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COMPLEMENTARY COMPONENTS TO THE CUBIC

PRINCIPAL HYPERBOLIC DOMAIN

ALEXANDER BLOKH, LEX OVERSTEEGEN, ROSS PTACEK, AND VLADLEN TIMORIN

Abstract. We study the closure of the cubic Principal Hyperbolic Domain
and its intersection Pλ with the slice Fλ of the space of all cubic polynomials

with fixed point 0 defined by the multiplier λ at 0. We show that any bounded
domain W of Fλ \ Pλ consists of J-stable polynomials f with connected Julia
sets J(f) and is either of Siegel capture type (then f ∈ W has an invariant

Siegel domain U around 0 and another Fatou domain V such that f |V is two-
to-one and fk(V ) = U for some k > 0) or of queer type (then a specially chosen
critical point of f ∈ W belongs to J(f), the set J(f) has positive Lebesgue
measure, and carries an invariant line field).

1. Introduction

In this paper, we study topological dynamics of complex cubic polynomials. We
denote the Julia set of a polynomial f by J(f) and the filled Julia set of f by
K(f). Let us recall classical facts about quadratic polynomials. The Mandelbrot
set M2, perhaps the most well-known mathematical set outside of the mathemat-
ical community, can be defined as the set of all complex numbers c such that the
sequence

c, c2 + c, (c2 + c)2 + c, . . .

is bounded. The numbers c label polynomials z2 + c. Every quadratic polynomial
can be reduced to this form by an affine coordinate change.

By definition, c ∈ M2 if the orbit of 0 under z 7→ z2 + c is bounded, i.e.,
0 ∈ K(z2 + c). Note that 0 is the only critical point of the polynomial z2 + c in C.
Generally, the behavior of critical orbits to a large extent determines the dynamics
of other orbits. For example, by a classical theorem of Fatou and Julia, c ∈ M2 if
and only if K(z2 + c) is connected. If c ̸∈ M2, then the set K(z2 + c) is a Cantor
set.

The central part of the Mandelbrot set, the so called Principal Hyperbolic Domain
PHD2, is bounded by a cardioid called the Main Cardioid. By definition, the
Principal Hyperbolic Domain PHD2 consists of all parameter values c such that the
polynomial z2+c is hyperbolic, and the set K(z2+c) is a Jordan disk (a polynomial
of any degree is said to be hyperbolic if the orbits of all its critical points converge
to attracting cycles). Equivalently, c ∈ PHD2 if and only if z2+ c has an attracting
fixed point. The closure of PHD2 consists of all parameter values c such that z2+ c
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has a non-repelling fixed point. As follows from the Douady–Hubbard parameter
landing theorem [DH8485, Hub93], the Mandelbrot set itself can be thought of as
the union of the main cardioid and limbs (connected components of M2 \ PHD2)
parameterized by reduced rational fractions p/q ∈ (0, 1).

This motivates our study of higher degree analogs of PHD2 started in [BOPT14].
More precisely, complex numbers c are in one-to-one correspondence with affine
conjugacy classes of quadratic polynomials (throughout we call affine conjugacy
classes of polynomials classes of polynomials). Thus a natural higher-degree analog
of the set M2 is the degree d connectedness locus Md defined as the set of classes of
degree d polynomials f , all of whose critical points do not escape, or, equivalently,
whose Julia set J(f) is connected. The Principal Hyperbolic Domain PHDd of
Md is defined as the set of classes of hyperbolic degree d polynomials with Jordan
curve Julia sets. Equivalently, the class [f ] of a degree d polynomial f belongs to
PHDd if all critical points of f are in the immediate attracting basin of the same
attracting (or super-attracting) fixed point. In [BOPT14] we describe properties of
cubic polynomials f such that [f ] ∈ PHDd; notice that Theorem 1.1 holds for any
d > 2.

Theorem 1.1 ([BOPT14]). If [f ] ∈ PHDd, then f has a non-repelling fixed point,
no repelling periodic cutpoints in J(f), and all its non-repelling periodic points,
except at most one fixed point, have multiplier 1.

Observe that, strictly speaking, in [BOPT14] we claim that all non-repelling
periodic cutpoints in the Julia set J(f), except perhaps one, have multiplier 1;
however, literally repeating the same arguments one can prove the version of the
results of [BOPT14] given by Theorem 1.1 (i.e., we can talk about all non-repelling
periodic points of f , not only its periodic cutpoints). Theorem 1.1 motivates the
following definition; notice that from now on in the paper we concentrate upon the
cubic case (thus, unlike Theorem 1.1, Definition 1.2 deals with cubic polynomials).

