
ON DYNAMICS OF VERTICES OF LOCALLY

CONNECTED POLYNOMIAL JULIA SETS

A. Blokh and G. Levin

December 8, 2000; revised version August 7, 2001; new version January 4, 2002

Abstract. Let P be a polynomial whose Julia set J is locally connected. Then a non-
preperiodic non-precritical vertex of J must have the limit set which coincides with the
limit set of an appropriately chosen recurrent critical point of P . In particular, if all critical
points of P are non-recurrent then all vertices of J are preperiodic or precritical.

1. Introduction

In this paper P denotes a complex polynomial with the Julia set J . Properties of
P |J and topological properties of J have been studied in holomorphic dynamics for quite
some time (see e.g. [BH], [DH], [Do], [F], [H], [J], [McM], [Mi], [Sul], [Th]). From now on
we assume in this paper that J is locally connected and study the orbits of the vertices
of J . As a corollary we prove that if all critical points of P are non-recurrent then all
vertices of J are preperiodic or precritical.

It is known that if J is locally connected then it is connected. By a Caratheodory
theorem [CL], any point x ∈ J is accessible from the basin of attraction of infinity A∞
by one or several paths tending to x which can be chosen to be so-called external rays
[DH]. Let N(x) be the number of such rays, and call points x with N(x) ≥ 3 vertices
of J (one can also define N(x) as the number of components of the set J \ {x}). In
the language of continuum theory, vertices are cut points cutting the Julia set in at least
three components. The following problem is fundamental for understanding the topology
of Julia sets; it was posed in the framework of polynomial laminations and solved for
quadratic laminations in [Th].

Problem 1. Is it true that all vertices of the locally connected Julia set are either pre-
critical or preperiodic?

If we think of J as a “graph” with, perhaps, infinitely many vertices then it is natural
to expect that in some cases P acts on J similarly to the way it would act on finite
“graphs”. Now, if a finite “graph” G is invariant for P then all vertices of G are precritical
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or preperiodic (a point is preperiodic - resp. precritical - if it is mapped onto a periodic
- resp. critical - point by fk, k ≥ 0). This makes the question above rather natural.

Related questions in the degree higher than 2 were considered by Kiwi [Ki] who proved
that for a polynomial of degree d the number N(x) of rays landing at a non-preperiodic
non-precritical point x ∈ J is at most d (this is another proof of the result of [Th] in the
quadratic case). In [BL1, BL2] we obtained further results one of which is described in
Theorem 2; it is easy to see, that it implies the results mentioned above.

By the grand orbit (of x) we mean the union of all preimages of all iterates of x. Note
that the number N(x′) is the same for all points x′ of the grand orbit of x if this orbit
contains no critical points. By a Siegel disc we understand a Fatou component whose
boundary is a simple closed curve such that an appropriate power of the map P on its
boundary is an irrational rotation.

Theorem 2 [BL1, BL2].
∑

x∈Γ(N(x) − 2) ≤ k∼ − kS − 1 ≤ d − 2, where Γ is a
non-empty collection of non-preperiodic non-precritical points x ∈ J from distinct grand
orbits with N(x) ≥ 3, k∼ is the number of distinct grand orbits of non-preperiodic critical
points c ∈ J(P ) with N(P (c)) = 1 (i.e., P (c) is the landing point of exactly one external
ray) and kS is the number of periodic orbits of the Siegel discs.

In fact, a complete analog of Theorem 2 is proven in [BL1, BL2] for invariant lami-
nations and their factors which implies (as a particular case) Theorem 2 for polynomials
with locally connected Julia sets.

In a way, Theorem 2 already shows to what extent the dynamics of a polynomial
on its locally connected Julia set is similar to the dynamics of a polynomial on a finite
graph: even if non-preperiodic non-precritical vertices exist, they form at most d − 2
grand orbits. Observe, that although in general Theorem 2 does not solve Problem 1
and can only be considered as a step on the way to its solution, in some particular cases
it implies that there are no non-preperiodic non-precritical vertices of a locally connected
Julia set. In particular, Theorem 2 implies the following corollary.

Corollary 3 (cf. [Do], [Po]). Let P be a polynomial whose critical points are attracted
by a periodic orbit or preperiodic. Then all vertices of J are preperiodic or precritical.

