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Abstract. We introduce the notion of a snowflake (related to Block’s simple
periodic orbits [Bl]) and show that the dynamics of a zero entropy forest map is
determined by the corresponding family of snowflakes. This provides information
about the sets of periods and limit sets for zero entropy forest maps.

0. Introduction

Let us call one-dimensional branching manifolds with finitely many branching
points graphs. A connected contractible graph is a tree, a finite disjoint union of
trees with disjoint compactifications is a forest. We do not assume forests to be
compact but by definition they are always finite; also, we consider only continuous
maps. Continuous self-mappings of such graphs like interval or circle are studied in
a number of papers and books; maps of other graphs have attracted some attention
too (see [IK], [ALM], [AM], [Ba], [LM], [B2-B4]). One of the reasons is that one-
dimensionality allows to get surprising results and see how topological (and quite
elementary in this case) properties of spaces influence dynamics. The description of
sets of periods of a map is a good example (see [ALM], [Ba], [LM]); it originates in
the Sharkovskii’s paper [S] and fully shows the specifics of one-dimensional maps.
Let Z be the set of zero entropy interval maps; another question is that of the
description of sets of periods for maps from Z asked by Bowen [Bo2] and answered
by Misiurewicz [M1] (see also [MS]) who proved that the maps from Z have sets
of periods of the form {2i : i < n}, n ≤ ∞ (important information about periodic
orbits and infinite ω-limit sets of maps from Z may be found in [Bl],[M2], [B1,
B5]). Some of the results may be generalized for graphs; e.g., for a graph map
f the set P (f) coincides up to a finite set with a finite union of sets of the form
kN and {2im : i < ∞ ([B3]), the entropy is zero if and only if there are no sets
of the form kN in the union ([B3], [LM]). Our aim is to specify the description
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of the sets of periods for zero entropy forest maps thus extending the results of
[MS],[M1-M2],[Bl].

We begin with definitions. Let Z be a forest, {Yi}n−1
i=0 be pairwise disjoint con-

nected subsets of Z; then Yi and Yj have no more than one common point if
i 6= j. For any i < n the set Yi+1 mod n is called the next to Yi and denoted
nxt(Yi). The sequence of sets {Yi}n−1

i=0 is a z-cycle of sets (of period n) if for any sets
A0, A1, . . . , Ak from the sequence such that

⋂k
i=0 Ai 6= ∅ we have

⋂k
i=0 nxt(Ai) 6= ∅;

the union
⋃n−1

i=0 Yi is also called a cycle of sets (of period n) without causing am-
biguity. Usually z-cycles of sets are generated by a map g : Z −→ Z such that
gYi ⊂ Yi+1, gYn−1 ⊂ Y0. Then we call {Yi}n−1

i=0 (and the union
⋃n−1

i=0 Yi) a g-cycle
or simply cycle of sets (of period n). If Y, gY, . . . , gn−1Y is a g-cycle of sets we
call Y a g-periodic set (of period n). In fact a cycle of sets is obtained when we
forget the map defined on it but keep the sequence in which the map permutes
its components; if we then forget the way the cycle of sets was obtained we get
z-cycle of sets (“z” is the first letter of the Russian for “forget” which explains the
appearance of “z” before this and some other terms).

If A and B are z-cycles of sets we say that A contains B (denoted by A A B) if
(1) A ⊃ B in the set-theoretical sense and(2) for any components A′ of A and B′

of B if A′ ⊃ B′ then nxt(A′) ⊃ nxt(B′). Clearly if A A B are of periods n and
m respectively then n is a multipler of m. A z-tower is a nested sequence (finite
or infinite) G = {G0 A G1 A G2 . . . } of z-cycles of sets such that if each Gi is of
period ni then n0 < n1 < . . . ; clearly ni+1 is a multipler of ni for all i. The set Gi

and its components are of level i in G and G is of type T ′(G) = {n0 < n1 < . . . };
the intersection of Gi+1 with a component of Gi is a slice of level i+1. The number
of levels h(G) in G is the height of G; G is finite or infinite depending on h(G).
The period p(G) = p(T ′(G)) of the z-cycle of sets of the last level of G is the period
of G. For a set B of z-towers the set of their types is T ′(B), the set of their periods
is p(B) and the set of numbers involved in their types is T (B). Cycles of sets of a
forest map give rise to towers just like z-cycles of sets give rise to z-towers. Note
that if an f -cycle of sets A contains another f -cycle of sets B in the set-theoretical
sense than A A B as z-cycles of sets; thus we write A ⊃ B in case of cycles of sets
generated by the same map. We denote (z-)towers by bold capital letters.

In Section 1 we do not assume maps to have zero entropy. We describe the
dynamics on a tower (Theorem 1); it is close to that of a minimal translation in a
special compact Abelian zero-dimensional group which depends on the tower. The
fact that a point x enters cycles of sets in a tower gives information about its orbit;
to get information about more points we study maximal by inclusion cycles of sets
and towers. Then in Section 2 we study a special kind of their disposition important
for the dynamics of zero entropy maps. Let X be a tree. A closed connected subset
of X is called a subtree. Let A ⊂ X; then [A], the hull of A, is the smallest subtree
containing A. If [A] \ A is connected we call the set A surrounding (e.g., on the
interval the only surrounding sets are those with one or two components). If a
z-cycle of sets as a set is surrounding we call it a surrounding z-cycle of sets. If Y
is a z-tower in a forest Z, the zero level z-cycle of sets has surrounding intersections
with each component of Z and each slice of Y is surrounding then we call Y a z-
snowflake. A surrounding z-cycle of sets and a z-snowflake generated by a map are
called a surrounding cycle of sets and a snowflake. Everything defined for (z-)towers
may be defined for (z-)snowflakes with the corresponding extension of results.
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Towers give information about periods of periodic points of a map: due to the
fixed point property of compact trees one would expect that for a tower Y of type
m0 < m1 < m2 < . . . there is a periodic orbit P of period mi in the cycle of
sets of level i in Y for any i. Indeed this holds if all cycles of sets in Y have
compact components; otherwise it may fail (see example in Section 1 after the
proof of Lemma 9). One could skip the cycles of sets which contain no periodic
points of their periods, but as a result the tower could lose some properties, e.g. to
be a snowflake. Fortunately, the latter is not the case, so from now on we consider
only snowflakes with cycles of sets containing periodic points of their periods (basic
snowflakes); if Y is a basic f -snowflake of type m0 < m1 < . . . then f has periodic
points of periods mi, (∀i). In Theorem 2 we show that maximal towers of zero
entropy maps are snowflakes which allows to see how topology of a graph influences
periods of periodic orbits of its zero entropy maps; here we state Corollary 6, a
direct application of Theorem 2 to maps of compact forests.

Corollary 6. Let f : X −→ X be a zero entropy map of a compact forest X.
Then any maximal f -tower is a snowflake and for any x ∈ X there exists a unique
snowflake Lf (ω(x)) of period card {ω(x)} maximal among all snowflakes Y such
that ω(x) belongs to all cycles of sets in Y and if ω(x) is infinite then orb x even-
tually enters all cycles of sets in Y. Moreover, if M(f) is the family of maximal
f -towers then P (f) = T (M(f)).

We illustrate the picture on interval maps. Then the only non-connected sur-
rounding sets Z are those with two components. Let f : [0, 1] −→ [0, 1] be continuous
and {

⋃mi−1
r=0 Y i

r }k
i=0 be a snowflake of type m0 = 1 < m1 < . . . (perhaps k = ∞).

Then every Y i
r is an interval,

⋃m1−1
r=0 Y 1

r is surrounding, so m1 = 2 and Y 1
0 , Y 1

1 are
intervals interchanged by f . The picture on each level is the same: mi+1 = 2mi

for any 0 ≤ i < k, the intervals Y i+1
t , Y i+1

t+mi
are the only intervals of level i + 1 in

Y i
t , 0 ≤ t < mi and they are interchanged by fmi . Hence mi = 2i and an interval

snowflake is of type {1 < 2 < 4 < . . . } (the number of powers of 2 may be infinite).
If k < ∞ is the maximal number of levels of a maximal basic f -snowflake then
P (f) = {2i}k

i=0 and any point converges to a periodic orbit. If there are maxi-
mal basic snowflakes with arbitrary large periods but no infinite snowflakes then
P (f) = {2i}∞i=0 and ω(x) is a periodic orbit for any x. If there is a maximal basic
infinite snowflake then P (f) = {2i}∞i=0 and for some x the set ω(x) is infinite. Thus
our results extend the results of [Bl],[M1-M2],[MS] onto the forest case.

We now specify for forests the description of sets of periods of zero entropy
graph maps ([B3],[LM]). The terms “edge” and “endpoint” have the usual sense;
the number of edges of Z is Edg(Z), the number of endpoints of Z is End(Z) and
the number of components of Z is Comp(Z).

