
Dedicated to the Occasion of Professor A. N. Sharkovskii 65th Birthday

ON GRAPH-REALIZABLE SETS OF PERIODS

A. M. Blokh

January 6, 2002

Abstract. We characterize sets of periods of cycles which arbitrary continuous graph
maps may have. In this investigation we need the spectral decomposition for graph maps
[B3] briefly described in Section 1.

Introduction

Let us call compact one-dimensional branched manifolds graphs; we consider this
notion in a wide sense, thus we allow non-connected graphs as well as finitely many
isolated points in graphs. We study properties of the set P (f) of periods of cycles of a
graph map f . A major result on this topic is the Sharkovskii theorem on co-existence
of periods of cycles for maps of the real line [S2]. To formulate it let us introduce the
Sharkovskii ordering (∗) for positive integers:

(∗) 3 ≺ 5 ≺ 7 ≺ · · · ≺ 2 · 3 ≺ 2 · 5 ≺ 2 · 7 ≺ · · · ≺ 8 ≺ 4 ≺ 2 ≺ 1

Denote by S(k) the set of all such integers m that k ≺ m or k = m and by S(2∞) the
set {1, 2, 4, 8, . . . }.

Theorem [S2]. Let g : R −→ R be a continuous map. Then either P (g) = ∅ or there
exists such k ∈ N ∪ 2∞ that P (g) = S(k). Moreover for any such k there exists a map
g : [0, 1] −→ [0, 1] with P (g) = S(k) and there exists a map g0 : R −→ R with P (g0) = ∅.

Other information about sets of periods of cycles for one-dimensional maps is contained
in papers [AL, M2] for maps of the circle, [ALM] for maps of the letter Y and [Ba] for
maps of n-od. Also, a new tool (“rotational theory”) was introduced and developed in
[B6, BM]; it deals with the idea of a rotation number for interval maps and allows for
more delicate study of co-existence of various types of cycles in this context.

The Sharkovskii theorem implies that if a map f : R −→ R has a cycle of period 3 then
it has cycles of all possible periods. The following conjecture, which was formulated by
M.Misiurewicz at the Problem Session at Czecho-Slovak Summer Mathematical School
near Bratislava in 1990, seems to be closely related.
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Misiurewicz Conjecture. For a graph X there exists an integer L = L(X) such that
for a continuous map f : X −→ X inclusion P (f) ⊃ {1, 2, . . . , n} implies P (f) = N.

Misiurewicz conjecture is verified in [B4]. Clearly it implies that sets of periods of
cycles of graph maps have some general properties no matter what graph is considered.
Moving in this direction we describe in Section 2 sets A ⊂ N , for which there exists a
graph Y and a continuous map g : Y −→ Y with P (g) = A. More precisely, a set A ⊂ N
is called a graph-realizable set of periods iff there exist a graph X and a continuous map
f : X −→ X such that P (f) = A. A set B is called a a zero graph-realizable set of periods
iff there exist a graph X and a continuous map g : X −→ X such that h(f) = 0, P (f) = B.
Set lZ ≡ {li : i ≥ 1}, Q(n) ≡ {2in : i ≥ 0}. Also, say that a set A almost coincides with
a set B if the symmetric difference (A \B) ∪ (B \A) is finite.

The main theorem of this paper is the following Theorem 2.1.

Theorem 2.1. The following properties take place.
(1) A set A ⊂ N is graph-realizable iff it almost coincides with a finite union of some

sets lZ or Q(n).
(2) A set A ⊂ N is zero graph-realizable iff it almost coincides with a finite union of

some sets Q(n).

In what follows we need the spectral decomposition for graph maps ([B3]) similar to
that for interval maps ([B1, B2, B5]); it is briefly described in Section 1.

Notations

intZ is the interior of a set Z;
∂ Z is the boundary of Z;
Z is the closure of Z;
fn is the n-fold iterate of a map f ;
orbx ≡ {fnx}∞n=0 is the orbit of x;
ω(x) is the limit set of orb x;
N ≡ {1, 2, 3, . . . } is the set of natural numbers;
Per f is the set of all periodic points of some map f ;
P (f) is the set of all periods of periodic points of a map f ;
h(f) is a topological entropy of a map f .

1. The Spectral Decomposition

In this section we briefly describe the spectral decomposition for graph maps (for the
proofs see [B3]). Let us begin with some historical remarks.

For any map T : X → X of a compact metric space into itself set ω(T ) =
⋃

x∈X ω(x).
A. N. Sharkovskii constructed the decomposition of the set ω(f) for continuous inter-
val maps f : I −→ I in [S1] and proved that ω(f) is closed. Then in [JR] Jonker
and Rand constructed for unimodal maps the decomposition which is in fact close to
that of Sharkovskii; however they used completely different methods based on symbolic
dynamics. In [H] the decomposition for piecewise-monotone maps with discontinuities
was constructed by Hofbauer and then Nitecki in [N] considered the decomposition for
piecewise-monotone continuous maps from more geometrical point of view.
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The papers [B1, B2, B5] are devoted to the case of arbitrary continuous interval maps
and contain a different approach to the problem. This allows us to obtain new corollaries
(e.g. describing generic properties of invariant measures for interval maps). A similar
approach is used in [B3] to construct the decomposition for graph maps; now we pass on
to the description of the results of [B3].

