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Abstract. Let X be a compact tree, f : X −→ X be a continuous map and End(X)
be the number of endpoints of X. We prove the following

Theorem 1. Let X be a tree. Then the following holds.

(1) Let n > 1 be an integer with no prime divisors less than or equal to
End(X) + 1. If a map f : X −→ X has a cycle of period n, then f
has cycles of all periods greater than 2End(X)(n − 1). Moreover, h(f) ≥

ln 2
nEnd(X)− 1

.

(2) Let 1 ≤ n ≤ End(X) and E be the set of all periods of cycles of some
interval map. Then there exists a map f : X −→ X such that the set of all
periods of cycles of f is {1} ∪ nE, where nE ≡ {nk : k ∈ E}.

This implies that if p is the least prime number greater than End(X) and f has
cycles of all periods from 1 to 2End(X)(p−1), then f has cycles of all periods (for tree
maps this verifies Misiurewicz’s conjecture, made in Bratislava in 1990). Combining
the spectral decomposition theorem for graph maps (see [3-5]) with our results, we
prove the equivalence of the following statements for tree maps:

(1) there exists n such that f has a cycle of period mn for any m;
(2) h(f) > 0.

Note that Misiurewicz’s conjecture and the last result are true for graph maps
([6,7]); the alternative proof of the last result may be also found in [11].

0. Introduction

Let us call one-dimensional compact branched manifolds graphs; we call them

trees if they are connected and contractible. Note that by the definition we deal with

the finite trees. In what follows we consider only continuous tree maps. One of the
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well-known and impressive results about dynamical properties of one-dimensional

maps is Sharkovskii’s theorem [12] about the co-existence of periods of cycles for

interval maps. To formulate it let us introduce the following Sharkovskii ordering

for positive integers:

(∗) 3 ≺ 5 ≺ 7 ≺ · · · ≺ 2 · 3 ≺ 2 · 5 ≺ 2 · 7 ≺ · · · ≺ 8 ≺ 4 ≺ 2 ≺ 1

Denote by S(k) the set of all integers m such that k ≺ m or k = m and by S(2∞)

the set {1, 2, 4, 8, . . . }. Also denote by P (ϕ) the set of periods of cycles of a map ϕ.

Theorem[12]. Let g : [0, 1] −→ [0, 1] be a continuous map. Then there exists

k ∈ N ∪ 2∞ such that P (g) = S(k). Moreover, for any such k there exists a map

g : [0, 1] −→ [0, 1] with P (g) = S(k).

Generalizations of Sharkovskii’s theorem were studied in [1] for maps of the triod

(a tree in the shape of the letter Y ) and for general n-od in [2]).

Sharkovskii’s theorem implies that if a map f : R −→ R has a cycle of period 3

then it has cycles of all periods. The following conjecture, formulated by M. Mi-

siurewicz at the Problem Session at Czecho-Slovak Summer Mathematical School

near Bratislava in 1990, is related to the aforementioned property of interval maps.

Misiurewicz’s Conjecture. For a graph X there exists an integer L = L(X)

such that for a map f : X −→ X the inclusion P (f) ⊃ {1, 2, . . . , L} implies that

P (f) = N.

We verify Misiurewicz’s conjecture when X is a tree. The general verification of

this conjecture for arbitrary continuous graph maps may be found in [6,7]. Note

that all results of the paper are true in the same formulations for finite unions of

connected trees; the corresponding extension is left to the reader.

Fix a tree X. We use the terms “vertex”, “edge” and “endpoint” in the usual

sense. Denote the number of endpoints of X by End(X). We prove the following

Theorem 1. Let X be a tree. Then the following holds.

(1) Let n > 1 be an integer with no prime divisors less than or equal to End(X).

If a map f : X −→ X has a cycle of period n, then f has cycles of all periods

greater than 2End(X)(n− 1). Moreover, h(f) ≥ ln 2
nEnd(X)− 1

.
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(2) Let 1 ≤ n ≤ End(X) and E be the set of all periods of cycles of some

interval map. Then there exists a map f : X −→ X such that the set of all

periods of cycles of f is {1} ∪ nE, where nE ≡ {nk : k ∈ E}.

For interval maps this implies that when n is odd and f has a point of period

n, then f has all periods greater than 4(n − 1). This statement is slightly weaker

than Sharkovskii’s theorem.

