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Abstract. We prove that interval maps for which ω-limit sets of all critical points
are minimal are dense in the space of all interval maps of class C2.

1. Introduction

In this paper we continue our research on Cr-structurally stable interval maps
for r = 2, started in [BM2] (see also [BM1]). It has been conjectured long ago
that they satisfy Axiom A. For r = 1 this was proven by Jakobson [J]. Recently a
proof in the unimodal case for all r has been announced by Kozlovski. However,
the polymodal case is still open.

If the conjecture is true then for a dense set of maps the limit set (by this we
mean the ω-limit set) of every critical point is finite. Here we prove a slightly
weaker property, namely that for a dense set of maps the limit set of every critical
point is minimal. In more technical terms, our main result can be stated as follows.

Main Theorem. There is a dense subset N ′
2 ⊂ C2([0, 1], [0, 1]) such that if f ∈ N ′

2
then every critical point of f is either attracted to an attracting cycle or super
persistently recurrent.

Precise definitions will be given later. Here let us mention that super persistent
recurrence is similar to persistent recurrence and implies minimality of the limit
set (in the absence of wandering intervals). Thus, we get the following corollary to
Main Theorem.
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Main Corollary. There is a dense subset N ′
2 ⊂ C2([0, 1], [0, 1]) such that for any

f ∈ N ′
2 the limit set of every critical point is minimal.

The paper is organized as follows. In Section 2 we introduce the notion of super
persistent recurrence and study its properties, using chains of intervals. In Section 3
we introduce several classes of maps and discuss what effects one can achieve with
small perturbations of maps in these classes. In Section 4 we prove Main Theorem.

2. Topological properties of chains

One of the main tools we use in the paper are so-called chains. They were
introduced by Lyubich in [L1] for interval maps with negative Schwarzian and
helped him to prove non-existence of wandering intervals for such maps (an interval
J ⊂ [0, 1] is called wandering for f if its images fn(J), n ≥ 0, are pairwise disjoint
and do not converge to a periodic orbit). Later chains were used to prove an
analogous result for smooth polymodal interval maps (see [BL1], [MS, Chapter IV];
in [MS] they are called pullbacks) and became a popular tool in one-dimensional
dynamics.

We assume that f : [0, 1] → [0, 1] is a piecewise monotone continuous map
(strictly monotone on any lap). We call the local extrema of f (except 0 and
1) turning points. Let Kf be the closure of the convex hull of the union of the
trajectories of the turning points of f . Clearly, Kf is a closed invariant interval.
This is where the important things from the dynamical point of view happen.
We want to have some extra space around Kf , so we assume that 0, 1 /∈ Kf .
We call such f loosely packed. This assumption is not very restrictive, since in
any reasonable topology loosely packed maps form an open dense subset of the
appropriate space of interval maps. In fact, this assumption is not really necessary
in order to make further definitions, but we make it for the sake of convenience.

Thus, throughout this section we assume that f is a piecewise monotone con-
tinuous loosely packed map of [0, 1] into itself. Moreover, we consider a finite set
of points C containing 0, 1 and all turning points of f . In the smooth case C is
usually chosen as the set of all critical points of f with addition of 0 and 1 (in [BM2]
such points are called exceptional). In the piecewise smooth case we usually also
include in C all points at which the smoothness breaks down. However, we would
like to emphasize that the constructions and results of this section hold for any set
C containing 0, 1 and all turning points of f , mainly because the definitions and
arguments are topological.

We want to add here that some important concepts of the paper (e.g., that of
a C-super persistently recurrent point) depend on the set C. That is, if C 6= D
then C-super persistent points of a map f may well be different from D-super
persistently recurrent points. Therefore, although usually the set C comes with the
map f and does not change, sometimes we consider various possibilities for this set
with the fixed map f and choose among them the one that suits our purposes the
best. Mimicking the terminology of [BM2] we call points from C exceptional.

If c is a turning point of f , let us take the largest interval [a, b] such that a < c < b,
f(a) = f(b) and f is monotone on each of the intervals [a, c] and [c, b]. Then there
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is a unique continuous function τc : [a, b] → [a, b] such that f ◦ τ = f and f(x) 6= x
for x 6= c. This function is an involution, that is τ2

c is the identity.
Now for given loosely packed f and C we choose a positive constant η such that

(A1) the distance between any two exceptional points of f is greater than η,
(A2) for any turning point c of f , the η-neighborhood of c is contained in the

domain of τc,
(A3) for two exceptional points b, c either f(b) = c or |f(b)− c| > η,
(A4) Kf ⊂ (η, 1− η).

Clearly, any sufficiently small η satisfies the above conditions.
Now we introduce the notion of a chain. The definitions we give are modifications

of traditional definitions (see [L1], [MS, page 306]), designed to serve our purposes
(for instance, we add (B3) below).

We call an interval smart if it does not contain any set of the form fk(V ), where
k ≥ 0 and V is a one-sided η-neighborhood of an exceptional point of f . Note that
any subinterval of a smart interval is also smart.

A sequence (Gi)l
i=0 of closed intervals is called a chain if

(B1) Gi is a maximal interval such that f(Gi) ⊂ Gi+1, i = 0, . . . , l − 1,
(B2) G0 ∩Kf 6= ∅,
(B3) Gl is smart.

The number l is called the length of the chain, G0 is called the first interval of a
chain, and Gl is called the last interval of the chain. The typical situation in which
we deal with a chain of intervals is the following. Given a point x and an interval
I 3 fn(x) we construct a chain of intervals (Gi)n

i=0 whose last interval Gn is equal
to I and whose first interval G0 contains x. If such chain exists, it is unique. We
call it the pull-back chain of I along x, . . . , fn(x) or just the pull-back chain of I.
Any Gi is called a pull-back of I.

Construction of a pull-back is straightforward. Once we have Gi, we choose as
Gi−1 the component of f−1(Gi) containing f i−1(x). The only obstructions in the
construction may be that (B2) or (B3) are not satisfied. However, condition (B2)
is satisfied if x ∈ Kf . Condition (B3) says that I is smart. As we explain at the
end of this section, in important cases this condition is satisfied.

When we have a chain (Gi)l
i=0, we cannot avoid the situation when Gi contains

exceptional points of f . However, we have the following lemma.

Lemma 2.1. An interval Gi from a chain contains at most one exceptional point
c of f , and if so then c is neither 0 nor 1. Moreover, if a turning point c of f
belongs to Gi and i < l then τc(Gi) = Gi.

Proof. By (B3), no interval Gi contains a one-sided η-neighborhood of an excep-
tional point of f . Thus, by (A1), Gi cannot contain more than one exceptional
point of f . Suppose it contains one, and call it c. By (B2) and the invariance of
Kf , we have Gi ∩ Kf 6= ∅. Hence, by (A4), c cannot be 0 or 1. By (A2), Gi is
contained in the domain of τc. If i < l then from the maximality of Gi it follows
that τc(Gi) = Gi.

The intervals of a chain that contain elements of C play a special role. We call
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them C-marked (or just marked). Their number in a chain is called the C-order
(or just order) of the chain. An exceptional point contained in a C-marked interval
Gi is denoted by ci. If ci is a turning point of f then by Lemma 2.1 f is unimodal
on Gi. Then the interval Gi is called also unimodal.

The next lemma follows immediately from Lemma 2.1 and the definition of a
chain.

Lemma 2.2. If Gi is a unimodal C-marked interval then f |Gi is unimodal, f(Gi) ⊂
Gi+1, and both endpoints of Gi are mapped by f into one endpoint of Gi+1. Oth-
erwise, f |Gi is monotone, f(Gi) = Gi+1, and f maps the endpoints of Gi onto the
endpoints of Gi+1.

We will call an interval I ⊂ [0, 1] nice if for every n > 0 and an endpoint a of
I the point fn(a) does not belong to the closure of I. In other words, the positive
orbits of both endpoints of I miss the closure of I.

Lemma 2.3. Let (Gi)l
i=0 be the pull-back of Gl along x, . . . , f l(x) and let 0 < r ≤ l.

Assume that none of the points x, . . . , fr−1(x) belongs to Gr.

(1) Assume that Gl is nice. Then the intervals Gi, 0 ≤ i ≤ r are pairwise
disjoint. In particular, C-order of the chain (Gi)r

i=0 does not exceed the
cardinality of C.

(2) Assume that the trajectories of the endpoints of Gl never enter the interior
of Gl and that these endpoints are not postcritical. Then the interiors of
the intervals Gi are pairwise disjoint. In particular, C-order of the chain
(Gi)r

i=0 does not exceed twice the cardinality of C.

Proof. (1) Suppose that a ∈ Gi ∩ Gj for some i < j ≤ r. Since f(Gk) ⊂ Gk+1

for every k, we have fr−j(a) ∈ Gm ∩ Gr for m = r − j + i. Since i < j, we have
m < r. By the assumptions, fm(x) belongs to Gm, but not to Gr. Thus, one of
the endpoints b of Gr belongs to Gm. By Lemma 2.2, z = f l−r(b) is an endpoint
of Gl. The point fr−m(z) = f l−m(b) belongs to Gl. This is a contradiction since
Gl is nice and r −m > 0.

(2) In the proof of (1) the point b belongs to the interior of Gm. The only
possibility for the point f l−m(b) to be an endpoint of Gl is that the trajectory of
b passes through a critical point, but we assumed that the endpoints of Gl are not
postcritical, so this is impossible. Thus, f l−m(b) belongs to the interior of Gl, and
we get a contradiction as in the proof of (1).

Now we are ready to introduce the notion of super persistent recurrence, which
is similar to persistent recurrence (see e.g. [BL2], [BM2]). More precisely, we mean
here the definition of persistent recurrence which relies upon the functions rn (see
below) and is different from Yoccoz’ definition given for complex maps in terms
of a puzzle. However, it is well-known (see, e.g., the discussion in [L2]) that for
unimodal quadratic non-renormalizable maps the two definitions are equivalent.

We define super persistent recurrence by means of functions rk
n(x). The role

they play is the same as the role of the functions rn in the definition of persistent
recurrence. Let us first recall the definition of rn.
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Let f : [0, 1] → [0, 1] be a piecewise monotone map. For x ∈ [0, 1] let us denote
by Hn(x) the maximal closed interval containing x on which fn is monotone and
let fn(Hn(x)) = Mn(x). Let rn(x) be the distance of fn(x) from the boundary
of Mn(x). If fn has a local extremum at x, there is an ambiguity in the choice
of Hn(x) and Mn(x), but rn(x) = 0 independently of this choice. Moreover, in
that case rm(x) = 0 for all m ≥ n. Also, if x = 0 or 1, then rn(x) = 0 for all n.
Thus either for some m we have rm(x) = 0 (and then rn(x) = 0 for all n ≥ m) or
rn(x) 6= 0 for any n, in which case x is neither a preimage of a turning point nor
0, 1. A recurrent point x ∈ [0, 1] is called persistently recurrent if rn(f(x)) → 0.

Now, let us fix the set C of exceptional points of f and consider the following
construction. For every ε > 0 we construct the pull-back chain of [fn(x)−ε, fn(x)+
ε] along x, . . . , fn(x) and denote by mx,n(ε) its order. Clearly, mx,n(ε) grows
monotonically with ε. If there are no exceptional points among x, f(x), . . . , fn(x)
then for sufficiently small ε we have mx,n(ε) = 0, otherwise even for arbitrarily
small ε we have mx,n(ε) > 0. We define rk

n(x) as the supremum of all ε such that
mx,n(ε) ≤ k. Moreover, if for some N there are k + 1 points of C among points
x, . . . , fN (x) then we define rk

n(x) as 0 for all n ≥ N . In other words, positive
rk
n(x) is the biggest number such that for every ε′ < rk

n(x) the ε′-neighborhood of
fn(x) can be pulled back along x, . . . , fn(x) with order at most k. Note that rk

n(x)
depends on f and C, yet for the sake of simplifying notation we avoid referring to
them.

