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Abstract. The Sharkovskĭı type of a map of an interval is
the Sharkovskĭı-greatest integer t such that it has a periodic
point of period t. The Sharkovskĭı type of a cycle (i.e., a cyclic
permutation) is the Sharkovskĭı type of the “connect the dots”
map determined by it. For n ≥ 2, let C(n) denote the finite set
of integers which are Sharkovskĭı types of n-cycles. We give
an internal characterization of C(n) and an n4-time algorithm
for determining the Sharkovskĭı type of an n-cycle.

Introduction

This paper deals with “combinatorial dynamics on an inter-
val” [1], specifically with some combinatorial aspects of A. N.
Sharkovskĭı’s celebrated theorem [9]. To state it, we need the
Sharkovskĭı order on the positive integers:
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3 >S 5 >S 7 >S · · · >S 2 · 3 >S 2 · 5 >S 2 · 7 >S · · · >S 22 · 3
>S 22 · 5 >S 22 · 7 >S · · · >S 23 >S 22 >S 2 >S 1.

Sharkovskĭı’s Theorem states that if a continuous map f of
a compact interval to itself (a map of an interval for short) has
a point of period n (a point p such that n is the least positive
integer such that fn(p) = p – here the exponent on f denotes
iterated composition), then for each m <S n (m Sharkovskĭı-less
than n), it has a point of period m.

The Sharkovskĭı type, denoted S(·), of a map of an interval
is the Sharkovskĭı-greatest integer t such that it has a point of
period t. No such t may exist. In that case, the map has points
of period 2k for all k ≥ 0 and of no other period, and we say
that it has Sharkovskĭı type 2∞. Define m <S 2∞ <S n if m is
a power of 2 and n is not. P. S̆tefan’s examples [10] show that if
a map has a point of period n, then its Sharkovskĭı type can be
any “integer” (including 2∞) Sharkovskĭı-greater than or equal
to n.

We extend the notion of Sharkovskĭı type to cyclic permuta-
tions. For a cyclic permutation π of {1, . . . , n}, an n-cycle for
short, the Sharkovskĭı type S(π) of π is the Sharkovskĭı type
of the map Lπ : [1, n] → [1, n] obtained by “connecting the
dots” of {(i, π(i)) : i = 1, . . . , n} by straight lines. Since there
are finitely many n-cycles, the set C(n) of Sharkovskĭı types of
n-cycles is finite. We give an internal characterization of C(n)
and an n4-time algorithm for determining the Sharkovskĭı type
of an n-cycle.

For cycles, as for maps, we use exponentiation to denote it-
erated composition. In keeping with the opening sentence of
the paper, most of the concepts will have purely combinatorial
formulations.
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1. Combinatorial preliminaries

The notion of the Sharkovskĭı type of a cycle is connected
with S. Baldwin’s notion of forcing. An n-cycle π forces an
m-cycle θ (n need not equal m) if every map of an interval
which has a representative of π also has a representative of θ. A
representative of π in f is a set {p1, . . . , pn} such that p1 < · · · <
pn and each f(pi) = pπ(i). The connection is that π forces θ if
and only if the connect-the-dots map Lπ has a representative
of θ [2], and hence the Sharkovskĭı type of π is the Sharkovskĭı-
greatest t such that π forces a t-cycle.

The Markov graph of π is the directed graph with vertices
[1, 2], . . . , [n− 1, n], and an edge [i, i + 1] → [j, j + 1] if and only
if Lπ[i, i + 1] ⊇ [j, j + 1] — equivalently, π(i) ≤ j < π(i + 1) or
π(i+1) ≤ j < π(i). A path is a sequence of edges, each starting
where the previous one ends. Since Markov graphs do not have
multiple edges, in this situation a path is also a sequence of
vertices, each connected to the next by an edge. The length of
a path is the number of (not necessarily distinct) edges in it.
A closed path (one that starts and ends at the same vertex) is
nonrepetitive if it is not the repetition of a shorter closed path.