Let us formulate some corollaries of Theorem 1.

Corollary 1 (cf. [9]). Let f : X −→ X be a cycle of period n = pk where p > 1

has no prime divisors less than End(X) + 1. Then h(f) ≥ ln 2
k[pEnd(X)− 1]

>

ln 2
nEnd(X)− n

.

Proof. It is enough to consider the map fk and apply Theorem 1. �

The next corollary verifies for tree maps Misiurewicz’s conjecture.

Corollary 2. Let p be the least prime number greater than End(X). If f : X −→ X

has cycles of all periods from 1 to 2End(X)(p− 1) then f has cycles of all periods.

Theorem 1 and the spectral decomposition theorem for graph maps ([3-5]) imply

Corollary 3. The following two statements are equivalent:

(1) there exists n such that f a cycle of period mn for any m;

(2) h(f) > 0.

In fact Corollary 3 is true for arbitrary graph maps ([6,7]; the different proof may

be found in [11]). The preprint [8] contains a preliminary version of this paper.

Notation

fn is the n-fold iterate of a map f ;

orbx ≡ {fnx}∞n=0 is the orbit (trajectory) of x;

Per f is the set of all periodic points of a map f ;

P (f) is the set of all periods of periodic points of a map f ;

h(f) is the topological entropy of a map f .
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1. Preliminary lemmas

Let X be a tree (see the definition in Introduction). Any closed connected subset

of X is also a tree and will be called a subtree of X. Let A ⊂ X; then [A], the

connected hull of A, is the smallest subtree containing A. We will use the following

easy

Property A. If {A1, A2, . . . , An} are sets and B =
⋃n

i=1[Ai] is connected then

B = [
⋃n

i=1 Ai].

For two points a, b ∈ X the connected hull of the set {a, b} is denoted by [a, b].

If these points are distinct, [a, b] in inner topology is homeomorphic to a closed

interval; we also use the following notations: (a, b] ≡ [a, b] \ {a}, [a, b) ≡ [a, b] \

{b}, (a, b) ≡ [a, b] \ {a, b}. All the sets [a, b], (a, b], [a, b), (a, b) are called intervals.

Given a point a and points x, y, we say that x is closer to a than y iff [a, x] ⊂ [a, y].

Given subsets C and D, we say that C is closer to a than D iff for any c ∈ C

and d ∈ D, c is closer to a than d. In what follows we consider a continuous map

f : X −→ X.

Lemma 1. Let [a, b], [c, d] be intervals and f [a, b] ⊃ [c, d], (fa, c)∩(c, d) = ∅, (d, fb)∩

(c, d) = ∅. Suppose also that I0, I1, . . . , Ik ⊂ [c, d] are intervals with pairwise dis-

joint interiors containing no vertices of X and that Ii+1 is further from c than Ii

for 0 ≤ i ≤ k − 1. Then there exist intervals J0, J1, . . . , Jk ⊂ [a, b] with pairwise

disjoint interiors such that Ji+1 is further from a than Ji for 0 ≤ i ≤ k − 1 and

fJi = Ii, 0 ≤ i ≤ k.

Proof. Clearly, for any 0 ≤ i ≤ k there exist intervals L ⊂ [a, b] such that fL = Ii.

Indeed, let Ii = [x, y] where x is closer to c than y. Choose the closest to a preimage

of y and denote it by y−1. Then choose the preimage of x closest to y−1 in [a, y−1],

and denote it by x−1. It is easy to see that f [x−1, y−1] = [x, y]. Say that an interval

L is good if fL = Ii for some i and for any interval M the inclusion M $ L implies

that fM 6= Ii. Choose for 0 ≤ i ≤ k the closest to a good interval Ji such that

fJi = Ii. The relations (fa, c)∩ (c, d) = ∅, (d, fb)∩ (c, d) = ∅ easily imply now that

Ji is closer to a than Ji+1 for 0 ≤ i ≤ k − 1 which completes the proof. �
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Lemma 2. Let J0 = [c0, d0], J1 = [c1, d1], . . . , Jk = [ck, dk], Jk+1 = J0 be intervals,

ck+1 = c0, dk+1 = d0 and 0 = n0 < n1 < · · · < nk+1 be integers. Suppose that

for any 0 ≤ i ≤ k we have fni+1−niJi ⊃ Ji+1, (di+1, fni+1−nidi) ∩ (ci+1, di+1) = ∅.