We call a recurrent point x such that for every k we have rk
n(x) → 0 C-super

persistently recurrent. If we only claim the existence of a set C of exceptional points
for which x is C-super persistently recurrent, but do not fix it, we call x simply a
super persistently recurrent point.

Note that a point x is C-super persistently recurrent if and only if

lim
n→∞

mx,n(ε) = ∞

for every ε > 0. This property is simpler than the one we introduced in the defi-
nition of C-super persistent recurrence. However, we defined C-super persistently
recurrence by means of functions rk

n(x) because we wanted to stress the similarity
of this notion to the usual persistent recurrence.

A set A ⊂ [0, 1] is called minimal if f |A is minimal.
In the following sections we shall prove that under the assumption of piecewise

negative Schwarzian, the fact that a turning point of f is not C-super persistently
recurrent for a specifically chosen set C implies that f is not stable. This will allow
us to make conclusions about recurrent properties of critical points of piecewise
negative Schwarzian maps, and eventually all interval maps of class C2. However, in
this section we are only concerned about topological properties of super persistently
recurrent points. Namely, we prove the following theorem.

Theorem 2.4. Let x be a super persistently recurrent point of f having arbitrarily
small smart nice neighborhoods. Then ω(x) is minimal.

Proof. If x is periodic then of course ω(x) is minimal. Let us assume that it is not
periodic. Take C such that x is C-super persistently recurrent.
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Suppose that ω(x) is not minimal. Then there exists a closed invariant non-
empty set A ⊂ ω(x) not containing x. Hence, there exists a smart nice closed
neighborhood U = [a, b] of x, disjoint from A and shorter than η. The trajectory
of x comes arbitrarily close to A, and therefore there are arbitrarily long pieces of
this trajectory disjoint from U . Moreover, we can choose U so short that it does
not contain points from C except maybe x (if x ∈ C) and that f(x) /∈ U . Note
that a and b do not belong to the trajectory of x since x is recurrent and U is nice.

For any z ∈ U whose trajectory returns to U , denote by ψ(z) the first return
time into U . That is, fψ(z)(z) ∈ U , while fk(z) /∈ U for 0 < k < ψ(z). Since x
is recurrent, any point fn(x) ∈ U belongs to the domain of ψ. Since a and b do
not belong to the trajectory of x, the function ψ is constant in a neighborhood of
fn(x). We define planks as the maximal intervals containing points of the orbit of
x on which ψ is constant (so if V is a plank it makes sense to talk about the first
return time on V ).

Let us establish some properties of planks. We claim that a plank is a closed
interval. Indeed, if (u, v) is an interval on which ψ is equal to a constant l then by
the continuity f l(u) ∈ U and on the other hand fk(u) /∈ (a, b) for any 0 < k < l.
The former together with the niceness of U implies that also fk(u) 6= a, b, so we
see that ψ(u) = l and similarly ψ(v) = l. This proves our claim. Thus, since ψ is
not defined at the endpoints of U , every plank is contained in the interior of U .

If V is a plank with first return time l then by the maximality of V the endpoints
of V are mapped by f l to the endpoint(s) of U . Moreover, it is clear that different
planks are disjoint.

Let us show that all planks are nice and smart. Let z be an endpoint of a plank
V with first return time l. If j < l then f j(z) /∈ V by the definition of l. On the
other hand as we have just seen f l(z) ∈ {a, b}. Hence for j ≥ l also f j(z) /∈ V .
Therefore V is nice. Smartness of V follows from smartness of U , since V ⊂ U .

Let us show also that a plank V with first return time l is a pull-back of U along
z, f(z), . . . , f l(z) for any z ∈ V . Indeed, let G0, . . . , Gl = U be the corresponding
pull-back chain. Then by Lemma 2.3 (1) intervals G1, . . . , Gl are pairwise disjoint,
so ψ|G0 = l and G0 ⊂ V . On the other hand, f l(V ) ⊂ U and so V ⊂ G0. Thus
G0 = V .

There are three types of chains related to planks. Let us fix a plank V . Let k be
the smallest positive integer such that fk(x) ∈ V . Then we can take the pull-back
(J, J ′, . . . , V ) of V along x, . . . , fk(x) which we call a chain of the first type. By
Lemma 2.3 (1), the order of the chain (J ′, . . . , V ) is not larger than the cardinality
of C (denote this cardinality by N). Thus, the order of (J, J ′, . . . , V ) is at most
N + 1.

Suppose that for a plank W there exists a point c ∈ C such that the first time the
trajectory of c enters U , it gets into W . In such a case we call W exceptional (we
include also the possibility that c ∈ W ). For every element of C we get at most one
exceptional plank, so there are finitely many exceptional planks. Therefore there
exists an interval I contained in the interior of U and containing all exceptional
planks and a neighborhood of x.

Now let us take a plank V with first return time l and a point fk(x) ∈ V . We
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will associate with this situation chains of the second and third type depending
on the location of fk+l(x). Assume first that fk+l(x) /∈ I. The point fk+l(x)
belongs to some plank W , so we can take the pull-back (V ′, . . . ,W ) of W along
fk(x), . . . , fk+l(x) which we call a chain of the second type. If fk+l(x) ∈ I, we pull
back U (instead of W ) along fk(x), . . . , fk+l(x) to get a chain (V ′′, . . . , U) which
we call a chain of the third type. Since V is the first interval of the pull-back of U
along fk(x), . . . , fk+l(x) then in the case of the chain of the second type V ′ ⊂ V
and in the case of the chain of the third type V ′′ = V .

By the definition of I, the last interval of a chain of the second type is not
exceptional. Therefore the order of a chain of the second type is 0. By Lemma 2.3
(1), the order of a chain of the third type is at most N + 1.

Now we construct a sequence of chains. We start with a plank V and the smallest
k such that fk(x) ∈ V ; then we construct a chain of the first type (J, . . . , V ), which
is a pull-back of a plank V along x, . . . , fk(x). Let l be the first return time on V .
If fk+l(x) ∈ I then we take a chain of the third type (V, . . . , U) and stop there.
Otherwise, we take a chain of the second type (V ′, . . . , W ) with V ′ ⊂ V . Then we
continue with W instead of V and k + l instead of k (that is, we take a chain of the
third or second type with the first interval contained in W , where the type of the
chain we choose depends on whether the orbit of x hits or misses I when it returns
to U next time). We continue like that until we take a chain of the third type. This
has to happen, since x is recurrent, I contains a neighborhood of x, and thus the
orbit of x enters I infinitely many times.

Let fm(x) be the last point of the orbit of x we deal with in the above construc-
tion. Then fm(x) ∈ I. If we pull back U along x, . . . , fm(x) then we get a chain G
with intervals contained in corresponding intervals of our sequence of chains. This
is a kind of concatenation of chains. It is possible to produce it, since the last
interval of a chain from the sequence contains the first interval of the next chain.
The order of G is not larger than the sum of orders of the chains we concatenate.
We used one chain of the first type, one of the third type and perhaps several chains
of the second type. Therefore the order of G is at most 2N + 2.

The number m above depends on the choice of the initial plank V . It is larger
than the first return time on V . As we observed at the beginning of the proof,
there are arbitrarily long pieces of the trajectory of x disjoint from U . Therefore
there are planks with arbitrarily long first return time. Hence, m can be made
arbitrarily large. Since U contains the ε-neighborhood of I, it contains the closed
ε-neighborhood of fm(x). Therefore by reducing the size of the elements of G, we
can construct a pull-back of the closed ε-neighborhood of fm(x) along x, . . . , fm(x)
of order at most 2N + 2 for arbitrarily large m’s. This contradicts the definition of
C-super persistent recurrence of x.

We would like to use Theorem 2.4 to study the question of minimality of ω(c)
in the case when c is a super persistently recurrent turning point of f . For this we
need more definitions and lemmas.

A closed interval I is called periodic (of period n) if I, . . . , fn−1(I) are disjoint,
while fn(I) ⊂ I. Then the union

⋃n−1
i=0 f i(I) is called a cycle of intervals and

denoted by cyc(I). Clearly, if J ⊂ I and both I, J are periodic then the period
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of J is a multiple of the period of I (yet these periods may well coincide). Let
I0 ⊃ I1 ⊃ . . . be a nested sequence of periodic intervals of periods m0 < m1 < . . . .
Then the intersection

⋂∞
i=0 cyc(Ii) is called a solenoidal set. The dynamics of maps

on solenoidal sets is well known. In particular, the following lemma holds.

Lemma 2.5 ([B]). If x is contained in a solenoidal set then ω(x) is minimal.

We need the following important fact. It follows easily from [B] but can be
proven independently as well (see, e.g., [MS, page 305]).

Contraction Principle. If I is an interval such that infn |fn(I)| = 0 then either
I is a wandering interval or the orbit of I converges to a periodic orbit.

If f has no wandering intervals (as for smooth maps, see [L1], [BL1], [MS,
page 267]) then it is easy to find smart intervals.

Lemma 2.6. Assume that f has no wandering intervals. Then every non-periodic
point has a smart neighborhood.

Proof. Suppose that x is not periodic, but has no smart neighborhood. Then there
is a turning point c and its one-sided η-neighborhood V such that for every neigh-
borhood U of x there is n with fn(V ) ⊂ U . Therefore infn |fn(V )| = 0. Since f
has no wandering intervals, from Contraction Principle it follows that the sequence
of intervals (f i(V ))∞i=0 converges to a periodic orbit P . Since its subsequence con-
verges to x, we get x ∈ P , a contradiction. This completes the proof.

Lemma 2.7. Let c be a turning point of f . Assume that ω(c) is not a periodic
orbit and that c does not belong to a solenoidal set. Then c has arbitrarily small
nice neighborhoods.

Proof. We want to show that for any neighborhood U of c there is a nice neigh-
borhood of c contained in U . We may assume that U is small. Therefore we may
assume that U does not contain any periodic interval containing c. Indeed, if there
are arbitrarily small periodic intervals containing c then their periods either in-
crease to infinity, and then c belongs to a solenoidal set, or stabilize, and then c is
periodic.

Suppose that there is no nice neighborhood of c contained in U . If x is sufficiently
close to c then τc(x) is defined and we can denote by Ix the closed interval with
endpoints x and τc(x). By our assumption, the positive orbit of x enters Ix. Let m
be the smallest positive integer such that fm(x) ∈ Ix. Let us move x towards c. If
m remains the same until x reaches c then fm(c) = c, a contradiction. Therefore
there is the last moment before m changes. For this value of x both endpoints of
Ix are mapped to one of the endpoints by some k ≤ m. Thus, there is a periodic
point y ∈ Ix such that the trajectory of y never enters the interior of Iy. Since we
could choose x arbitrarily close to c, we may assume that Iy ⊂ U .

If there is z in the interior of Iy and n > 0 such that fn(z) is y or τc(y) then we
take the largest i < n such that f i(z) is in the interior of Iy and then Ifi(z) is nice.
This is a contradiction (we cannot have f i(z) = c since ω(c) is not a periodic orbit,
so Ifi(z) is non-degenerate). Thus, if one point from the interior of Iy is mapped by
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fn to a point from Iy, so are all of them. Let us take u 6= c from the interior of Iy.
Since Iu is not nice, there is n > 0 such that fn(u) ∈ Iu ⊂ Iy. Then fn(Iy) ⊂ Iy,
so Iy is a periodic interval, a contradiction. This completes the proof.

As an immediate consequence of Theorem 2.4 and Lemmas 2.5 - 2.7 we get the
following theorem.

Theorem 2.8. If f has no wandering intervals then any super persistently recur-
rent turning point of f has minimal limit set.