In the present paper we suggest another class of polynomials such that all non-
precritical vertices of their Julia sets are preperiodic. A polynomial P is called semi-
hyperbolic [CJY] if no critical point of P in J is recurrent and there are no parabolic
cycles. As follows from [CJY], the Julia set of such polynomial is locally connected if
it is connected, and hence every x ∈ J is the landing point of a finitely many external
rays ([Ki], [BL1], [BL2]). Assume in addition that P has only repelling periodic points
(and so its Julia set is a dendrite, i.e. locally connected tree-like continuum). Then using
Yoccoz puzzle structure for P we prove that all vertices of J are preperiodic or precritical
(we briefly outline the proof in Section 2). In fact, the same result holds for a wider class
A of all polynomials with no recurrent critical points and with locally connected Julia
set. Thus, compared to the above case in A we allow attracting or parabolic cycles.

If J is a locally connected Julia set then x ∈ J is a local vertex of J if there is a
triod Y ⊂ J whose branch point is x. If J is a dendrite, this is equivalent to the usual
definition, yet if there are bounded Fatou domains, the set of local vertices may be wider.
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Main Theorem. If P ∈ A then every local vertex of J is either preperiodic or precritical.

A complication for P ∈ A is that J no longer is a dendrite; we deal with it by develop-
ing topological dynamics of piecewise local homeomorphisms of unshielded plane continua
which are backward stable (see definitions in Section 4), more precisely by describing the
limit sets of local vertices of such maps. This description, applied to laminations and
polynomials, yields Theorem 13 below which in turns implies the Main Theorem.

Theorem 13. Suppose that one of the assumptions below holds:

(1) ∼ is an invariant lamination and f : J → J is the corresponding factor map;
(2) f is a polynomial, J is its Julia set, and J is locally connected.

Then if x is a non-preperiodic non-precritical local vertex of J then ω(x) coincides with
ω(c(x)) for a recurrent critical point c(x) depending on x.

The paper is organized as follows. In Section 2 we outline the proof of Main Theorem
for semi-hyperbolic polynomials. In Section 3 we introduce the notion of unshielded
continua and study their topology (connected Julia sets are unshielded continua). In
Section 4 we study backward stable continuous maps of unshielded continua which are
local homeomorphisms outside a finite set and prove Theorem 13.

We want to thank L. Oversteegen for useful discussions of the proofs of Lemmas 5
and 6 and to M. Misiurewicz for valuable discussions of the proof of Theorem 11. Also,
we want to thank the referee for finding a gap in the original proof of the Main Theorem
and one of the lemmas and for making valuable remarks which helped us improve the
style of this paper.

2. Semi-hyperbolic polynomials without attracting cycles

In this section we consider a special case of semi-hyperbolic polynomials with all
periodic points repelling, and outline the idea of proving Main Theorem in this case.

Let P be a polynomial of degree d > 1 whose Julia set J is connected and periodic
points repelling. Assume that P is a semi-hyperbolic polynomial [CJY] (i.e. every crit-
ical point in J is not recurrent). By [CJY], the Julia set of such polynomial is locally
connected, and hence, every x ∈ J is a landing point of a finitely many external rays.

To demonstrate the idea of the proof in this case, consider Yoccoz puzzle structure for
P . Note that in our case P is not renormalizable, and the puzzle structure is constructed
in a standard way (see e.g. [H], [BL1]). Recall that for every n = 0, 1, ... there are finitely
many pairwise disjoint open puzzle pieces Y 1

n , ..., Y kn
n of the level n. For any Y = Y i

n,
the intersection of the boundary ∂Y of Y with the Julia set has finitely many points
(preperiodic by P ). The union of the closures of Y i

n, 1 ≤ i ≤ kn contains the Julia set J ,
and P maps any puzzle piece of the level n > 0 onto a puzzle piece of the level n− 1.

Given a point z ∈ J , let Yn(z) be a nested sequence of open puzzle pieces, such that
z ∈ Yn(z) for any n. In [L], [BL1] we show that the Julia set J is locally connected if
and only if the intersection of all Yn(z) is the single point z, for each z ∈ J .

Given a puzzle piece Y = Yn(z), we define a finite tree Tn(z) as follows. As we know,
the intersection of the boundary ∂Y of Y with the Julia set consists of a finitely many
points x1, ..., xp. Given any two of them xi, xj , let [xi, xj ] be the unique arc in J with
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the ends xi, xj (such an arc exists because J is locally connected). Define now Tn(z) as
the union of all possible arcs [xi, xj ]. It is easy to see that Tn(z) is a finite tree.

Then we use the fact that every critical point is non-recurrent and rely upon a result
of [BM] to find a number m and a sequence nk such that the map Pnk maps homeomor-
phically the piece Ym+nk(z) onto a piece of a fixed level m. Since there are finitely many
pieces on each level, one can assume that Pnk(Ym+nk(z)) is a fixed piece Ym.