Corollary 7. Let X be a forest with components having no more than r endpoints.
Then the following statements are equivalent:

(1) h(f) = 0;
(2) for every x ∈ Per f there is a snowflake Y of period card (orb x) such that

the cycle of sets of the last level in Y contains orb x;
(3) any k ∈ P (f) is of form k = 2jtn where tn ≤ Edg(X) is odd, t ≤ Comp(X)

and all prime divisors of n are less than or equal to r.

In particular if f : X −→ X is a zero entropy map of an r-star (i.e. a graph
with r edges coming out of a branching point) then an f -periodic point is of period
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2jn, n ≤ r.

Theorem 3. Let X be a forest with components having no more than r endpoints.
Then there is a finite family G(X) = {G1 ⊂ H1, . . . , GN ⊂ HN} of pairs of finite
sets of integers Gi = {n(i)

j }li
j=1 ⊂ Hi = {n(i)

j }mi
j=1 such that if n is one of the integers

than n = 2ltq ≤ 4Edg(X) − 2End(X), t ≤ Comp(X), tq ≤ Edg(X), q is an odd
integer with all prime divisors less than r and the following holds.

(1) h(f) = 0 if and only if there is i ≤ N , a set of numbers {tj}mi
j=li+1, 0 ≤ tj ≤

∞ with P (f) = (
⋃li

j=1 n(i)
j ) ∪ (

⋃mi
j=li+1

⋃tj
k=0 2kn(i)

j ) and a set Q ⊂ {li + 1, . . . ,mi}
(perhaps empty) such that tj = ∞ for any j ∈ Q, any infinite limit set of f belongs
to an f -tower of type {n(i)

j < 2n(i)
j < . . . }, j ∈ Q, and such limit sets exist for any

j ∈ Q.
(2) For any i ≤ N , any set of integers {tj}mi

j=li+1, 0 ≤ tj ≤ ∞ and any set
Q ⊂ {li + 1, . . . ,mi} (perhaps empty) such that tj = ∞ for any j ∈ Q there is a
zero entropy map g : X −→ X such that P (g) = (

⋃li
j=1 n(i)

j )∪ (
⋃mi

j=li+1

⋃tj
k=0 2kn(i)

j ),

any infinite limit set of g belongs to a g-tower of type {n(i)
j < 2n(i)

j < . . . }, j ∈ Q,
and such limit sets exist for any j ∈ Q.

Let X be an r-star X with the branching point C and show that G(X) is the
family of pairs {Gi ⊂ Hi} where Gi ≡ {1} and Hi runs through the family of all
subsets of {1, 2, . . . , r} containing {1}. Let cycles of sets of the first level in our
snowflakes be non-connected. Then a snowflake living on X has an interval among
its k components of the first level; thus the snowflake is of type {k < 2k < · · · <
2ik < . . . }, i < n for some n ≤ ∞. If f : X −→ X is of zero entropy then by
Theorem 2 numbers of components of the first level of all f -snowflakes form a finite
set H ′ = {nj}m

j=1 ⊂ {2, . . . , r}; set H = H ′∪{1}. For any j let tj be the supremum
of heights of all snowflakes with nj components on the first level. Also, if there is
an infinite snowflake with nj components on the first level then include nj into Q.
Clearly the choice of the sets G = {1} ⊂ H, the numbers tj and the set Q complies
with the statement (1) of Theorem 3.

Let us show that for any G = {1} ⊂ H = {nj}m
j=1 ⊂ {1, 2, . . . , r}, any {tj}m

j=1, 0 ≤
tj ≤ ∞ and any set Q ⊂ {1, . . . , m} (perhaps empty) such that tj = ∞ for any j ∈ Q
there is a zero entropy map g : X −→ X such that P (g) = {1} ∪ (

⋃m
j=1

⋃tj
k=0 2knj),

any infinite limit set of g belongs to a g-tower of type {nj < 2nj < . . . }, j ∈ Q,
and such limit sets exist for any j ∈ Q. Let n1 < · · · < nm, the clockwise num-
bered edges of X be A1, . . . , Ar. For any j choose nj intervals Lj

1 ⊂ A1, L
j
2 ⊂

A2, . . . , Lj
nj
⊂ Anj , all Lj

i , (1 ≤ j ≤ m, 1 ≤ i ≤ nj) pairwise disjoint and not
containing C. Let for any j < m the interval Lj

i be closer to C than Lj+1
i . We

construct g so that gC = C, fLj
i = Lj

i+1 (i.e. {Lj
i}

nj
i+1 is a g-cycle of sets) and g is

monotone on any interval complementary to
⋃

Lj
i . Since each {Lj

i}
nj
i+1 is in fact a

cycle of intervals it is easy to construct g on them so that the rest of the conditions
from the beginning of this paragraph is satisfied.

The present paper is an extended and revised version of a part of the preprint
[B4].

Notation

fn is the n-fold iterate of a map f ;
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Z is the closure of Z;
int Z is the interior of Z;
orbx ≡ {fnx}∞n=0 is the orbit (trajectory) of x;
Per f is the set of all periodic points of a map f ;
P (f) is the set of all periods of periodic points of a map f ;
h(f) is the topological entropy of a map f .

1. Preliminary lemmas and properties of towers

In Section 1 we consider a forest map f : Z −→ Z without the zero entropy
assumption. We need some definitions. A forest Y has its well-defined compactifi-
cation Ŷ which is a compact forest with the same number of components; we refer
to endpoints of a tree Y which may belong to Ŷ (e.g. we consider neighborhoods
(d, c) where c in an endpoint of Y and call them neighborhoods of endpoints of Y ).
We describe the tower dynamics in Theorem 1 [B2] (the proof here is given for the
sake of completeness). Let D = {mi}∞i=0 be a sequence of integers and mi+1 > mi

be a multiple of mi for all i. Consider a group H(D) ⊂ Zm0 × Zm1 × . . . , defined
by H(D) ≡ {(r0, r1, . . . ) : ri+1 ≡ ri (mod mi)(∀i)}. The group operation is triv-
ially defined; let τ be the minimal translation in H(D) by the element (1, 1, . . . ).
By monotone we mean a continuous map such that the preimage of any point is
connected.

Theorem 1[B2]. Let Y = {
⋃mi−1

r=0 Y i
r }∞i=0 be an infinite f-tower of type D =

{m0 < m1 < m2 < . . . }, Q = Q(Y) =
⋂⋃mi−1

r=0 Y i
r . Then there is a monotone map

ϕ : Q −→ H(D) which semiconjugates f |Q and τ |H(D). Moreover, the following
holds:

(1) there is a unique minimal set S ⊂ Q such that ω(x) = S for all points x ∈ Q;
(2) for any b if ω(b)∩Q 6= ∅ then S ⊂ ω(b) ⊂ (Q∩Ω(f)), ϕ is surjective at most

2-to-1 on the set Q ∩ ω(b), at most End(Z)-to-1 on the set Q ∩ Ω(f) and injective
on Q ∩ Ω(f) outside an at most countable set.

Proof. Assume that Y 0
0 ⊃ Y 1

0 ⊃ . . . and that for big i the set Y i
0 is compact. Define

the map ϕ as follows: for any x ∈ Q let ϕ(x) be the sequence (r0, r1, . . . ) ∈ H(D)
such that x ∈

⋂∞
i=0 Y i

ri
≡ Ix. Let us prove that ϕ is well defined and has the

required properties. First we show that if x ∈ Q then x /∈ Per f . Indeed, if
x ∈ Per f is of period n then there exists i such that mi > nEdg(X). The closures
of the sets Y i

r0
, Y i

r0+n, . . . , Y i
r0+nEdg(X) contain x and at the same time the sets

Y i
r0

, Y i
r0+n, . . . ,Y i

r0+nEdg(X) are connected and pairwise disjoint which is impossible.

So for any k the sets Q ∩ Y k
j , 0 ≤ j < mk are pairwise disjoint and the map ϕ is

well defined and continuous.
Let us show now that ϕ is surjective; to this end it is enough to prove that

for any (r0, . . . ) ∈ H(D) we have A =
⋂∞

i=0 Y i
ri
6= ∅. First note that since Z

may be non-compact then some sets Y k
j may be non-compact too; however every

non-compact Y k
j must contain a neighborhood of at least one endpoint of Z, so

the number of non-compact sets Y k
j cannot exceed End(Z) for a fixed k. Now,

if there is i such that Y i
ri

does not contain a neighborhood of an endpoint of Y
then its closure is compact and A 6= ∅. Let for all sufficiently big i the set Y i

ri

contain neighborhoods of endpoint c1, . . . , cl of Z. If i is large enough then the
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set fmiY i
ri

belongs to the image of some compact set of the form Y i
j under the

corresponding iteration of f , so fmiY i
ri

is a compact subset of Y i
ri

and is disjoint

from neighborhoods (d1, c1), . . . , (dl, cl). Then for any j > i we have that fmj Y j
rj ⊂

fmiY i
ri

and hence fmj Y j
rj is disjoint from (d1, c1), . . . , (dl, cl); since fmj Y j

rj ⊂ Y j
rj

and Y j
rj is a connected set containing some neighborhoods of endpoints c1, . . . , cl

we see that in fact Y j
rj contains (c1, d1), . . . , (cl, dl) and hence A =

⋂∞
s=0 Y s

rs
6= ∅.