Proof. We consider several cases. Let c be a super persistently recurrent turning
point of f . If ω(c) is a periodic orbit then there is nothing to prove. If c belongs
to a solenoidal set then by Lemma 2.5 the set ω(c) is minimal as well. Hence, we
may assume that neither ω(c) is a cycle nor c belongs to a solenoidal set. Then
by Lemma 2.7 c has arbitrary small nice neighborhoods. Since f has no wandering
intervals we conclude by Lemma 2.6 that c has a smart neighborhood too. Therefore
the conditions of Theorem 2.4 are satisfied for c and we conclude that ω(c) is
minimal.

The next result of this section shows that super persistent recurrence of a turning
point of a smooth map is basically a topological invariant. To state it we need
the following definition. Consider the partition of [0, 1] into turning points and
the components of the complement of the set of turning points. The itinerary of
x ∈ [0, 1] for f is the sequence whose n-th term is equal to the element of the
partition to which fn(x) belongs.

Theorem 2.9. Let g, h : [0, 1] → [0, 1] be maps of class C1 with finite number
of turning points and no wandering intervals. Assume that they have the same
turning points and for every turning point its itineraries for g and h coincide.
Then every super persistently recurrent turning point of g with infinite limit set is
super persistently recurrent for h and has infinite limit set for h.

Proof. Since we are working with two maps at the same time, in order to distinguish
between itineraries for g and h we will be speaking of g-itineraries and h-itineraries
of points. From the kneading theory (see [MT]) we know that the sets of g-itineraries
of all points of Kg and of h-itineraries of all points of Kh coincide, and the ordering
of itineraries as we move from left to right is also the same for g and h. The sets of
points with the same itinerary for a given map is connected. If such a set consists
of one point, we call this point thin, otherwise such a set is an interval and we call
its elements thick. Thus, the only difference that can occur between g and h is
that there may be thin points for g that correspond to thick points for h or vice
versa. However, even this is limited, since from the assumption on the absence of
wandering intervals it follows that a thick point has a periodic orbit as the limit set.
Moreover, a thick point is neither turning nor preturning (a preimage of a turning
point under some iterate of the map).

Assume that C is a finite set containing all turning points of g. Assume also that
a turning point c of g is C-super persistently recurrent for g with infinite limit set.
Form a set D by taking for each element x ∈ C one point with the same h-itinerary



10 ALEXANDER BLOKH AND MICHA L MISIUREWICZ

as the g-itinerary of x. Then D is a finite set containing all turning points of h.
We are going to prove that c is D-persistently recurrent for h. We will denote by
m(f, n, ε) the order of the pull-back chain of [fn(c)−ε, fn(c)+ε] along c, . . . , fn(c)
(where f = g, h).

Suppose that c is not D-super persistently recurrent for h. Thus, there exists
ε > 0 and an integer k such that m(h, ni, ε) ≤ k for some increasing sequence
(ni) of integers. By passing to a subsequence, we may assume that both limits
x = limi→∞ hni(c) and y = limi→∞ gni(c) exist.

For every n the g-itinerary of gn(c) is the same as the h-itinerary of hn(c).
Therefore the g-itinerary of y and the h-itinerary of x coincide, unless for some
k ≥ 0 one of the points hk(x), gk(y) is a turning point d while the other one belongs
to an open interval of points with the same itineraries, whose one endpoint is d.
By our assumption on the absence of wandering intervals, this means that the
trajectories of x (for h) and y (for g) have finite limit sets. The point y belongs to
the limit set A of c (for g). By Theorem 2.8, A is minimal, so the limit set of y
is also A. By our assumptions A is infinite, a contradiction. This proves that the
g-itinerary of y and the h-itinerary of x coincide.

Since the limit set of y for g infinite, y is thin. Moreover, the g-itinerary of y is
neither periodic nor eventually periodic. The h-itinerary of x is the same, so x is
thin for h.

If x is an endpoint of Kh then we replace each ni by ni + j for some j, which
results in replacing y by gj(y) and x by f j(x). In the new situation our assumptions
will be still satisfied, perhaps with smaller ε and larger k. On the other hand, with
an appropriate choice of j the new point x will not be an endpoint of Kh (since
none of the points gl(x) is periodic). Thus, we may assume that x is in the interior
of Kh. We need that in order to be sure that the points in some neighborhood of
x have their counterparts (in the sense of itineraries) in some neighborhood of y.

We claim that x is the limit from both sides of preturning points. Indeed,
otherwise x is an endpoint of an interval of points with the same h-itineraries. This
implies that the h-itinerary of x is periodic or eventually periodic, a contradiction.
This proves our claim.

Hence, there are points a, b preturning for h, such that a < x < b and the pull-
back of [a, b] along c, . . . , hni(c) has order at most k for every sufficiently large i.
Let a′ and b′ be the points with the same g-itineraries as the h-itineraries of a and
b respectively. Since a and b are preturning for h, the points a′ and b′ are uniquely
determined and preturning for g. Moreover a′ < y < b′. If i is sufficiently large
then a < hni(c) < b and a, hni(c), b have distinct h-itineraries, so a′ < gni(c) < b′.

We claim that for such i the order of the pull-back of [a′, b′] along c, . . . , gni(c)
is the same as the order of the pull-back of [a, b] along c, . . . , hni(c). If we compare
corresponding intervals of both pull-back chains, the sets of the itineraries of their
points are the same. Therefore the only differences could occur if an endpoint of
such interval were thick with the same itinerary as some element of C. However,
this is impossible, since by Lemma 2.2 the endpoints of all elements of both chains
are preimages of the endpoints of [a, b] or [a′, b′]. Therefore they are preturning,
and consequently thin. This proves our claim.
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There exists δ > 0 such that for sufficiently large i the interval [gni(c)−δ, gni(c)+
δ] is contained in [a′, b′]. Therefore m(g, ni, δ) ≤ k, contrary to our assumption that
c is C-persistently recurrent for g. Therefore c is D-super persistently recurrent for
h.

To complete the proof, we have to show that c has infinite limit set for h. How-
ever, this follows from the fact that the limit set of a point is finite if and only if
its itinerary is periodic or eventually periodic, and from our assumption that c has
the same itinerary for g and h.

We conclude this section with one more property of limit sets of super persistently
recurrent points.

Proposition 2.10. Let X ⊂ [0, 1] be an infinite minimal set for f . Assume that
there are no wandering intervals. Then either every point of X is C-super persis-
tently recurrent or no point of X is C-super persistently recurrent.

Proof. Suppose that x, y ∈ X and x is C-super persistently recurrent, while y is
not. Then there exists ε > 0, a positive constant k and an increasing sequence (ni)
of positive integers such that my,ni(ε) ≤ k for every i. We may assume that the
sequence fni(y) converges to some z. Then for every sufficiently large i there is a
pull-back of U ′ = [z − ε/2, z + ε/2] along y, . . . , fni(y) of order k or less.

If necessary, we replace U ′ by a smaller closed neighborhood of z which is disjoint
from these closures of the trajectories of critical points that do not contain X. Since
there are no wandering intervals, by Lemma 6.1 of [B] the set of points with finite
limit sets is dense in the whole interval. Therefore we can find in U ′ one such point
on each side of z. The union Y of the closures of the trajectories of these two points
is disjoint from X. Let a, b be the points of Y closest to z from the left and right
respectively. Then z ∈ (a, b) ⊂ U ′ and the trajectories of a and b are disjoint from
(a, b). Moreover, with our choice of U ′, the points a, b are not postcritical. Then
the interval U = [a, b] contains z in its interior and satisfies the conditions assumed
for Gl in Lemma 2.3 (2).

Let us pull back U along y, . . . , fni(y) and denote by Vi the first interval of this
pull-back. Let ki be the smallest non-negative integer such that fki(x) ∈ Vi and
let us prolong the above pull-back by pulling back Vi along x, . . . , fki(x). In such
a way we get a chain that is a pull-back of U along x, . . . , fki+ni(x), satisfying the
assumptions of Lemma 2.3 (2) (with Gr = Vi and Gl = U). Therefore mx,ki+ni(δ),
where δ is the minimal distance between points of X and Y , does not exceed twice
the cardinality of C plus k. Since limi→∞ ni = ∞, this contradicts the assumption
that x is C-super persistently recurrent.

Corollary 2.11. If f has no wandering intervals and a turning point c of f is
C-super persistently recurrent then every point of ω(c) is C-super persistently re-
current.

3. Approximations and perturbations

In Sections 3 and 4 we will show that small C2 perturbations of certain interval
maps of class C2 change their dynamics. Let us describe our approach step-by-step.
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We begin with approximating our initial map f by a piecewise smooth map g with
piecewise negative Schwarzian. Moreover, we make it in such a way that locally
(in the sense of the appropriate topology in the space of piecewise-smooth maps)
maximal possible number of critical points is attracted to attracting periodic orbits
or mapped into other critical points (we call such maps locally best). It turns out
that locally best maps have some additional useful properties, e.g., all their critical
points which are neither attracted to attracting cycles or mapped into other critical
points must be recurrent.

On the other hand, we show that there exists a C2-smooth map h which is also
close to f and has the same topological type as g; in other words, smoothness of g
can be rebuilt without destroying its dynamics. Therefore if we can establish some
additional topological properties of g then the same properties will be kept by h.
To do so we rely upon Theorem 4.1 (which is the central result of Section 4), where
we prove that if c is a critical point of a piecewise smooth map F with piecewise
negative Schwarzian which is not CF -super persistently recurrent (CF is the set of
all critical points of g together with all points of discontinuity of F ′′) then a small
perturbation of F around c changes the itinerary of c. If F = g is locally best, this
is impossible. We conclude that all critical points of f (which are neither attracted
to attracting cycles nor mapped into other critical points) are super persistently
recurrent. The same behavior is exhibited by critical points of h, and h is a C2-map
from a small neighborhood of f . In such a way we get Main Theorem.

To make a preliminary step in which we approximate our initial map by a piece-
wise smooth one with piecewise negative Schwarzian and to be able to return af-
terwards to the space of maps of class C2 we need approximation and perturbation
lemmas, which thus become an important though rather technical tool for us. We
prove them in this section. Some lemmas (specifically those devoted to studying
so-called bump perturbations of piecewise negative Schwarzian maps) are simply
borrowed from [BM2] where they have been proven for negative Schwarzian maps.

By Nr we denote the subspace of the space Cr([0, 1], [0, 1]) consisting of loosely
packed maps with finitely many critical points, all of them non-degenerate, and
none of them 0 or 1. It is well known (see e.g. [MS, page 217]) that the space of
Cr maps with finitely many critical points, all of which are non-degenerate, is open
and dense in Cr([0, 1], [0, 1]). The set of Cr maps for which 0 and 1 are not critical
points is also open and dense. So is the set of loosely packed Cr maps, since if
f ∈ Cr([0, 1], [0, 1]) then g given by g(x) = (1 − ε)f(x) + ε/2 is loosely packed for
every ε > 0. Hence, Nr is open and dense in Cr([0, 1], [0, 1]). In particular, N2 is
a dense subset of C2([0, 1], [0, 1]), which is in fact the first approximation result we
will need.

Now, let us define maps with negative Schwarzian; we follow here [BM2]. Nor-
mally, one defines Schwarzian (or Schwarzian derivative) of a function f of class
C3 as Sf = f ′′′/f ′ − (3/2)(f ′′/f ′)2. It is defined at all non-critical points of f .
Thus, usually negative Schwarzian means Sf < 0 at all non-critical points. As can
be easily checked, this property implies strict convexity of the function 1/

√

|f ′|
on each component of the complement of the set of critical points. This requires
only C1 smoothness, and we will adopt it as a definition of negative Schwarzian.
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Thus, a function f is said to have negative Schwarzian if it is of class C1 and the
function 1/

√

|f ′| is strictly convex on each component of the complement of the set
of critical points. It is almost equivalent to the classical definition if f is C3, and
it is well known that it yields the same useful properties of interval maps.