Let us now assume that z is neither preperiodic nor precritical, and prove that then
z is the landing point of at most 2 external rays. Assume (by contradiction) that there
are at least 3 external rays landing at z. Then, for every n large enough, z is a vertex
of every tree Tn(z). From the above, Pnk maps Tnk+m(z) homeomorphically onto some
tree tk, and zk = Pnk(z) is a vertex of tk. By the construction, tk is a subset of J , and
each end point of tk is a point of the set ∂Ym ∩ J . Since the latter set is finite, and Ym

is a fixed piece, there are finitely many trees tk, each of which is finite. Therefore, the
points zk belong to a finite set of the vertices of the trees tk. Thus zk = zi for different
k, i, which means that the point z is preperiodic.

3. Topological properties of locally connected unshielded continua

A plane continuum K is said to be unshielded [BO] if it coincides with the boundary
of a domain U which is a connected component of the complement of K. Connected
Julia sets are unshielded since they coincide with the boundary of A∞. In this section
we study topological properties of locally connected unshielded continua.

It immediately follows from the definition that an unshielded continuum K cannot
contain a continuum of the shape of the letter θ. Therefore, the following so-called
θ-curve Theorem applies to unshielded continua.

Theorem 4 (θ-curve Theorem) [Kur]. A locally connected unshielded continuum
is hereditarily locally connected: all its subcontinua are locally connected. Also, any
connected subset of a locally connected unshielded continuum is arcwise connected.

We need some standard definitions. An arc is a homeomorphic image of the interval
[0, 1]. If the endpoints of an arc are a, b and if it causes no confusion we use the notation
[a, b].

The following lemma is proven in [BO] and is given here for the sake of completeness.

Lemma 5 [BO]. Let T be a locally connected unshielded continuum. For any sequence
of continua Mn ⊂ J such that diameters of sets Mn do not converge to 0 there exists a
subsequence K ′

n such that all sets K ′
n contain some arc L′.

Proof. We can always find a subsequence of continua Mn converging in the Hausdorff
sense to a non-degenerate continuum. By Theorem 4 all Mn are locally connected and
therefore arcwise connected. Choose subarcs Kn of Mn which contain points un, vn ∈ Kn

positively distant from each other. We can assume that there are points x 6= y such that
un → x, vn → y. Assuming that un and vn are very close to x, y respectively, and
using the fact that T is locally connected, we can find small disjoint arcs L′n = [x, un] ⊂
T, R′n = [y, vn] ⊂ T so that lim L′n = {x} and lim R′n = {y}

Since Kn is arcwise connected by Theorem 4, we can always find an arc Qn connecting
un and vn inside Kn. Then we can always choose points xn ∈ Qn∩L′n and yn ∈ R′n∩Qn
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so that the subarc [xn, yn] of Qn connecting xn and yn inside Qn is disjoint from L′n∪R′n
outside its endpoints xn, yn. Let Ln = [x, xn] ⊂ L′n (Rn = [y, yn] ⊂ R′n) be the arcs
connecting x and xn (y and yn) inside L′n (R′n). Then Jn = [x, xn] ∪ [xn, yn] ∪ [yn, y]
is an arc, lim Ln = {x} and lim Rn = {y}. We can choose a subsequence now so that
[xn, yn] converge to the limit continuum K; observe that since Ln, Rn converge to points,
the arcs Jn converge to the same continuum K. Let X ′ = K ∪n Jn, then X ′ ⊂ T is a
continuum.

Choose an arc A′ = [x, y] ⊂ K connecting x and y. Then [x, xn] ∪ [xn, yn] ∪ [yn, y] ∪
[y, x] = En is a closed curve for every n. Since Ln and Rn are very small for big n, we
may assume that there exists a non-degenerate arc A ⊂ A′\∪n[Ln∪Rn]. If A ⊂ Jn for all
n then A ⊂ [xn, yn] ⊂ Kn and we are done. Assume that there exists a point a ∈ A \ J1.
Then the fact that E1 = [x, x1]∪[x1, y1]∪[y1, y]∪[y, x] is a closed curve implies that there
exists a bounded region D complementary to E1 such that a is contained in ∂D = S. By
Theorem 4 S is locally connected; since S ⊂ T we see that S is a simple closed curve.
Then A1 = S ∩ A′ is a non-degenerate arc containing a (both S and A′ are contained
in an unshielded continuum T , and the intersection of an arc and a simple closed curve
in an unshielded continuum is an arc or a point unless it is empty). Let I1 = S \A′.
Since T contains no θ-curve, any pair of distinct points p, q ∈ S with p ∈ I1 and q ∈ A1

cuts each Jn between x and y. Hence either A1 or I1 is contained in infinitely many Jn.
Since Ln → {x}, Rn → {y} it is easy to find a non-degenerate arc L′ which is contained
in infinitely many Kn as required.

