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(Communicated by Mary Rees)

Abstract. We consider a rational map f : Ĉ→ Ĉ of the Riemann sphere with
normalized Lebesgue measure µ and show that if there is a subset of the Julia
set J(f) of positive µ-measure whose points have limit sets not contained in

the union of the limit sets of recurrent critical points, then ω(x) = Ĉ = J(f)
for µ-a.e. point x and f is conservative, ergodic and exact.

1. Introduction

Let f : Ĉ → Ĉ be a rational map of the Riemann sphere and let µ denote
normalized Lebesgue measure. We study the limit sets (by which we mean ω-limit
sets) of points for f . By Sullivan’s Classification Theorem the limit set of a point
in the Fatou set is either an attractive or parabolic periodic orbit, or a simple
closed curve. On the other hand, Lyubich proved in [Lyu83] that for rational maps
f such that J(f) is not the entire sphere the limit set of µ-a.e. point in J(f) is
contained in the postcritical set (the union of limit sets of all critical points). Later
McMullen showed [McM94, page 42] that either the limit set of µ-a.e. point in J(f)
is contained in the postcritical set, or J(f) is the entire sphere and f is ergodic.
Julia Barnes recently strengthened this theorem by showing that in the second case
the map is exact and conservative.

Thus, it is already known that for a rational map f either the limit set of µ-a.e.
point in J(f) is contained in the postcritical set, or J(f) is the entire sphere and
the map f is conservative, ergodic and exact. Our aim is to replace the postcritical
set here with the union of limit sets of all recurrent critical points.

2. Main theorem

A rational map f is called conservative if for all sets X with µ(X) > 0, there
exists a k > 0 such that µ(f−k(X) ∩ X) > 0. It is called ergodic if µ(X) ∈ {0, 1}
whenever f−1(X) = X , and exact if µ(X) ∈ {0, 1} whenever f−n ◦ fn(X) =
X for all n > 0 (by Rohlin [Roh64], for a certain class of mappings, including
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rational maps, this definition is equivalent to the traditional one according to which⋂
n≥0 f−n(B) contains only sets of measure 0 or 1 for the σ-algebra B of Borel sets).

Clearly, all exact rational maps are ergodic.
Our main result is the following:

Theorem 2.1. Let f be a rational map on the sphere, C the set of all its recurrent
critical points and

Af =
⋃
c∈C

ω(c).

Then exactly one of the following holds:

1. µ(J(f)) = 0, and for µ-a.e. point z on the sphere ω(z) is either a simple
closed curve or an attractive or parabolic periodic orbit,

2. µ(J(f)) > 0 and ω(z) ⊂ Af for µ-a.e. point z ∈ J(f), or
3. the set of points z ∈ J(f) such that ω(z) 6⊂ Af has positive µ-measure, f is

exact, ergodic and conservative, and ω(z) = Ĉ = J(f) for µ-a.e. point z ∈ Ĉ.

As we mention in the Introduction, Theorem 2.1 extends previously known re-
sults with the set Af replacing the postcritical set. Let us state an easy corollary
of Theorem 2.1.

Corollary 2.2. Let f be a rational map with no recurrent non-periodic critical
points. Then either 1) µ(J(f)) = 0 or 2) ω(z) = Ĉ = J(f) for µ-a.e. point z ∈ Ĉ
and f is exact, ergodic and conservative.

Observe that the limit set of a non-recurrent critical point c of f may contain
other critical points, but cannot contain c. Urbański [Urb94] proves stronger results
about the Julia set under the assumption that the Julia set is not the entire sphere
and f is a rational map without non-periodic recurrent critical points.

Some tools used in the proof of Theorem 2.1 were obtained by Mañé [Mn93]
and Barnes [Bar97]. An important result of Mañé [Mn93, Theorem II] deals with
backward dynamics of rational functions and can be stated as follows:

Theorem 2.3 (Mañé). Suppose that f is a rational map of the sphere and x /∈ Af

is not a parabolic periodic point. Then for all ε > 0 there exists a neighborhood W
of x such that the following hold:

1. for all n ≥ 0, every connected component of f−n(W ) has diameter at most ε,
2. there exists N such that for any connected component U of f−n(W ) the degree

of fn|U is at most N ,
3. for any ε1 > 0 there exists k such that every connected component of f−n(W )

has diameter less than ε1 provided that n > k.

The result by Julia Barnes [Bar97, Theorem 3.6] allows us to prove exactness
in part 3 of Theorem 2.1. Following Barnes, a set X ⊂ Ĉ with µ(X) > 0 is lim
sup full if lim sup µ(fn(X)) = 1. The map f is lim sup full if every set of positive
measure is lim sup full.