Moreover, the same arguments show that the set Q may be non-compact only
if some of the components of Q are non-degenerate non-compact connected sets
containing neighborhoods of endpoints of Z; let B be such a component of Q.
By the construction for any i there is a unique component B′′ of Q such that
f iB′′ ⊂ B. Take the smallest j such that if B′ is a component of Q with f jB′ ⊂ B
then B′ is compact. Replace all components of Q containing fB′, f2B′, . . . , f jB′ by
the compact sets fB′, f2B′, . . . , f jB′ and then do the same with all non-compact
components of Q and denote the resulting set by Q′. By the construction Q′ is
compact, invariant and ϕ|Q′ is surjective.

Let us show that Ω(f) ∩ Q′ = Ω(f) ∩ Q and so for any a we have ω(a) ∩ Q′ =
ω(a) ∩ Q. Indeed, it is enough to show that if x ∈ Q \ Q′ then x /∈ Ω(f). By
the construction x ∈ Q \ Q′ implies that there are components B′, B′′ of Q and
a number i > 0 such that B′ is compact, f iB′ ⊂ B′′ and x ∈ B′′ \ f iB′. Let
ϕ(B′) = (r0, r1, . . . ); then B′ =

⋂

i≥0 Y j
rj . Moreover, if j is large enough then

x /∈
⋃mj−1

k=0 fkY j
rj = Aj and Aj is compact (since B′ is compact). At the same time

since fmj−ix ∈ Y j
rj and x /∈ Per(f) there is a number l such that f lx ∈ intAj ;

hence x /∈ Ω(f). Replacing if necessary Q by Q′ we may now assume that Q is
compact; then the fact that ϕ semiconjugates f |Q and τ |H(D) follows from the
definitions. Note that by the construction sets of the form Iz are components of Q
and preimages of the points of H(D) under ϕ, the forward iterates of any such set
are pairwise disjoint and so the diameter of forward iterates of any such set tends
to zero.

Let us prove statement (1). If W = ω(b) ∩ Q 6= ∅ then the set W is invariant,
infinite and for any i there is a point of W in the interior of Y i

0 . Hence there is an
iterate of b in Y i

0 for any i and so ω(b) ⊂ Q. Since τ is minimal and ϕ semiconjugates
f |Q to τ then ϕ is surjective on any closed invariant set, in particular on Q∩ω(b).
Let us show that ϕ|(Q∩Ω(f)) is at most End(X)-to-1 and ϕ|ω(b) is at most 2-to-1.
Indeed, the set Iz ∩ Ω(f) belongs to the set of all endpoints of Iz for any z ∈ Q
which implies the former statement. To prove the latter one observe that f |ω(b) is
surjective, so for any z ∈ Q the number of points in ω(b) ∩ Iz is less than or equal
to the minimum number of endpoints of a set Iζ over all preimages ζ ∈ ω(b) of z
under all iterations of f . Since there are intervals among the sets Iζ this minimum
is 2 and ϕ|ω(b) is at most 2-to-1. Finally, the family of all non-degenerate sets Iz

is at most countable and outside this set ϕ|Q is injective.
It remains to prove statement (2). Denote by S the set of all limit points of the

set Q ∩ Ω(f) and show that ω(x) = S for any x ∈ Q. Indeed, if x ∈ Q then there
is a point y ∈ (Ix ∩ Ω(f)). Since the diameter of iterates of Ix tends to zero then
ω(x) = ω(y). At the same time Ix has pairwise disjoint iterates, so by definition
ω(y) = ω(x) ⊂ S. Now if z ∈ S then there exists a sequence of pairwise distinct
points zi ∈ Q∩Ω(f) with zi → z. We may assume that sets Izi are pairwise disjoint;
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thus for any sequence of points ζi ∈ Izi we have ζi → z. The surjectivity of ϕ on
ω(x) implies Izi ∩ω(x) 6= ∅ for any i so one can take ζi ∈ ω(x). Thus z ∈ ω(x) and
S = ω(x) for any x ∈ Q. �

Let X be a tree. For two points a, b ∈ X the hull of the set {a, b} is denoted
by [a, b] and called an interval. We use the following notations: (a, b] ≡ [a, b] \
{a}, [a, b) ≡ [a, b] \ {b}, (a, b) ≡ [a, b] \ {a, b}; all these sets are also called intervals.
Given points a, x, y we say that x is closer to a than y iff [a, x] ⊂ [a, y]. For a
compact subtree Z ⊂ X let rZ be the natural retraction on Z.

Lemma 1. Let Y = [c, d] ⊂ Z, f : Y −→ Z be continuous, f [c, d] ⊃ [c, d], [c, d) ∩
(d, fd] = ∅. Then there is z ∈ [c, d] such that fz = z.

Proof. Consider a preimage c1 ∈ [c, d] of c, then a preimage c2 ∈ [c1, d] of c1 etc.;
clearly lim ci = z ∈ [c, d] and fz = z. �

Lemma 2. Let Z be connected, Y ⊂ Z be connected and compact, f : Y −→ Z be
continuous. If (a, fa] ∩ Y 6= ∅ (∀a ∈ Y ) then there is z ∈ Y such that fz = z.

Proof. Let g = rY ◦ f and b ∈ Y be g-fixed point. If fb /∈ Y then [fb, b) ∩ Y = ∅
which contradicts the assumption. So fb = b which completes the proof. �

Lemma 3. Let Y ⊂ Z be connected and f : Y −→ Z be continuous. Then one of
the following possibilities holds:

(1) there is a fixed point a ∈ Y ;
(2) there is a point b ∈ Y such that b 6= fb, (b, fb] ∩ Y = ∅;
(3) there is a unique endpoint c of Y such that if [d, c) is the unique edge in Y

ending in c then for any x ∈ [d, c) we have (x, fx]∩ (d, x) = ∅ and so f [x, c)∩ Y ⊂
(x, c).

Proof. Suppose that neither (1) nor (2) holds and prove (3). Indeed, if there are
no endpoints of Y with the properties from (3) then for any endpoint c of Y ,
corresponding edge (dc, c) ⊂ Y and some point ac ∈ (dc, c) we have (ac, fac] ∩
(dc, ac) 6= ∅. By the assumption (2) does not hold, so by Lemma 2 we have that
there is a fixed point in the hull of all ac which is a contradiction. So there is an
endpoint of Y with the required properties. Suppose b and c are two such points.
Take eb ∈ (db, b) and ec ∈ (dc, c) and consider f |[eb, ec]. By Lemma 1 there is a
fixed point in [ec, eb] which is a contradiction. �

Let Y ⊂ Z be connected, f : Y −→ Z be continuous. We call any fixed point
of f a basic point for (f, Y ). If f has no fixed points then any point y ∈ Y with
(y, fy]∩Y = ∅ is called a basic point for (f, Y ) too. The definition implies Property
1 stated without proof.

Property 1. Basic points have the following properties.

(1) If a is a basic point for f : Y −→ Z, y ∈ Y and fy ∈ Y then f [a, y] ⊃ [a, fy].
(2) If f is defined on Z and f iy ∈ Y (0 ≤ i ≤ n) then f i[a, y] ⊃ [a, f iy] for

0 ≤ i ≤ n.
(3) If b is a basic point which is not fixed then fb /∈ Y . �

Lemma 3 implies some corollaries; we begin with the following
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Corollary 1. In the situation of Lemma 3 the following holds.
(1) If Y is compact then the case (1) or (2) from Lemma 3 holds and so there is

a basic point for (f, Y ).
(2) If any endpoint e of Y has a neighborhood Ue in Y such that fUe ⊂ Y and

there are no basic points for (f, Y ) then there is a unique endpoint c of Y , c /∈ Y ,
such that f may be extended to Y ∪ {c} as a continuous map with c an attractive
fixed point and if Â ⊂ Y is a surrounding cycle of sets then Â∪ {c} is surrounding
too.

(3) If f : Y −→ Y does not have fixed points then there is a unique endpoint c of
Y , c /∈ Y , such that f may be extended to Y ∪ {c} as a continuous map with c an
attractive fixed point and if Â ⊂ Y is a surrounding cycle of sets then Â ∪ {c} is
surrounding too.

Proof. (1) If the case (3) of Lemma 3 holds, the case (2) of Lemma 3 does not hold
and Y is compact then the endpoint of Y from the case (3) of Lemma 3 is a fixed
point.