Let X be a graph, f : X −→ X be a continuous map (we do not assume that X
is connected). We use terms edge, vertex, endpoint in the usual sense; the numbers of
edges and endpoints of X are denoted by Edg(X), End(X). If necessary, ”artificial”
vertices are added to make all edges of a graph homeomorphic to an interval. A closed
connected set Y ⊂ X is called a connected subgraph. A connected subgraph Y is called
periodic (of period k) if Y, fY, . . . , fk−1Y are pairwise disjoint and fkY = Y ; the union
of all iterations of Y is denoted by orb Y and called a cycle of connected subgraphs. Let
Y0 ⊃ Y1 ⊃ . . . be periodic connected subgraphs of periods m0,m1, . . . ; then mi+1 is
divided by mi (∀i). If mi −→∞ then the connected subgraphs Yi, i = 1, 2, . . . are said to
be generating. We call any invariant closed set S ⊂ Q = ∩(orb Yi) a solenoidal set and
denote the solenoidal set Q ∩ ω(f) by Sω(Q) (note that by [B3] the set ω(f) is closed).

One can use a transitive shift in an Abelian zero-dimensional infinite group as a model
for the map on a solenoidal set. Let D = {ni} be a sequence of integers, ni+1 is divided
by ni (∀i) and ni →∞. Consider a subgroup H(D) ⊂ Zn0×Zn1× . . . , defined as follows:

H(D) ≡ {(r0, r1, . . . ) : ri+1 ≡ ri (mod mi) (∀i)}.

Denote by τ the shift in H(D) by the element (1, 1, . . . ); clearly, τ is minimal.

Theorem 1.1 ([B3]). Suppose that {Yi} are generating connected subgraphs and that
they have periods {mi}. Let Q =

⋂

i≥0 orbYi. Then there exists a continuous surjective
map ϕ : Q −→ H(D) with the following properties:

(1) τ ◦ ϕ = ϕ ◦ f (i.e. ϕ semiconjugates f |Q to τ);
(2) there exists the unique set S ⊂ Q ∩ Per f such that ω(x) = S for any x ∈ Q and

if ω(z) ∩Q 6= ∅ then S ⊂ ω(z) ⊂ Sω;
(3) for any r̄ ∈ H(D) the set J = ϕ−1(r̄) is a connected component of Q and ϕ|Sω

is at most 2-to-1;
(4) h(f |Q) = 0.

Let us turn to another type of an infinite limit set. Let {Yi}l
i=1 be a collection of

connected graphs, K =
⋃l

i=1 Yi. A continuous map ψ : K −→ K which permutes these
graphs cyclically is called non-strictly periodic or non-strictly l-periodic; for example if Y
is a periodic connected subgraph then f |orb Y is non-strictly periodic. In what follows
we will consider monotone semiconjugations between non-strictly periodic graph maps (a
continuous map g : X −→ Y is monotone provided g−1(Y ) is connected for any y ∈ Y ).
We need the following lemma whose proof is left to the reader.

Lemma 1.2. Let X be a graph. Then there exists a number r(X) such that if M ⊂ X
is a connected subgraph then card {∂(M)} ≤ r(X) where we consider the boundary of M
as a subset of X. Moreover, r(X) can be chose in such a way that if L is a connected
subgraph of X and ϕ : L → N is a monotone map onto a graph N then for any connected
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subgraph P of N we have card {∂(P )} ≤ r(X) where we consider the boundary of P as
a subset of N .

Lemma 1.2 makes the definition below natural. If ϕ : K −→ M is continuous, mono-
tone, semiconjugates a non-strictly periodic map f : K −→ K to a non-strictly periodic
map g : M −→ M and F ⊂ K is a closed f -invariant set such that ϕ(F ) = M and
ϕ−1(y) ∩ F ⊂ ∂(ϕ−1(y)) (∀y ∈ M) then ϕ is said to almost conjugate f |F to g.

Let Y be an n-periodic connected subgraph, orb Y = M . Denote by E(M,f) the
following set:

E(M,f) = {x ∈ M : for any open U 3 x,U ⊂ M we have orbU = M}

provided it is infinite. Clearly, E(M,f) is closed; it is called basic and denoted by B(M,f)
if Per (f |M) 6= ∅; otherwise E(M, f) is denoted by C(M,f) and called a circle-like set.

Theorem 1.3 ([B3]). Let Y be an n-periodic connected subgraph, M = orb Y and
E(M, f) 6= ∅. Then there exists a transitive non-strictly n-periodic map g : K −→ K and
a monotone continuous surjection ϕ : M −→ K which almost conjugates f |E(M, f) to g.
Furthermore:

(1) E(M, f) is a perfect set;
(2) f |E(M,f) is transitive;
(3) if ω(z) ⊃ E(M, f) then ω(z) = E(M, f);
(4) if E(M, f) = C(M, f) is a circle-like set then K is the union of n circles permuted

by g, gn on each of them is an irrational rotation and h(g) = h(f |E(M,f)) = 0;
(5) if E(M, f) = B(M,f) is a basic set then h(f) > 0, B(M, f) ⊂ Per f and there

exist a number k and a closed subset D ⊂ B(M, f) such that ϕ(D) is connected,
f i(D) ∩ f j(D), 0 ≤ i < j < kn, are finite, gi(ϕ(D)) ∩ gj(ϕ(D)), 0 ≤ i < j < kn,
are finite, fknD = D,

⋃kn−1
i=0 f iD = B(M, f) and fkn|D, gkn|ϕD are topologi-

cally mixing.

A number kn from Theorem 1.3(5) is called the mixing period of B(M, f).
In Section 2 we will need some results which can be easily deduced from Theorem

1.3. These results establish the connection between the mixing period of B(M,f) and
periods of cycles contained in M . Let us state one of them here; in the statement we use
the terminology from Theorem 1.3.