Theorem 2.4 (Barnes). Let f be a lim sup full rational map of the sphere. Then
f is conservative and exact.



TYPICAL LIMIT SETS 1217

3. Bounded distortion

For the sake of convenience sets homeomorphic to the unit disk are called simply
disks. By an ε-disk we mean a disk of radius ε and by a round disk we mean an
ε-disk for some ε > 0.

We prove a distortion lemma from complex analysis. Although in Theorem 2.1
we deal with normalized Lebesgue measure µ it is convenient to use also plane
Lebesgue measure λ. Clearly, a lot of objects (such as sets of zero measure, points
of density of sets and the like) are the same for both measures and we will rely
upon this freely throughout the paper. Since our distortion lemma allows critical
points it makes better sense to consider quotients of measures of sets rather than
quotients of derivatives. We will need some definitions. By the relative λ- (or µ-)
measure of the set X in the set Y we understand the quotient λ(X ∩ Y )/λ(Y ) (or
µ(X ∩ Y )/µ(Y ), respectively).

Lemma 3.1. Let V ⊂ W be round concentric disks such that mod (W \V ) = m ≥
4πk, and g : U → W an analytic k-to-1 covering map of a disk U onto W with no
critical values of g on ∂V .

Let V ′ be a component of g−1(V ). Then V ′ is a disk, mod (U \ V ′) ≥ m/k, and
if δ = diam(V ′), then for any set A ⊂ V with the relative λ-measure of A in V at
least ε, the relative measure of g−1(A) in the δ-disk centered at any point of V ′ is
at least 10−9e−4πmε λ(V )

λ(W ) .

Proof. We prove the lemma in two steps. First we show that the relative λ-measure
of g−1(A) in V ′ is at least 10−4e−4πmε. Then we prove that the relative λ-measure
of V ′ inside any disk of radius δ is at least 10−5λ(V )/λ(W ). Together these two
statements imply the lemma. The main idea of the proof is to normalize the map by
means of conformal isomorphisms and then apply the Koebe lemma and well-known
inequalities from the theory of analytic functions.

Let D be the unit disk with the center at 0. We may assume that W = D and
V is an r-disk with the center at 0 and r = e−2πm (the last equation is easily
computed from the fact that mod (D\V ) = m). Let V ′ be a component of g−1(V ).
Since ∂V contains no critical values, V ′ is a disk. Choose a point x ∈ V ′ so that
g(x) = 0. Let also φ : U → D be a conformal isomorphism such that φ(x) = 0. Let
A ⊂ V be a subset of relative λ-measure at least ε.

The assumptions of the lemma and properties of moduli easily imply that

mod (U \ V ′) ≥ m/k.

Since φ is a conformal isomorphism we see that mod (D \ φ(V ′)) ≥ m/k too. By a
well-known inequality [Mil92]

diam(φ(V ′)) ≤
√

λ(D)/ mod (D \ φ(V ′)) ≤
√

kπ/m ≤ 1/2.

Since 0 ∈ φ(V ′) we conclude that the set φ(V ′) is contained in the 1
2 -disk V ′′ with

center at 0.
Consider the map G = g ◦ φ−1 : D → D which maps φ(V ′) onto V . Since

φ(V ′) ⊂ V ′′, by the Schwarz-Pick lemma [CG93, p. 13] for any z ∈ φ(V ′) we have

|G′(z)| ≤ 1− |G(z)|2
1− |z|2 ≤ 4/3.
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The λ-measure of the set A is at least ελ(V ) = επr2. Since

επr2 = ελ(V ) ≤ λ(A) ≤
∫

G−1(A)∩φ(V ′)
|G′|2dλ,

it follows that λ(G−1(A) ∩ φ(V ′)) ≥ (9/16)επr2 = (9/16)επe−4πm. On the other
hand λ(φ(V ′)) ≤ λ(V ′′) = π/4. We conclude that G−1(A) ∩ φ(V ′) has relative
λ-measure at least (9/4)εe−4πm in φ(V ′). Let l = min{|φ′(x)| : φ(x) ∈ V ′′} and
L = max{|φ′(x)| : φ(x) ∈ V ′′}. Since φ(V ′) ⊂ V ′′, then by the Koebe Lemma
[CG93] for any x, y ∈ V ′ we have

|φ′(x)/φ′(y)| ≤ L/l ≤
(

1 + 1/2
1− 1/2

)4

= 81.

This implies that the relative measure of g−1(A) in V ′ is

λ(g−1(A) ∩ V ′)
λ(V ′)

≥ (9/4)εe−4πm/812 ≥ 10−4εe−4πm.