(2) The first statement of this part of Corollary 1 follows from Lemma 3. Now
let Â be a surrounding cycle of sets in Y and show that Â∪{c} is a surrounding set.
Suppose Â∪{c} is not surrounding. There is an interval [d, c) such that Â∩[d, c) = ∅
and by Lemma 3 we may assume that all points from [d, c) are attracted by c. Since
Â ∪ {c} is not surrounding there are disjoint components A1, A2 of Â and points
a1 ∈ A1 and a2 ∈ A2 such that a1 ∈ (d, a2). Since Â is surrounding and of period
greater than 1 (the latter follows from the assumption) then [d, a1)∩ (a1, fa1) = ∅.
Together with fd ∈ [d, c) it implies [d, a1] ⊂ f [d, a1] and by Lemma 1 there is a
fixed point in [d, a1] which is a contradiction.

(3) Follows from (2). �

For the rest of this Section we assume without loss of generality that Y =
⋃n−1

i=0 Yi

is a forest with connected components {Yi}n−1
i=0 and f : Y −→ Y cyclically permutes

them. In Corollaries 2 and 3 B ⊂ Y is a cycle of sets of period m > n; denote
B ∩ Yj by Bj .

Corollary 2. There are basic points for (fn, [Bj ]), 0 ≤ j < n; none of them lie in
B. Furthermore, if B is a cycle of sets {Gi}m−1

i=0 then these sets are components of
B.

Proof. Consider only the case n = 1. If there are no basic points for (f, [B]) then by
Corollary 1 there is the endpoint c of [B] and arbitrary close to c interval I ⊂ [B]
such that fI ⊂ I; however, one can choose I to be a subset of a component of
B, so fI ⊂ I is impossible since m > 1 = n. Thus there are basic points; by
definition they do not lie in B. If the number k of components of B equals m then
the components coincide with the sets {Gi}m−1

i=0 , so it is enough to consider the case
when k < m. Replacing f by its power we can assume that k = 1; in other words,
we can assume that B is connected, i.e. B = [B]. By the first statement there is a
basic point b for (f, [B]); however since B = [B] is invariant b must be a fixed point
which contradicts the fact that B is a cycle of sets of period m > n = 1. Thus
k = m and {Gi}m−1

i=0 are the components of B. �

As we remarked in Introduction to get information about more points it is rea-
sonable to study maximal by inclusion cycles of sets and towers. Say that a z-tower
{Gi} contains a z-tower {F j} if for any cycle of sets F j there is a z-cycle of sets Gi
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of the same period containing F j ; obviously the definition can be literally repeated
for towers generated by a forest map. Let A(f, Y ) be the ordered by inclusion
family of all f -cycles of sets of periods greater than n. It is natural to expect that
maximal cycles are closed and maximal towers have closed cycles of sets (otherwise
one could replace a non-closed cycle of sets by its closure). This only fails when the
closure of a cycle of sets in a tower has less components than the cycle itself which
is described in Corollary 3.

Corollary 3. Let B =
⋃m−1

i=0 Gi be a cycle of sets of period m and let the set B
have l < m connected components {Ai}l−1

i=0. Then B is a cycle of sets of period l,
there is a unique periodic orbit P ⊂ B \B of period l such that P ∩Aj = {aj} is one
point for any j and any As intersects (actually contains) exactly m/l components
of B. Moreover, for any i with Gi ⊂ Aj we have aj ∈ Gi \Gi and there is a unique
edge Ri 3 aj such that Gi ∩Ri 6= ∅.

Proof. By definition the set B is a cycle of sets of period l. Changing Y to B we
may assume that l = n; let us now restrict ourselves to the case n = l = 1. Then B
is connected and [B] = B = fB. By Corollary 2 there is a basic point a ∈ [B] for
(f, [B]). If a is not fixed then by Property 1.(3) fa /∈ [B] which is a contradiction.
So fa = a ∈ [B] ⊂ B; now the fact that m > n = l = 1 implies the rest of Corollary
3. �

Let us call (z-)cycles of sets with properties from Corollary 3 contacting (of
periods l < m); if l = 1 we call B a simple contacting (z-)cycle of sets. A (z-)cycle
of sets which is simple contacting or has all components closed is called almost
closed. A (z-)tower of type m0 < m1 < . . . such that any (z-)cycle of sets of level
j is contacting of periods mj−1 < mj or has closed components is called almost
closed. In Corollary 4 and Lemmas 4,5 we study properties of the ordered by
inclusion family A(f, Y ) of all f -cycles of sets of periods greater than n.

Corollary 4. If {R̂β}β∈B is a family of cycles of sets from A(f, Y ) then R̂ =
⋃

β∈B R̂β is not a cycle of sets of period n; hence if Ĝ and F̂ are non-disjoint
elements of A(f, Y ) then Ĥ = Ĝ ∪ F̂ is an element of A(f, Y ) too.

Proof. Consider only the case of connected Y . If R̂ is connected then it is invariant
and does not contain fixed points. Thus by Corollary 1.(3) there is an endpoint c
of R̂, c /∈ R̂ and a small interval I = (d, c) ⊂ R̂ such that fnz → c for z ∈ I. Then
I has non-empty intersection with some set R̂β and so since components of sets R̂β

are connected and because of the dynamics near c we may assume that the whole
interval I belongs to a component of R̂β which contradicts the fact that the period
of R̂β is greater than n = 1. The second statement follows from the first one. �

Lemma 4. The family A(f, Y ) satisfies the Zorn lemma and its maximal elements
are pairwise disjoint. Moreover, the maximality of the set B ∈ A(f, Y ) is equivalent
to that of B ∩ Yj in A(fn, Yj) for any 0 ≤ j < n.

Proof. Follows from Corollary 4. �

We need more definitions. Let A ∈ A(f, Y ) be a cycle of sets of period s.
Clearly, all the sets Ai = A∪ Yi are fn-cycles of sets of period s/n. Let pr(f,A) ≡
pr(A) =

⋃n−1
j=0

⋃∞
i=0 f i[Aj ] (so pr(A) is the smallest invariant set containing all the

sets [Aj ]) and re(f,A) ≡ re(A) = pr(A)\A (pr stands for “prolongation” and re for
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“realm” although no precise meaning is intended in these abbreviations). Observe
that [Aj+i (mod n)] \ Aj+i (mod n) ⊂ f i([Aj ] \ Aj) for any 0 ≤ i and 0 ≤ j < n; in
particular [Aj ] \Aj ⊂ fn([Aj ] \Aj).

Lemma 5. Let A ∈ A(f, Y ). Then the following holds.
(i) fmpr(fn, Aj)\Aj+m (mod n) = fmre(fn, Aj)\Aj+m (mod n) = re(fn, Aj+m (mod n))

(in particular, pr(fn, Aj) ⊃ fnre(fn, Aj) ⊃ re(fn, Aj)) and pr(f, A) =
⋃n−1

j=0 pr(fn, Aj),
so pr(A) is a d-cycle of sets of period n.

(ii) If A is a maximal cycle of sets then:
(1) if C is connected and strictly contains a component of A (so C \A = D 6= ∅)

then orb C and orbC ∪ A = orbD ∪ A = R ⊃ pr(A) are cycles of sets of period n,
orb D ⊃ re(A) and there is l such that

⋃l
i=0 f iD ⊃ [Aj ] \Aj for any 0 ≤ j < n and

so for any basic point b of (fn, [Aj ]) we have bj ∈ fniD for all i ≥ l;
(2) if A is not closed then Aj is connected for any j, all the conclusions of

Corollary 3 hold, A is almost closed and additionally for any b ∈ A \A there exists
k such that fk(b) ∈ P where P ⊂ A is the periodic orbit of period n existing by
Corollary 3.

Proof. (i) Let Cj =
⋃∞

i=0 f in([Aj ]\Aj). Since Aj is fn-invariant then re(fn, Aj) =
Cj \ Aj . Moreover, by the above made observation fsCj = Cj+s (mod n). This
implies (i).

(ii) Consider only the case n = 1 and Y connected.
(1) Observe that orb C ∪ A = orb D ∪ A = R since A is invariant; clearly, R is

invariant too. If R is not connected then it is a cycle of sets of period greater 1
strictly containing B which contradicts the maximality of A. So R is connected,
contains [A] and hence R ⊃ pr(A); since A is invariant we have orbD ⊃ [A]\A and
so we also have orb D ⊃ re(A). If b is a basic point for (f, [A]) then b ∈ [A] \ A ⊂
orb D. Let b ∈ frD ⊂ frC. Since f iC contains points from A for any i then by
Property 1 b ∈ f jC and in fact b ∈ f jD for any j ≥ r. Hence

⋃r+m
i=0 f iD ⊃ [A] \A.

Now the fact that orbC is connected and invariant follows from the construction
and what we have proved.