Proposition 1.4. Let M be a cycle of connected subgraphs, y ∈ M be a periodic point
of period l, E(M,f) = B(M, f) = B be a basic set of mixing period m, D ⊂ B(M, f)
and ϕ be the same as in Theorem 1.3. Then the following statements are true:

(1) m ≤ 2l · Edg(X);
(2) if l is not divisible by m then ϕ(f i(y)) /∈ int(gi(ϕ(D))) for any i;
(3) there exists a number ξ(X) such that if A is the union of the boundaries of

all sets gi(ϕ(D)) then the cardinality of the union of the boundaries of all sets
ϕ−1(z), z ∈ A (and the cardinality of the set ϕ−1(A) ∩B) is at most mξ(X);

(4) if y ∈ B and l is not a multiple of m then l ≤ mξ(X).

Proof. (1) A point y belongs to a connected set A = ϕ−1(ϕ(y)). Then by Theorem 1.3
f l(A) = A and B∩A ⊂ ∂A. Consider a point d ∈ B∩A. Clearly there are finitely many
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small pairwise disjoint open intervals I with an endpoint at d such that the intersection
B ∩ Ī has d as a non-isolated point and that all other intervals like that are non-disjoint
from the chosen ones. The number of such intervals is no more than 2 ·Edg(X) because
every edge can contain no more than 2 such intervals. Repeating this construction for all
sets f(A), . . . , f l−1(A) we will define no more than N = 2l ·Edg(X) small open intervals
non-disjoint from B.

Since the intervals can be chosen arbitrarily small we may assume that for each interval
I the intersection B ∩ I is contained in only one iteration of D. Denote the collection of
all these intervals by I. For each interval I ∈ I consider the interval ϕ(B∩ Ī) and denote
the collection of such intervals by J . Then for each J ∈ J there exists a well-defined
iteration of D containing J .

Now, for each J ∈ J there is a finite collection of other elements of J with which g(J)
intersects over a non-degenerate set. Since there are no more than N elements in J , this
implies that there exists a loop of intervals Ji ∈ J , 0 ≤ i ≤ s − 1 such that g(Ji) and
Ji+1 have a non-degenerate intersection for each i ≤ s − 2 and also g(Js−1) ∩ J0) 6= ∅.
Clearly, s ≤ N . Since distinct iterations of D have degenerate intersections we see that
in fact s = m is the mixing period of B. So, m ≤ N as desired.

(2) If ϕ(f i(y)) ∈ int(gi(ϕ(D))) for some i then the only powers of g which can map
ϕ(f i(y)) back into itself are multiples of the mixing period m of B, and hence so must
be the period l of y.

(3) Since by Lemma 1.2 each set gi(ϕ(D)) has at most r(X) points in its boundary and
there are m such sets, we conclude that the cardinality of the set A is at most mr(X).
Since ϕ is monotone then for every point z ∈ A the set ϕ−1(z) is a connected subgraph
whose boundary consists of at most r(X) points by Lemma 1.2. Hence the union of the
boundaries of sets ϕ−1(z), z ∈ A consist of at most mr2(X) points. Setting ξ(X) = r2(X)
we get the desired. Since by Theorem 1.3 ϕ almost conjugates f |B to g, the entire set
ϕ−1(A)∩B is contained in the union of the boundaries of the sets ϕ−1(z), z ∈ A, so the
cardinality of the set ϕ−1(A) ∩ B is at most mξ(X) which completes the proof of the
claim (3).

(4) Suppose that y ∈ B and l is not a multiple of m. Then by claim (2) of this propo-
sition the entire g-orbit of ϕ(y) is contained in the union of boundaries ∂gi(ϕ(D))), 0 ≤
i ≤ m− 1 and since by Theorem 1.3 the map ϕ almost conjugates f |B and g we see that
the orbit of y is contained in the set ϕ−1(A) ∩B. Since by claim (3) of this proposition
the cardinality of the set ϕ−1(A) ∩B is at most mξ(X) this completes the proof. �

To formulate the decomposition theorem denote by Zf the set of all cycles maximal
by inclusion among all limit sets of f .

Theorem 1.5 ([B3]). Let f : X −→ X be a continuous graph map. Then the following
statements are true.

(1) There exist a finite number of circle-like sets {C(Ki, f)}k
i=1, an at most countable

family of basic sets {B(Lj , f)}, and a family of solenoidal sets {Sω(Qα)} such
that

ω(f) = Zf

⋃

(
k

⋃

i=1

C(Ki))
⋃

(
⋃

j

B(Lj))
⋃

(
⋃

α

(Sω(Qα)).
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(2) There exist numbers γ(X) and ν(X) such that k ≤ γ(X), the only possible inter-
sections in the decomposition are between basic sets and at most ν(X) basic sets
can intersect at a point.

(3) For any ω-limit set ω(x) there exists a set A from the decomposition containing
ω(x), and A is unique except for the case when ω(x) is a cycle in which case ω(x)
may be contained in at most ν(X) basic sets.

Theorem 1.3 shows that one can consider mixing graph maps as models for graph
maps on basic sets. The following theorem seems to be important in this connection; to
state it we need the definition of maps with the specification property (see, for example,
[DGS]): a map T : (X, d) → (X, d) of a metric compact set into itself is said to have the
specification property if for every ε there exists an integer M such that for any k > 0,
any k points x1, . . . , xk, and any integers a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk < p with
ai−bi−1 ≥ M(2 ≤ i ≤ k) and p ≥ M +bk−a1 there exists a point x such that T p(x) = x
and d(Tn(x), Tn(xi)) ≤ ε for ai ≤ n ≤ bi, 1 ≤ i ≤ k.

Theorem 1.6 ([B3]). Let f : X −→ X be a continuous mixing graph map. Then f has
the specification property.

It is well-known [DGS] that maps with the specification have nice properties concerning
the set of invariant measures. Using them and the above results one can describe generic
properties of invariant measures for graph maps. First we need some definitions. Let
T : X −→ X be a map of a compact metric space into itself. The set of all T -invariant
Borel normalized measures is denoted by DT . A measure µ ∈ DT with suppµ containing
in one cycle is said to be a CO-measure. The set of all CO-measures concentrated on
cycles with minimal period p is denoted by PT (p). Let V (x) be the set of accumulation
points of time-averages of iterations of the δ-measure δx concentrated at x. A point
x ∈ X is said to have maximal oscillation if VT (x) = DT .