Then there exists z ∈ J0 such that fniz ∈ Ji(0 ≤ i ≤ k) and fnk+1z = z.

Proof. Let us show that there exist intervals L0, L1, . . . , LM ⊂ J0 such that {fniLj ⊂

Ji : 0 ≤ i ≤ k + 1, 0 ≤ j ≤ M} are intervals with pairwise disjoint interiors,

fnk+1L0 ∪ fnk+1L1 ∪ · · · ∪ fnk+1LM = J0 and for 0 ≤ i ≤ M − 1 the interval Li is

closer to c0 than Li+1 and the interval fnk+1Li is closer to c0 than fnk+1Li+1.

First choose intervals N0, N1, . . . , Nm so that their union is J0, their interiors

are pairwise disjoint and do not contain vertices of X; we may assume that Ni

is closer to c0 than Ni+1 for 0 ≤ i ≤ m − 1. Choose a point xk ∈ Jk such that

fnk+1−nkxk = c0. By Lemma 1 we can find intervals T0, T1, . . . , Ts ⊂ [xk, dk] with

pairwise disjoint interiors so that fnk+1−nkTi = Ni, 0 ≤ i ≤ s, and Ti is closer to

xk than Ti+1, 0 ≤ i ≤ s − 1. Let us divide the intervals Ti into subintervals with

pairwise disjoint interiors which do not contain vertices of X and are ordered on

the interval [xk, dk]. Repeating the construction and using Lemma 1, we will find

the required intervals L0, L1, . . . , LM .

Let us now show that there exists a point z ∈
⋃M

i=0 Li such that fnk+1z = z.

Denote fnk+1 by g. Assume that J0 = [0, 1] and intervals L0, L1, . . . , LM and

gL0, gL1, . . . , gLM increase in the usual sense. Since
⋃M

i=1 gLi = [0, 1] ⊃
⋃M

i=1 Li

then sup g|LM = 1 ≥ LM , inf g|L0 = 0 ≤ L0; let us show that there exists i such

that sup g|Li ≥ Li and inf g|Li ≤ Li. Indeed, the fact that inf g|Lj+1 > Lj+1

implies that sup g|Lj > Lj (for the intervals {Lj} are ordered by increasing and
⋃M

i=1 gLi = [0, 1]). Let i be the maximal such that inf g|Li ≤ Li. If i = M

then inf g|LM ≤ LM and sup g|LM ≥ LM ; if i < M then inf g|Li+1 > Li+1,

so sup g|Li > Li and inf g|Li ≤ Li. In any case gLi ⊃ Li which completes the

proof. �

Lemma 3. Let X be a tree, Y ⊂ X be a subtree and f : Y −→ X be a continuous

map such that if a ∈ Y then (a, fa] ∩ Y 6= ∅. Then there exists z ∈ Y such that

fz = z.

Proof. Let us construct a map g : X −→ X in the following way. First define a map

h : X −→ Y so that if x ∈ Y then hx = x and if x /∈ Y then hx = y where y ∈ Y
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is the unique point with (y, x] ∩ Y = ∅. Now consider a map g = f ◦ h : X −→ X.

Then there exists z ∈ X such that gz = z. If z ∈ Y then hz = z = fz and we are

done. Let z /∈ Y . Then hz = y where y ∈ Y and (y, z] ∩ Y = ∅; at the same time

gz = f(hz) = fy = z, so (y, fy] ∩ Y = ∅ which is a contradiction. �

Lemma 4. Let Y ⊂ X be a subtree, f : X −→ X be a continuous map. Then

there exists a point y ∈ Y such that for any z ∈ Y the relation fz ∈ Y implies the

inclusion f [y, z] ⊃ [y, fz] and either fy = y or fy /∈ Y and (y, fy] ∩ Y = ∅.

Proof. Consider the case when there is no fixed point in Y . Then by Lemma 3

(y, fy]∩Y = ∅ for some y ∈ Y ; since f(z) ∈ Y we now have f([y, z]) ⊃ [f(z), f(y)] ⊃

[f(z), y]. �

In what follows we call the point y ∈ Y existing by Lemma 4 a basic point for

(f, Y ).

2. Proofs of Theorem 1 and Corollary 3

Let x ∈ X; we call points a, b ∈ orb x neighboring if (a, b) ∩ orb x = ∅.