(2) Consider the set A. If it is not connected then by the maximality of A
we have A = A which is a contradiction. So A is connected and all but the last
statement of Lemma 5(ii)(2) follow from Corollary 3. The last statement follows
from Lemma 5(ii)(1). Indeed, if b ∈ A \ A then b /∈ A; so one can apply Lemma
5(ii)(1) to C = G∪b where G is a component of A such that G∪b is connected. �

It turns out that the Zorn lemma holds for towers; the maximality of a tower
is equivalent to that of its cycles of sets of all levels in families similar to A(f, Y ).
We also show that a maximal tower is almost closed. Denote the set of all towers
of (f, Y ) by T (f, Y ), the set of all towers with the period less than or equal to m
by Tm(f, Y ), the set of all towers with the property that all their cycles contain a
set Z by T (f, Y, Z).

Lemma 6. The Zorn lemma holds for T (f, Y ), Tm(f, Y ) (∀m), T (f, Y, Z). More-
over, let Y = Y 0

0 ⊃
⋃m1−1

i=0 Y 1
i ⊃ . . . be a tower from one of these families (denote

this family by T ). Then Y is a maximal tower in T iff Y 0
0 = Y and the following

properties hold:
(1)

⋃mj+1−1
i=0 Y j+1

i is a maximal cycle of sets in A(f,
⋃mj−1

i=0 Y j
i ) for any j;
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(2) if Y has N < ∞ levels then there is no tower of period greater than mN in
T having

⋃mN−1
i=0 Y N

i as one of its cycle of sets.
Furthermore, any maximal tower Y is almost closed.

Proof. The Zorn lemma for towers follows from that for cycles of sets (see Lemma
4). Now let Â be a cycle of sets of a maximal tower Y, B̂ ⊂ Â be the cycle of sets
of Y of the next level. If B̂ is not maximal in A(f, Â) then by Lemma 4 there is a
unique maximal in A(f, Â) cycle of sets Ĉ such that Â % Ĉ % B. Let us construct
a tower Z 6= Y which contains Y. Indeed, if the period of Ĉ is bigger than that of
B̂ then one can insert Ĉ in Y between Â and B̂ and get the required tower Z. If
the period of Ĉ is equal to that of B̂ one can replace B̂ in Y by Ĉ and again obtain
the required tower Z. The rest of Lemma 6 follows from the definitions, Lemma 4
and Corollary 3. �

Corollary 5 follows immediately from Lemmas 4-6; before we state it we need
a few definitions. Two towers are separate if their cycles of sets of the first k ≥ 0
levels coincide and their cycles of sets of levels bigger than k are pairwise disjoint.
A set of towers is called separate if they are pairwise separate. Also a tower G′

containing all cycles of sets from G of levels less than or equal to m is called an
(m-)section of G.

Corollary 5. The following properties hold.
(1) Let T be T (f, Y ) or TM (f, Y ). Then the family of maximal towers from T

is separate.
(2) If Y is a maximal tower from T (f, Y ), TM (f, Y ) or T (f, Y, Z) and Y has

type m0 < m1 < . . . then for r less than or equal to the number of levels of Y the
r-section of Y is a maximal tower in both Tmr (f, Y ) and T (f, Y, Y r) where Y r is
the cycle of sets of level r in Y.

(3) If T (f, Y, Z) 6= ∅ then there is a unique maximal tower in T (f, Y, Z).

Let us prove analogs of Lemmas 4 and 6 for snowflakes. Let D(f, Y ) be the
family of all f -cycles of sets D such that the intersection D∩Yi is a surrounding set
with more than one component for any i. Let S∞(f, Y ) = S(f, Y ) be the family of
all snowflakes of f and Sk(f, Y ) be the family of all snowflakes of f of period less
than or equal to k.

Lemma 7. The family D(f, Y ) satisfies the Zorn lemma and its maximal elements
are pairwise disjoint. Moreover, any maximal cycle of sets V̂ ∈ D(f, Y ) is almost
closed.

Proof. Consider only the case of connected Y . The definition and Lemma 4 imply
that D(f, Y ) satisfies the Zorn lemma. Let us prove that if Ĝ and F̂ are distinct
maximal cycles of sets from D(f, Y ) then they are disjoint. Indeed, otherwise by
Corollary 4 Ĥ = Ĝ∪ F̂ is a cycle of sets of period greater than n = 1. Let us show
that Ĥ is surrounding. Indeed, otherwise there is an interval [a, b] and a point
c ∈ (a, b) such that a, b, c belong to different components of Ĥ which we denote by
Ha,Hb, Hc. Let c ∈ Ĝ and choose points d ∈ Ha ∩ Ĝ and e ∈ Hb ∩ Ĝ. Consider
intervals [d, c) and [e, c). Since X is a tree then the fact that c belongs to the
interval [a, b] implies that [e, c) and [d, c) are disjoint; at the same time they belong
to [Ĝ]. Take points d′ ∈ [d, c)∩ [Ĝ]\Ĝ and e′ ∈ [e, c)∩ [Ĝ]\Ĝ. By the definition of a
surrounding set the interval [e′, d′] cannot intersect Ĝ; however [e′, d′] = [e′, c]∪[c, d′]
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and c ∈ Ĝ which is a contradiction. The fact that any maximal cycle of sets from
D(f, Y ) is almost closed follows from Lemma 5(ii)(2). �

The proof of the next lemma is left to the reader.

Lemma 8. If A is surrounding and B is connected then A∩B is surrounding. �

Lemma 9. Let Y = Y 0
0 ⊃

⋃m1−1
i=0 Y 1

i ⊃ . . . be a snowflake of period M ≤ ∞; Y is
maximal in SM (f, Y ) iff Y 0

0 = Y and the cycle of sets
⋃mj+1−1

i=0 Y j+1
i is a maximal

cycle of sets in D(fmj , Y j
r ) for any r. Moreover, any maximal snowflake is almost

closed.

Proof. Let Â be a cycle of sets of a maximal snowflake Y, B̂ ⊂ Â be the cycle of
sets in Y of the next level. If B̂ is not maximal in D(f, Â) then by Lemma 7 there
is a unique maximal in D(f, Â) cycle of sets Ĉ and Â % Ĉ % B. Let us construct
a snowflake Z 6= Y containing Y. If the period of Ĉ is bigger than that of B̂ one
can insert Ĉ in Y between Â and B̂ and get (by Lemma 8) the required snowflake
Z. If the period of Ĉ is equal to that of B̂ one can replace B̂ in Y by Ĉ and obtain
the required snowflake Z which contradicts the maximality of Y. The fact that Y
is almost closed follows from Lemma 7. �

As we mention in Introduction non-compact cycles of sets in a tower may contain
no periodic orbits of the corresponding period. To illustrate this possibility let us
consider the following example (see Fig. 1).

Let H ⊂ R2 be the following tree: H = [a, b] ∪ [c, d] ∪ [p, q], a = (−1,+1), b =
(−1,−1), c = (+1, +1), d = (+1,−1), p = (−1, 0), q = (+1, 0); let also (0, 0) = z.
Define a map f : H −→ H so that f(z) = z, f(a) = d, f(b) = c, f(c) = a, f(d) =
b, f([a, b, z] = [c, d, z], f([c, d, z] = [a, b, z]; then [a, b, z] and [c, d, z] are invariant for
f2. Moreover, let all points but a, b, c, d converge to z and f−1(z) = {z}. Then
h(f) = 0, the unique maximal tower for f is Y = X ⊃ ([a, b, z]∪[c, d, z] ⊃ {a, b, c, d}
of type 1 < 2 < 4, but f has only periods 1 and 4. Let us omit from Y a cycle of
sets [a, b, z] ∪ [c, d, z] which does not contain any 2-periodic orbit. The new tower
remains a snowflake and its type corresponds to the periods of f . The general fact
is proven in Lemma 10, but first we define extended forest maps. Let f : Z −→ Z be
a forest map and C be the maximal subset of the set of endpoints of Z such that f
may be extended to a continuous map f̂ : Z ∪C −→ Z ∪C; f̂ is called the extension
of f and if a map g coincides with its extension we call g an extended map. Clearly
any map of a compact forest is extended.
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Lemma 10. Let f : Z −→ Z be an extended tree map, Y be a maximal snowflake of
type m0 < m1 < m2 < . . . and Z be a new tower consisting of the cycles of sets in
Y of periods mj which contain periodic orbits of periods mj. Then Z is an almost
closed snowflake.