Theorem 1.7 ([B3]). Let B be a basic set. Then:
(1) for any l the set

⋃

p≥l Pf |B(p) is dense in Df |B;
(2) the set of all ergodic non-atomic invariant measures µ with suppµ = B is a

residual subset of Df |B;
(3) if V ⊂ Df |B is a non-empty closed connected set then the set of all such points

x that V (x) = V is dense in X (in particular every measure µ ∈ Df |B has a
generic point);

(4) points with maximal oscillation are residual in B.

Theorem 1.8 ([B3]). Let µ be an invariant measure. Then the following properties of
µ are equivalent:

(1) there exists such a point x that suppµ ⊂ ω(x);
(2) µ has generic points;
(3) µ is concentrated on a circle-like set or can be approximated by CO-measures.
In particular, CO-measures are dense in all ergodic measures which are not concen-

trated on circle-like sets.

Let us recall that if n ≥ 1 then nZ ≡ {in : i ≥ 1}, Q(n) ≡ {2in : i ≥ 0} and that
a set A almost coincides with a set B if the symmetric difference (A \ B) ∪ (B \ A) is
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finite. Furthermore, if B \ A is finite then say that A almost contains B and denote it
by A ⊃

a
B. Recall also that P (t) is a set of all periods of cycles of a map T .

In Lemma 1.10 below we need the following easy property of maps with specification.

Property 1.9. If T : X → X is a map with specification and X is infinite then P (T )
almost coincides with N.

Proof. Clearly, there exist a point x and a periodic orbit A such that x /∈ A. Let ε be
the distance between x and A, M = M(ε/4) and N ≥ 3M be an integer. Choose a
point z ∈ A and set a1 = 0, b1 = 0, a2 = M, b2 = N −M > a2 and p = N . Set x1 = x
and x2 = z and apply the specification property to the points x1, x2, to the numbers
a1, b1, a2, b2 and to the period p. We conclude that there exists a point y such that
T p(y) = y, d(x1, y) ≤ ε/4, and d(T i(x2), T i(y) ≤ ε/4 for a2 ≤ i ≤ b2.

We need to show that the minimal period k of y is actually N . Indeed, if k < N
then k ≤ N/2. Let us show that then there exists a number of the form jk such that
a2 ≤ jk ≤ b2. It is obvious if k ≤ M because then b2 − a2 ≥ M ≥ k and along any
k consecutive integers there must be at least one multiple of k so that there exists a
multiple of k among integers a2, a2 = 1, . . . , b2. Now, if k > M then since a2 − b1 = M
and N − b2 = M we see that a2 < k ≤ N − k < b2 as desired.

Since T jk(y) = y then by the specification property d(T jk, x1) ≤ ε/4 and on the
other hand d(T jk(y), T jk(x2)) ≤ ε/4. Since T jk(x2) ∈ A we get d(x1, A) ≤ ε/2, a
contradiction. �

Our results easily imply the following lemma.

Lemma 1.10. Let f : X −→ X be a graph map, B be a basic set of f, m be a mixing
period of B. Then P (f) almost contains mZ while P (f |B) is almost contained in mZ.

Proof. Let us use notation from Theorem 1.3. In this notation all except for finitely
many sets ϕ−1(y), y ∈ K, are intervals. hence only finitely many periodic points of g
have non-interval ϕ-preimages. Now, if y is a periodic point of g : K → K such that
ϕ−1(y) is an interval then f has a periodic point of the same period as y inside ϕ−1(y).
Therefore, P (f) almost contains P (g).

By Theorem 1.3 K =
⋃m−1

i=0 gi(ϕ(D)) where gm(ϕ(D)) = ϕ(D), gm|ϕ(D) has specifi-
cation and pairwise intersections between iterations of ϕ(D) are finite. Hence by Property
1.9 P (g) almost coincides with mZ, and so P (f) almost contains mZ.

Assume now that M is a cycle of connected subgraphs such that B = B(M, f). To
show that P (f |B) is almost contained in mZ observe that by Proposition 1.4(3) the
period of a periodic point of f |B which does not divide m must satisfy l ≤ mξ(X).
Hence only finitely many period of periodic points of f |B are not multiples of m and so
P (f |B) is almost contained in mZ as desired. �

Lemma 1.10 shows why sets mZ appear in graph-realizble sets of periods. The role
of sets Q(n) will become clear later; loosely speaking these sets of periods correspond to
those invariant connected subgraphs on which a map has zero entropy. To conclude this
section let us formulate the following
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Lemma 1.11 ([B3]). Suppose that yn → y, yn ∈ Per f and there exists an interval I
with an endpoint y such that yn ∈ I (∀n). Let

F = F ({yi}) ≡ {z : orb yn ∩ U 6= ∅ for any open U 3 z and infinitely many n}.

Then y ∈ F , F is closed, f(F ) = F, F is a cycle or an infinite set and there exists
such x that ω(x) ⊃ F and ω(x) is not a circle-like set.

2. Graph-Realizable Sets of Periods

Now we are ready to prove Theorem 2.1. We will need the following corollary of
Sharkovskii theorem.

Corollary S. Suppose that f : M → M is a continuous graph map, I ⊂ J ⊂ M are
closed intervals, p is a number such that J, f(I), . . . , fp−1(I) are disjoint, fp maps I onto
J and either I = J or there is a periodic point y such that orb y ⊂ I and endpoints of I
belong to orb y. Consider the set PerI f of all periodic points of f with orbits contained
in

⋃p−1
i=0 . Then the set PI(f) of their periods is pS(k) for some k ∈ N ∪ 2∞. Moreover,

if h(f) = 0 then the number k above comes from the set {2i}∞i=0.