Next we define two other similar spaces in which C2-smoothness and negative
Schwarzian are represented in a piecewise manner. The space PN consists of all
maps f : [0, 1] → [0, 1] for which there exist points 0 = a0 < a1 < · · · < as−1 <
as = 1 such that

(1) f is of class C1 on [0, 1],
(2) f has finitely many critical points,
(3) none of the points ai is critical,
(4) f is loosely packed,
(5) f is of class C2 on each (ai, ai+1) and can be extended to a function of class

C2 on [ai, ai+1],
(6) all critical points of f are non-degenerate,

The space PS is defined in the same way with two additional conditions:
(7) f has negative Schwarzian on every interval [ai, ai+1],
(8) f is of class C3 in a neighborhood of all critical points.
These spaces are equipped with the C2 topology. To define it precisely, we have

to decide how to measure the distance between the second derivatives, since at some
points only one-sided ones exist. To solve this problem, we set

‖f‖2 = max(sup |f |, sup |f ′|, sup |f ′′r |, sup |f ′′l |),

where the supremum is taken over [0, 1] and f ′′r and f ′′l denote respectively the right
and left one-sided second derivatives of f . Then the distance between f and g is
‖f − g‖2. Clearly, N2 and PS are subspaces of PN .

A discontinuity of the second derivative of a function can be interpreted as a
sudden change of acceleration. Therefore we will call supx∈(0,1) |f ′′r (x) − f ′′l (x)|
the kick of f and denote it by kick (f). This notion is important if we want to
approximate functions from N2 by functions from PN or vice versa.

The following property of approximations follows immediately from the definition
of the C2 distance and the triangle inequality.

Lemma 3.1. If f and g are piecewise C2 functions, then | kick (f) − kick (g)| ≤
2‖f − g‖2. In particular, if g ∈ N2 then kick (g) = 0, so kick (f) ≤ 2‖f − g‖2.

We want our approximations to preserve a part of dynamics. A point x is called
precritical if f i(x) is critical for some i > 0 and postcritical if x = f j(c) for some
critical point c and j > 0. We call a point x p-critical if it is either critical or
both pre- and post-critical. More precisely, x is p-critical if there exists critical
points c and d such that x = f i(c) and f j(x) = d for some i, j ≥ 0. Clearly, the
set of all p-critical points of a given map f ∈ PN is finite. We require that our
approximations do not change the map at its p-critical points.

A point x is called a periodic sink (from one side) if there exists n > 0 and
a (one-sided) neighborhood U of x such that fn(x) = x, fn(U) ⊂ U and the
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diameter of fk(U) tends to 0 as k →∞. The basin of attraction of x is then the set
⋃∞

k=0 f−k(U). In this situation the number (fn)′(x), called multiplier, has absolute
value less than or equal to 1 (recall that we are dealing with C1-functions, therefore
derivatives are defined in the usual, not just one-sided, sense). If the multiplier has
the absolute value strictly less than 1 then x is called an attracting periodic point
and its orbit is also called attracting. Finally, if the multiplier at a periodic point x
has the absolute value 1 then the point x and its entire orbit are called neutral. A
point x is preperiodic if fn(x) is periodic for some n > 0. We will refer to a point
as (pre)periodic if it is either periodic or preperiodic. A point whose limit set is an
attracting periodic orbit will be called sinking. If its limit set is a neutral periodic
orbit, it will be called weakly sinking. If its limit set is a repelling periodic orbit
which belongs to the boundary of the basin of attraction of a periodic sink, it will
be called almost sinking. Otherwise, it will be called floating.

The next lemma is a kind of inverse of the second part of Lemma 3.1.

Lemma 3.2. Let f ∈ PN and ε > 0 be such that kick (f) < 2ε. Then there is
g ∈ N2 such that ‖f − g‖2 < ε, f(x) = g(x) for every p-critical point x of f , the
maps f and g have the same critical points, and whenever a critical point is sinking
for f , it is also sinking for g.

Proof. We form a set A consisting of p-critical points of f and long pieces of tra-
jectories of sinking critical points of f . We take these pieces so long that every
point of discontinuity of f ′′ belonging to such trajectory is included, except those
that are attracting periodic points themselves. Moreover, we follow such trajectory
(and include its points in A) at least until we get to the basin of attraction of the
attracting periodic orbit.

We have to modify f in small neighborhoods of the points of discontinuity of f ′′,
to make it of class C2. We have to preserve the value of the function at such a point,
since this point may belong to A. If the neighborhood is sufficiently small, other
elements of A lie outside it. Since f ′ does not vanish at the points of discontinuity of
f ′′ (see Property (3) of maps from PN ), it has constant sign in such neighborhood
[a, b]. We may assume that f ′ > 0 in [a, b] and look for a function g of class C2 on
[a, b] such that ‖g − f‖2 < ε, and g and f coincide at a and b up to their second
derivatives. If c is the point of discontinuity of f ′′ in (a, b) then we require that
g(c) = f(c), g′(c) = f ′(c) and g′′(c) = (f ′′r (c) + f ′′l (c))/2, and look separately at
[a, c] and [c, b]. The situation is similar on both intervals, so we consider only [a, c].

Instead of approximating f by g, we will approximate f ′ by g′. The function g′

has to have the same values at a and c as f ′. Its derivative has to have the same
value as the derivative of f ′ at a, but at c it has to be α = (f ′′r (c) + f ′′l (c))/2. The
assumption that kick (f) < 2ε implies that |α − f ′′l (c)| < ε. The function g′ has
to be ε-close to f ′ in C1 and positive. This is clearly possible. Moreover, if we fix
δ < ε such that f ′−δ is still positive and δ is sufficiently small, we can find a version
of g′ that is equal to f ′ − δ on ((2a + c)/3, (a + 2c)/3) and is smaller than f ′ on an
interval arbitrarily close to [a, c] (to see that, look for g′ − f ′). This will give us a
version of g′ with the integral over [a, c] smaller than the integral of f ′. Similarly
we find a version of g′ with the integral larger than the integral of f ′. By taking
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an appropriate convex combination we get a version of g′ with the integral equal
to the integral of f ′. This will give us g that is equal to f at both a and c. The
C0 distance between g and f will be smaller than ε, since the same is true for g′

and f ′ and the length of [a, c] is smaller than 1. The rest of the conditions (except
perhaps the one on the sinking critical points) are satisfied for both versions of g′

and preserved by the convex combinations.
If a point of discontinuity of f ′′ is in the basin of attraction of an attracting pe-

riodic orbit, by taking sufficiently small neighborhood of this point for modification
of the map, we can make the whole neighborhood to be contained in this basin
of attraction (even after modification). Then the condition on the sinking critical
points can be also satisfied. This completes the proof.

Our strategy includes approximating functions from PN by elements of PS.
The following lemma deals with this problem.

Lemma 3.3. Let f ∈ PN and ε > 0 be given. Then there is g ∈ PS such that
‖f − g‖2 < ε, f(x) = g(x) for every p-critical point x of f , the maps f and g have
the same critical points, and whenever a critical point is sinking for f , it is also
sinking for g.

Proof. We start by finding h ∈ PN such that ‖f−h‖2 < ε/2, f(x) = h(x) for every
p-critical point x of f , the maps f and h have the same critical points, and h is of
class C3 in the neighborhoods of critical points. This requires modifications of the
map in small neighborhoods of critical points. If such neighborhood is sufficiently
small then the sign of f ′′ is constant on it and no p-critical point, except perhaps
the critical point itself, belongs to it. Those modifications are so similar to the ones
from the proof of the preceding lemma, that we leave them to the reader.

Now we have to approximate our map with one that has piecewise negative
Schwarzian. Close to the critical points h has already negative Schwarzian (see
e.g. [BM2]). Therefore we have to make modifications on some set Z where h′ is
bounded apart from 0. We may assume that Z is a union of finitely many intervals.
Then we can divide Z into short intervals that do not contain p-critical points in
their interiors. Let us take one of these intervals and call it [a, b]. Our aim is to
find g on [a, b] such that ‖h|[a,b]−g‖2 < ε/2, g(a) = h(a), g(b) = h(b), g′(a) = h′(a)
and g′(b) = h′(b), the function g is piecewise C2 with negative Schwarzian on each
piece and no critical points. If we can do it on each of our intervals, we get the
required function g. We do not have to worry about the values of g′′ at a and b,
since these points may become points of discontinuity of g′′. We may also assume
that [a, b] is as short as necessary.

Instead of working with h and g, we will work with H = 1/
√

|(h|[a,b])′| and
G = 1/

√

|g′|. That is, H is given and we are looking for G. When we find it then
we define g′ as plus or minus the reciprocal of the square of G (the sign has to
coincide with the sign of h′). Then we get g by integrating g′. In order to satisfy
g(a) = h(a) and g(b) = h(b), we have to have equality of the integrals of h′ and g′

from a to b. This translates to the equality of the integrals of G−2 and H−2 (here
superscripts mean power, not iterate). Next requirements mean that G is piecewise
C1 and strictly convex on each piece, and that G(a) = H(a) and G(b) = H(b). The
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inequality ‖h|[a,b] − g‖2 < ε/2 will be satisfied if the C1 distance between G and
H is smaller than a certain positive constant δ. This δ depends only on ε and the
bounds for the moduli of the derivatives of h on Z (the upper and lower bounds
for |h′| and the upper bound for |h′′|).

Now we start to specify how fine the partition of Z has to be. Namely, H ′

has to vary less than by δ/2 on each element of this partition. Recall that [a, b]
was an arbitrary element of this partition. We construct two continuous piecewise
linear functions on [a, b]. Let us call them Ku and Kl. They both attain values
H(a) at a and H(b) at b. They are linear (more precisely, affine) on [a, d] and
[d, b], where d is the midpoint of [a, b]. Let α = (H(b) − H(a))/(b − a). Then
Ku has slope α + δ/2 on [a, d] and α − δ/2 on [d, b], while Kl has slope α − δ/2
on [a, d] and α + δ/2 on [d, b]. If our partition was sufficiently fine then both
Ku and Kl are positive. Clearly, Kl < H < Ku on (a, b), so

∫ b
a K−2

l (x) dx >
∫ b

a H−2(x) dx >
∫ b

a K−2
u (x) dx. Moreover, the C1 distances between Ku and H and

between Kl and H are smaller than δ. Now if we set Gu(x) = Ku(x)+β(x−a)(x−b)
and Gl(x) = Kl(x) + β(x − a)(x − b) for sufficiently small β then these functions
satisfy all conditions required for G, except the one about the integral. Moreover,
∫ b

a G−2
l (x) dx >

∫ b
a H−2(x) dx >

∫ b
a G−2

u (x) dx. Now we take as G the convex

combination of Gu and Gl for which
∫ b

a G−2(x) dx =
∫ b

a H−2(x) dx. Clearly, it
satisfies the rest of required conditions, except perhaps the one about the sinking
critical points. However, this condition is satisfied automatically if the C1 distance
between f and g is sufficiently small. This completes the proof.

Note that in the proof of Lemma 3.2 we could not use the same argument about
the sinking critical points as at the end of the proof of Lemma 3.3, since the distance
between f and g in Lemma 3.2 depends on kick (f).

In Section 4 our aim will be to make a small perturbation of a map in order
to make the behavior of the trajectories of the critical points “better”. Making a
critical point precritical decreases the number of points about which we have to
worry. Making a critical point sinking is the ultimate goal (perhaps not always
achievable). Thus, we will use the following terminology. If f, g ∈ PN and either f
has more precritical critical points than g or f has the same number of precritical
critical points as g, but more sinking critical points than g, then we will say that f
is better than g (and, of course, g is worse than f). A map f ∈ PN will be called
locally best if it has a neighborhood consisting of maps that are not better than f .
If X ⊂ PN and f ∈ X is not worse than any element of X then we say that f is
best in X. We do not say here the best, since usually there are many equally good
maps.

It turns out that locally best maps have a kind of stability property.

Lemma 3.4. Let f be best in a convex set X ⊂ PN . If g ∈ X, g(x) = f(x) for
every p-critical point x of f , and the maps f and g have the same critical points,
then for every critical point its itineraries for f and g coincide.