Proof. Let us show that Z is a snowflake. Let
⋃mj−1

i=0 Y j
i be a cycle of sets of level

j not containing a periodic orbit of period mj . Then by Corollary 1 there is a
uniquely defined set of endpoints C =

⋃mj−1
i=0 ci of components of

⋃mj−1
i=0 Y j

i such
that f may be extended onto

⋃mj−1
i=0 Y j

i ∪ ci and for any i the point ci will be an
attractive point for fmj |Y j

i . Since f itself is an extended map we may assume that
⋃mj−1

i=0 cj is an f -periodic orbit of some period k < mj and mj is a multiple of k. We
have already seen that Y is an almost closed snowflake. Hence

⋃mj−1
i=0 Y j

i is either
closed or contacting cycle of periods mj−1 < mj . In the first case C ⊂

⋃mj−1
i=0 Y j

i
which contradicts the assumption. In the second case the facts that k < mj and

C ⊂
⋃mj−1

i=0 Y j
i imply that k = mj−1; indeed, in this case closures of different

components of
⋃mj−1

i=0 Y j
i may have in common only the points which belong to

one periodic orbit of period mj−1. So the period of the periodic orbit C is mj−1

and
⋃mj−1

i=0 Y j
i is a contacting cycle of sets of periods mj−1 < mj . Thus the cycles

of sets which will be omitted in the new tower are the contacting cycles of sets of
periods mj−1 < mj which contain no periodic orbits of period mj .

Let us prove that if we omit the cycle of sets of level j from Y the resulting
tower remains an almost closed snowflake. The situation is as follows:

⋃mj−1
i=0 Y j

i is
a contacting cycle of periods mj−1 < mj which does not contain a point of period
mj and should be omitted in the new tower Z. Let us show that the cycle of sets
of level j + 1 from Y is not contacting. Indeed, otherwise since Y is almost closed
this cycle is contacting of periods mj < mj+1 and so

⋃mj−1
i=0 Y j

i contains a periodic
orbit of period mj which contradicts the assumption. Thus the cycle of sets of level
j +1 is closed and will not be omitted from Y which proves that the new tower Z is
almost closed. Let us show that Z is a snowflake. Take a component of the cycle of
sets of level j−1, say, Y j−1

0 ; then using the notation from the preceding paragraph
we have that there is a unique point from C, say, c0 which belongs to Y j−1

0 . Let
Y j−1

0 ∩ (
⋃mj+1−1

i=0 Y j+1
i ) = Z0; by definition Z0 is a slice of the new tower Z and

we need to show that Z0 is surrounding. First let us note that each component
of level j from the snowflake Y belonging to Y j−1

0 intersects Z0; since the cycle
of sets of level j in Y is contacting of periods mj−1 < mj then c0 ∈ [Z0]. At the
same time if Y j

i is a component of level j which belongs to Y j−1
0 then by Corollary

1.(3) the slice of level j + 1 in Y j
i together with the point c0 form a surrounding

set, i.e. the difference between the hull of the union of this slice and c0 and the
union itself is connected. Thus [Z0] \ Z0 is the union of the point c0 with

mj+1

mj
connected sets corresponding to the slices of Y of level j + 1. Clearly each of these
connected sets has c0 as its endpoint which means that [Z0] \ Z0 is connected and
Z0 is surrounding which completes the proof. �

Snowflakes whose cycles of sets contain periodic points of the corresponding
periods are called basic d-snowflakes (so if Y is a basic f -snowflake of type m0 <
m1 < . . . then f has periodic points of periods mi, ∀i); Lemma 10 shows that if we
omit the cycles of sets not containing periodic orbits of the corresponding periods
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then the resulting tower remains a snowflake which allows us to talk about basic
snowflakes and maximal basic snowflakes.

2. Snowflakes and zero entropy maps

In Section 2 we obtain the main results of the paper. Note that the topological
entropy h(f) for maps of non-compact spaces was defined in [Bo1]. We use the
following property: if for a map F there are two disjoint compact sets A,B and
iterations m,n of F such that FmA ∩ fnB ⊃ A ∪ B then h(F ) > 0. In case of
forest maps the same holds if A,B are non-degenerate intervals with a common
point (see, e.g., [LM]). All our conclusions are based on the assumption that f does
not have the aforementioned pair of compact sets.

Proposition 1. Let f : X −→ X be a zero entropy forest map cyclically permuting
components X0, . . . , Xn−1 of X and for any C ∈ A(f,X) the intersections of C
with X0, . . . , Xn−1 be C0, . . . , Cn−1. If B ∈ A(f,X) is a maximal cycle of sets then
Bj are surrounding sets and re(Bj) are connected.

Proof. Consider only the case of connected X. If B is not connected then by Lemma
5(ii)(2) [B] \B = {a} is a fixed point and all the statements hold. Let B be closed,
y be a basic point for (f, [B]); by Corollary 2 y /∈ B. Let Z be the connected
component of re(B) containing y; we show that A = pr(B) = B ∪ Z.

Indeed, let G be a component of B neighboring to Z and E be the maximal
component of A \ Z containing G; clearly it is enough to show that E = G. Let
E % G; then there is a point x ∈ E \ B such that [x, y] ∩ G = [b, c] and [x, y] =
[x, b] ∪ [b, c] ∪ [c, y] where [x, b) ∩ (c, y] = ∅. We construct a sort of “symbolic
dynamics” for the map f which guarantees that h(f) > 0. Indeed, by Lemma
5(ii)(1) B ∪ orb (c, y] ⊃ A. Thus there is a point u ∈ (c, y] and an integer L such
that fLu = x. It implies by Property 1 that fL[u, y] ⊃ [y, x]. On the other
hand by Lemma 5(ii)(1) B ∪ orb [x, b) ⊃ A, so there is a point v ∈ [x, b) and
an integer K such that fK [v, b] ⊃ [y, x]. Thus fL[u, y] ⊃ [y, x] ⊃ [y, u] ∪ [b, v],
fK [v, b] ⊃ [y, x] ⊃ [y, u] ∪ [b, v] and [b, v] ∩ [y, u] = ∅ which implies that h(f) > 0;
this contradiction completes the proof. �

Proposition 1 and Lemma 6 immediately imply that a maximal tower of any
kind of a zero entropy forest map is an almost closed snowflake. We specify this in
the following

Theorem 2. Let f : X −→ X be a zero entropy forest map. Then any maxi-
mal tower of f is an almost closed snowflake and for any x ∈ X there are two
possibilities:

(1) ω(x) = ∅ and if f̂ is the extension of f then ωf̂ (x) is an f̂-periodic orbit
consisting of endpoints of X;

(2) ω(x) is a compact subset of X, there exists a unique snowflake Lf (ω(x)) of
period card {ω(x)} maximal among all snowflakes Y such that ω(x) belongs to all
cycles of sets in Y and if ω(x) is infinite then orb x eventually enters all cycles of
sets in Y.

Moreover, if M(f) is the family of maximal towers of f then P (f̂) = T (M(f)).

Proof. Let X be connected, fix a point x and show that if some iterates of x
approach an endpoint of X, say, c, which does not belong to X then ωf (x) = ∅
and for the extended map f̂ the set ωf̂ (x) is a periodic orbit consisting of some
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endpoints of X. We may assume that [x, c) does not contain vertices of X and
there is a number N such that fNx ∈ (x, c). If there is no fN -fixed point in (x, c)
then all points in (x, c) are mapped by fN towards c and the statement in question
holds. Indeed,

⋂∞
i=0 f iN [x, c) = ∅ since otherwise there is an fN -fixed point in

[x, c); thus
⋂∞

i=0 f iN+k[x, c) = ∅ for any k as well. Let bj ∈ f j [x, c). Then for
any k there is a unique limit point ck of the sequence biN+k, i → ∞ and since
f iN+k[x, c) ⊃ fN (f iN+k[x, c)) then ck = ck+N , (∀k). It remains to observe that if
ck ∈ X for some k then f iN+k[x, c) ⊂ X is compact for big i and so there is an
fN -fixed point in [x, c) which is a contradiction.

Suppose there is an fN -fixed point d ∈ (x, c). By the assumption there are
infinitely many iterates of x in (d, c); so replacing x by its appropriate iterate we
may assume that for some n which is a multiple of N we have d < x < fnx < c.
Moreover, replacing if necessary the point d by the closest to x fn-fixed point we
may assume that d < z < fnz < c for all z ∈ (d, x]; note that fNd = fnd =
d. Let us show that fnix ∈ (d, c) for any i. Indeed, otherwise let m be the
minimal number such that fnmx /∈ (d, c) and j be the minimal number such that
fnjx ∈ [fn(m−1)x, c). Clearly j > 0; so d < fn(j−1)x < fn(m−1)x ≤ fnjx. Let
[d, fn(j−1)x] = I, [fn(j−1)x, fn(m−1)x] = J . Then fnI ∩ fnJ ⊃ I ∪ J and so
h(f) > 0 which is a contradiction. Hence fnix ∈ (d, c) for any i. There are iterates
of x under fn which approach c since otherwise ωfn(x) is a compact subset of [d, c),
ωf (x) is a compact subset of X and iterates of x under f do not approach c which
is a contradiction. Let us prove that fn[d, c) ⊂ [d, c). Indeed, otherwise for some
z ∈ (d, c) we have fnz = d. Take the minimal j such that d < z ≤ fnjx < c. Then
j > 0 and d < fn(j−1)x < z ≤ fnjx < c. If [d, fn(j−1)x] = I, [fn(j−1)x, z] = J we
have fnI ∩ fnJ ⊃ I ∪ J and so h(f) > 0 which is a contradiction.