Let us now introduce the following notion: a point x of a hereditarily locally connected
continuum K is called a locally ε-essential vertex if there exists a triod Y ⊂ K whose
vertex is the point x and whose branches are all of diameters at least ε (in this paper we
deal only with locally connected continua and thus give the definition in this particular
case). A point which is a locally ε-essential vertex for some ε > 0 is called a local vertex of
K. Observe that a local vertex does not have to be a vertex (for example, if a continuum
T has the shape of a letter σ then the only branching point of T is a local vertex but
not a vertex of T ). Now, a point x of a hereditarily locally connected continuum X is
said to be a globally ε-essential vertex if there are at least three components of X \ {x}
of diameter at least ε. Clearly, a globally ε-essential vertex is locally ε-essential, and all
globally ε-essential vertices of T taken over all ε > 0 form the set of all vertices of T .

The following topological result is used in the proof of Theorem 10.

Lemma 6. Let T be a locally connected unshielded continuum. Then for every ε the
number of locally ε-essential vertices of T is finite (so in particular, the set of all local
vertices is at most countable).

Proof. Suppose that there are infinitely many locally ε-essential vertices {ai}∞i=1. For
every i let Yi be a triod containing ai as its vertex and having branches Ni, Li and Mi

each of which has diameter greater than ε. Assume that ai → a. By Lemma 5 we can
choose a subsequence and an arc B so that a /∈ B, ai /∈ B for any i, and B ⊂ Ni for any i
(indeed, we can always choose a subsequence and B by Lemma 5 so that a /∈ B and then
refine this subsequence so that an /∈ B for any n). Then we can refine this subsequence
and choose another subsequence and an arc C so that a /∈ C, ai /∈ C for any i and C ⊂ Li

for any i; clearly then C and B are disjoint. Finally, we can refine the latest subsequence
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and find its subsequence and an arc D so that a /∈ D, ai /∈ D for any i and D ⊂ Mi for
any i; clearly then C,B and D are disjoint. Now, Y1 contains B, C and D and so does
Y2, Y3, . . . . However, this is clearly impossible for the unshielded continuum T to contain
all these triods since in this case it is not unshielded, a contradiction.

4. Main Theorem

So far the arguments were purely topological; now it is the time to apply dynamical
arguments and prove the Main Theorem. Our plan is to obtain some general results
for a certain class of continuous maps of locally connected unshielded continua. Since
polynomial maps on their locally connected Julia sets belong to this class of maps we
then apply our results and deduce Theorem 10, Theorem 13 and the Main Theorem.

First we need the following definition. A map f : X → X of a metric space X into
itself is said to be a local homeomorphism at a point x if any small neighborhood of
x is homeomorphically mapped by f onto a neighborhood of f(x). A map is called a
local homeomorphism on a set Y ⊂ X if it is a local homeomorphism at every point of
Y . We study local homeomorphisms of connected neighborhoods in a locally connected
unshielded continuum below.

Lemma 7. Let f : T → T be a continuous map of a locally connected unshielded con-
tinuum T . Let U ⊂ T be an open connected set and V be a component of f−1(U) such
that f |V is a local homeomorphism. Then V maps onto U and, moreover, f(∂V ) = ∂U .

Proof. As a component of an open set in a locally connected space, V is open. Since
f |V is a local homeomorphism, it is an open map, hence f(V ) ⊂ U is open. Let us show
that W = U \ f(V ) is open too. Indeed, if x ∈ W and yet no neighborhood of x is
inside W then x is the limit point of a sequence of points f(yn), yn ∈ V . Assume that
yn → y ∈ ∂V (y cannot belong to V because f(y) /∈ f(V )). Then V ∪ {y} is connected
and maps into U , a contradiction with the choice of V . Hence, W is open. But this
together with the connectedness of U implies that W is empty and f(V ) = U .

Let us show that f(∂V ) = ∂U . Indeed, otherwise one of the two cases must take place.
First, there may exist a point x ∈ ∂V which maps inside U . However then V ∪ {x} is
connected and maps into U , a contradiction with the choice of V . Second, if y ∈ ∂U then
because clearly f(V̄ ) = Ū we see that y = f(z) for some z ∈ V̄ , and z ∈ V is impossible
since then f(z) would belong to U . Thus, z ∈ ∂V as desired.

The next lemma deals with local homeomorphisms of sufficiently small connected
neighborhoods of local vertices.