Definition 1.2 ([BOPT14]). Let CU be the family of classes of cubic polynomials
f with connected J(f) such that f has a non-repelling fixed point, no repelling
periodic cutpoints in J(f), and all its non-repelling periodic points, except at most
one fixed point, have multiplier 1. The family CU is called the Main Cubioid.

Let F be the space of polynomials

fλ,b(z) = λz + bz2 + z3, λ ∈ C, b ∈ C.
An affine change of variables reduces any cubic polynomial f to the form fλ,b. Note
that 0 is a fixed point for every polynomial in F . The set of all polynomials f ∈ F
such that 0 is non-repelling for f is denoted by Fnr (in other words, Fnr is the set
of all polynomials fλ,b with |λ| 6 1). Define the λ-slice Fλ of F as the space of
all polynomials g ∈ F with g′(0) = λ. The space F maps onto the space of classes
of all cubic polynomials with a fixed point of multiplier λ as a finite branched
covering. This branched covering is equivalent to the map b 7→ a = b2, i.e., classes
of polynomials fλ,b ∈ Fλ are in one-to-one correspondence with the values of a.
Thus, if we talk about, say, points [f ] of M3, then it suffices to take f ∈ Fλ for
some λ. There is no loss of generality in that we consider only perturbations of f
in F .

Assume that J(f) is connected. In [Lyu83, MSS83], the notion of J-stability
was introduced for any holomorphic family of rational functions: a map is J-stable
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with respect to a family of maps if its Julia set admits an equivariant holomorphic
motion over some neighborhood of the map in the given family. We say that f ∈ Fλ

is stable if it is J-stable with respect to Fλ with λ = f ′(0), otherwise we say that f
is unstable. The set Fst

λ of all stable polynomials f ∈ Fλ is an open subset of Fλ.
A component of Fst

λ is called a (λ-)stable component.

Definition 1.3. The extended closure PHD
e

3 of the cubic Principal Hyperbolic Do-
main PHD3 is the union of PHD3 and classes of all polynomials from all λ-stable
components Λ with |λ| 6 1 such that for all b ∈ Bd(Λ), we have [fλ,b] ∈ PHD3.

It turns out that properties of polynomials from PHD3 listed in Theorem 1.1 are
inherited by polynomials from the extended closure PHD

e

3.

Theorem 1.4 ([BOPT14]). We have PHD
e

3 ⊂ CU.

In [BOPT14b] we studied polynomials f ∈ Fnr that have connected quadratic-
like Julia sets containing 0. Lemma 2.1, Theorem 2.3 and Corollary 4.1 are proven
in [BOPT14b]; we include them in this paper for the sake of completeness.

Our aim is to continue to study properties of PHD3. For a compact set X ⊂
C, define the topological hull TH(X) of X as the union of X with all bounded
components of C \ X. We will write Pλ for the set of polynomials f ∈ Fλ such
that [f ] ∈ PHD3. In our Main Theorem we describe the dynamics of polynomials
f belonging to bounded components of the set TH(Pλ) \ Pλ where |λ| 6 1.

Consider a cubic polynomial f with a non-repelling fixed point such that [f ] does
not belong to PHD3; we call such polynomials potentially renormalizable. Whenever
we talk about a potentially renormalizable polynomial, we always assume that it
has a non-repelling fixed point. In that case we may assume that f ∈ Fnr (i.e., we
have f(z) = fλ,b(z) = λz + bz2 + z3 with |λ| 6 1).

Let A =
∪

|λ|<1 Fλ. For each g ∈ A, let A(g) be the basin of 0. Perturbing

a potentially renormalizable polynomial f ∈ Fnr to a polynomial g ∈ A, we see
that g|A(g) is two-to-one (otherwise [f ] ∈ PHD3). We use this in Lemma 2.1 to
show that a potentially renormalizable polynomial f ∈ Fnr has two distinct critical
points. A critical point c of f is said to be principal if there is a neighborhood U of
f in F and a holomorphic function ω1 : U → C defined on U such that c = ω1(f),
and, for every g ∈ U ∩ A, the point ω1(g) is the critical point of g contained in
A(g). By Theorem 2.3, if f ∈ Fnr is potentially renormalizable, then the point
ω1(f) is well-defined; let the other critical point of f be ω2(f). It is easy to see
that ω1(f) ∈ K(f).