The periods of the cycles forced by π are almost in one-to-
one correspondence with the lengths of the nonrepetitive closed
paths in the Markov graph G of π. The exact correspondence
is described as follows. If

(Λ) [λ0, λ0 + 1] → · · · → [λk−1, λk−1 + 1] → [λ0, λ0 + 1]

is a nonrepetitive closed path of length k in G, then there is an
Lπ-periodic point p of period k such that Lj

π(p) ∈ [λj , λj+ 1], j =
0, . . . , k − 1 [4]. Conversely, if p is an Lπ-periodic point, then
there is a nonrepetitive closed path (Λ) in G such that Lj

π(p) ∈
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[λj , λj +1], j = 0, . . . , k−1. Note that k need not equal #P , the
Lπ-period of p. However, it is easy to see that k = #P or 1

2#P .
We describe the latter situation, as occurs later in the paper.

For ease of notation, let m = #P . Suppose that there is an
m
2 -cycle θ and an exactly two-to-one, increasing factor map ϕ :
{1, . . . ,m} → {1, . . . , m

2 }. (ϕ is a factor map means that ϕ◦π =
θ ◦ ϕ.) Then the collection {[1, 2], Lπ[1, 2], . . . , Lm−1

π [1, 2]} is
nonoverlapping, i.e., the intersections have empty interior, and
Lm

π [1, 2] = [1, 2]. It is easy to see that Lm
π (1) = 2 and Lm

π (2) = 1.
Therefore, L

m
2

π (x) = 3−x for all x ∈ [1, 2]. Let P be the Lπ-orbit
of any point in (1, 1 1

2 ). Since the path (Λ) corresponding to P is
nonrepetetive, its length is 1

2#P . The situation described above
is the only one which can occur when k = 1

2#P .

Theorem 1.1. The Sharkovskĭı type S(π) of a cycle π is the
Sharkovskĭı-greatest t such that the Markov graph of π contains
a nonrepetitive closed path of length t, except if t is a power of 2,
in which case S(π) = #π.

Proof. Let t be Sharkovskĭı-greatest such that the Markov graph
of π contains a nonrepetitive closed path of length t.

Suppose that t is not a power of 2. There exists an Lπ-periodic
point of period t, and so t ≤S S(π). To show the opposite in-
equality, first note that S(π) is not a power of 2. There is an
Lπ-periodic orbit P with #P = S(π). Let s be the length of
the corresponding nonrepetitive closed path. Then s = S(π)
or 1

2 S(π). In either case, S(π) ≤S s. But s ≤S t, so S(π) ≤S t.
Suppose that t is a power of 2. Then every nonrepetitive

closed path in the Markov graph of π has length a power of 2,
and so every Lπ-periodic point has period a power of 2. In
particular, #π is a power of 2, say 2k. Furthermore, π is simple.
(An n-cycle π is simple if n = 1, or n is even, π{1, . . . , n

2 } =
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{n
2 + 1, . . . , n}, and π2|{1,..., n

2 } is a simple n
2 -cycle.) Simple

2k-cycles force only 1-, 2-, 4-, . . . , and 2k-cycles [3, Theorem B].
Thus S(π) = #π. �

2. The Sharkovskĭı type of an n-cycle is in C(n)

An n-cycle π has a division if n is even and π{1, . . . , n
2 } =

{n
2 + 1, . . . , n}.

Lemma 2.1. [8, Proposition 3.4] A 2n-cycle which has no di-
vision forces an n-cycle if n is odd, an (n+1)-cycle if n is even.

For a map f of a space to itself, let Per(f) denote the set of
periods of the periodic points of f .

Lemma 2.2. If π has a division, then Per(Lπ) = 2 Per(L2
π) ∪

{1}, and therefore S(π) = 2S(L2
π).

Proof. Let π be an n-cycle which has a division. Lπ is monotone
on (n

2 , n
2 + 1) and permutes the intervals [1, n

2 ] and [n
2 + 1, n].