Proof of Theorem 1. Let x be a periodic point of period n > 1 where n has no

prime divisors less than End(X) + 1. Let y be a basic point for (f, [orb x]); then

y ∈ [orb x] \ orb x. Consider the connected component Z of [orb x] \ orb x such that

y ∈ Z. If z1, z2, . . . , zl are endpoints of Z then zi ∈ orb x and (y, zi)∩orb x = ∅, 1 ≤

i ≤ l. Denote by Zi the connected component of the set [orb x] \ Z containing zi

and let Yi = Zi ∩ orb x. Note that l ≤ End(X) and n ≥ 3. We divide the rest of

the proof by steps.

Step 1. There exist two neighboring points a, b ∈ orb x such that b ∈ (a, y) and

y ∈ f l−1(a, b).

Let us describe the following procedure. Let F1, . . . , Fm be pairwise disjoint sub-

sets of orb x =
⋃m

i=1 Fi such that [F1], . . . , [Fm] are pairwise disjoint subtrees of X;

denote
⋃m

i=1[Fi] by D0. Now consider the set D1 =
⋃m

i=1([fFi]∪[Fi]); let G1, . . . , Gu

be the connected components of D1. Denoting H1 = G1∩orb x, . . . , Hu = Gu∩orb x,

we can easily see that Gi = [Hi], 1 ≤ i ≤ u. Indeed, let A1 be the family of all sets

of type frFi, 1 ≤ i ≤ m, r = 0, 1. Consider the set Gj . By the definition there is

a subfamily Bj ⊂ A1 such that Gj =
⋃

E∈Bj [E], Hj =
⋃

E∈Bj E and by Property
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A we have Gj = [Hj ]. Thus the procedure of constructing the pairwise disjoint

subtrees may go on.

Let us show that if we start the procedure in question with m ≤ End(X) subtrees

then after at most m − 1 steps we get the set [orb x] (in other words we are going

to show that Dm−1 = [orb x]). By assumption m and n are relatively prime. Hence

on the first step of the procedure there is at least one set, say F1, such that fF1

intersects with at least two of the sets F1, . . . , Fm and so the number of connected

components of D1 is less than or equal to m− 1. Repeating this argument we get

the conclusion.

It is quite easy to give the exact formula for sets Di. However we need here only

to show that Dj ⊂
⋃m

i=1

⋃j
s=0 fs[Fi] ≡ Sj . Clearly, it is true for j = 0, 1. Suppose

that it is the case for some j;we show that Dj+1 ⊂
⋃m

i=1

⋃j+1
s=0 fs[Fi]. Indeed, by the

construction Dj+1 ⊂ Dj∪fDj ⊂ Sj∪fSj = Sj+1 and we are done. Finally we have

that [orb x] = Dm−1 ⊂
⋃m

i=1

⋃m−1
s=0 fs[Fi]. Now let us start our procedure with the

sets [Y1] = Z1, . . . , [Yl] = Zl; then after l − 1 steps we get the set [orb x]. In other

words, [orb x] ⊂
⋃l

i=1

⋃l−1
s=0 fsZi. Thus there exist s ≤ l − 1 and two neighboring

points a, b ∈ orb x such that b ∈ (a, y) and y ∈ fs(a, b); by the properties of basic

points (see Lemma 4) this implies Step 1.

Choose a point ζ ∈ (a, b) such that f l−1ζ = y; let for definiteness f l−1[a, ζ] ⊃

[y, z1]. Note that by the choice of ζ the sets [a, ζ] and Z are disjoint.

Step 2. There exist integers p, q, r such that fp[y, z1] ⊃ [y, zq], fr[y, zq] ⊃ [y, zq]

where 1 ≤ r, p + r ≤ l ≤ End(X).

Lemma 4 implies for all j ≤ l the existence of an integer s(j) such that [y, f(zj)] ⊃

[y, zs(j)]. Let p be the smallest integer for which q = sp(1) is a periodic point of s.

Denote by r its period. Then p + r ≤ l.

Denote by D the set orbs(q) = {q, s(q), . . . , sr−1(q)}.

Step 3. For any v ≥ (n− 1)r and t ∈ D we have fv[y, zt] ⊃ [orb x].