Proof. By the Sharkovskii Theorem it is sufficient to consider the case when the following
holds: I = [a, b] ⊂ [c, d] = J, a, b ∈ orbf y. Define g : J −→ J as follows: g| [a, b] =
f, g| [c, a] = f(a), g|[b, d] = f(b). Then P (g) = S(k) for some k ∈ N ∪ 2∞. Let us show
that g-periodic orbits are exactly those f -periodic orbits which are contained in I. It
is enough to show that if z is a g-periodic point then it is f -periodic and its orbit is
contained in I. Indeed, otherwise there is a point z′ of the orbit of z which does not
belong to I. Then z′ ∈ [c, a] ∪ [b, d] which implies that g(z′) = f(a) or g(z′) = f(b) and
hence z′ must belong to the orbit of y and therefore must belong to I, a contradiction.
Hence, g-periodic orbits are exactly those f -periodic orbits which are contained in I, and
so PI(f) = P (g) = S(k).

Now, observe that the family of all limit sets of g is a subfamily of the family of all
limit sets of f . Together with well-known properties of the topological entropy it implies
that h(g) ≤ h(f). Hence if h(f) = 0 then h(g) = 0. Therefore the second claim of the
proposition follows from the fact that an interval map has zero entropy if and only if its
set of periods is of form S(k) with k ∈ {2i}∞i=0 (see [M1]). �

A key role in the proof of Theorem 2.1 is played by Lemma 2.2. In its proof as well
as in what follows in Section 2 we will freely use interval notation for arcs inside graphs
because it is not causing any confusion and is quite convenient.

Lemma 2.2. Let f : X −→ X be a continuous graph map, yi be f -periodic points
of periods ni. Then taking a subsequence we may assume that one of the following
possibilities holds.

(A) All points yi have the same period.
(B) For some sequence of cycles of connected subgraphs Mi ⊃ orb yi and some number

p there exists a basic set B(Mi, f) of mixing period p such that ni is divided by p
(∀i).
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(C) There are a sequence of pairs of intervals Ji ⊃ Ii and a number p such that fpIi =
Ji, intervals fIi, . . . , fp−1Ii, Ji are pairwise disjoint, orb yi ⊂

⋃p−1
j=0 f jIi (∀i)

and either fpIi = Ji or endpoints of Ii belong to orb yi.

Proof. Excluding the case (A) we may assume that ni ↗ ∞, yi → y and there is an
interval [a, y] such that [a, y) contains no vertices of X and yi ∈ [a, y) (∀i). Consider the
set F = F ({yi}) (see Lemma 1.11).

Case 1. The point y belongs to a circle-like set.

This possibility is excluded by Lemma 1.11 and Theorem 1.5.

Case 2. The set F is not a cycle (and therefore is infinite by Lemma 1.11).

According to Theorem 1.5 and Lemma 1.11 we need to consider two subcases.

Subcase 2a. The set F is contained in a solenoidal set.

To investigate this case we rely upon the definition of a solenoidal set and Theorem 1.1.
They imply that there exists a generating connected subgraph Y 3 y of arbitrary high
period. Let us show that then for some point b ∈ [a, y) we have that [b, y] ⊂ Y ∩ [a, y].
Indeed, otherwise for all integers i such that yi ∈ [a, y] is sufficiently close to y we have
that orb yi is disjoint from orb Y . Since F is infinite, there are points of F not belonging
to the union of the boundaries of components of orb Y and therefore belonging to the
union of the interiors of these components. However, then for any such point z we can
choose the interior of the containing z component of orb Y as the neighborhood which
will intersect only finitely many orbits of points yi, a contradiction. We conclude that
for any generating connected subgraph Yi we have that orb Y contains all but finitely
many orbits of yj .

Now, choose a generating connected subgraph Y 3 y so that its period p is very
large; this would guarantee that among the components of the orbit of Y there exists at
least one interval denoted by I and containing no vertices of X. By the definition of a
solenoidal set the orbit of I is the same as the orbit of Y , hence orb yi ⊂ orb I for all
sufficiently large i. Clearly it is enough to set Ii = Ji = I; then, perhaps after further
refining of the sequence {yi}, the possibility (C) from Lemma 2.2 holds.

Subcase 2b. The set F is contained in a basic set B = B(M, f).

Let p be the mixing period of B. Furthermore, let g : K −→ K be a transitive non-
strictly periodic graph map and ϕ : M −→ K be a monotone continuous surjection which
almost conjugates f |B to g (such a map ϕ exists by Theorem 1.3). Finally, let the set
D be the same as in Theorem 1.3(5).

Let us show that there are infinitely many points yi such that points ϕ(yi) have orbits
disjoint from the union A of the boundaries of sets gi(ϕ(D)). Indeed, otherwise for all
sufficiently large i the point ϕ(yi) has the g-orbit non-disjoint from A. Since the points
ϕ(yi) are g-periodic they all come from the union A′ of the periodic g-orbits of points of
A which is finite. Combining this and the fact that F ⊂ B we see that F ⊂ B∩ϕ−1(A′).
However, B ∩ ϕ−1(A′) is contained in the union of the boundaries of finitely many sets
ϕ−1(z), z ∈ A′ and by Lemma 1.2 each boundary consists of at most r(X) points. This
would imply that F is finite, a contradiction to the standing assumption of Case 2. So,
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there are infinitely many points yi such that points ϕ(yi) have orbits disjoint from A.
By Proposition 1.4(2) their periods ni are multiples of p as desired, i.e. the possibility
(B) holds.