Definition 1.5. Let W be a bounded component of TH(Pλ) \ Pλ, where |λ| 6 1.
Then W is said to be of Siegel capture type if any f ∈ W has an invariant Siegel
domain U around 0 and another Fatou domain V such that f |V is two-to-one and
f◦k(V ) = U for some k > 0. Also, W is said to be of queer type if the set J(f)
contains the critical point ω2(f). In this case, it can be shown (Theorem 4.11) that
J(f) has positive Lebesgue measure, and carries an invariant line field.

Observe that polynomials from components of Siegel capture type and from
components of queer type have connected Julia sets.

Main Theorem. Let W be a bounded component of TH(Pλ) \ Pλ, where |λ| 6 1.
Then any polynomial f ∈ W is stable and has neither repelling periodic cutpoints
nor neutral periodic points distinct from 0 in K(f). Moreover, W is either of Siegel
capture type or of queer type.
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Notation and Preliminaries: we write A for the closure of a subset A of a topological space

and Bd(A) for the boundary of A; the n-th iterate of a map f is denoted by f◦n. We let C
stand for the complex plane, C∗ for the Riemann sphere, D for the open unit disk in C centered

at 0, and S = Bd(D) for the unit circle. We identify the unit circle S with R/Z and denote

by βγ the chord with endpoints β, γ ∈ S. The d-tupling map of the unit circle is denoted by

σd. We will talk about principal sets of arbitrary continuous paths γ : (0,∞) → C such that

limt→∞ γ(t) = ∞, not necessarily external rays. The principal set of γ is defined as
∩

ε>0 γ(0, ε).

We also assume knowledge of basic notions from complex dynamics, such as Green function,

dynamic rays (of specific argument), Böttcher coordinate, Fatou domain, repelling, attracting,

neutral periodic points, parabolic, Siegel, Cremer periodic points, impressions, principal sets, and

the like (see, e.g., [McM94]).

2. Critical points of potentially renormalizable polynomials

Throughout Section 2, we consider a potentially renormalizable polynomial f =
fλ,b with |λ| 6 1. Recall that, if g ∈ A is close to f , then f |A(g) is two-to-one and
contains exactly one critical point of g denoted by ω1(g). Let ω2(g) be the other
critical point of g. Thus, maps g ∈ A close to f have two distinct critical points
with very different properties. Consistently approximating f by polynomials g ∈ A,
we can distinguish between critical points of f as well.

Lemma 2.1 ([BOPT14b]). The polynomial f has two distinct critical points.

Proof. Assume that ω(f) is the only critical point of f (then it has multiplicity
two). Let C be the space of all polynomials g ∈ F with a multiple critical point
ω(g). This is an algebraic curve in F passing through f . The map taking g ∈ C to
g′(0) is a non-constant holomorphic function. Hence there are polynomials g ∈ C
arbitrarily close to f , for which |g′(0)| < 1. The class of any such polynomial g
belongs to PHD3 as the immediate basin of 0 with respect to g must contain the
multiple critical point ω(g), contradicting our assumption on f . �

We are ready to give the following definition.

Definition 2.2. A critical point c of f is said to be principal if there is a neigh-
borhood U of f in F and a holomorphic function ω1 : U → C defined on this
neighborhood such that c = ω1(f), and, for every g ∈ U ∩A, the point ω1(g) is the
critical point of g contained in A(g).

Now let us prove Theorem 2.3.

Theorem 2.3 ([BOPT14b]). There exists a unique principal critical point of f .

Proof. By Lemma 2.1, the two critical points of f are different. Then there are two
holomorphic functions, ω1 and ω2, defined on a convex neighborhood U of f in F ,
such that ω1(g) and ω2(g) are the critical points of g for all g ∈ U . Suppose that
neither ω1(f), nor ω2(f) is principal. Then, arbitrarily close to f , there are cubic
polynomials g1 and g2 ∈ A with ω2(g1) ̸∈ A(g1) and ω1(g2) ̸∈ A(g2). Since A(gi)
contains a critical point for i = 1, 2, we must have that ωi(gi) ∈ A(gi).