Above we showed that |G′(z)| ≤ 4/3 for z ∈ φ(V ′). By the same argument as
above, this implies that λ(φ(V ′)) ≥ 9/16 ·λ(V ). On the other hand if δ =diam(V ′),
then δ ≤ 1/l. Since L ≤ 81l we conclude that

λ(V ′) ≥ λ(φ(V ′))
L2

≥ 9λ(V )
16L2

≥ 9λ(V )
16 · 812l2

≥ 10−5(λ(V )/π)πδ2,

which implies that the relative λ-measure of g−1(A) in any disk Bδ of radius δ =
diam(V ′) centered at any point of V ′ is

λ(g−1(A) ∩ V ′)
λ(V ′)

· λ(V ′)
λ(Bδ)

≥ 10−9εe−4πmλ(V )
π

.

Since λ(W ) = λ(D) = π, this concludes the proof.

Lemma 3.2. Let f be a rational map of the sphere and let

Bf = {z ∈ J(f)|ω(z) \Af 6= 0}.
If R ⊂ Bf is such that µ(R) > 0, then R is lim sup full.

Proof. Let R ⊂ Bf such that µ(R) > 0; then λ(R) > 0, and for the sake of
convenience we consider the measure λ almost until the end of the proof. Choose
a point z of density of R and consider a sequence (ni) such that fni(z) → x /∈ Af

(note that then x ∈ J(f)). We may assume that z has infinite orbit (there are only
countably many points with finite orbits).

Let us show that then we may assume that x is not a parabolic point. Indeed,
if x is a periodic point, then it is well known that either its orbit coincides with
the entire ω(z) or x is not isolated in ω(z). However since any periodic point in
the Julia set locally repels points in the Julia set (in case of parabolic points see
[CG93, pages 35–41]) we conclude that the former case contradicts the assumption
that the orbit of z is infinite. Thus x is not isolated in ω(z) and we can always pick
it so that it is not a parabolic periodic point.

By Theorem 2.3 there exists a round disk Wx = W centered at x and a number
N such that for any connected component U of f−n(W ) the degree of fn|U is less
than N and, moreover, for any ε1 > 0 there exists k such that every connected
component of f−n(W ) has diameter less than ε1 provided that n > k.
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Choose now a smaller round disk V with center at x so that ∂V contains no
critical value of fn for any n and mod (W \ V ) ≥ 4πN . Since fni(z) → x we
may assume that fni(z) ∈ V for any i. Then let Ui be the component of f−ni(W )
containing z and V ′i ⊂ Ui be the component of f−ni(V ) containing z.

Let us show that

lim sup λ(fni(R) ∩ V ) = λ(V ).

Indeed, suppose that this is not the case. Then for some ε > 0 and any i the relative
measure of V \ fni(R) in V is greater than ε. Apply Lemma 3.1 to W, V, fni = g
and V \ fni(R) = A. It implies that the relative measure of the complement to R
in the disk of radius di = diam(Vi) centered at z is bounded away from 0. Since
di → 0 by Theorem 2.3 we get a contradiction with the assumption that z is a point
of density of R. This contradiction proves that relative λ-measure of fni(R) in V
has lim sup equal to 1. Thus the same holds for the measure µ.

Since V is a neighborhood of a point x ∈ J(f) it contains repelling periodic points
of f . Choose a repelling periodic point ζ ∈ V of period k and its neighborhood
G ⊂ V such that G ⊂ fk(G). Then the relative µ-measure of fni(R) in G has
lim sup equal to 1. On the other hand by Montel’s Theorem, if m is sufficiently
big, then µ(Ĉ \ fmk(G)) is very small. Therefore, first choosing m big enough (so
that µ(Ĉ \ fmk(G)) is very small) and then sufficiently big i (so that the relative
µ-measure of fni(R) in G is almost equal to 1) we see that the µ-measure of
fmk+ni(R) is almost equal to 1 and thus that R is lim sup full. This completes the
proof of the lemma.

We can now complete the proof of Theorem 2.1.

Proof. By already known results quoted in the Introduction we may assume that
µ(Bf ) > 0. Since Bf is fully invariant, it follows from Lemma 3.2 that µ(Bf ) = 1.
Moreover, if K is a subset of Ĉ such that µ(K) > 0, then µ(K ∩ Bf ) > 0 and by
Lemma 3.2, lim sup µ(fn(K ∩ Bf )) = 1. Hence f is lim sup full. By Theorem 2.4,
any lim sup full rational map is exact and conservative. It remains to show that
ω(z) = Ĉ for a.e. point of the sphere. To this end it is enough to show that for an
open U the set of points which never enter U has zero measure. Indeed, otherwise
there exists a set D of positive measure and an open set U such that orbits of
x ∈ D do not enter U . But then lim supn→∞ µ(fn(D)) ≤ 1 − area(U) < 1. This
contradicts the fact that f is lim sup full and completes the proof of the theorem.
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