Case 3. The set F is a cycle (i.e. y ∈ Per f, orb yi → orb y = F ).

Let the period of y be k. Consider a map ψ = fk. We may assume that there are small
intervals [y, z1] = T1 ⊂ [y, ζ1] = R1, . . . , [y, zl] = Tl ⊂ [y, ζl] = Rl such that nj > l (∀j)
and the following holds

(i) (y, zs) ∩ (y, zt) = ∅ (s 6= t);
(ii) the set U =

⋃l
r=1[y, zr) is a neighborhood of y;

(iii) yi ∈ T1 and orbψ yi ⊂ U (∀i);
(iv) V =

⋃l
i=1 Ri is a neighborhood of the point y, V \ y contains no vertices of

X, ψj(U) ⊂ V for 0 ≤ j ≤ l and also fe(V ) ∩ fd(V ) = ∅ (0 ≤ e < d < k).

Denote by Y (i)
r the smallest subinterval of Tr containing {orbψ yi ∩ Tr}; if Y (i)

r 6= ∅
then set Y (i)

r = [α(i)
r , β(i)

r ] where β(i)
r is closer to the point y than α(i)

r . Consider some
subcases.

Subcase 3a. There is an infinite set C of such integers i that for any j ≤ l, r ≤ l we
have y /∈ ψj(Y (i)

r ).

In this case for every i ∈ C the branch Rj such that ψ(Y (i)
r ) ⊂ Rj for every r

with Yr 6= ∅ is well-defined. Then clearly Y (i)
j ⊂ ψ(Y (i)

r ). Since orb yi ⊂ V and yi is
periodic, we conclude that for every i ∈ C there exists a number 0 < si ≤ l such that
ψsi(Y (i)

1 ) ⊂ R1 and moreover fd(Y (i)
1 ) ∩ fe(Y (i)

1 ) = ∅ for 0 < d < e ≤ sik. Taking a
subsequence E ⊂ C we may assume that si = s ≤ l (∀i ∈ E), so the number p = ks, the
intervals Y (i)

1 ≡ Ii and ψs(Y (i)
1 ) = fks(Y (i)

1 ) ≡ Ji are those required in possibility (C).

Subcase 3b. For any sufficiently large i there exist such j(i) ≤ l and r(i) ≤ l that
y ∈ ψj(i)(Y (i)

r(i)).

To consider Subcase 3b we need the following Proposition 3.2. Let us point out here
that even though statements similar to Proposition 2.3 are now considered standard
in one-dimensional dynamics, major arguments employed here were introduced by A. N.
Sharkovskii in his pioneer work. We will only sketch the arguments and leave the detailed
proof to the reader.

Proposition 2.3. In the situation of Subcase 3b there exist intervals

Li ⊂ Y (i)
r(i) = [α(i)

r(i), β
(i)
r(i)], Ni ⊂ [β(i)

r(i), y]

and a number ti such that ψtiNi = ψtiLi = [α(i)
r(i), y]. Moreover, there exists a ψti-

invariant set Σi ⊂ Li ∪Ni with the following properties:
(1) ψti |Σi is at most 2-to-1 semiconjugated to the full 2-shift;
(2) for every ζ ∈ Σi, every small open interval W such that ζ ∈ W and every integer

d there exist an interval U ′, ζ ∈ U ′ ⊂ W and such integer s that ψstid(U ′) =
[y, α(i)

r(i)] and ψtim(U ′) ⊂ Ni ∪ Li (0 ≤ m < sd);
(3) there exists a point x such that Σi = ωψ(x) ⊂ ωf (x).
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Proof of Proposition 2.3. We will need the following technical claim which is stated here
without a proof.

Claim. Suppose that I and J are intervals contained in a graph X, J contains no vertices
of X in its interior, T ⊂ X is a tree, J ⊂ f(I) ⊂ T . Then there exists an interval K ⊂ I
such that f(K) = J .

Let us now sketch the proof of Proposition 2.3. Since by the assumption (iv) ψ(U) ⊂ V
and by the assumption (iii) orbψ yi ⊂ U , we see that for any point z ∈ orbψ yi, V ⊃
ψ[y, z] ⊃ [y, ψ(z)] and that by Claim there exists an interval K ⊂ [y, z] such that ψ(K) =
[y, ψ(z)]. This construction can be repeated, therefore in fact for any m we can find
K ⊂ [y, z] such that ψm(K) = [y, ψm(z)]. Since both α(i)

r(i), β
(i)
r(i) belong to the periodic

orbit of yi we can find the minimal number s such that ψs(β(i)
r(i)) = α(i)

r(i) and then by the

above we can find an interval N ′ ⊂ [y, β(i)
r(i)] such that ψs(N ′) = [y, α(i)

r(i)].

On the other hand, by the assumptions of Subcase 3b there exists a point z ∈ Y (i)
r(i)

such that ψj(i)(z) = y; then similarly to the previous paragraph we can find an interval
L′′ ⊂ [z, α(i)

r(i)] such that ψj(i)(L′′) = [y, ψj(i)(α(i)
r(i))]. Again repeating the arguments

from the previous paragraph we can find a number T ≥ 0 and an interval L′ ⊂ L′′

such that ψT+j(i)(L′) = [y, α(i)
r(i))]. Clearly, choosing ti = s(T + j(i)) and applying

Claim a few times we can find the intervals Li ⊂ L′ and Ni ⊂ N ′ as desired. The
rest of the Proposition 2.3 can be prove by standard one-dimensional methods (see, e.g.,
[BGMY]). �

Let us continue the proof of Lemma 2.2 in Subcase 3b relying upon the conclusions
and the notation of Proposition 2.3. By Theorem 1.5 there exists the unique basic set
Bi = B(Mi, f) such that Bi ⊃ ωf (x) ⊃ Σi. Then by the definition of a basic set and by
Proposition 2.3(2) we have Mi ⊃ [α(i)

r(i), y]. By Proposition 1.4(2) we may assume that
all Bi have the same mixing period, say, p. Moreover, we may assume that there is a
number r ≤ l such that r(i) = r (∀i).