Clearly, if Bj = frj [y, zt]∩orb x then Bj∪frBj ⊂ Bj+1 (∀j). Thus
⋃n−1

j=0 frjzt ⊂

f (n−1)r[y, zt]. But r ≤ End(X) and hence r and n have no common divisors.

Therefore
⋃n−1

j=0 frjzt = orb x which proves Step 3.
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Denote End(X) by c and assume that N ≥ 2c(n− 1). We will use Lemma 2 to

show that f has a point of period N . Let k = N − (n− 1)r − l + 2. Consider the

following sequence of intervals and integers (points ζ, a have been chosen in Step

1):

0) J0 = [ζ, a], n0 = 0;

1) J1 = [y, z1], n1 = l − 1;

2) J2 = [y, zs(1)], n2 = l;
...

k) Jk = [y, zsk−1(1)], nk = N − (n− 1)r;

k+1) nk+1 = N .

It is easy to see that the inequalities n ≥ 3, N ≥ 2c(n−1), r ≥ 1 and c ≥ l ≥ p+r

imply that k = N − (n− 1)r− l + 2 ≥ (2c− r)(n− 1)− l + 2 ≥ 2(l + p)− l + 2 ≥ l.

Hence sk−1(1) ∈ D and by Step 3, f (n−1)r[y, zsk−1(1)] ⊃ [orb x] ⊃ [ζ, a] = J0. So by

Lemma 2 there is a point α ∈ [ζ, a] such that fniα ∈ Ji (0 ≤ i ≤ k), fNα = α.

Let us prove that N is a period of α. Indeed, otherwise α has a period m which

is a divisor of N . Consider all iterates of α of type fniα, 1 ≤ i ≤ k. Clearly,
N
3
≥ 2c(n− 1)

3
≥ 4l

3
> l − 1 = n1 since c ≥ l and n ≥ 3. Furthermore, nk =

N − (n − 1)r ≥ N
2

because N ≥ 2c(n − 1) ≥ 2r(n − 1). So l − 1 = n1 ≤
N
3

<
N
2
≤ nk = N − (n − 1)r. At the same time, there exists i such that

n1 ≤
N
3
≤ mi ≤ N

2
≤ nk. Hence fmiα = α ∈ [ζ, a], but on the other hand,

fmiα ∈
⋃l

j=1[y, zj ] = S where Z ∩ [ζ, a] = ∅ (see the note before Step 2). This

contradiction shows that α has a period N .

Let l− 1 + p + r(n− 1) = u. To estimate h(f) observe that fu[ζ, a] ⊃ [ζ, a]∪Z,

fuZ ⊃ [ζ, a] ∪ Z and [ζ, a], Z are disjoint compact sets. Let us show then h(fu) ≥

ln 2. Indeed, consider the compact set S of all the points x ∈ [ζ, a] ∪ Z such that

their fu-orbits belong to [ζ, a] ∪ Z. Taking an open covering of S by the sets

[ζ, a]∩S and Z ∩S we see directly by the definition of the topological entropy that

h(fu) ≥ ln 2 and so h(f) ≥ ln 2
u

. The inequality u = l − 1 + p + r(n− 1) ≤ nc− 1

now implies that h(f) ≥ ln 2
nc− 1

.

Let us pass to statement 2) of Theorem 1. First we show that if there is an

interval map g′ such that P (g′) = E then there is g : [0, 1] −→ [0, 1] such that g(0) =

0, g(1) = 1, P (g) = E. We may assume that g′ is a map of the interval [1/3, 2/3]
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into itself. Define g : [0, 1] −→ [0, 1] so that it coincides with g′ on [1/3, 2/3],

g(0) = 0, g(1) = 1 and g is linear on [0, 1/3] and on [2/3, 1]. It is easy to see now

that P (g) = P (g′) = E, so g has the required properties.

Let Y be a tree, y1, y2, . . . , yk be its endpoints and m ≤ k. Let us construct a

map φ : Y −→ Y such that P (φ) = {m, 1} and φ(yi) = yi+1(1 ≤ i ≤ m−1), φ(ym) =

y1. Indeed, choose small nondegenerate neighborhoods [yi, y′i] of points y1, . . . , ym

containing no vertices of Y distinct from endpoints. Let B = Y \
⋃m

i=1[yi, y′i], x ∈ B

and φ(z) = x (∀z ∈ B). Let us define φ|[yi, y′i], 1 ≤ i ≤ m so that φ(yi) = yi+1(1 ≤

i ≤ m− 1), φ(ym) = y1, φ(y′i) = x and also φ|[yi, y′i](1 ≤ i ≤ m) is injective. Then

it is easy to see that P (φ) = {m, 1}.