Therefore Per(Lπ|[1, n
2 ]∪[ n

2 +1,n]) = 2 Per(L2
π|[1, n

2 ]∪[ n
2 +1,n]). The

period of any Lπ-periodic point in (n
2 , n

2 + 1) is either 1 or 2.
Unless n = 2 and π = (12), there is exactly one Lπ-periodic
point in (n

2 , n
2 + 1) and it is a fixed point. In any case, S(π) =

2S(L2
π). �

For notational convenience, let

nodd =
{

n if n is odd

n + 1 if n is even.

For n ≥ 2, define a finite set C(n) by
(1) C(2) = {2}
(2) C(n) = {3, 5, . . . , n} if n is odd
(3) C(2n) = C(nodd) ∪ 2 C(n).
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To prove that the Sharkovskĭı type of an n-cycle is in C(n),
we use the following description of C(n). We omit the straight-
forward proof.

Lemma 2.3. C(n) =
⋃

2k\n 2k C′( n
2k ), where C′(n) = C(n) if

n = 2 or n is odd, and C′(2n) = C(nodd).

An n-cycle π has a k-fold division if 2k is a factor of n
and for j = 1, . . . , k, π (cyclically) permutes the 2j sets ˜Ij,r =
{(r − 1) n

2j + 1, . . . , r n
2j }, r = 1, . . . , 2j .

Lemma 2.4. If π has a k-fold division, then for j = 1, . . . , k,
(1) Lπ (cyclically) permutes the 2j intervals Ij,r =

[(r − 1) n
2j + 1, r n

2j ], r = 1, . . . , 2j.
(2) The periods of the Lπ-periodic points in [1, n] −

⋃

Ij,r

are 1, 2, 4, . . . , 2k.
(3) S(π) = 2k S(L2k

π ).
(4) S(L2k

π ) = S(L2k

π |Ik,r ), r = 1, . . . , 2k.

Proof. (1) is clear from the definitions. (2) follows from (1)
and the fact that Lπ is monotone on each component of [1, n]−
⋃

Ij,r. (3) follows from (1) and (2). (4) follows from the fact that
the maps L2k

π |Ik,r , r = 1, . . . , 2k, are factors of each other, via
compositions of the restrictions of Lπ to appropriate intervals
Ik,s. �

Theorem 2.5. The Sharkovskĭı type of an n-cycle is in C(n).

Proof. Let π be an n-cycle. If π has no division, the result
follows from Lemma 2.1. Suppose then that π has a k-fold divi-
sion, but not a (k + 1)-fold division. Then some π2k |eIk,r

has no

division. By Lemma 2.1, S(π2k |eIk,r
) ∈ {3, 5, . . . , ( n

2k+1 )odd}. It

is easy to see that S(L2k

π |Ik,r ) ≥S S(π2k |eIk,r
), so Per(L2k

π |Ik,r ) ⊇
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Per(Lπ2k |Ik,r ). Thus S(L2k

π |Ik,r ) ∈ {3, 5, . . . , ( n
2k+1 )odd}. By

Lemma 2.4(3), S(π) = 2k S(Lπ2k |Ik,r ), and by Lemma 2.3,
2k{3, 5, . . . , ( n

2k+1 )odd} ⊆ C(n). �

We close this section with the following closed-form descrip-
tion of C(n). It can be proved by induction on k.

Theorem 2.6.

(1) C(2) = {2}.
(2) If n ≥ 3 is odd, then C(n) = {3, 5, . . . , n} and C(2n) =

{3, 5, . . . , n} ∪ 2{3, 5, . . . , n}.
(3) If n = 2km, where k ≥ 2 and m is odd, then C(n) = {t :

t ≤ n
2 , t is not a power of 2}∪{n

2 +2` : ` = 0, . . . , k−2}
∪ {2kr : r = 3, 5, . . . , m} ∪ {n}.

(If m = 1, {2kr : r = 3, 5, . . . ,m} = ∅.)