Lemma 8. Let U ⊂ T be a connected neighborhood of a local vertex x in a locally
connected unshielded continuum T and f : T → T is a map such that f |U is a local
homeomorphism and U is a component of f−1(f(U)). Then the following holds:

(1) for any simple closed curve S ⊂ f(U) any component R of its preimage inside U
is a simple closed curve such that f(R) = S;

(2) for any simple closed curve R ⊂ U the set f(R) is a simple closed curve too;
(3) the images of different components of U \ {x} under a local homeomorphism

f : U → T are disjoint.
6



Proof. (1) A set R is a locally connected continuum since T is hereditarily locally con-
nected by Theorem 4. Moreover, since f is a local homeomorphism on R then R maps
onto S and has no endpoints or vertices, i.e. R is a simple closed curve.

(2) Clearly, f(R) contains a simple closed curve S′, and so there exists a component
R′ of the preimage of S′ having a non-trivial intersection with R. Since T is unshielded,
this implies that R′ = R and S′ = S as desired.

(3) Assume that there are components Y1, Y2 of U \ {x} and points y1 ∈ Y1, y2 ∈ Y2

with f(y1) = f(y2) = z. By Theorem 4 there exist arcs [x, y1] ⊂ Y1 and [x, y2] ⊂ Y2.
Since f is a homeomorphism on a small neighborhood of x we may assume that there
are points z1 ∈ (x, y1) and z2 ∈ (x, y2) such that f(z1) = f(z2) and images of (x, z1) and
(x, z2) are disjoint. Then S = f [x, z1] ∪ f [x, z2] ⊂ f(U) is a simple closed curve, so by
(1) there exists a simple closed curve R ⊃ [x, z1] ∪ [x, z2] which contradicts the fact that
(x, z1] and (x, z2] are contained in distinct components of U \ {x}.

If f : T → T is a local homeomorphism of a locally connected unshielded continuum
T everywhere but at a finite set Cf of critical points then we call it a piecewise local
homeomorphism. Choose a metric d(·, ·) on T . For x ∈ T and n > 0 consider the
family B(x, n) of all connected neighborhoods U of fn(x) which can be pulled back
to x as local homeomorphisms. Thus, we include U in B(x, n) if U is a connected
neighborhood of fn(x) and the component V of f−n(U) which contains x is such that
fn|V is a local homeomorphism. Then the union of any collection of neighborhoods
from B(x, n) belongs to the same family and there exists the maximal neighborhood
Un(x) = U ∈ B(x, n) and the corresponding neighborhood Vn(x) = V of x. Denote the
minimal distance d(fn(x), ∂U) between fn(x) and ∂U by rn(x) = rn. Then rn > 0 if all
points x, . . . , fn−1(x) are not critical, otherwise define rn as 0.

By the definition there are points z on the boundary ∂V of V such that fn is not a
local homeomorphism at z and d(fn(z), fn(x)) = rn (otherwise we could extend V and
increase rn). Hence there exists a point z ∈ ∂V , a critical point cn(x) = cn and a number
mn < n such that fmn(z) = cn and d(fn(z), fn(x)) = rn. Let us say that cn generates
rn. Following [BM] (and mimicking the terminology due to Yoccoz) we call points with
rn → 0 persistent, and points with rn 6→ 0 reluctant. For example, preimages of critical
points are persistent while repelling periodic non-critical points are reluctant.

Let T be a metric continuum. Say that f : T → T is backward stable if for any δ
there exists ε such that for any continuum K with diam(K) ≤ ε, any n ≥ 0 and any
component M of f−n(K),diam(M) ≤ δ (such components are called pull-backs).

Lemma 9. Let f : T → T be a backward stable piecewise local homeomorphism. Then:

(1) for any continuum K there exists ε > 0 such that diam(fn(K)) ≥ ε for all n;
(2) if the set orb(x) does not contain critical points then x is reluctant.

Proof. (1) Let δ = diam(K). Choose ε so that for any continuum K ′ with diam(K ′) ≤ ε,
any n ≥ 0 and any component M of f−n(K ′), diam(M) ≤ δ/2. Then diam(fn(K)) > ε
for any n since otherwise we take the component M of f−n(fn(K)) containing K and
get a contradiction because M ⊃ K and hence with diam(M) ≥ δ.

(2) Let d(orb(x), Cf ) = δ. Choose ε such that if M is a continuum, diam(M) < ε then
all its pull-backs are of diameter less than δ. For fn(x) choose its connected neighborhood
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V of diameter less than ε so that its boundary is sufficiently far away from fn(x). Then
fn restricted on the pull-back of V containing x is a local homeomorphism as desired.