Let g, ϕ, Di ⊂ Bi have the same meaning as in Theorem 1.3. Choose them in such a
way that (Σi ∩Di) is infinite (it is always possible because the finite union of iterates of
Di contains Bi ⊃ Σi). We will prove that ϕ[α(i)

r , y] ⊂ ϕ(Di). Indeed, take such a point
z ∈ Σi ∩Di that ϕ(z) ∈ int(ϕ(Di)), then by Proposition 2.3 take a small neighborhood
W of z and a number s such that ϕ(W ) ⊂ int(ϕ(Di)), ψstp(W ) = [α(i)

r , y] . By the
properties of ϕ we have ϕψstip(W ) ⊂ ϕ(Di), so ϕ[α(i)

r , y] ⊂ ϕ(Di). Since β(i)
r lies in

[y, α(i)
r ] between sets Ni ∩ Σi and Li ∩ Σi belonging to Bi we see that together with the

properties of ϕ it implies that ϕ(β(i)
r ) ∈ int(ϕ(Di)).

Now by Proposition 1.4(2) the fact that ϕ(β(i)
r ) ∈ int(ϕ(Di)) implies that f -period ni

of β(i)
r (which is equal to that of yi) is divided by p. So we get the possibility (B) from

Lemma 2.2 which concludes the proof. �

We are ready to prove Theorem 2.1; for the sake of convenience we restate it.
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Theorem 2.1. The following properties take place.
(1) A set A ⊂ N is graph-realizable iff it almost coincides with a finite union of some

sets lZ or Q(n).
(2) A set A ⊂ N is zero graph-realizable iff it almost coincides with a finite union of

some sets Q(n).

Proof. (1)(i) Let us prove first that if f : X −→ X is a continuous graph map then P (f)
has the required form. To this end let us consider the family A of all sets T (d, n) ≡ {di :
i ≥ n} contained in P (f). These sets are tails of the previously introduced sets dZ.

Suppose that for some number d there exists such number n that T (d, n) ∈ A; then
d is called a difference (for the sake of brevity we omit the references to the map f in
our terminology and notation). In other words, d is a difference if and only if dZ is
almost contained in P (f). For any difference d, let n(d) be the minimal integer such that
T (d, n(d)) ∈ A ; also, denote the family of all sets T (d, n(d)) ∈ A by R. Clearly, ’⊃

a
’ is

a partial ordering in R and T (d, n(d)) is a maximal element of R if and only if d is not
divided by any other difference.

Denote the family of all ⊃
a
-maximal elements ofR byRmax and call d a basic difference

if T (d, n(d)) ∈ Rmax. For any basic difference d choose a prime number m(d) > dn(d) so
that if d1 6= d2 then m(d1) 6= m(d2); the numbers dm(d) are called starting periods. By
the definitions for any T (d, n) ∈ A there exists T (d′, n′) ∈ Rmax such that T (d′, n′) ⊃

a
T (d, n).

Consider the family B of all sets Q(m) = {2im : i ≥ 0} ⊂ P (f) for which there is no
set T (d, n) ⊃

a
Q(m). Sets from B are partially ordered by inclusion; denote by Bmax the

family of all maximal elements of B. A number m such that Q(m) ∈ Bmax is called a
root. Finally let us call a number l ∈ P (f) a period of finite type if it does not belong to
sets from either Rmax or Bmax; the set of all periods of finite type is denoted by F .

Clearly, to prove Theorem 2.1 it is enough to show that the set of all basic differences,
roots and periods of finite type is finite. Indeed, suppose otherwise. Then the set of
all starting periods, roots and periods of finite type is infinite too because one starting
period may correspond to no more than finite number of basic differences.

So from now on we assume that the set of all starting periods, roots and periods of
finite type is infinite, and prove that this is impossible by way of contradiction. Take
the correspondent periodic point for every starting period, root and period of finite type
(the definitions imply that this is possible). This way we get an infinite sequence {yi} of
periodic points of periods Ni and we may assume that Ni ↗ ∞. Let us apply Lemma
2.2 and consider some cases showing that in each case we get a contradiction.

Case A. There exists d and a set T (d, n) ∈ A containing infinitely many numbers Ni.

There exists T (d′, n′) ∈ Rmax such that T (d′, n′) ⊃
a

T (d, n). Therefore T (d′, n′)

contains infinitely many numbers Ni. By the definitions, if Ni ∈ T (d′, n′) then Ni

cannot be a root or a period of finite type. So, the only case to be considered is when all
infinitely many Ni belonging to T (d′, n′) are starting periods. In this case Ni = eim(ei)
where m(ei) = mi > ein(ei) is a prime number. If d′ = 1 we are done because then P (f)
almost coincides with N. On the other hand if d′ > 1 and em(e) is a starting period
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divisible by d′ then e is divided by d′ or m(e) = d′ because m(e) is a prime integer. By
the choice of prime numbers m(e) we conclude then that m(e) can be equal to d′ for
no more than one difference e, hence we may assume that for all i the difference ei is
divisible by d′, a contradiction to the fact that differences ei are basic.

Case A′. There is a sequence of cycles of connected subgraphs Mi and a number p such
that for every i we have yi ∈ Mi, a basic set Bi = B(Mi, f) exists and is of mixing period
p, and infinitely many Ni are divisible by p.

By Lemma 1.10 P (f) almost contains the set pZ. Therefore p is a difference and
T (p, n(p)) ∈ A. By Case A this is impossible.

