back along the orbit of Imp(θ) for more and more
time we see that the diameter of Imp(θ) cannot be positive, and hence
Imp(θ) = {y} is a point as claimed. Moreover, if θ is not K-separate
then by Lemma 3.8 P n(y) ∈ B from some time on. However, since
by the assumption images of θ approach γ then this would imply that
there are points of B in Imp(γ), a contradiction.

Since by the paragraph preceding the previous one there exist K-
separate angles then by the previous paragraph all angles whose σ-
orbits are dense in S1, are K-separate and have degenerate impres-
sions. Since the set of all angles whose σ-orbits are dense in S1, is a
full Lebesgue measure dense Gδ-set, the appropriate part of claim (3)
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follows. Above we showed that in any neighborhood of a K-separate
angle with degenerate impression there is a periodic K-separate angle
with degenerate impression, hence the second part of (3) follows. Now,
for any K-separate angle γ with degenerate impression Imp(γ) = {x}
the point x is remote by Lemma 3.8 which allows us to apply Theo-
rem 3.5 and conclude that the Julia set is connected im kleinen at such
points x. This finally completes the proof of the fact that (2) implies
(3). Clearly, (3) implies (4).

Let us show that (4) implies (5). Suppose otherwise. Then the
critical class is the entire S1 which implies that (1) fails. Indeed, if (1)
holds then by the already proven so does (3), a contradiction. So, all
impressions contain p. By Lemma 3.10 then J is nowhere connected
im kleinen, a contradiction.

Finally, (5) implies (1) because if (1) fails then all impressions are
trivially K-equivalent.

The rest of the theorem follows from Lemma 3.8. ¤
Theorem 3.11 addresses the case when there are impressions which

do not contain the Cremer point p. The following corollary addresses
the case when all impressions contain the Cremer point.

Corollary 3.12. Suppose that J is a quadratic Cremer Julia set. Then
the following facts are equivalent:

(1) All impressions are non-degenerate.
(2) The intersection of all impressions is a non-degenerate subcon-

tinuum of J containing the Cremer point and the limit set of
the critical point.

(3) J is nowhere connected im kleinen.

Proof. By Theorem 3.11, (1) implies that all impressions contain the
Cremer point. Hence by Lemma 3.10 (2) holds. By Lemma 3.9, (2)
implies (3). By Theorem 3.11, (3) implies (1). ¤

Finally, in Corollary 3.13 we discuss how the conditions from Theo-
rem 3.11 relate to the biaccessibility of points of Cremer Julia sets.

Corollary 3.13. Suppose that there is a biaccessible point z ∈ J . Then
J satisfies the conditions of Theorem 3.11; in particular, there exists a
full measure dense Gδ-set of angles such that the impressions of their
rays are degenerate and J is connected im kleinen at the landing points
of these rays. Moreover, if θ is an angle such that Rα lands at p then
θ ∈ F .

Proof. First of all let us remind the reader of the result of Schleicher
and Zakeri proven in [SZ99, Zak00] according to which if P is a Cremer
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polynomial and J is its Julia set and z ∈ J is a biaccesible point then
there exists n ≥ 0such that P n(z) = p. Thus if J has biaccessible
points then the Cremer point p is biaccessible. Let us show now that
if θ is an angle such that p is the landing point of Rθ then θ ∈ F .
Indeed, by the known results of Douady and Hubbard [DH85] the ray
R0 lands at a repelling fixed point of P , hence θ 6= 0. Now, if θ 6= 0
and θ 6∈ F , then it is known (see, e.g., [BS94]) that there will be two
iterates θ′, θ′′ of θ contained in (α, β) and (β, α) respectively. Then the
rays Rθ′ = R′ and Rθ′′ = R′′ together with the point p cut the plane
into two connected pieces, say, U and V ; for the case of definiteness
let Rα ⊂ U,Rβ ⊂ V . Suppose that −p ∈ U . Then Imp(Rβ) cannot
contain −p, a contradiction with Theorem 4.3 from [GMO99] according
to which p, c,−p ⊂ Imp(α) ∩ Imp(β). Hence θ ∈ F .

Now, suppose that J satisfies the conditions of Corollary 3.12 and
R1, R2 are two rays which land at p. Let us pull p back to its preimage
−p and denote by R̂1 and R̂2 the pull-backs of the rays R1, R2. Then
the union of R̂1, R̂2 and −p cuts the plane into two pieces one of
which, denoted by W , does not contain p. Clearly, this implies that any
angle which originates in W gives rise to an impression not containing
p. However this contradicts condition (2) from Corollary 3.12. We
conclude that J cannot satisfy these conditions; hence it must satisfy
the conditions of Theorem 3.11 as desired. ¤
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