Proof. Assume that g ∈ X, g(x) = f(x) for every p-critical point x of f , and the
maps f and g have the same critical points. Then every precritical critical point
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of f is precritical critical for g. This conclusion remains true if we replace g by
h = tf + (1 − t)g for some t ∈ [0, 1]. Suppose that a critical point c has different
itineraries for f and g. We may assume that c is not precritical (otherwise we
replace it by the last point on the orbit of c that is critical). Then for some t and
h as above, the point c is precritical, and thus h is better than f , a contradiction.
This completes the proof.

Now we prove two results that can be viewed as stronger versions of Lemmas 3.2
and 3.3. The first of them (Lemma 3.5) follows from Lemmas 3.1, 3.2 and 3.4.

Lemma 3.5. Let X be the open ball in PN of radius 2ε > 0 and center f ∈ N2.
Assume that g ∈ PN is best in X and ‖f−g‖2 < ε. Then there is h ∈ X ∩N2 such
that h(x) = g(x) for every p-critical point of g, the maps g and h have the same
critical points, the itineraries of critical points for g and h coincide, and whenever
a critical point is sinking for g, it is also sinking for h (so that h is best in X as
well).

Proof. By Lemma 3.1 the fact that ‖f−g‖2 < ε and f ∈ N2 implies that kick (g) <
2ε. Then by Lemma 3.2 there is h ∈ N2 such that ‖h − g‖2 < ε, h(x) = g(x) for
every p-critical point of g, the maps h and g have the same critical points, and
whenever a critical point is sinking for g, it is also sinking for h. Since g is best
in X, we can apply Lemma 3.4, according to which for every critical point its
itineraries for h and g coincide. This completes the proof.

It turns out that a map g from the preceding lemma can be picked up from the
space PS.

Lemma 3.6. For every f ∈ N2 if ε > 0 is sufficiently small then there exists
g ∈ PS satisfying the assumptions of Lemma 3.5.

Proof. All critical points of f are nondegenerate, so if ε is sufficiently small then
the number of critical points of all elements of the open ε-ball Bε in PN centered
at f is the same. Call this number N . Let ξ( ˜f) be the number of precritical critical
points of ˜f times N plus the number of sinking critical points of ˜f . As ˜f ∈ X, we
have ξ( ˜f) ≤ N2 + N . Thus m = lim sup ef→f ξ( ˜f) is finite. Therefore, as ε → 0, the
maximum of ξ over Bε stabilizes. Hence, if ε is sufficiently small, this maximum is
the same for ε and 2ε. We take such ε and a map ˜f ∈ Bε such that ξ( ˜f) = m. It
is easy to see then that ˜f is best in X2ε.

Now by Lemma 3.3 we can approximate this ˜f arbitrarily well by g ∈ PS with
the same value of ξ. Therefore g is also best in X. If g is sufficiently close to ˜f
then ‖f − g‖2 < ε. Thus g satisfies the assumptions of Lemma 3.5.

Next, we need some tools from [BM2] that will allow us to make perturbations
in neighborhoods of the critical points of a map. The proofs of Lemmas 3.7 and
3.9 can be found in [BM2], but we include them here to make the paper more
self-contained.

Lemma 3.7 [BM2]. For any δ, ε > 0 there exists an even function sε,δ = s : R→ R
of class C3 such that

(1) s(x) = 0 for any x /∈ [−ε, ε], while s(0) = ε2δ/1000,
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(2) s is strictly increasing on [−ε, 0] and strictly decreasing on [0, ε],
(3) |s′(x)| < εδ, |s′′(x)| ≤ δ and |s′′′(x)| ≤ δ/ε for any x.

If ε < 1 then the C2-norm of s is smaller than or equal to δ.

Proof. Set h(x) = (x2 − 1)4 for x ∈ [−1, 1] and h(x) = 0 otherwise. This function
satisfies the conditions of the lemma with ε = 1 and δ = 1000. Now the function
s(x) = δε2h(x/ε)/1000 has all the required properties.

In the typical situation both ε and δ are small, which guarantees that s is small
in C2 topology (yet to see whether s is small in C3 topology, we need to know also
how δ and ε are related). Since our main focus is C2 topology, this allows us to
perturb our maps by adding or subtracting functions similar to s.

Let c ∈ R; we call the function sc(x) = sε,δ(x− c) the (ε, δ)-bump function at c.
If both ε and δ are small then we say that the (ε, δ)-bump function is small too. If
c is a critical point of f , we can consider a map g = f + sc or g = f − sc where
sc is an (ε, δ)-bump function at c. Moreover, if ε is smaller than half the minimal
distance between critical points of f then intervals supporting functions sc for
different critical points c are pairwise disjoint. From now on we consider functions
sc only for ε smaller than half the minimal distance between critical points of f .
An (ε, δ)-bump perturbation of f is the result of adding to or subtracting from f
some of maps sc corresponding to different critical points c (the maps f + sc and
f − sc are called (ε, δ)-bump perturbations at c). Note that by choosing small ε and
δ we can get (ε, δ)-bump perturbations of f arbitrarily close to f in C2 topology.

Observe that we can vary δ and then our bump perturbations depend continu-
ously on it. Observe also that if no critical point of f is mapped into 0 or 1 (in
particular, if f is loosely packed) then all sufficiently small bump perturbations at
any critical point map [0, 1] to itself.

The situation in which we apply bump perturbations will often be of the following
type. For a non-degenerate critical point c of f ∈ PN we find points a close to c
and b close to f(c). Then we want to add to or subtract from f a bump function
supported by a subset of [a, τc(a)] to get a new map g for which g(c) = b. The
following lemma shows that under appropriate assumptions such perturbation may
be made very small.

Lemma 3.8. Let c be a critical point of a map f ∈ PN . Then for any η > 0 there
exist ε, δ > 0 such that if |a− τc(a)| < ε and 0 < |b− f(c)|/|f(c)− f(a)| < δ then
there exists an (ε0, δ0)-bump perturbation g of f such that ε0, δ0 < η, the maps f
and g coincide outside [a; τc(a)], and g(c) = b.

Proof. Let γ = supx∈[0,1] |f ′′(x)|. Set ε = η, δ = η/(500γ), α = min(|a− c|, |τc(a)−
c|), ε0 = α and δ0 = 1000|b − f(c)|/α2. By Lemma 3.7 the maximal value of the
(ε0, δ0)-bump function at c (call it sc) is attained at c and equals ε2

0δ0/1000 =
|b − f(c)|. Set g = f + sc if b > f(c) and g = f − sc if b < f(c). Then g(c) = b.
The support of g − f is [c− ε0, c + ε0] ⊂ [a; τc(a)].

Assume that |a − τc(a)| < ε and 0 < |b − f(c)|/|f(c) − f(a)| < δ. We have
to show that in this case ε0, δ0 < η. We have ε0 = α < |a − τc(a)| < ε =
η. Furthermore, f ′(c) = 0 implies that |f ′(x)| ≤ γ|x − c| for every x, and thus
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|f(a)− f(c)| ≤ γ|y − c|2/2 for y = a, τc(a). Therefore |f(a)− f(c)| ≤ γα2/2. Since
|b − f(c)|/|f(c) − f(a)| < δ = η/(500γ), we get |b − f(c)| < ηα2/1000, so δ0 < η.
This completes the proof.

Any bump perturbation has the same set of critical points as the original map,
provided that ε and δ are sufficiently small and all the critical points of the original
map are non-degenerate. Moreover, in the circumstances we will be using it, it
preserves negative Schwarzian in neighborhoods of critical points, as the next lemma
shows. This explains why we needed extra smoothness close to critical points in
the definition of PS.

We will say that f has strongly negative Schwarzian on an interval J if it is
piecewise C3 on J and there is ε > 0 such that 2f ′′′f ′ − 3(f ′′)2 < −ε on J .

Lemma 3.9 [BM2]. Let f : [−a, a] → R be a function of class C3 with a non-
degenerate critical point 0. Then there exist positive numbers ε and δ such that for
any C3 function s : [−a, a] → R whose support is contained in [−ε, ε] and such that

(3.7) |s(x)| ≤ δ, |s′(x)| ≤ εδ, |s′′(x)| ≤ δ, |s′′′(x)| ≤ δ
ε

for all x, the function g = f + s has strongly negative Schwarzian and a unique
critical point in [−ε, ε]. In particular, this applies to any (ε, δ)-bump perturbation
of f at 0. In this case, the critical point in [−ε, ε] is 0.

Proof. Set

(3.8) b = |f ′′(0)|, d = max
x∈[0,1]

|f ′′′(x)|.

Since 0 is a non-degenerate critical point, we have b > 0. Choose ε ∈ (0, a) such
that

(3.9) |f ′(x)| < min
(

1.3 b|x|, 0.2
b2

d

)

, |f ′′(x)| > 0.8 b

for x ∈ [−ε, ε]. Then choose δ > 0 such that

(3.10) δ < min
(

0.1 b, 0.2
b2

dε

)

for x ∈ [−ε, ε].
Let us check that these numbers have the required property. Let s be a function

with the properties from the statement of the lemma and consider the function
g = f +s. For x ∈ [−ε, ε] we have |g′′(x)| ≥ |f ′′(x)|− |s′′(x)| ≥ 0.8b−0.1b 6= 0, so g
has at most one critical point in [−ε, ε]. It has to have one, since g′(−ε) = f ′(−ε)
and g′(ε) = f ′(ε) have opposite signs. If s is a bump function, it is even, so
s′(0) = 0. Hence, g′(0) = f ′(0)+s′(0) = 0 and 0 is the only critical point of g|[−ε,ε].
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Now we will check whether g|[−ε,ε] has strongly negative Schwarzian. To this
end we show that

(3.11) 2(f ′′′(x) + s′′′(x))(f ′(x) + s′(x)) < 3(f ′′(x) + s′′(x))2 − 0.39 b2

for x ∈ [−ε, ε]. In order to do this let us estimate both parts of the inequality (3.11)
step by step. We will use all the time inequalities (3.7)-(3.10). We get

(3.12) 3(f ′′(x) + s′′(x))2 > 3(0.8 b− 0.1 b)2 = 1.47 b2,

(3.13) |f ′′′(x)| · |f ′(x) + s′(x)| < d
(

0.2
b2

d
+ ε · 0.2

b2

dε

)

= 0.4 b2,

(3.14) |s′′′(x)| · |f ′(x) + s′(x)| < 0.1 b
ε

· (1.3 bε + ε · 0.1 b) = 0.14 b2.

From (3.12)-(3.14) we get

2(f ′′′(x) + s′′′(x))(f ′(x) + s′(x)) < 2(0.4 b2 + 0.14 b2)

= 1.08 b2 = 1.47 b2 − 0.39 b2 < 3(f ′′(x) + s′′(x))2 − 0.39 b2

for x ∈ [−ε, ε]. This proves (3.11) and completes the proof.

Note that due to Lemma 3.9, a map which is of class C3 in a neighborhood of
a non-degenerate critical point has strongly negative Schwarzian in a sufficiently
small neighborhood of this point.

Now we return to the properties of locally best maps. To begin with we need
two preliminary lemmas. The first one shows that if a critical point c is not floating
then f can be slightly perturbed so that c becomes sinking; it is closely related to
Lemmas 3.1 and 3.2 of [BM2].

Lemma 3.10. Let ε > 0, a finite set A ⊂ [0, 1] and f ∈ PN be given. Suppose
that a critical point c of f is not floating; moreover, if i is the greatest integer such
that the point f i(c) is critical then f i(c) does not belong to A. Then there is a map
g ∈ PN such that ‖f − g‖2 < ε, f(x) = g(x) for every x ∈ A, the sets of critical
points of f and g coincide and c is sinking for g.