The set A is convex. Therefore, the intersection U ∩ A is also convex, hence
connected. Let Oi, i = 1, 2, be the subset of U ∩ A consisting of all polynomials g
with ωi(g) ∈ A(g). By the preceding paragraph, g1 ∈ O1 and g2 ∈ O2. We claim
that Oi is open. Indeed, if g ∈ Oi, then there exists a Jordan disk U ⊂ A(g) with
g(U) compactly contained in U , and ωi(g) ∈ U . If g̃ ∈ U ∩A is sufficiently close to
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g, then g̃(U) is still compactly contained in U , and ωi(g̃) is still in U , by continuity.
It follows that U ⊂ A(g̃), in particular, ωi(g̃) ∈ A(g̃). Thus, Oi is open. Since
O1,O2 are open and non-empty, the set U ∩ A is connected, and

U ∩ A = O1 ∪ O2,

the intersection O1 ∩ O2 is nonempty. Note that O1 ∩ O2 consists of polynomials,
whose classes are in PHD3. Since U can be chosen arbitrarily small, it follows that
f can be approximated by maps g ∈ A with [g] ∈ PHD3, a contradiction.

The existence of a principal critical point of f is thus proved. The uniqueness
follows immediately from our assumption on f . �

Denote by ω1(f) the principal critical point of f . Obviously, ω1(f) ∈ K(f). Let
ω2(f) be the other critical point of f . For gλ,b(z) = λz+ bz2+ z3 with |λ| 6 1 (i.e.,
for g ∈ Fnr) sufficiently close to f , the point ω1(g) is a holomorphic function of g.

3. Parabolic dynamics

Suppose that 0 is a parabolic point of f with rotation number p/q, i.e., we have
f ′(0) = exp(2πip/q). It follows that f◦q(z) = z+azm+1+O(zm+2) for small z and
some non-zero coefficient a, where m = q or 2q. A repelling vector is defined as a
vector v ∈ C such that avm is a positive real number. Repelling vectors define m
straight rays originating at 0. These rays divide the plane into m open attracting
sectors. Let S be an attracting sector, and D a small round disk centered at 0.
The map z 7→ z−m is defined on S ∩D and takes S ∩D into a subset of the plane
containing the half-plane Re(wa) < −M for some big M > 0. Moreover, the map
z 7→ z−m conjugates f◦q|S∩D with a map F asymptotic to w−ma as w → ∞. IfM
is big enough, then F takes the half-plane Re(wa) < −M into itself. An attracting
petal P of f at 0 is defined as the closure of the pullback of this half-plane to S. An
attracting petal depends on the choice of an attracting sector S and on the choice
of the number M . The following properties of attracting petals are immediate:

(1) any attracting petal P is a compact subset of the plane such that tP ⊂ P
for t ∈ [0, 1];

(2) if P is an attracting petal, then the map f◦q : P → C is univalent, and we
have f◦q(P ) ⊂ P ;

(3) the set f(P ) lies in some attracting petal of f ;

In what follows, given f ∈ F and small ε > 0, we define gf, ε ∈ F as the cubic
polynomial affinely conjugate to (1− ε)f .

Lemma 3.1. Let P be an attracting petal of f . If ε > 0 is sufficiently small, then
P is contained in A(gf, ε).

Proof. Set g = gf, ε. Let us show that every attracting petal P̃ of f is contained
in A((1 − δ)f) for every 0 < δ < 1. Assume that there are attracting petals

P̃0 = P̃ , P̃1, . . . , P̃q−1 with f(P̃i) ⊂ P̃i+p (mod q). It follows from property (1) of

attracting petals that the map (1− δ)f takes P̃i to a subset of P̃i+q (mod q). Hence,

P̃ ⊂ A((1− δ)f).
A conjugacy between (1−ε)f and g is given by the map z 7→ (1−ε)1/2z, and we

may choose ε so small that the set (1−ε)−1/2P is contained in some (slightly bigger)

attracting petal P̃ of f . By the previous paragraph, (1 − ε)−1/2P ⊂ A((1 − ε)f),
hence P ⊂ A(g). �
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Figure 1. Attracting petals and repelling directions for the poly-
nomial f(z) = e2πi/3z + z2 + z3.

By a parabolic domain at 0, we mean a Fatou component of f containing some
attracting petal.