Consider local properties of fn in a small neighborhood of c which does not
contain x. First let us show that there is no interval of the form (a, c) such that all
points in (a, c) are mapped by fn away from c. Indeed, otherwise fn[d, a] $ [d, c)
is an fn-invariant compact interval containing x which contradicts the assumption.
On the other hand if there is an interval (a, c) such that all points in (a, c) are
mapped towards c then as it was shown in the first paragraph of the proof the
extended map f̂ has c as its f̂n-fixed point, ωf̂ (x) = orbf̂c and the statement in
question is proven.

Now let there be no neighborhoods of c in which points are mapped by fn

towards or away from c. Then there is a sequence of fn-fixed points di → c such
that for any i there is k = k(i) with fnkx ∈ (di, di+1). The arguments similar
to those from the preceding paragraphs show that then fn(k+1)x < fnkx < c is
impossible. Indeed, otherwise there is a fixed point d′ ∈ (fnkx, c) such that there
are no fixed points in (fnkx, d′). At the same time some fn-iterates of x approach
c. Now the mere repetition of the aforementioned arguments show that this implies
h(f) > 0. Hence fnkx < fn(k+1)x (∀k). Repeating the arguments from the second
paragraph of the proof we see that [d′i, c) is an fn-invariant set for all i. Thus by
the arguments from the first paragraph of the proof we see that the extended map
f̂ has c as its f̂n-fixed point and ωf̂ (x) = orbf̂c; since c /∈ X then all points in orbf̂c
are endpoints of X not belonging to X which completes the consideration of the
case when some iterates of x approach an endpoint of X. From now on we assume
that this is not the case and ωf (x) 6= ∅ is a compact subset of X.

Fix a point x and consider the family T of the towers such that their cycles of
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sets contain ω(x). Let Y be the unique maximal tower in T existing by Corollary
5. If ω(x) is finite then by Proposition 2 Y is a snowflake of period card {ω(x)},
so it remains to consider the case when ω(x) is infinite and show that Y is infinite.
This fact follows from the spectral decomposition for graph maps (see [B2]) which
implies that if h(f) = 0 then all infinite limit sets of f belong to infinite towers
(limit sets of this kind are called in [B2] solenoidal sets); we give here an alternative
proof.

The first step is to show that if ω(x) is infinite then there is a cycle of sets of
period greater than 1 containing ω(x). Let A = [ω(x)]; then A is compact and
connected. Let a ∈ A be a basic point for (f,A). Since ω(x) is infinite there
exist an edge r = [z, y] and points s, s′, p, q such that the following properties hold:
1)z < s < s′ < p < q < y; 2)[z, y] ⊂ [z, a); 3) s, p, q ∈ (z, a) ∩ ω(x). Take
neighborhoods U of p and V of q so that their closures are disjoint and s′ /∈ U .
Since U and V are not wandering then orb U and orb V are cycles of sets. Let
us study their disposition on X. First of all, since h(f) = 0 then there are no
integers N, M such that fNU ⊃ U ∪ V , fMV ⊃ U ∪ V . Let for the definiteness
fnU 6⊃ U ∪ V (∀n). Then a /∈ orb U since otherwise all large iterates of U contain
a and also there are large iterates of U containing points close enough to s which
implies that fnU ⊃ [s′, a] ⊃ U ∪ V and contradicts the fact that h(f) = 0. Hence
orb U is not connected, i.e. orb U = B =

⋃n−1
i=0 Gi where Gi are the components of

B, n > 1. The construction implies that B contains all but finite number of iterates
of x; so B contains all but finite number of points from ω(x) and B ⊃ ω(x). If B
is not connected then it is the required cycle of sets; if B ⊃ ω(x) then B is the
required cycle of sets. It remains to consider the case when B is connected and
B 6⊃ ω(x); note that B ⊃ [ω(x)] = A.

By Corollary 3 there is a unique fixed point c ∈ B. Then c ∈ A and by definition
of a basic point c = a. Let us show that a /∈ ωf (x). Points s′, p, q belong to the same
component of B, say, to G0; by Corollary 3 a is an endpoint of G0. Set g = fn and
assume that ωg(x) = G0 ∩ ωf (x), G0 contains all but finite number of points from
ωg(x). Let us show that a /∈ ωg(x). Suppose that a ∈ ωg(x). Take a point b ∈ G0

such that [b, a) contains no vertices of X, [s′, q] and [b, a] are disjoint. If there is a
g-fixed point e ∈ [b, a) then e ∈ fNU for some N and gkNU ⊃ [s′, e] ⊃ U ∪ V for
some k which is a contradiction. So g maps points in [b, a) either towards or away
from a.

If they are mapped towards a then for any y′ ∈ [b, a] we have ωg(y′) = {a}; hence
no iterates of x enter [b, a] and a /∈ ωg(x) which implies that a /∈ ωf (x). Let points
on [b, a) be mapped away from a ∈ ωg(x) and show that it leads to a contradiction.
Consider some cases. If a has a g-preimage in ωg(x) distinct from a then since
g|ωg(x) is surjective a has infinitely many preimages under different iterations of g
in ωg(x). Since G0 is gn-invariant and contains all but finite number of points from
ωg(x) we see that a ∈ G0 which is a contradiction. Hence g−1(a)∩ωg(x) = {a} and
so if F = (G0 \ (b, a]) ∩ ωg(x) then a /∈ gF . Thus there are points d′, d such that
b < d′ < d < a and F ∪gF is disjoint from [d′, a] which implies that there is an open
W ⊃ F such that W ∪ gW is disjoint from [d, a]. By the definition of an ω-limit
set we may assume that all g-iterates of x outside [b, a] belong to W . Together
with the fact that all points in [b, a) are mapped by g away from a it implies that
orbgx ∩ [d, a] = ∅ and thus a /∈ ωg(x) which again implies that a /∈ ωf (x).

Consider sets G′i = Gi ∪ (ωf (x) ∩ Gi). Since a /∈ ωf (x) then
⋃n−1

i=0 G′i is the
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required cycle of sets of period greater than 1 containing ωf (x). Suppose now that
Y ⊃ ω(x) is the maximal tower among all towers containing ω(x). Let Y be finite
and

⋃m−1
i=0 Yi be the cycle of sets of the last level in Y. Let fm = g; we may assume

that x ∈ Y0 and ωg(x) ⊂ Y0 is infinite. Then by what we have proved there is a
g-cycle of sets of period greater than 1 which contains ωg(x). Hence Y is not a
maximal tower and so Y must be infinite. Thus Y is always of period card {ω(x)}
and if ω(x) is infinite then obviously x eventually enters all d-cycles of sets from Y.
Now let us consider the basic snowflake Lf (ω(x)), corresponding to Y by Lemma
10; Lf (ω(x)) is the required basic snowflake. The final statement of the theorem
follows from what we have shown and Lemma 10. �

Corollary 6 is a direct application of Theorem 2 to compact forests.

Corollary 6. Let f : X −→ X be a zero entropy map of a compact forest X.
Then any maximal f -tower is a snowflake and for any x ∈ X there exists a unique
snowflake Lf (ω(x)) of period card {ω(x)} maximal among all snowflakes Y such
that ω(x) belongs to all cycles of sets in Y and if ω(x) is infinite then orb x even-
tually enters all cycles of sets in Y. Moreover, if M(f) is the family of maximal
f -towers then P (f) = T (M(f)).

Let us now specify for forests the description of sets of periods of zero entropy
graph maps given in [B3] (see also [LM]). If Y is a (z-)snowflake and i is its lowest
level such that the corresponding (z-)cycle of sets has an interval component then
we call the i-section of Y the interval section of Y. Say that a number n is of
interval section type for X if there exists a map f : X −→ X and an f -snowflake Y
such that its interval section has the period n; equivalently one can say that n is of
interval section type for X if there is a z-snowflake such that its interval section is
of period n. We prove the following

Proposition 2. If X has s components each of which has less than r endpoints
and n is of interval section type for X then n = 2ltm ≤ 2Edg(X)−End(X) where
t ≤ s, tm ≤ Edg(X) and m is an odd integer with all prime divisors less than r.

Proof. Assume that A is a snowflake of a map f : X −→ X which coincides with
its interval section and has the period n and k levels. Let t be the period of the
cycle of sets which is formed by components of X and contains the zero level cycle
of sets in A; then t ≤ s, n = tq and the definition implies that all prime divisors of
q are less than r. Let us show that n ≤ 2Edg(X) − End(X). Indeed, none of the
components of the cycle of sets D of level k−1 is an interval, so any edge contains at
most two endpoints of components of D and the edges coming out of the endpoints
of X contain at most one such endpoint. Thus the number of these endpoints
is not bigger than 2Edg(X) − End(X), and so by the definition of a snowflake
n ≤ 2Edg(X) − End(X). It remains to show that if q = 2lm and m is odd then
tm ≤ Edg(X). Since n ≤ 2Edg(X) − End(X) we assume that l = 0 and q = m
is odd; replacing f by f t we assume that X is a tree, t = s = 1 and n = m. Let
A =

⋃m0−1
i=0 A0

i = Â0 ⊃
⋃m1−1

i=0 A1
i = Â1 ⊃ . . . be of type (m0,m1, . . . , mk = n).