Proof. We may assume that c itself does not belong to A. Since c is not floating
then it is either almost sinking or weakly sinking (if it is sinking, there is nothing
to prove). If it is almost sinking then a small bump perturbation at c will push the
orbit of c into the basin of attraction of a periodic sink. Here we use the assumption
that c does not belong to A which allows us to make such perturbation. If this sink
is attracting, we get c sinking. If it is neutral, we get c weakly sinking. Hence, from
now on we can assume that c is weakly sinking. In this case a small perturbation
in a neighborhood of a neutral periodic point x from the limit set of c makes x
attracting (we can have g(x) = f(x) in case x ∈ A) and leaves c attracted to the
orbit of x, thus making c sinking. This completes the proof.

Before we prove our second preliminary result, we need a theorem similar to
Theorem 1.3 of [BM2]. For the sake of convenience we write [a; b] for the interval
[a, b] if a < b and [b, a] if b < a (the same applies to other types of intervals).
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Theorem 3.11. For f ∈ PS the following properties hold.

(1) There are no wandering intervals.
(2) Points with finite limit sets are dense in [0, 1].
(3) If there are no critical and no precritical points in (x; y) then the limit set

of every z ∈ [x; y] is a periodic orbit.
(4) Any floating point is the limit from both sides (one side for 0 and 1) of both

(pre)periodic and precritical points.

Proof. (1) It is easy to check that PS ⊂ NF 1+bv, where the space NF 1+bv is
defined in [MS, page 285]. The proof on non-existence of wandering intervals in
Chapter IV of [MS] works for maps from NF 1+bv, so (1) holds.

(2) Follows immediately from (1) and Lemma 6.1 of [B].
(3) Follows immediately from (1) and Lemma 3.1 of Chapter II of [MS].
(4) Assume that x is a floating point. Suppose that there is y 6= x such that

there are no precritical points in (x; y). We may assume that there are also no
critical points in (x; y) (if there is a critical point in (x; y) then we may replace y by
the closest to x critical point in (x; y)). By (3) the limit set of x is a periodic orbit
Q. Since x is floating, Q cannot be sinking or neutral, so it is repelling which easily
implies that x itself is (pre)periodic. Now the fact that (x; y) contains no precritical
points implies that points from Q lie on the boundary of the basin of attraction
of some periodic point of f . Therefore x is almost sinking, which contradicts the
assumption that it is floating. This proves that x is the limit from both sides of
precritical points.

Suppose now that there is y 6= x such that there are no (pre)periodic points in
(x; y). By (2), there is z ∈ (x; y) with a finite limit set. Since z is not (pre)periodic
then it is easy to see that z is in the basin of attraction B of a periodic sink.
Moreover, since the points (except perhaps 0, 1) from the boundary of the basin of
attraction of any cycle are periodic, we conclude that the whole interval (x; z) is
contained in B. Thus, x cannot be floating, a contradiction. This completes the
proof of (4).

Now we can state our second preliminary lemma. It basically sums up the results
of Lemmas 3.3 and 3.4 of [BM2].

Lemma 3.12. Let c be a floating non-recurrent critical point of f ∈ PS. Then
there is an arbitrarily small bump perturbation of f at c for which c is precritical.

Proof. First assume that c has a finite limit set P . Then it is well known that P
is a periodic orbit. Let x ∈ P ; then x is a periodic repelling point not lying on the
boundary of a basin of attraction of any periodic orbit of f (we rely upon the fact
that c is floating). It is easy to see that then f j(c) = x for some j. Denote the
period of x by n.

By Theorem 3.11 (4), there are precritical points arbitrarily close to x. There
is a small neighborhood U of x such that a suitable branch of h = (f |U )−n is
a contraction and x is its fixed point. Choose a precritical point y ∈ U . Then
limk→∞ hk(y) = x. There is an arbitrarily small bump perturbation g of f at c
such that gj(c) = hk(y) for some k. If it is sufficiently small, the orbits of gj(c)
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under f and g coincide until they get to a critical point. Therefore c is precritical
for g.

Now we consider the case when c is non-recurrent, but its limit set is infinite.
By Theorem 3.11 (3), we can find a precritical point y so close to c that y′ = τc(y)
is well defined and the orbit of f(c) is disjoint from [y; y′]. There is a neighborhood
U of c, contained in [y; y′], and such that the orbit of y misses U before it gets to
a critical point.

Let V be a small neighborhood of f(c). We want to prove that there is a
precritical point z ∈ V whose orbit misses U before it hits a critical point. If the
union of images of V is disjoint from [y; y′] then this follows from Theorem 3.11 (3).
If the union of images of V is not disjoint from [y; y′] then there is the smallest k
such that fk(V ) intersects [y; y′]. We have fk(f(c)) /∈ [y; y′], so there is z ∈ V such
that either fk(z) = y or fk(z) = y′. Then z is precritical and f i(z) /∈ [y; y′] for
i < k. Thus, z is the point we were looking for.

Now, for every bump perturbation g of f at c such that the support of g − f
is contained in U , the point z found above is also precritical for g. Since V is
arbitrarily small, we can choose g so that g(c) = z. This completes the proof.

The next lemma follows easily from Lemmas 3.10, 3.12 and the definition of a
locally best map.

Lemma 3.13. Let f ∈ PS be a locally best map. Then all non-floating critical
points of f are sinking and all floating critical points of f are recurrent.

Proof. Let c be a non-floating critical point of f . Denote by A the set of all p-
critical points of f . Then by Lemma 3.10 we can find a map g arbitrarily close to f
which coincides with f on A and for which c is precritical (in other words, a small
bump perturbation can be made in a way that does not spoil precriticality of any
existing precritical critical point). This contradicts the definition of a locally best
map. Similarly we can apply Lemma 3.12 thus showing that f cannot have floating
non-recurrent critical points either. This completes the proof.

We summarize the main results of this section in the following theorem.

Theorem 3.14. For every f ∈ N2 there exists ε > 0 such that for any open ball
X in PN with center f and radius smaller than ε there are maps g ∈ X ∩PS and
h ∈ X ∩N2, best in X and such that

(1) 2‖g− f‖2 is smaller than the radius of X, all non-floating critical points of
g are sinking, all floating critical points of g are recurrent, and a sufficiently
small bump perturbation at any critical point of g does not change itineraries
of the critical points of g,

(2) g and h have the same critical points, whenever a critical point is sinking
for g, it is also sinking for h, and whenever a floating critical point is super
persistently recurrent for g, it is also floating super persistently recurrent
for h.

Proof. If ε > 0 is sufficiently small then the existence of g ∈ X ∩PS, best in X and
satisfying (1) follows from Lemmas 3.4, 3.6 and 3.13. Existence of h ∈ X∩N2, best
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in X and satisfying (2), follows from Lemma 3.5 and Theorem 2.9. In order to apply
Theorem 2.9 we have to know additionally that g and h have no wandering intervals
and that all floating super persistently recurrent critical points of g have infinite
limit sets. However, the absence of wandering intervals follows from Theorem A,
Chapter IV of [MS] (for h) and Theorem 3.11 (for g). A recurrent point with finite
limit set has to be periodic, so if it is critical, it is sinking. This completes the
proof.

4. Main Theorem

In this section we finish the proof of Main Theorem. In fact, from the point of
view of dynamics, here we make the main step in the proof.

In the case of a map f ∈ PN (and thus of a map f ∈ PS ⊂ PN ) there is a
specific set C ≡ Cf of all critical points together with all points of discontinuity
of f ′′. Suppose that for some critical point c there exist arbitrarily small bump
perturbations g of f at c such that the g-itinerary of c is distinct from its f -
itinerary. Then we say that f is unstable at c. Now we are ready to state our main
step.

Theorem 4.1. Assume that c is a critical point of f ∈ PS which is recurrent but
neither precritical nor Cf -super persistently recurrent. Then f is unstable at c.

If c is precritical then clearly f is unstable at c. Therefore the assumption that
c is not precritical is unnecessary in the above theorem. However, we include it,
since we will be both proving and using Theorem 4.1 with this assumption.

It is rather easy to figure out how to complete the proof of Main Theorem using
Theorem 4.1.

Proof of Main Theorem. Let f, g, h and X be as in Theorem 3.14. By the first part
of that theorem, all critical points of g which are not sinking and not precritical, are
recurrent and g is stable at them. By Theorem 4.1, g is super persistently recurrent
at them. Hence, by Theorem 3.14 (2), every critical point of h is either sinking, or
precritical, or floating super persistently recurrent. Note that if a precritical critical
point is not sinking, then it is recurrent, so in view of Corollary 2.11 it is also super
persistently recurrent. Since X is a ball centered at f with arbitrarily small radius
and h ∈ X ∩N2, this proves Main Theorem.

To prove Theorem 4.1, we need distortion lemmas for piecewise negative Schwarz-
ian maps. It is well known that these lemmas hold for negative Schwarzian maps
in our sense. We start by stating Koebe Lemma for negative Schwarzian maps
without critical points inside the domain. It has a part about the distortion and a
part about lengths of intervals (that follows from the first one). In fact, we need
only the second part. As in [BM2], we state it in the form most useful for us, and
we state the first part in the form good for the proof of the second part. The first
part in essentially the same form can be found for instance in [Br]. Moreover, it can
be obtained easily from the convexity of the function 1/

√

|h′| by way of integration.
We supply only a proof of the second part.
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Koebe Lemma. Let h : [a, b] → R be a function with negative Schwarzian and
such that h′ 6= 0 on (a, b).

(1) Let a < a′ < b′ < b. Assume that |h(a′) − h(a)| ≥ δ|h(b′) − h(a′)| and
|h(b) − h(b′)| ≥ δ|h(a′) − h(b′)|. Then for every x, y ∈ [a′, b′] we have
|h′(x)|/|h′(y)| ≤ ((1 + δ)/δ)2.

(2) Let a < a′′ < b′′ < b. Assume that |h(b′′) − h(a′′)| ≤ ω|h(a′′) − h(a)| and
|h(b′′)− h(a′′)| ≤ ω|h(b)− h(b′′)|. Then b′′ − a′′ < 2ω(3 + 2ω)2(a′′ − a) and
b′′ − a′′ < 2ω(3 + 2ω)2(b − b′′). In particular, if ω ≤ 1, then b′′ − a′′ <
50ω(a′′ − a) and b′′ − a′′ < 50ω(b− b′′).

Proof of (2). Without loss of generality, we may assume that h is increasing. Set
ã = h(a′′) − (h(b′′) − h(a′′))/(2ω) and ˜b = h(b′′) + (h(b′′) − h(a′′))/(2ω), and
then a′ = h−1(ã), b′ = h−1(˜b). Then the assumptions of (1) are satisfied with
δ = 1/(2 + 2ω). By (1) and Mean Value Theorem we get

(h(a′′)− h(a′))/(a′′ − a′)
(h(b′′)− h(a′′))/(b′′ − a′′)

≤
(

1 + δ
δ

)2

= (3 + 2ω)2.

Since h(b′′) − h(a′′) = 2ω(h(a′′) − h(a′)) and a′′ − a′ < a′′ − a, we get b′′ − a′′ <
2ω(3 + 2ω)2(a′′ − a). Similarly, b′′ − a′′ < 2ω(3 + 2ω)2(b − b′′). If ω ≤ 1 then
3 + 2ω ≤ 5, and we get the required estimates.

In order to estimate distortion of iterates we also need to know what happens
close to the critical points. Estimates of this type were used for instance by Lyubich
in First Distortion Lemma of [L1]. By |I| we denote the length of an interval I.

Lemma 4.2. Let f be a piecewise monotone map of class C1. Assume that in a
neighborhood of every critical point c of f we have A|x − c| ≤ |f ′(x)| ≤ B|x − c|
for some positive constants A,B. Then there exists a positive constant D(f) such
that if I, J are closed intervals with a common endpoint and disjoint interiors such
that there are no critical points in the interior of I ∪ J and |f(I)| ≥ |f(J)| then
|I|/|J | ≥ D(f)

√

|f(I)|/|f(J)|.