3. Every t ∈ C(n) is the
Sharkovskĭı type of an n-cycle

To prove the title assertion of this section, we use the knead-
ing theory of unimodal maps [7]. Recall that a map f : I → I of
an interval is unimodal if I = IL∪IR, where IL and IR are non-
degenerate, compact intervals with one point in common, x ≤ y
for every x ∈ IL, y ∈ IR, and f is increasing (resp. decreasing)
on IL (resp. IR). A cycle π is unimodal if the connect-the-dots
map Lπ is unimodal.

The (f -)itinerary of x ∈ I is the sequence ν0ν1 . . . , where
νk = L if fk(x) ∈ IL − IR, νk = R if fk(x) ∈ IR − IL, and
νk = C if fk(x) ∈ IL ∩ IR. Sequences on {L,C, R} are or-
dered by the standard kneading order [7], denoted ≺. As usual,
if ν0ν1 . . . is an itinerary and k is least such that νk = C,
we write ν0 . . . νk−1C in place of ν0ν1 . . . . If π is a unimodal
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n-cycle, the kneading sequence ν(π) of π is the Lπ-itinerary of n
(= max[1, n]).

Lemma 3.1. [7, Theorem II.3.8] ν0 . . . νnC, where each νk = L
or R, is the kneading sequence of a unimodal cycle if and only
if ν0 . . . νnC � νk . . . νnC for k = 1, . . . , n.

The S̆tefan square root construction [10], adapted to cycles,
takes an n-cycle π and produces a 2n-cycle

√
π such that L√π2 |[1,n] =

L2√
π|[1,n] is conjugate to Lπ. Let

√
π(i) =

{

n + π(n + 1− i) if 1 ≤ i ≤ n

2n + 1− i if n + 1 ≤ i ≤ 2n.

Then
√

π2(i) = n+1−π(n+1−i), i = 1, . . . , n. If π is unimodal,
then so is

√
π.

Lemma 3.2. S(
√

π) = 2S(π).

Proof. Let π be an n-cycle.
√

π has a division, so by Lemma 2.2,
S(
√

π) = 2S(L2√
π). As in the proof of Lemma 2.4, the only

L√π-periodic point in (n
2 , n

2 +1) is the fixed point, and L2√
π|[1, n

2 ]

and L2√
π|[ n

2 +1,n] are factors of each other. In fact, both are
conjugate to Lπ. Therefore, S(

√
π) = 2S(π). �

The S̆tefan unimodal n-cycle is defined as follows (see [10]).
For n = 1, it is the unique n-cycle; for n ≥ 3 odd, it is
the unimodal cycle with kneading sequence RLRn−3C; and for
n = 2km, with m odd, it is obtained from the S̆tefan unimodal
m-cycle by applying the square root construction k times. For
n ≥ 3, it is the unique unimodal n-cycle with Sharkovskĭı type n.
(See [10, Section E] for the case n is odd.)
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Lemma 3.3. Let θ be a unimodal cycle and let n be odd. Then
θ has Sharkovskĭı type 3 if and only if ν(θ) � RLC; θ has Shar-
kovskĭı type n ≥ 5 if and only if RLRn−3C � ν(θ) ≺ RLRn−5C.

Proof. For unimodal cycles, π forces θ if and only if ν(π) � ν(θ)
[7, Theorem II.3.8]. �

The following lemma is immediate from the definition of C(n).

Lemma 3.4. Suppose t is not a power of 2. Then 2t ∈ C(n) if
and only if n is even and t ∈ C(n

2 ).

Theorem 3.5. Every t ∈ C(n) is the Sharkovskĭı type of an
n-cycle.

Proof. Write t = 2ku, where u is odd. If u = 1, then t = n,
and we let π be the S̆tefan unimodal n-cycle.