Fix a locally connected unshielded plane continuum T and consider a class AT of
continuous backward stable maps f : T → T of T into itself such that f is a local
homeomorphism at all points of T except of a finite set of points called critical. Now we
prove Theorem 10 describing orbits of reluctant vertices under maps from AT .

Theorem 10. Let f : T → T, f ∈ AT , be a map of a locally connected unshielded
continuum T . If a local vertex of T is reluctant, then it is preperiodic.

Proof. Suppose that x is a reluctant local vertex. Then there exist ε > 0, a sequence
of integers nk →∞ and a sequence of connected neighborhoods Uk of fnk(x) such that
the minimal distance d(fnk(x), ∂Uk) is greater than ε and components Vk of preimages
f−nk(Uk) containing x are such that fnk |Vk is a local homeomorphism.

Choose a triod Y = [y1, x] ∪ [y2, x] ∪ [y3, x] = Y1 ∪ Y2 ∪ Y3 (it is possible since x is
a local vertex) and consider a few cases. The simplest is when for infinitely many k
the components Bk

1 , Bk
2 and Bk

3 of Vk \ {x} covering small semi-neighborhoods of x on
Y1, Y2 and Y3, are distinct. Fix one such k and denote the components of Bk

i ∩ Yi by
[zi, x), 1 ≤ i ≤ 3. A point zi may well coincide with yi, but if not then zi must come from
the boundary of Vk. By Lemma 8(3), sets fnk(z1, x), fnk(z2, x), fnk(z3, x) are pairwise
disjoint. Let us show that they have a bounded away from zero diameters. Indeed, if
zi = yi this holds by Lemma 9(1) (which implies that the diameters of the images of Yi

are bounded away from zero), and if zi 6= yi this follows by Lemma 7 (which yields that
fnk(zi) ∈ ∂Uk and d(fnk(x), ∂Uk) ≥ ε). This means that fnk(x) are locally ε′-essential
vertices for some ε′ > 0, and so by Lemma 6 the point x is preperiodic.

Now assume that for all k, small semi-neighborhoods of x on Y1, Y2 are contained in
one component Ck of Vk \ {x}. Since Ck is arcwise connected by Theorem 4, there is an
arc [u1, u2] ⊂ Ck with u1 ∈ Y1 \ {x}, u2 ∈ Y2 \ {x} and (u1, u2) ∩ (Y1 ∪ Y2) = ∅. Since
T is unshielded, no two points on Y1, Y2 which are closer to x are connected by a similar
arc. Moreover, S = [u1, x] ∪ [x, u2] ∪ [u2, u1] is a simple closed curve, and since by the
assumptions x, u1, u2 ∈ Vk then (again because T is unshielded) S ⊂ Vk for any k. By
Lemma 9(1), the diameter of fnk(S) is greater than some ε′ for all k, and by Lemma
8(2) the set fnk(S) is a simple closed curve. Hence we can two arcs I ′k, I ′′k in fnk(S) of
diameter ε′/3 which intersect only over their common endpoint fnk(x).

Now, since T is unshielded, a small semi-neighborhood of x in Y3 is not contained
in Ck, and so there is a point zk

3 ∈ Y3 such that [zk
3 , x) is contained in a component of

Vk \ {x} distinct from Ck and either zk
3 ∈ ∂Vk or zk

3 = y3. As before, this implies that
the set fnk [zk

3 , x) has a bounded away from zero diameter and is disjoint from I ′k, I ′′k ,
and again as before this implies that x is preperiodic.

Let us prove Theorem 11 which deals with the behavior of persistent vertices of a
locally connected unshielded continuum T under a map f ∈ AT . Observe that the ideas
we use in the proof are quite similar to the ones used in [BM] where we deal with more
general situation under weaker than backward stability assumptions about the map.

Theorem 11 (cf. [BM]). Let f : T → T, f ∈ AT be a map of a locally connected
unshielded continuum T . If a point x of T is persistent then either it is precritical or its
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limit set coincides with the limit set of a recurrent critical point c(x) depending on x.

Proof. Let x be a non-precritical persistent point. For every n find a connected neighbor-
hood V of x, a connected neighborhood U of fn(x), a critical point cn and a number mn

such that fn(V ) = U, fn|V is a local homeomorphism, cn ∈ ∂fmn(V ), fn−mn(cn) ∈ ∂U
and d(fn−mn(cn), fn(x)) = rn. Let us show that then the maximum of distances
d(cn, fmn(x)), d(f(cn), fmn+1(x)), . . . , d(fn−mn(cn), fn(x)) converges to 0 as n →∞.