Proof. Suppose that such a constant does not exist. Then there are sequences of
intervals In, Jn satisfying our assumptions, such that

(4.1) lim
n→∞

|In|2

|f(In)|
· |f(Jn)|
|Jn|2

= 0.

By passing to a subsequence, we may assume that the sequences of corresponding
endpoints of In and Jn converge.

Suppose that the intervals In converge to a non-degenerate interval. Then the
limit limn→∞ |In|2/|f(In)| exists and is non-zero. If the intervals Jn converge to a
non-degenerate interval, then the limit limn→∞ |f(Jn)|/|Jn|2 exists and is non-zero,
so (4.1) does not hold. If the intervals Jn converge to a point that is not critical,
then the limit limn→∞ |f(Jn)|/|Jn|2 is infinite, so (4.1) also does not hold. If the
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intervals Jn converge to a critical point c, then for sufficiently large n from the
assumption on f ′ we get by integration

(4.2)
A
2
|Jn|α(Jn) ≤ |f(Jn)| ≤ B

2
|Jn|α(Jn),

where α(Jn) is the sum of the distances of the endpoints of Jn from c. Since
α(Jn) ≥ |Jn|, we get |f(Jn)| ≥ (A/2)|Jn|2, so (4.1) also does not hold.

Suppose now that the intervals In converge to a non-critical point x. Since
|f(Jn)| ≤ |f(In)|, the intervals Jn also have to converge to x. Then the limits
of |f(In)|2/|In|2 and |f(Jn)|2/|Jn|2 are both equal to |f ′(x)|2, so since |f(In)| ≥
|f(Jn)|, (4.1) does not hold.

Suppose at last that the intervals In converge to a critical point c. Then so do
the intervals Jn. Thus, for sufficiently large n (4.2) holds for Jn and for In replacing
Jn. Therefore

(4.3)
|In|2

|f(In)|
· |f(Jn)|
|Jn|2

≥ 2
B
· |In|
α(In)

· A
2
· α(Jn)
|Jn|

=
A
B
· |In|
|Jn|

· α(Jn)
α(In)

.

Moreover, since |f(Jn)| ≤ |f(In)|, we get (A/2)|Jn|α(Jn) ≤ (B/2)|In|α(In), so

(4.4)
|In|
|Jn|

≥ A
B
· α(Jn)

α(In)
.

If vn is the distance of the common endpoint of In and Jn from c then α(Jn) >
vn ≥ (α(In)− |In|)/2, so

(4.5)
α(Jn)
α(In)

>
1
2
− |In|

2α(In)
.

Since α(Jn) > |Jn|, we get by (4.1) and (4.3) limn→∞ |In|/α(In) = 0. Therefore by
(4.5)

(4.6) lim inf
n→∞

α(Jn)
α(In)

≥ 1
2
.

Thus, by (4.4),

(4.7) lim inf
n→∞

|In|
|Jn|

≥ A
2B

.

Now (4.3), (4.6) and (4.7) contradict (4.1). This completes the proof.

Let us remark that in general, if a critical point c of f has order l instead of 2, then
a similar proof shows that if I and J are close to c then we get a similar inequality as
in the above lemma, except that

√

|f(J)|/|f(J)| is replaced by (|f(J)|/|f(J)|)1/l.
The next lemma follows easily from Lemma 4.2. To state it, we need the following

definition. If an interval I is contained in the interior of an interval T then T will
be called a ∆-crinoline of I if the ratio of the length of each component of T \ I to
the length of I is at least ∆. The constant η was defined in Section 2.
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Lemma 4.3. For every f ∈ PN there is a positive constant B(f) such that if
I, I ′, T, T ′ are intervals such that T is a ∆-crinoline of I for some ∆ ≥ 1, T ′ is
a component of f−1(T ) not containing 0 or 1, |T ′| < η, and I ′ is a component of
f−1(I) contained in T ′, then T ′ is a B(f)

√
∆-crinoline of I ′.

Proof. From the definition of η it follows that there exists a constant K such that
if c is a critical point and an interval J of length less than η contains c then τc is
defined on J and |τ ′c(x)| ≤ K for all x ∈ J . Note that K ≥ 1.

Let I, I ′, T, T ′ be intervals as above. If T ′ does not contain any critical point then
it is mapped onto T in a monotone way and by Lemma 4.2 T ′ is a D(f)

√
∆-crinoline

of I ′.
Assume now that T ′ = [a, b] contains one critical point c. We may assume that f

has a local maximum at c. Then T = [p, q] with f(a) = f(b) = p and p < f(c) ≤ q.
Let I ′ = [s, t]. If I ′ contains c then f(s) = f(t) is the left endpoint of I, and
the right endpoint of I is to the right of f(c) (or is equal to f(c)). Since T is a
∆-crinoline of I with ∆ ≥ 1, we have f(s) − p ≥ |I| ≥ f(c) − f(s). Therefore we
may apply Lemma 4.2 and we get

(4.8)
s− a
c− s

≥ D(f)

√

f(s)− p
f(c)− f(s)

≥ D(f)

√

f(s)− p
|I|

≥ D(f)
√

∆.

Since the modulus of the derivative of τc is bounded by K, we have K(c − s) ≥
t − c, so (K + 1)(c − s) ≥ |I ′|. Together with (4.8) this gives us (s − a)/|I ′| ≥
(D(f)/(K + 1))

√
∆. Similarly we get (b− t)/|I ′| ≥ (D(f)/(K + 1))

√
∆, so T ′ is a

(D(f)/(K + 1))
√

∆-crinoline of I ′.
If now I ′ does not contain c then we may assume that it is contained in (a, c).

Then we have p < f(s) < f(t) < f(c) and I = [f(s), f(t)]. By the assumptions,
f(s)− p ≥ ∆|I|, so by Lemma 4.2 s− a ≥ D(f)

√
∆|I ′|. Hence b− t > b− τc(s) ≥

(s− a)/K ≥ (D(f)/K)
√

∆|I ′|. Therefore T ′ is a (D(f)/K)
√

∆-crinoline of I ′.
In all cases T ′ is a (D(f)/(K + 1))

√
∆-crinoline of I ′, so the lemma holds with

B(f) = D(f)/(K + 1).

Classical Koebe Lemma and Lemma 4.3 allow us to derive a version of Koebe
Lemma for chains. To make this derivation simpler, we restate a part of Koebe
Lemma.

Lemma 4.4. Let f ∈ PS, let I ⊂ T be intervals such that there is no exceptional
point inside T , and f(T ) is a ∆-crinoline of f(I) for some ∆ ≥ 1. Then T is a
∆/50-crinoline of I.

The following proposition follows easily from Lemmas 4.3 and 4.4.

Proposition 4.5. For any f ∈ PS and a natural number ν there exists a function
ωf,ν such that lim∆→∞ ωf,ν(∆) = ∞ and if chains (Gi)l

i=0 of order ν or smaller
and (Hi)l

i=0 are such that Hi ⊂ Gi for every i and Gl is a ∆-crinoline of Hl for
some ∆ such that ωf,ν(∆) ≥ 1, then G0 is an ωf,ν(∆)-crinoline of H0.

Proof. In the situation as above, we decompose our chain (Gi)l
i=0 into 2ν + 1 (or

less) pieces. Each piece corresponds either to f restricted to some Gi that contains
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one exceptional point or to an iterate f j restricted to Gi such that there is no
exceptional point of f j in Gi (and then it has negative Schwarzian). We go back
along the chain. In the first case we use Lemma 4.3, in the second case Koebe
Lemma. During each step, if the last interval Gi+j of the piece was a Λ-crinoline
of Hi+j then the first interval Gi of the piece is a B(f)

√
Λ-crinoline of Hi in the

first case, and a Λ/50-crinoline of Hi in the second case.
Therefore the composition of the pull-backs corresponding to the second and the

first case leads to the function ϕ(t) = B(f)
√

t/50 such that if to begin with Gs is a
Λ-crinoline of Hs then after such two pull-backs Gr will be a ϕ(Λ)-crinoline of Hs.
Since the order of the chain (Gi)l

i=0 is at most ν we conclude that while pulling
Gl and Hl back and estimating the distortion we will have to apply the function ϕ
at most ν-times; other than that we may also need to apply a monotone negative
Schwarzian pull back one more time. Denote by Φ = ϕν the ν-fold composition
of the function ϕ. Then the function ωf,ν = Φ/50 satisfies the conditions of the
proposition.

We apply Proposition 4.5 to prove the following sufficient condition for instability
at a critical point. Let us remind the reader that the intervals Mn(·) and Hn(·)
were defined between Lemma 2.3 and Theorem 2.4.

Proposition 4.6. Let c be a non-precritical critical point of a map f ∈ PS. As-
sume that there exists ν such that for every ∆ there exist a positive integer k and
a ∆-crinoline I of one of the parts into which fk+1(c) divides Mk(f(c)), such that
the pull-back G of I along f(c), . . . , fk+1(c) has order ν or less. Then f is unstable
at c.

Proof. The point f(c) divides Hk(f(c)) into two parts. Let J be the part whose
image under fk is the part of Mk(f(c)) from the statement of the proposition. Since
fk is monotone on J , there is a chain (Gi)k

i=0 such that f i(J) ⊂ Gi for all i and
fk(J) = Gk. On the other hand, since fk(J) ⊂ I, the intervals Gi are contained
in the corresponding intervals of G. Therefore we may use Proposition 4.5 if ∆ is
sufficiently large. We get that the first interval K of G is a Λ-crinoline of J , where
Λ = ωf,ν(∆). By Proposition 4.5, we can get Λ as large as we want by choosing ∆
sufficiently large.

We may assume that f has a local maximum at c. Let L be the component of
f−1(K) containing c. Since K is smart, c is the only critical point in L. Therefore
L = [a, τc(a)] for some a and f(a) is the left endpoint of K.

Let us fix α ∈ (0, 1). Let A be the set of all critical points of fk in [f(a), f(c)].
For x ∈ A we denote by ξ(x) the smallest positive integer such that fξ(x)(x) is a
critical point. Clearly, ξ(x) < k for every x ∈ A. Let us look at the rightmost point
y of A. If |J | < α(f(c) − y) then we set b = y and stop. Otherwise, we replace
J by [y, f(c)] and A by {x ∈ A : ξ(x) < ξ(y)} and repeat the procedure. If at a
certain moment the set replacing A is empty then we set b = f(a). We end up with
b ∈ [f(a), f(c)) and m ≤ k such that fm is monotone on [b, f(c)] and either there
is exactly one b′ ∈ (b, f(c)) for which fm(b′) is a critical point or m = k and J is
to the right of c. Since the order of G is smaller than or equal to ν, there are at
most ν critical points of fk in K. If ∆ was so big that Λ > α−ν then in the first
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case f(c)− b′ < α(f(c)− b). In the second case |J | < α(f(c)− b) and we define b′

as the right endpoint of J .
Now, provided ∆ is sufficiently large, we have the following situation. There

are points b ∈ [f(a), f(c)) and b′ ∈ K and a positive integer m such that fm is
monotone on [b, f(c)], the point fm(b′) is critical for f and |f(c)−b′| < α(f(c)−b).
Denote the preimage of b in (a, c) by p. Then the preimage of b in (c, τc(a)) is τc(p).
Set ε = min(c− p, τc(p)− c) and δ = 1000 · |b′ − f(c)|/ε2. Let g be the (ε, δ)-bump
perturbation of f at c, where the bump is added to f if b′ > f(c) and subtracted
from f if b′ < f(c). Then g(c) = b′. Let us investigate the g-trajectory of b′.

We claim that the points f i(b′), i = 1, 2, . . . ,m−1, do not belong to (p, τc(p)). In-
deed, if f j(b′) ∈ (p, τc(p)) then fm−j−1(z) is a critical point of f for z = f j+1(b′) ∈
(b, f(c)), contrary to the assumption that fm is monotone on [b, f(c)]. This proves
our claim. It follows by induction that gi(b′) = f i(b′) for i = 1, 2, . . . , m. Hence,
gm+1(c) = gm(b′) is a critical point of f . Since f and g have the same critical points,
it is also a critical point of g. Since c was not precritical for f , the itineraries of c
for f and g differ.