Now let 1 ≤ m ≤ End(X) and g : [0, 1] −→ [0, 1] be a map with P (g) = E, g(0) =

0, g(1) = 1. Let us construct a map f : X −→ X such that P (f) = 1 ∪ mE

where mE ≡ {mk : k ∈ E}. First fix m endpoints z1, . . . , zm of X and their

small neighborhoods [zi, yi] containing no vertices of Y distinct from endpoints.

Let Y = X \
⋃m

i=1[zi, yi). Applying the result from the previous paragraph we

can find a map φ : Y −→ Y such that φ(yi) = yi+1(1 ≤ i ≤ m − 1), φ(ym) = y1

and P (φ) = {m, 1}. Let us define f : X −→ X so that it coincides with φ on

Y , f |[zi, yi] is a homeomorphism onto [zi+1, yi+1] and f(zi) = zi+1, f(yi) = yi+1

for 1 ≤ i ≤ m − 1. Moreover, define f |[zm, ym] so that f(zm) = z1, f(ym) = y1,

f([zm, ym]) = [z1, y1] and fm|[z1, y1] is topologically conjugate to g. The choice

of g guarantees that the construction is possible and that P (f) = 1 ∪ mE. This

completes the proof. �

Corollary 3 follows from Theorem 1 and the spectral decomposition theorem for

graph maps (see [3-5]).

Corollary 3. Let f : X −→ X be continuous. Then the following two statements

are equivalent:

(1) there exists n such that f has a cycle of period mn for any m;

(2) h(f) > 0.
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Remark. Note that Corollary 3 is true for arbitrary continuous graph maps [6,7];

see also [11] for the alternative proof.

Proof. Statement 1) implies statement 2) by Corollary 1. The inverse implication

follows from the spectral decomposition theorem for graph maps (see [3-5]) and

some properties of maps with the specification property.

First we need the following definition: a graph map ϕ : M −→ N is called

monotone if for any connected subset of N its ϕ-preimage is a connected subset of

M . We also need the definition of the specification property. Namely, let T : X →

X be a map of a compact infinite metric space (X, d) into itself. A dynamical system

(X, T ) is said to have the specification property [10] if for any ε > 0 there exists

such integer M = M(ε) that for any k > 1, for any k points x1, x2, . . . , xk ∈ X, for

any integers a1 ≤ b1 < a2 ≤ b2 < . . . < ak ≤ bk with ai − bi−1 ≥ M, 2 ≤ i ≤ k and

for any integer p with p ≥ M + bk − a1 there exists a point x ∈ X with T px = x

such that d(Tnx, Tnxi) ≤ ε for ai ≤ n ≤ bi, 1 ≤ i ≤ k.

By the results of [3-5], the fact that the map f : X −→ X has a positive topo-

logical entropy implies that there exist a subtree Y ⊂ X, an integer n, a tree Z, a

continuous map g : Z −→ Z with the specification property and a monotone map

ϕ : Y −→ Z such that fnY = Y and fn|Y ◦ϕ = ϕ◦g (i.e. ϕ monotonically semicon-

jugates fn|Y to g). Moreover, for any 1 ≤ i ≤ n−1 the set Y ∩f iY either is empty

or has a g-fixed point as a ϕ-image. This implies that if z ∈ Z is a g-periodic point

of period s > 1 then ϕ−1(z) contains an f -periodic point of period sn. Indeed,

by monotonicity of ϕ the set ϕ−1(z) is connected, so the fixed point property for

trees implies that there is an fsn-fixed point ζ ∈ ϕ−1(z). Let the f -period of ζ

is k < sn. Then k cannot be a multipler of n since g-period of z is exactly s, so

fkζ = ζ ∈ Y ∩ fkY which by the just mentioned properties implies that ϕ(ζ) = z

is a g-fixed point contradicting the choice of s. Hence the period of ζ is sk.

The specification property of g implies that g has all sufficiently big periods.

The arguments from the preceding paragraph now show that f has all the periods

which are sufficiently big multiplers of n thus completing the proof. �
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