Indeed, given ε′ > 0 choose ε so that for any continuum K ⊂ T with diam(K) ≤ ε,
the diameter of any component of f−l(K) is less than ε′, for all l ≥ 0. Now, cover T
with finitely many open connected neighborhoods of diameter less than ε (it is possible
since T is locally connected). Let δε be the Lebesgue number for this cover. This means
that if rn < δε then for the point fn(x) ∈ T there exists a connected neighborhood from
our cover U of diameter less than ε such that the ball of radius rn centered at fn(x)
is contained in U . In particular, fn(x) and fn−mn(cn) belong to the same connected
neighborhood U of diameter less than ε. By the choice of ε this in turn implies that
sets fmn(V̄ ), fmn−1(V̄ ), . . . , fn(V̄ ) = Ū have diameters at most ε′. Since cn, fmn(x) ∈
fmn(V̄ ); f(cn), fmn+1(x) ∈ fmn+1(V ); . . . ; fn−mn(cn), fn(x) ∈ U we can easily see that
the maximum of distances d(cn, fmn(x)), d(f(cn), fmn+1(x)), . . . , d(fn−mn(cn), fn(x)) is
less than ε′ which proves than in fact this maximum converges to 0 as n →∞.

In short, this means the following. Let C be a finite collection of critical points of
f . For any n we choose a number mn and a point cn ∈ C such that the orbit segment
cn, f(cn), . . . , fn−mn(cn) approximates the orbit segment fmn(x), . . . , fn(x) with the er-
ror of approximation sn (meaning that the distance d(f i(cn), fmn+i(x)), 0 ≤ i ≤ n−mn

is at most sn) and sn → 0 as n →∞.
Let us show that this implies that there exists a recurrent point t ∈ C such that

ω(t) = ω(x). First of all, let Q be the set of those points q ∈ C which appear as points
cn infinitely many times. Then the fact that sn → 0 implies that Q ⊂ ω(x). Indeed,
if q ∈ Q then d(fmnk (x), q) ≤ snk → 0 along a sequence nk → ∞. Moreover, since x
by the assumption is never mapped into a critical point then mnk → ∞ as well. Hence
q ∈ ω(x). Therefore ω(Q) = ∪q∈Qω(q) ⊂ ω(x).

On the other hand, d(fn(x), fn−mn(cn)) ≤ sn → 0 where for big n we may assume
that cn ∈ Q. Hence ω(x) ⊂ ω(Q) ∪ (∪q∈Qorbq). Let us show that in fact this implies
that ω(x) ⊂ ω(Q). Indeed, otherwise there exist points y ∈ ω(x)\ω(Q) which then must
belong to forward orbits of points of Q. Denote the set of all such points of Q by Q′;
clearly, Q′ = Q \ ω(Q) and all points of ω(x) \ ω(Q) are forward images of points of Q′.
Now, every point y ∈ ω(x) \ ω(Q) has at least one preimage in ω(x) (because f |ω(x)
is surjective) and this preimage cannot belong to ω(Q) (since ω(Q) is forward invariant
and y /∈ ω(Q) to begin with). Hence for every q′ ∈ Q′ there exists q′′ ∈ ω(x) \ω(Q) such
that f(q′′) = q′. The point q′′ in turn is a forward image of some point of Q′ under some
iterate of f . Thus we can pull back the point q′′ along this orbit and then repeat the
argument. Since there are only finitely many points in the set Q′, at some moment the
same point from Q′ will have to appear twice which means that this is a periodic point.
Yet this contradicts the fact that Q′ = Q \ ω(Q) and shows that ω(x) = ω(Q).

Let us show that if Q′′ is the set of all recurrent points of Q then still ω(x) = ω(Q′′).
Indeed, Q ⊂ ω(x) = ω(Q). Hence if q ∈ Q is not recurrent then there is a point
q̂ 6= q, q̂ ∈ Q such that q ∈ ω(q̂). Replace the set Q by the set Q̂ = Q \ {q}, then again
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Q̂ ⊂ ω(x) = ω(Q̂) and the argument can be repeated. After finitely many steps we get
the set Q′′ for which still ω(x) = ω(Q′′).

Now, let Q̃ be the set of all points q̃ ∈ Q whose limit sets are maximal by inclusion
among limit sets of points of Q. Let us show that all points of Q̃ are recurrent. If z ∈ Q̃
is not recurrent then the fact that Q ⊂ ω(x) = ω(Q) implies that there exists a point
z′ ∈ Q such that z ∈ ω(z′) and hence ω(z) $ ω(z′), a contradiction to the maximality of
ω(z). So, Q̃ ⊂ Q′′ and clearly ω(x) = ω(Q′′) = ω(Q̃).