Corollary 3.2. Suppose that f ∈ Fλ, |λ| 6 1, is potentially renormalizable, and Ω
is a parabolic domain of f at 0. For every compact set D ⊂ Ω and every sufficiently
small ε > 0, we have D ⊂ A(gf, ε).

Proof. Let p/q be the rotation number, and let P ⊂ Ω be an attracting petal. We
may assume that D is a Jordan disk. Replacing D with a bigger Jordan disk if
necessary, we may assume that D ∩ P ̸= ∅. By compactness of D, there exists a
positive integer m with the property f◦qm(D) ⊂ P .

Let ε > 0 be a small real number, and set g = gf, ε ∈ F . By Lemma 3.1, we
have P ⊂ A(g). We have g◦qm(D) ⊂ P provided that ε is small enough. It follows
that D is contained in some pullback of A(g). Since D∩P ̸= ∅, this pullback must
coincide with A(g). �

Corollary 3.3 identifies ω1(f) in the attracting and parabolic cases.

Corollary 3.3. Let f ∈ Fnr be potentially renormalizable. If 0 is a parabolic (resp.,
attracting) fixed point of f , and c is a critical point of f belonging to a parabolic
(resp., the attracting) domain Ω of f at 0, then c = ω1(f). Thus, such Ω is unique.

Proof. Wemay assume that 0 is parabolic. LetD be a small disk around c contained
in Ω. By Corollary 3.2, if ε > 0 is small enough and g = gf, ε, then D ⊂ A(g). Let
cg be the critical point of g close to c. If ε is small enough, then cg ∈ D. Therefore,
cg ∈ A(g) and c = ω1(f) by definition of the principal critical point. �

The proof of Corollary 3.4 is left to the reader; notice that the claim about the
Julia set of a polynomial g being locally connected follows from [DH8485].

Corollary 3.4. Suppose that f ∈ Fnr is potentially renormalizable, 0 is parabolic
and, for some k, the point f◦k(ω2(f)) belongs to a parabolic domain at 0. Then the
maps g = gf, ε converge to f as ε → 0, have locally connected Julia sets and are
such that ω1(g) ∈ A(g), ω2(g) /∈ A(g) and g◦k(ω2(g)) ∈ A(g).
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4. Bounded components of Fλ \ Pλ must be of Siegel capture type or
of queer type

We need the notion of an active critical point introduced by McMullen in [McM00].
Set i = 1 or 2, and take f ∈ Fλ. The critical point ωi(f) is active if, for every
neighborhood U of f in Fλ, the sequence of the mappings g 7→ g◦n(ωi(g)) fails to
be normal in U . If the critical point ωi(f) is not active, then it is said to be passive.

Corollary 4.1 ([BOPT14b]). Let λ be a non-repelling multiplier. Every bounded
component W of Fλ \ Pλ consists of stable maps.

Proof. By [MSS83], to prove that f ∈ W is stable, it suffices to show that both
critical points of f are passive. Note that, if g ∈ Bd(W), then the g-orbits of ω1(g)
and of ω2(g) are bounded uniformly with respect to g. By the maximum principle,
the f -orbits of ω1(f) and ω2(f) are uniformly bounded for all f ∈ W, which implies
normality. Thus both critical points are passive, and the corollary is proved. �

We want to improve the description of the dynamics of maps in a bounded
component of Fλ \ Pλ given in [BOPT14] (see Theorem 1.4). Let f ∈ Fλ, |λ| 6 1,
belong to a bounded component Wf of Fλ \ Pλ. By Corollary 4.1, the map f is
stable. A priori, Wf (and f) can be classified into five types:

Disjoint type: the critical point ω2(f) lies in a periodic attracting basin but
not in A(f).

Attracting capture type: we have |λ| < 1, and ω2(f) is eventually mapped
to A(f).

Parabolic capture type: λ is a root of unity, and ω2(f) is eventually mapped
to a periodic parabolic Fatou domain at 0.

Siegel capture type: the critical point ω2(f) is eventually mapped to the
Siegel disk around 0.

Queer type: we have ω2(f) ∈ J(f).

In this section, we prove that bounded components of Fλ \ Pλ of the first three
types do not exist. We use [BFMOT12], where fixed and periodic points of various
maps of plane continua were studied.