Case B. Choosing a subsequence we may assume that there is a sequence of pairs of
intervals Ji ⊃ Ii 3 yi and a number p such that for any i we have fp(Ii) = Ji, intervals
f(Ii), . . . , fp(Ii) = Ji are pairwise disjoint, orb yi ⊂

⋃p−1
j=0 Ii and either fp(Ii) = Ii = Ji

or endpoints of Ii belong to orb yi.

Let us apply Corollary S to Ii. Consider the set PIi of periods of all periodic points
ζ such that orb ζ ⊂

⋃p−1
j=0 f jIi. Then by Corollary S there exists ki ∈ N ∪ 2∞ such that

PIi = pS(ki). Since sets S(k) for all k ∈ N ∪ 2∞ are linearly ordered we conclude that
there exists k ∈ N∪ 2∞ such that R =

⋃∞
i=0 PIi = pS(k). Observe that Ni ∈ R for any i

and consider two subcases.

Subcase B1. k ∈ N.

Clearly the property Ni →∞ implies that k = 2l(2m+1),m ≥ 1 (in other words, k is
not a power of 2). Then T (2lp, 2lp(2m + 1)) ∈ A and at the same time T (2lp, 2lp(2m +
1)) ⊃

a
R ⊃ {Ni}; so we are done by what has been proven in Case A.

Subcase B2. k = 2∞.

If there is a set T (d, n) ∈ A such that T (d, n) ⊃
a

R then T (d, n) ⊃
a
{Ni} and by Case

A we get a contradiction.
Suppose there is no set T (d, n) such that T (d, n) ⊃

a
R. Then R ∈ B and there is a

set Q(l) ∈ Bmax such that R ⊂ Q(l). Hence {Ni} ⊂ Q(l). Now, if a starting period
em(e) belongs to Q(l) then the corresponding set T (e, n(e)) almost contains Q(l), a
contradiction. On the other hand, by the definition the only root which belongs to
Q(l) is l. Finally, no period of finite type can belong to Q(l). Therefore, Q(l) cannot
contain infinitely many numbers Ni. This contradiction implies that Subcase B2 is also
impossible.

It remains now to apply Lemma 2.2 to the sequence of periodic points yi. According
to this lemma, either Case A′ or Case B must take place. However, we have just shown
that either case is impossible. This proves that indeed if A = P (f) is the set of all
periods of periodic points of a graph map f : X → X then A almost coincides with a
finite union of some sets lZ or Q(n) and concludes the proof of the first part of statement
(1) of Theorem 2.1.

(1)(ii) Now suppose there is a set A which almost coincides with the finite union of
some sets lZ and Q(m). To construct a graph map f : X −→ X such that P (f) = A let
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us first note that we do not suppose X to be connected. So it is enough to show that
the following two statements are true.

Proposition 2.4. For any m ≥ 0 there exists a graph map g : Y −→ Y such that we
have P (g) = {i : i ≥ m} = T (1,m)

Proof. This result follows easily from the results of [AL, M2] which imply that there
exists a map gm : S1 −→ S1 with P (gm) = T (1, m). �

Proposition 2.5. There is a map ψ : [0, 1] −→ [0, 1] such that P (ψ) = {1, 2, 4, 8, . . . } =
Q(1).

Proof. This claim is a part of the Sharkovskii Theorem. �

Taking into account the existence of graph maps g with Per g = ∅ (e.g. irrational
rotation) one can easily construct the required graph map by combining the following
sets into one graph: 1) finite collections of circles permuted by the map on which the sets
of periods of form lZ are realized (here we rely upon Proposition 2.4); 2) finite collections
of intervals permuted by the map on which the sets of form Q(l) are realized; 3) finite
collections of periodic orbits. (the details of the construction are left to the reader). This
completes the proof of the first statement of Theorem 2.1.

(2)(i) We need to prove that every graph map g with zero entropy has a set of periods
P (f) which almost coincides with a finite union of some sets Q(n). Let us begin by
proving that if h(f) = 0 then there exists no number l such that lZ ⊂ P (f). Indeed,
otherwise choose periodic points yi of periods lpi where pi is a sequence of prime numbers
and apply to them Lemma 2.2. Since by Theorem 1.3 the entropy of a map on its basic
sets is positive we conclude that f has no basic sets. Therefore, of the cases listed in
Lemma 2.2 the only possible one in our situation is Case C.

So, we may assume that refining our sequence of periodic points {yi} we get another
sequence {y′i} for which the following holds: there is a sequence of pairs of intervals
Ji ⊃ Ii and there is a number r such that fr(Ii) = Ji, intervals f(Ii), . . . , fr−1(Ii), Ji

are pairwise disjoint, orb yi ⊂
⋃r−1

j=0 f j(Ii) (∀i) and either fr(Ii) = Ji or endpoints of
Ii belong to orb yi. Here the period of yi is lp′i where p′i is a sequence of prime numbers
converging to infinity.

Consider the set PIi of periods of all periodic points ζ such that orb ζ ⊂
⋃p−1

j=0 f jIi.
Then by Corollary S there exists ki ∈ {2j}∞j=0 such that PIi = rS(ki), and so in fact
there is k ∈ {2j}∞j=0 such that all periods lp′i of the points y′i belong to rS(k). Since p′i
form a growing sequence of prime numbers this is clearly impossible. We conclude that
if h(f) = 0 then there exists no number l such that lZ ⊂ P (f) (an alternative proof of
this fact follows from [LM]).

Together with claim (1) of Theorem 2.1 this implies that every graph map g with zero
entropy has a set of periods P (f) which almost coincides with a finite union of some sets
Q(n).

(2)(ii) The construction is similar to that in the proof of the first statement of Theorem
2.1 and is left to the reader. �
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