Let us show that there exists a point t ∈ Q̃ such that ω(x) = ω(t). By way of
contradiction assume that there is no such point in Q̃. To continue the argument we
need to make a few choices of constants and points. Choose γ > 0 so that for any two
points y, z ∈ Q if y /∈ ω(z) then d(y, ω(z)) > 2γ (this is possible since Q is finite).
Then choose δ < γ so that for any two points u, v the fact that d(u, v) < δ implies
d(f(u), f(v)) < γ which is possible by continuity. Choose N so big that sn < δ for
n > N . Choose n > N such that cn = c ∈ Q̃. Since ω(cn) 6= ω(x) by the assumption
then there exists the first moment r > n such that d(fr(x), ω(c)) > δ (by the choice of
γ there are points in ω(x) which are more than γ-distant from ω(c), e.g. those points of
Q̃ which do not belong to ω(c)).

Consider the point cr. Let us show that c ∈ ω(cr) is impossible. Indeed, suppose that
c ∈ ω(cr). Then by the maximality of ω(c) we see that ω(cr) is also maximal (so that
cr ∈ Q̃) and ω(cr) = ω(c). By the proven in the paragraph before the previous one, cr

is recurrent and since d(fr(x), fr−mr (cr)) ≤ sr ≤ δ we see that d(fr(x), ω(c)) ≤ δ, a
contradiction. So, c /∈ ω(cr). Vice versa, let us show that cr /∈ ω(c). Indeed, otherwise
d(fr(x), fr−mr (cr)) ≤ sn ≤ δ implies that again d(fr(x), ω(c)) ≤ δ, a contradiction.

Now, let us show that mr < r. Indeed, otherwise d(fr(x), cr) ≤ sr ≤ δ. On the other
hand d(fr−1(x), ω(c)) ≤ δ by the choice of r. Thus d(fr(x), ω(c)) ≤ γ by the choice of
δ. Together with d(fr(x), cr) ≤ δ this implies that d(cr, ω(c)) ≤ δ + γ < 2γ and hence
cr ∈ ω(c) by the choice of γ, a contradiction. So, mr < r.

By the construction d(fmr (x), cr) ≤ sr ≤ δ. Let us compare mr with mn and show by
considering a few cases that all possibilities lead to a contradiction. First suppose that
mr ≥ mn. Then d(fmr (x), ω(c)) ≤ δ which together with d(fmr (x), cr) ≤ δ implies that
d(cr, ω(c)) ≤ 2δ < 2γ implying a above that cr ∈ ω(c), a contradiction. Now, suppose
that mr < mn. Then d(fmn−mr (cr), fmn(x)) ≤ sr ≤ δ and d(c, fmn(x)) ≤ sn ≤ δ
imply that d(fmn−mr (cr), c) < 2γ and hence by the choice of γ we have c ∈ ω(cr), again
the same contradiction. So, we show that the assumption that ω(c) 6= ω(x) implies a
contradiction which completes the proof of the fact that ω(c) = ω(x).

To apply Theorems 10 and 11 we need Theorem 12 obtained in its final form in
[BO] (see also [L] for polynomials with one critical point whose Julia sets are locally
connected continua non-separating the plane, [BL2] for polynomials with any number of
critical points whose Julia sets are locally connected continua non-separating the plane).
To state Theorem 12 we need some information about closed invariant laminations (for
the definitions see [Do], [McM], [Th]). Namely, if ∼ is such laminations then we define
an extension ' of ∼ onto ̂C \ D by declaring that a point in C \ D̄ is equivalent only to
itself. Let p : C \ D → (C \ D)/ ' be the factor map and denote p(S1) by J . Then J
is a locally connected unshielded continuum, and since the map σ : S1 → S1 defined by
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σ(z) = zd acts on S1 and the relation ∼ is σ-invariant, we can consider a factor map
f : J → J . Notice, that the notions of a vertex and a critical point make sense for the
map f and that there are examples of non-polynomial laminations (see [BL1]).

Theorem 12 [BO]. Suppose that one of the assumptions below holds:

(1) ∼ is an invariant lamination and f : J → J is the corresponding factor map;
(2) f is a polynomial such that its Julia set J is locally connected.

Then f |J is backward stable.

Theorems 10, 11 and 12 imply Theorem 13 which in turn implies our Main Theorem.

Theorem 13. Suppose that one of the assumptions below holds:

(1) ∼ is an invariant lamination and f : J → J is the corresponding factor map;
(2) f is a polynomial, J is its Julia set, and J is locally connected.

Then if x is a non-preperiodic non-precritical vertex of J then ω(x) coincides with ω(c(x))
for a recurrent critical point c(x) depending on x.
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