Definition 4.2. A dendrite is a locally connected continuum containing no Jordan
curves. If g : D → D is a self-mapping of a dendrite D, a periodic point a is said
to be weakly repelling is there exists an arc I ⊂ D with endpoint a and a number
k such that g◦k(a) = a and, for any x ∈ I \ {a}, the point x separates the points a
and g◦k(x) in D.

Theorem 4.3 (Theorem 7.2.6 [BFMOT12]). Suppose that g : D → D is a self-
mapping of a dendrite D such that all its periodic points are weakly repelling. Then
g has infinitely many periodic cutpoints.

Lemma 4.4 has a topological nature.

Lemma 4.4. If a polynomial F has locally connected Julia set with pairwise disjoint
closures of its Fatou domains, then J(F ) contains infinitely many periodic repelling
cutpoints unless J(F ) is a Jordan curve.

Proof. Assume that J(F ) is not a Jordan curve. Define a map ψ which collapses
Fatou domains of F to points and creates a dendrite D out of J(F ) with the map
h : D → D induced by F ; thus, ψ ◦F = h ◦ψ and F is semiconjugate to h (if J(F )
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is already a dendrite, then ψ can be taken as the identity map). Then all periodic
points of h are weakly repelling. Indeed, the corresponding property is immediate
if an h-periodic point is the ψ-image of an F -periodic point. Otherwise let U be
a periodic Fatou domain of F . Observe that, by the assumption, U cannot have a
critical point, say, c in Bd(U) since if it does, then F will have two Fatou domains,
whose closures contain c, a contradiction.

We claim that there exists a periodic cutpoint x of J(F ) with x ∈ Bd(U). Indeed,
we may assume that U is F -invariant. Take a component K of J(F ) \ U (it exists
since J(F ) ̸= Bd(U)). Then K∩U = {y} for some point y. If y is not (pre)periodic,
then there exists N such that for any n > N any component of J(F ) \ {F ◦n(y)}
except for one component containing U contains no critical points. This implies
that any such component T is wandering. However, T must contain pullbacks of
U , a contradiction. Hence y is (pre)periodic, and some image x of y is a desired
periodic cutpoint of J(F ) of period, say, m. Since U is invariant, the combinatorial
rotation number of F ◦m at x is zero. This and the fact that x is repelling in J(F )
implies that the point ψ(U) is a weakly repelling periodic point of h.

Thus, any periodic point of h is weakly repelling. By Theorem 4.3, the map h has
infinitely many periodic cutpoints in ψ(J(F )). By construction, this implies that
F has infinitely many periodic repelling cutpoints (recall that F has only finitely
many periodic Fatou domains). �

Corollary 4.5 now easily follows.

Corollary 4.5. Let g ∈ A be such that g|A(g) is two-to-one and g◦k(ω2(g)) ∈ A(g).
Then g has locally connected Julia set with pairwise disjoint closures of its Fatou
domains. Thus, J(g) contains infinitely many periodic repelling cutpoints.

Proof. By [DH8485], the set J(g) is locally connected. Suppose that two Fatou
domains U , V are such that U ∩ V ̸= ∅. Since A(g) is the only periodic Fatou
domain of g, both U and V must eventually map to A(g). Hence there exists a
unique number m such that g◦m(U) ̸= g◦m(V ) while g◦m+1(U) = g◦m+1(V ). This
implies that the common point of g◦m(U) and g◦m(V ) is critical, a contradiction.
Now Lemma 4.4 implies the remaining claims of this lemma. �

To prove that bounded components of Fλ \ Pλ cannot be of disjoint type or
attracting (parabolic) capture types, we use perturbations as a tool. Thus, we need
a few general facts about perturbations. Lemma 4.6 goes back to Douady and
Hubbard [DH8485]. Recall that a smooth (external ) ray of a polynomial P , for
which J(P ) is not necessarily connected, is defined as a homeomorphic image of R
in C\K(P ) accumulating only in {∞}∪J(P ), avoiding pre-critical points of P , and
tangent to the gradient of the Green function of P . An external ray of argument
θ ∈ R/Z is denoted by RP (θ).

Lemma 4.6 (Lemma B.1 [GM93]). Let f be a polynomial, and z be a repelling
periodic point of f . If a smooth periodic ray Rf (θ) lands at z, then, for every
polynomial g sufficiently close to f , the ray Rg(θ) is also smooth, lands at a repelling
periodic point w close to z, and w depends holomorphically on g.

Lemma 4.7 now easily follows.