It remains to show that the perturbations we make can be made arbitrarily
small. By Lemma 3.7, the C2 norm of the perturbation described above is at most
δ. Since the critical point c is non-degenerate, there is a constant γ > 0 such that
f(c)− b ≤ γε2, independently of the choices we made. Then δ ≤ 1000αγ. We can
make α as small as we want (by choosing ∆ large enough), so the same applies to
δ. This completes the proof.

Proposition 4.6 allows us to continue the proof in the same way as in [BM2].
First we show that if we assume that Theorem 4.1 does not hold then we get a
property similar to the reluctant recurrence of c, that allows us to use later our
distortion estimates.

Lemma 4.7. Assume that f and c satisfy the assumptions of Theorem 4.1, but f is
stable at c. Then there is a number ε > 0, an integer ν > 0 and a sequence (ni)∞i=1
of positive integers such that for every i the interval [fni+1(c)− ε, fni+1(c)+ ε] has
a pull-back along f(c), . . . , fni+1(c) of order ν or less, such that f is monotone on
every interval of this pull-back chain (except perhaps the last one).

Proof. Since c is recurrent but not Cf -persistently recurrent, there is a number
δ > 0, an integer ν > 0 and a sequence (ni)∞i=1 of positive integers such that for every
i the interval [fni+1(c) − δ, fni+1(c) + δ] has a pull-back along f(c), . . . , fni+1(c)
of order ν or less. Since f is stable at c, by Proposition 4.6 there exists ∆ such
that for every i the interval [fni+1(c)− δ, fni+1(c) + δ] is not a ∆-crinoline of any
of the intervals into which fni+1(c) divides Mni(f(c)). This means that Mni(f(c))
contains [fni+1(c)− ε, fni+1(c) + ε], where ε = δ/(2∆ + 1). Now the pull-backs of
[fni+1(c)− ε, fni+1(c) + ε] satisfy the conditions of the lemma.

The following lemma is similar to Lemma 4.1 of [BM2].

Lemma 4.8. Assume that f and c satisfy the assumptions of Theorem 4.1, but f
is stable at c. Then c has infinite limit set and for any β, ε0 > 0 there exist points
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a (close to c), b (close to f(c)), and a number n such that:
(1) if f has local maximum at c then f(a) < f(c) < b, whereas if f has local

minimum at c then f(a) > f(c) > b;
(2) |a− c| < ε0 and |τc(a)− c| < ε0;
(3) |b− f(c)| < β|f(c)− f(a)|;
(4) fn|[f(a);b] is monotone;
(5) the orbit of fn(b) misses the interval [a; τc(a)];
(6) if f i(b) ∈ [a; τc(a)] for some i then f i(f(c)) lies on the same side of c as

f i(b), but farther away from c.

Proof. Since c is critical but not precritical, it is not periodic. Therefore, since it
is recurrent, it has infinite limit set.

For the sake of definiteness we may assume that f has local maximum at c. Let
ε, ν and ni be as in Lemma 4.7. Set Mi = [fni+1(c) − ε, fni+1(c) + ε] and let Hi

be the first interval of the pull-back chain from Lemma 4.7, whose last interval is
Mi. Because of monotonicity, we have fni(Hi) = Mi. We may assume that the
maps fni |Hi are either all increasing or all decreasing, fni(f(c)) → y for some y
and [y−ε/2, y+ε/2] ⊂ Mi for every i (replace the sequence (ni) by its subsequence
if necessary).

Denote by H−
i the part of Hi lying to the left of f(c) and set M−

i = fni(H−
i ).

The reason why we are interested in H−
i is that this set is the image of some

neighborhood of c (since f has a local maximum at c).
All sets M−

i lie on the same side of fni(f(c)) and the points fni(f(c)) approach
y. Therefore every point z on one side of y does not belong to M−

i for sufficiently
large i (if the sets M−

i lie to the left of fni(f(c)) then we look at z to the right of
y and vice versa). Let β, ε0 > 0 be given (we may assume that β is small). Let us
choose z as above, such that

(4.9) |z − y| < α,

where

(4.10) α =
ε

8ω−1
f,ν(1/β)

(ωf,ν is the function from Proposition 4.5), and the limit set of z is finite. This is
possible by Theorem 3.11 (2).

Now we give the precise meaning to the assumption that β is small. We need
β ≤ 1, so that we can apply later Proposition 4.5. Moreover, we need β so small
that α < ε/4. This is possible, since limt→∞ ωf,ν(t) = ∞.

Since α < ε/4 < ε/2, we get z ∈ [y − ε/2, y + ε/2] ⊂ Mi for every i.
Since the limit set of c is infinite, so is the limit set of f(c). Thus, f(c) is bounded

away from the limit set of z. Moreover, by Theorem 3.11 (4), the length of Hi goes
to 0 as i →∞. Thus, there exists j such that Hj is disjoint from the orbit of z, the
component of the f -preimage of Hj containing c is shorter than ε0, and

(4.11) |fnj (f(c))− y| < α.
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The component of the f -preimage of Hj containing c is of the form [a; τc(a)] for
some a and then H−

j = [f(a), f(c)]. Since this preimage is shorter than ε0, (2) is
satisfied. Let n = nj and let b be the fn|Hj -preimage of z. Then [f(a); b] ⊂ Hj ,
so (4) holds. Since M−

j and z lie on the opposite sides of fn(f(c)) and fn|Hj is
monotone, f(a) and b lie on the opposite sides of f(c). This proves (1). Since Hj
is disjoint from the orbit of z, (5) holds.

Since [y − ε/2, y + ε/2] ⊂ Mj and α < ε/4, we get from (4.9) and (4.11) that
each component of Mj \ [fn(f(c)); z] has length at least ε/4. On the other hand,
from (4.9) and (4.11) we get |fn(f(c)) − z| < 2α. Hence, by (4.10) Mj is an
ω−1

f,ν(1/β)-crinoline of [fn(f(c)); z]. Thus, from Proposition 4.5 we get (3).
Suppose that for some i we have f i(b) ∈ [a, τc(a)]. By (5), since fn(b) = z, we

get i < n. By (4) and (1), the points f i(f(a)), f i(f(c)) and f i(b) lie on the same
side of c in this or reverse order. If f i(f(a)) is the closest one to c among them,
then either [a; c] or [τc(a); c] is mapped into itself by f i+1 in a monotone way. Then
the orbit of c is attracted to a periodic orbit, a contradiction. Thus, f i(b) is closer
to c than f i(f(c)), so (6) holds.

The proof of Theorem 4.1 is similar to the proofs of Lemmas 4.2 and 4.3 of
[BM2].

Proof of Theorem 4.1. Assume that f and c satisfy the assumptions of Theorem 4.1,
but f is stable at c. Then, by Lemma 4.8, c has infinite limit set and for any β, ε0 > 0
there are a, b and n satisfying conditions (1)-(6) of Lemma 4.8. Since f is stable
at c, there are δ0, ε0 > 0 such that if ε < ε0 and δ < δ0 and g is an (ε, δ)-bump
perturbation of f at c then the itineraries of c for f and g coincide.

Set β = δ0/(500γ), where γ = supx∈[0,1] |f ′′(x)|, ε = min(|a− c|, |τc(a)− c|) and
U = (a; τc(a)). Then

(4.12) (c− ε, c + ε) ⊂ U

and by Lemma 4.8 (2) we have ε < ε0. Choose δ such that an (ε, δ)-bump per-
turbation g of f at c maps c to b. By (4.12), the support of g − f is contained in
U .

By Lemma 3.7 (1) we have |b − f(c)| = sε,δ(0) = ε2δ/1000. Therefore, by
Lemma 4.8 (3),

(4.13) δ =
1000|b− f(c)|

ε2 <
1000β|f(c)− f(a)|

ε2 =
2δ0|f(c)− f(a)|

γε2 .

Since f ′(c) = 0, we have |f ′(x)| ≤ γ|x − c| for any x, so |f(c) − f(a)| ≤ γε2/2.
Together with (4.13) this gives us δ < δ0.

Set z = fn(b) and m = n+1. We claim that fm(c) and gm(c) lie on the opposite
sides of z (non-strictly). Let us prove by induction that for any j ≤ n the point
f j(b) lies (non-strictly) between the points f j(f(c)) and gj(b) = gj+1(c). If j = 0
then f j(b) = gj(b) = b, so we have the induction base. Assume now that

(4.14) f i(b) ∈ [f i(f(c)); gi(b)]
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for some i < n. Since the itineraries of c for f and g coincide, the interval
[f i(f(c)); gi(b)] belongs to one lap (the laps of f and g are the same). We have to
prove that

(4.15) f i+1(b)) ∈ [f i+1(f(c)); gi+1(b)].

We may assume that f i(f(c)) < gi(b); the other case differs only by the direction
of inequalities.

If gi(b) /∈ U then gi+1(b) = f(gi(b)), and (4.15) follows from (4.14) and mono-
tonicity of f on [f i(f(c)), gi(b)]. Assume now that gi(b) ∈ U . By Lemma 4.8 (6),
c lies on the same side of f i(f(c)) as f i(b). By (4.14), we get

(4.16) f i(f(c)) < f i(b) ≤ gi(b) ≤ c.

Since f is monotone on [f i(f(c)), gi(b)] and on U , it is monotone on the whole
[f i(f(c)), c]. If it is increasing, then f has a local maximum at c, so g ≥ f by
Lemma 4.8 (1). Therefore from (4.16) we get f i+1(f(c)) < f i+1(b) ≤ f(gi(b)) ≤
gi+1(b), and (4.15) follows. If it is decreasing, then f has a local minimum at c,
so g ≤ f . Therefore from (4.16) we get f i+1(f(c)) > f i+1(b) ≥ f(gi(b)) ≥ gi+1(b),
and (4.15) also follows. This completes the induction step and proves the claim.

Set x = fm(c) and y = gm(c). Thus, x and y lie on the opposite sides of z.
While y may coincide with z, we claim that x cannot. Indeed, by Lemma 4.8 (5)
the f -orbit of z = fn(b) misses a neighborhood of c, so c /∈ ω(z). On the other
hand, c is recurrent and thus c ∈ ω(x). Hence x 6= z, so x 6= y.

Moreover, since the itineraries of c for f and g coincide, for each k ≥ 0 the points
fk(x) and gk(y) belong to the same lap (the laps of f and g coincide, too).

We claim that for every i ≥ 0 we have f i(z) ∈ [f i(x); gi(y)] and [f i(x); gi(y)]
is non-degenerate. We prove it by induction. We know that for i = 0. Suppose
that f j(z) ∈ [f j(x); gj(y)] and [f j(x); gj(y)] is non-degenerate. Then the points
f j(x), f j(z), gj(y) belong to the same lap on which either both f, g are increasing or
they are both decreasing. Thus, application of f to the points f j(x) and f j(z) will
change (or not) their order in the same way as application of g to the points f j(z) =
gj(z) and gj(y). On the other hand, f(f j(z)) = g(f j(z)) by the construction,
which together with the previous remark shows that f j+1(z) ∈ [f i+j(x); gi+j(y)].
Moreover, at least one of the intervals [f j(x); f j(z)], [f j(z); gj(y)] is non-degenerate,
so at least one of the intervals [f j+1(x); f j+1(z)], [f j+1(z); gj+1(y)] is also non-
degenerate. Therefore [f i+j(x); gi+j(y)] is non-degenerate. This completes the
induction step and proves the claim.

Thus, f i|[x,z] is monotone for all i, which by Theorem 3.11 (4) implies that x is
not floating. Hence, the f -limit set of x = fm(c) (and thus the f -limit set of c) is
a periodic orbit, a contradiction. This completes the proof.
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