Suppose then that u ≥ 3. Repeated applications of Lemma 3.4
show that 2k is a factor of n and u ∈ C( n

2k ). By Lemma 3.6
below, u is the Sharkovskĭı type of some n

2k -cycle θ. Applying
the square root construction k times to θ, we obtain an n-cycle
which, by Lemma 3.2, has Sharkovskĭı type t. �

Remark. The n-cycle produced is unimodal, except in the trivial
case t = n = 2.

Lemma 3.6. Every odd t ∈ C(m) is the Sharkovskĭı type of a
unimodal m-cycle.

Proof. For every odd t ∈ C(m), we exhibit a sequence ν =
ν0 . . . νm−2C, where each νk = L or R. One can check, us-
ing Lemmas 3.1 and 3.3, that ν is the kneading sequence of a
unimodal m-cycle of Sharkovskĭı type t.

If t = 3, let ν = RLm−2C; if t = m, let ν = RLRm−3C.
Suppose then that 5 ≤ t < m, and let ν = RLRt−3LRm−t−1C.
m odd and m even must be considered separately. The relevant
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fact for using Lemma 3.3 is that if m is even, then t ≤ m
2 + 1

(Lemma 2.1). �

4. Determining the Sharkovskĭı type of a cycle

In this section, we show how to efficiently (time n4) determine
the Sharkovskĭı type of an n-cycle. The algorithm involves the
adjacency matrix A of the Markov graph G of the cycle π, the
(n− 1)× (n− 1) matrix given by the equivalent definition of G:
Aij = 1 if π(i) ≤ j < π(i + 1) or π(i + 1) ≤ j < π(i), Aij = 0
otherwise.

First we give an easy-to-verify condition which is sufficient for
the Sharkovskĭı type of a cycle to be 3. It is the “cycle version”
of [5, Lemma 3.3]. We will use it in the proof of Theorem 4.5.

Theorem 4.1. Let π be a cycle and let A be the adjacency
matrix of its Markov graph. If Tr(A) ≥ 2, then the Sharkovskĭı
type of π is 3.

Proof. A map f of an interval has a horseshoe if there exist x <
y < z such that f(x), f(z) ≤ x and f(y) ≥ z, or f(x), f(z) ≥ z
and f(y) ≤ x. It is well-known that a map which has a horseshoe
must have a point of period 3. (For a connect-the-dots map, the
Markov graph contains a nonrepetitive closed path of length 3.)
We show that Lπ has a horseshoe.

Since π is a cycle, it follows that Lπ has at least two, but
finitely many fixed points. Let p < z be its two smallest fixed
points. Since p is not an integer, there exists an integer i such
that i < p < i + 1. Lπ is linear on [i, i + 1]; if it is increasing,
then p isn’t the smallest fixed point of Lπ. Thus Lπ is decreasing
on [i, i + 1].

Let y ∈ (p, z) be such that Lπ(y) = min Lπ[p, z]. Then y is
an integer and Lπ(y) < p. Now Lπ[Lπ(y), z] * [Lπ(y), z], for
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otherwise πk(y) ≤ z for all k ≥ 0. This is impossible, since π
is a cycle and y is an integer. Therefore, there exists x such
that Lπ(y) < x < z and Lπ(x) ≥ z. Since p and z are the two
smallest fixed points of Lπ, it follows that x < p. �

Using the lemmas in Section 2, we obtain

Lemma 4.2. Let π be a cycle, let A be the adjacency matrix of
its Markov graph, and let k ≥ 1. The following statements are
equivalent.

(1) π has a k-fold division.
(2) 2k is a factor of S(π).
(3) Tr(A2k−1

) = 2k − 1.

Using Lemma 4.2 and arguing in a manner similar to that of
the proof of Theorem 4.1, we obtain

Theorem 4.3. Let π be a cycle and let A be the adjacency
matrix of its Markov graph. Let k be the greatest integer such
that π has a k-fold division. Then Tr(A2k

) ≥ 2k+1 − 1, and if
Tr(A2k

) ≥ 2k+1, then the Sharkovskĭı type of π is 3 · 2k.