Lemma 4.7. Suppose that hn → h is an infinite sequence of polynomials of degree
d, and {α, β} is a pair of periodic arguments such that the external rays Rhn(α),
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Rhn(β) land at the same repelling periodic point xn of hn. If Rh(α), Rh(β) are
smooth but do not land at the same periodic point of h, then one of these two rays
must land at a parabolic point of h.

Proof. We may assume that xn converge to an h-periodic point x. If both rays
Rh(α), Rh(β) land at distinct repelling periodic points, then, by Lemma 4.6, we
get a contradiction with the fact that Rhn(α), Rhn(β) land at xn and xn → x.
Since α and β are periodic, by the Snail Lemma, Rh(α) and Rh(β) cannot land
at a Cremer point. Hence one of the rays Rh(α), Rh(β) must land at a parabolic
periodic point. �

The next lemma deals with much more specific perturbations.

Lemma 4.8. Let f ∈ Fnr be potentially renormalizable such that the point 0 is
parabolic. Suppose that f◦k(ω2(f)) belongs to a parabolic Fatou domain at 0 for
some k > 0. Then there are infinitely many repelling periodic cutpoints in J(f).

Proof. By Corollary 3.4, we can choose a sequence εn → 0 so that the maps gn =
gf, εn have the following properties:

(1) each gn has an attracting fixed point 0 and a critical point dn ≈ ω2(f) such
that dn /∈ A(gn) and g

◦k
n (dn) ∈ A(gn);

(2) the maps gn are pairwise topologically conjugate on their Julia sets.

The second requirement can be fulfilled because for any sequence gn satisfying
(1), the topological dynamics of gn : J(gn) → J(gn) can be of finitely many types
(observe that there are finitely many Thurston invariant laminations modeling poly-
nomials with property (1)).

Now, by Corollary 4.5, there are infinitely many pairs of periodic angles αi, βi
such that the external rays Rgn(αi), Rgn(βi) land at the same periodic repelling
cutpoint xi(gn) of J(gn). By Lemma 4.7, this implies that, for infinitely many
subscripts i, the points xi(gn) converge to a repelling periodic cutpoint xi(f) of
J(f), and all these points are distinct. �

We will need the following lemma.

Lemma 4.9. If V is a stable domain in Fλ, then f ∈ V does not have a periodic
neutral point other than 0.

Proof. If f is stable with a neutral periodic point x = x(f) ̸= 0, then it follows
that all maps g ∈ V have a neutral periodic point x(g) ̸= 0 of the same period.
Clearly, this implies that the multiplier of x(g) for g ∈ V must be constant, a
contradiction. �

We are ready to prove Lemma 4.10.

Lemma 4.10. Let W be a component of TH(Pλ)\Pλ. Then any polynomial f ∈ W
has connected Julia set J(f) and has neither repelling periodic cutpoints nor non-
repelling periodic points distinct from 0. In particular, W is either of Siegel capture
type or of queer type.

Proof. Assume that f ∈ W. Since the critical points of polynomials from Bd(W)
are non-escaping, it follows that the critical points of f are also non-escaping. Hence
J(f) is connected. Consider now two possibilities. Recall that, by Corollary 4.1,
all maps in W are stable.
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First, it may happen that W is a stable component. Then by Definition 1.3
where the extended closure PHD

e

3 of the cubic Principal Hyperbolic Domain PHD3

is defined it follows that the polynomial f belongs to PHD
e

3. Hence, by Theo-
rem 1.1, the polynomial f cannot have attracting periodic points distinct from 0 or
repelling periodic cutpoints distinct from 0 of its Julia set. On the other hand, by
Lemma 4.9, the polynomial f cannot have neutral periodic points distinct from 0.
This completes the proof of the lemma in the case when W is a stable component.

Second, suppose that W is not a stable component. Then there is a unique
stable component V in Fλ such that V % W. It follows that there is a polynomial

g ∈ Bd(W) ∩ V; in other words, there is a polynomial g ∈ V such that [g] ∈ PHD3,
and the maps f |J(f) and g|J(g) are quasi-symmetrically conjugate.

Suppose that f has a repelling periodic cutpoint x of its Julia set. Clearly, x ̸= 0.
The corresponding periodic point y of g cannot be repelling by Theorem 1.1. Since
f |J(f) and g|J(g) are conjugate, it follows that the only possibility for y ̸= 0 is that
y is a parabolic periodic point. However this contradicts Lemma 4.9. Hence f
has no repelling periodic cutpoints of its Julia set. Moreover, by Lemma 4.9, the
polynomial f has no neutral periodic points distinct from 0.