We show that there is no edge of X intersecting more than one set from the last
level cycle of sets D in A. Indeed, otherwise there exist an edge [x, y] and endpoints
a, b ∈ [x, y] of distinct components of D such that (a, b)∩D = ∅. Let a ∈ Aj

0, j ≤ k
and i be such that b /∈ Ai

0 and b ∈ Ai−1
0 . Since the slice of the level i in the set Ai−1

0
is surrounding it has two components contradicting the assumption that n = m is
odd. So n ≤ Edg(X). �
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Corollary 7 (cf [B4]). Let X be a forest with components having no more than
r endpoints. Then the following statements are equivalent:

(1) h(f) = 0;
(2) for every x ∈ Per f there is a snowflake Y of period card (orb x) such that

the cycle of sets of the last level in Y contains orb x;
(3) any k ∈ P (f) is of form k = 2jtn where tn ≤ Edg(X) is odd, t ≤ Comp(X)

and all prime divisors of n are less than or equal to r.

Proof. By Theorem 2 (1) implies (2). Let us show that (2) implies (3). Let x ∈
Per f be of period k. Consider a snowflake Y of period k such that cycle of sets
of the last level in Y contains orb x; we may assume that this cycle of sets is the
orbit of x. Let the interval section of Y be Y′ having the period n. The properties
of interval maps imply that there exists j such that k = 2jn; at the same time by
definition n is of interval section type for X. Thus due to Proposition 2 (2) implies
(3). Finally by [B3] (see also [LM]) h(f) > 0 for a graph map iff P (f) contains a
subset of the form kN; hence (3) implies (1). �

Theorem 3. Let X be a forest with components having no more than r endpoints.
Then there is a finite family G(X) = {G1 ⊂ H1, . . . , GN ⊂ HN} of pairs of finite
sets of integers Gi = {n(i)

j }li
j=1 ⊂ Hi = {n(i)

j }mi
j=1 such that if n is one of the integers

than n = 2ltq ≤ 4Edg(X) − 2End(X), t ≤ Comp(X), tq ≤ Edg(X), q is an odd
integer with all prime divisors less than r and the following holds.

(1) h(f) = 0 if and only if there is i ≤ N , a set of numbers {tj}mi
j=li+1, 0 ≤ tj ≤

∞ with P (f) = (
⋃li

j=1 n(i)
j ) ∪ (

⋃mi
j=li+1

⋃tj
k=0 2kn(i)

j ) and a set Q ⊂ {li + 1, . . . ,mi}
(perhaps empty) such that tj = ∞ for any j ∈ Q, any infinite limit set of f belongs
to an f -tower of type {n(i)

j < 2n(i)
j < . . . }, j ∈ Q, and such limit sets exist for any

j ∈ Q.
(2) For any i ≤ N , any set of integers {tj}mi

j=li+1, 0 ≤ tj ≤ ∞ and any set
Q ⊂ {li + 1, . . . ,mi} (perhaps empty) such that tj = ∞ for any j ∈ Q there is a
zero entropy map g : X −→ X such that P (g) = (

⋃li
j=1 n(i)

j )∪ (
⋃mi

j=li+1

⋃tj
k=0 2kn(i)

j ),

any infinite limit set of g belongs to a g-tower of type {n(i)
j < 2n(i)

j < . . . }, j ∈ Q,
and such limit sets exist for any j ∈ Q.

Proof. For a zero entropy map f : X −→ X let I(f) = I be the family of all
interval sections of maximal basic towers of f . Let Y ∈ I be of type {k0 <
k1 < · · · < ks} and R be an interval component of the cycle of sets B from
Y of the level s. If the cycle of sets of the level i has a degenerate compo-
nent then set G(Y) = {k1, k2, . . . , ks},M(Y) = ∅. If not, and the endpoints of
R do not belong to the same 2ks-periodic orbit belonging to the boundary of
B then set G(Y) = {k1, k2, . . . , ks−1},M(Y) = {ks}; if not and otherwise set
G(Y) = {k1, k2, . . . , ks},M(Y) = {2ks}. By definition ks is of interval section
type; also the union of sets G(Y), Y ∈ I is finite and we denote it by G(f). Simi-
larly the union of sets G(Y) ∪M(Y), Y ∈ I is finite; denote it by H(f). Clearly,
G(f) ⊂ H(f); the family G of all such pairs of sets for all zero entropy maps is
also finite. The definition and the choice of Y show that in fact all the numbers
{k1, k2, . . . , ks} are of interval section type for X (for ks it follows from the defini-
tion, for ki it follows from the fact that one can make a component of the cycle of
sets of level i in Y smaller and replace it by an interval keeping it a z-snowflake).
Thus all the numbers which appear in the construction are of interval section type
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or twice as big; together with Proposition 2 this explains the properties of the
numbers from sets from G claimed in Theorem 3.

Let us show that the theorem holds with this family G. If h(f) = 0 then the
needed pair of sets from G is G(f) = Gi ⊂ H(f) = Hi; the definition and properties
of zero entropy interval maps following from Theorem 2 show that there exist
numbers {tj}mi

j=li+1, 0 ≤ tj ≤ ∞ and a set Q ⊂ {li + 1, . . . , mi} (perhaps empty)
such that tj = ∞ for any j ∈ Q with all the properties from Theorem 3. Let us
prove that if Gi ⊂ Hi is a pair from G, {tj}mi

j=li+1 are numbers, 0 ≤ tj ≤ ∞, and
Q ⊂ {li + 1, . . . ,mi} is such that tj = ∞ for j ∈ Q then there is a zero entropy
map g : X −→ X with all the properties from Theorem 3. Indeed, let Gi = G(f)
and Hi = H(f) for a zero entropy map f : X −→ X. We describe how one can
change f to get a map g with the required properties. Let Y be an interval section
of a basic snowflake of f ; we change f on its last level cycle of sets K depending
on the properties of Y. If K has a degenerate component we will not change f on
it. Otherwise K has at least one interval component, say, [a, b], and no degenerate
components.

Let K =
⋃k−1

i=0 Ti be of period k (T0 = [a, b], . . . , Tk−1 are its components), R be
the set of all endpoints of components of K. Let

⋃k−1
i=0 f iR = S. Choose pairwise

disjoint interval neighborhoods of points from R containing no vertices in their
interiors so that their union U has the following property: for any x ∈ R the point
fx belongs either to R or to K \ U . Let Ti \ U = Vi. Then for any s ≤ ∞ one
can define a map g|W =

⋃k−1
i=0 Vi so that W is a g-cycle of sets of period k with

periodic points of periods {2ik}s
i=0 only, and if s = ∞ we can define g so that it

has infinite limit sets belonging to towers of type {k < 2k < . . . }. Moreover, we
may assume that the positive orbits of all endpoints of sets Vi belong to int (W ).
Clearly one can now extend g to the map defined on K so that all points from U
are eventually mapped into W and g|R = f |R. Let B be the set of periodic orbits
belonging to R, P ′ be the set of their periods. Then g|K has periodic orbits of
periods P ′ ∪ {k, 2k, . . . , 2sk}. If points a, b do not belong to the same 2k-periodic
orbit from B then P ′ = ∅ or P ′ = k; in this case k = n(i)

j for some li < j ≤ mi, thus

taking s = tj we will construct g so that g|K has periods n(i)
j , 2n(i)

j , . . . , 2tj n(i)
j .

If points a, b belong to the same 2k-periodic orbit from B then P ′ = {k, 2k} and
2k = n(i)

j for some li < j ≤ mi. In this case we set s = tj +1 which gives a map g|K
with periods {k, 2k, . . . , 2tj+1k} = {(1/2) · n(i)

j , n(i)
j , 2n(i)

j , . . . , 2tj n(i)
j }. Note that

by the construction k = (1/2) ·n(i)
j ∈ G(f) and so the set of periods of g|K belongs

to
⋃li

j=1 n(i)
j ) ∪ (

⋃mi
j=li+1

⋃tj
k=0 2kn(i)

j ). Finally, if the chosen j belongs to Q then
tj = ∞ and one can construct g so that g|K has an infinite limit set belonging to a
tower of type {n(i)

j < 2n(i)
j < . . . }. Now it is clear that if we change f similarly on

all last level cycles of sets of all interval sections of basic snowflakes the resulting
map g has zero entropy and the required properties. This completes the proof. �
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