The verification of the algorithm implicit in Theorem 4.5 uses
the facts stated in Lemma 4.2 and the following lemma.

Lemma 4.4. Let A be the adjacency matrix of the Markov
graph of a cycle. Then there is a nonrepetitive closed path of
length t in the graph if and only if Tr(At) > Tr(At′) for every
factor t′ < t of t.

Theorem 4.5. Let π be a cycle and let A be the adjacency
matrix of its Markov graph. Then the Sharkovskĭı type of π
is the Sharkovskĭı-greatest t such that Tr(At) ≥ 2`+1, where
t = 2`v and v is odd. If no such t exists, then the Sharkovskĭı
type of π is #π.
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Proof. Suppose first that S(π) = 2k. Then [4], π is a simple
2k-cycle, and hence S(π) = #π. It is easy to check that for w
odd,

Tr(A2jw) =
{

2j+1 − 1 if 0 ≤ j ≤ k − 1

2k − 1 if j ≥ k.

Therefore, no t as in the statement of the theorem exists.
Suppose then that S(π) is not a power of 2, and write S(π) =

2ku, where u ≥ 3 is odd. By Theorem 1.1, there is a nonrepet-
itive closed path of length S(π). We show that S(π) ≤S t and
t ≤S S(π).

Suppose that k = 0. Then Tr(AS(π)) ≥ S(π) ≥ 2 = 20+1.
If Tr(A) = 1, then, since there are no nonrepetitive closed
paths of lengths 3, 5, . . . ,S(π)−2, we have by Theorem 1.1 that
Tr(A) = Tr(A3) = · · · = Tr(AS(π)−2) = 1. Hence S(π) ≤S t. If
Tr(A) ≥ 2, then by Theorem 4.1, S(π) = t = 3.

Suppose that k ≥ 1. Since 2k < S(π) is a factor of S(π),
it follows from Lemma 4.4 that Tr(A2k

) < Tr(AS(π)). But, by
Theorem 4.3, Tr(A2k

) ≤ 2k+1 − 1. Thus S(π) ≤S t.
To show that t ≤S S(π), first notice that since S(π) ≤S t and

S(π) is not a power of 2, it follows that t is not a power of 2
either. So write t = 2`v, where ` ≤ k and v ≥ 3 is odd. We show
that there is a nonrepetitive closed path of length t. If not, then
by Lemma 4.4, Tr(At′) = Tr(At) for some factor t′ < t of t.

Suppose that t′ = 1. Then by Theorem 4.1, S(π) = t = 3.
Suppose that t′ = 2`′ , where 1 ≤ `′ ≤ `. If `′ ≤ k − 1, then

by Lemma 4.2, Tr(At′) = 2`′+1 − 1. This is impossible, since
Tr(At′) = Tr(At) ≥ 2`+1 ≥ 2`′+1. Suppose then that `′ = ` = k.
Then Tr(At′) = Tr(At) ≥ 2k+1, which by Theorem 4.3 implies
that S(π) = 3 · 2k = t.
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Suppose that t′ = 2`′v′, where `′ ≤ ` and v′ ≥ 3 is odd. Then
Tr(At′) = Tr(At) ≥ 2`+1 ≥ 2`′+1, so t′ ≥S t. By the Sharkov-
skĭı-maximality of t, t′ = t. Therefore, there is a nonrepetitive
closed path of length t, and hence t ≤S S(π). �

Since, by Theorems 2.5 and 2.6, the Sharkovskĭı type of an
n-cycle cannot exceed n, Theorem 4.5 gives an algorithm for
determining the Sharkovskĭı type of a cycle. Finding the kth
power of a matrix requires log k matrix multiplications. Using
Strassen’s algorithm [6], two n× n matrices may be multiplied
using n2+α multiplications, where 0 < α < 1. Thus (equating
time with number of multiplications), for an n-cycle, the matri-
ces A2, A3, . . . , An−1, and hence their traces, may be determined
in time n3+α log n < n4.
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