Finally, suppose that f has an attracting periodic point distinct from 0. Then
the fact that f and g are quasi-conformally conjugate on their Julia sets implies
that g has either (1) an attracting periodic Fatou domain U not containing 0 or (2)
a parabolic periodic Fatou domain with a parabolic point z ̸= 0 on its boundary.
Since [g] ∈ PHD3, case (1) is impossible by Theorem 1.1. On the other hand, case
(2) is impossible by Lemma 4.9. This completes the proof of the first claims of the
lemma.

Let us use this to show that W is either of Siegel capture type or of queer type.
Indeed, if f ∈ W is of disjoint type, then f has an attracting periodic point distinct
from 0, which is impossible by the above. If f is of attracting capture type, then,
by Corollary 4.5, the set J(f) contains infinitely many periodic repelling cutpoints,
again a contradiction with the above. Finally, if f is of parabolic capture type,
then, by Lemma 4.8, we see that f has infinitely many periodic repelling cutpoints,
and we obtain the same contradiction with the above. Therefore, W is either of
Siegel capture type or of queer type. �

The following theorem describes components of queer type.

Theorem 4.11. Let W be a bounded stable component of Fλ of queer type. Then,
for any polynomial f ∈ W, the Julia set J(f) has positive Lebesgue measure and
carries an invariant line field.

The most difficult case of Theorem 4.11 is covered by the following theorem of
S. Zakeri:

Theorem 4.12 ([Zak99], Theorem 3.4). Let 0 < θ < 0 be a Brjuno number, and
set λ = e2πiθ. Consider a polynomial f from a queer component of Cλ \ Bd(Cλ).
Then J(f) pas positive Lebesgue measure and carries an invariant line field.

Brjuno numbers are irrational numbers satisfying a certain number theoretic
condition. If θ is Brjuno, then any holomorphic germ at 0 of the form z 7→ λz+ . . . ,
where dots denote terms of degree 2 and higher, is linearizable [Yoc]. The converse
is known only for quadratic polynomials. The proof of [Zak99, Theorem 3.4] does
not use the Brjuno condition. It works verbatim for any stable component W of Fλ
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such that polynomials f ∈ W have a Siegel disk around 0 (obviously, this condition
does not depend on the choice of f within W).

Proof of Theorem 4.11. The argument follows the same lines as [McS, Zak99]. There
is an equivariant holomorphic motion µ of the set J(f) for f ∈ W. If we fix some
f0 ∈ W, then µ can be regarded as a map from J(f0)×W to C such that µ(z, f0) = z
for all z ∈ J(f0) and, for any fixed z, the map f 7→ µ(z, f) is holomorphic. Suppose
that µ can be extended to a holomorphic motion of the entire complex plane in such
a way that z 7→ µ(z, f) is holomorphic on the Fatou set of f0, for any f sufficiently
close to f0. Then J(f0) must have positive Lebesgue measure (otherwise, by the
Ahlfors Lemma, the map z 7→ µ(z, f) would be a global holomorphic conjugacy
between f0 and f). An invariant line field on J(f0) is given by the pullback of
the standard conformal structure under the quasi-conformal map z 7→ µ(z, f): say,
one can take major axes of the ellipses representing the described quasi-conformal
structure.

The desired extension of µ is easy if there are no bounded Fatou components
of f0. Indeed, in this case, it suffices to define µ(z, f) for z outside of K(f0). We
set µ(z, f) to be a point in the dynamical plane of f , whose (suitably normalized)
Böttcher coordinate with respect to f is the same as the Böttcher coordinate of z
with respect to f0. If the Fatou set of f0 has bounded components, then we can
also extend µ to each of the Fatou components by equating the (suitably normal-
ized) linearizing coordinates. The only problem is with Siegel disks, for which the
linearizing coordinates have no obvious normalization, especially if the boundary
of the Siegel disk is not locally connected and there are no critical points on the
boundary. This (most difficult) case is covered by [Zak99, Theorem 3.4] stated
above as Theorem 4.12. �

Obviously, Lemma 4.10 and Theorem 4.11 imply our Main Theorem.
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