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Abstract: We study “wild attractors” of polymodal negative Schwarzian interval maps
and prove that they aresuper persistently recurrent(a polymodal version ofpersistent
recurrence). We also prove that if a map has an attractor which is a cycle of intervals
then at almost every point of this cycle the map has properties similar to the Markov
property introduced by Martens. Thus, the lack of super persistent recurrence at a critical
point c can be considered as a mild topological expanding property, and this expansion
preventsω(c) from being a wild attractor (in the previous paper we have shown that it
also prevents the map from beingC2-stable).

1. Introduction

In his paper [Mi] Milnor suggested a new approach to the dynamics based on the notion
of attractor. He showed that a smooth dynamical system has a unique so-calledglobal
attractorand posed a problem of decomposing it into minimal attractors, closely related
to that of describingω-limit sets of almost all points.

Since then many papers have appeared dealing with the problem (see our list of refer-
ences, which is of course far from being complete). We continue this study and consider
piecewise monotone (polymodal) negative Schwarzian maps of an interval. The results
can be extended to one-dimensional branched manifolds, but to avoid complications
we restrict our attention to the interval case (and thus give definitions only in this case,
although some of them are more general). Precise and full definitions of some notions,
as well as a lot of standard definitions, are given later.
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Mostly, we consider two spaces of maps. The spaceC2
nf consists of all maps of [0, 1]

into itself of classC2 with finite number of critical points, all of them non-flat. The space
S consists of those maps fromC2

nf that have negative Schwarzian. We denote theω-limit
set of a pointx by ω(x) and call it simply thelimit set ofx.

Let f ∈ C2
nf . Then for a setA ⊂ [0, 1], the set rl(A) = {x : ω(x) ⊂ A} is called

therealm of attractionof the setA. Also, the set RL(A) = {x : ω(x) = A} is called the
realm of exact attractionof the setA. Denote the Lebesgue measure of a setX by |X|.
A closed invariant setA is called anattractor if

(1) | rl(A)| > 0;
(2) | rl(A) \ rl(A′)| > 0 for any proper closed invariant setA′ ⊂ A.

Clearly, if | RL(A)| > 0 thenA is an attractor; such attractor is calledprimitive. An
attractorA is calledglobal if |[0, 1] \ rl(A)| = 0. In [Mi] it is shown thatf has a unique
global attractor. It is denoted byA(f ). The same holds for the restriction off to a closed
invariant setK.

Let us describe types of primitive attractors which can be considered natural. The
first is rather simple. A pointx is called a(one-sided) periodic sinkif there existsn > 0
and a (one-sided) neighborhoodU of x such thatfn(x) = x, fn(U ) ⊂ U and the
diameter offk(U ) tends to 0 ask → ∞. The orbit of a periodic sink gives an example
(perhaps the easiest one) of a primitive attractor.

To introduce the next type of primitive attractors we need more definitions. A closed
intervalI is calledperiodic (of periodn) if the interiors of the intervalsI, . . . , fn−1(I)
are disjoint, whilefn(I) ⊂ I. Then the union

⋃n−1
i=0 f i(I) is called acycle of intervals

and denoted by cyc(I). This includes also the case ofn = 1; then cyc(I) = I. Clearly, if
J ⊂ I and bothI, J are periodic then the period ofJ is a multiple of the period ofI (yet
these periods may well coincide). LetI0 ⊃ I1 ⊃ . . . be a nested sequence of periodic
intervals of periodsm0 < m1 < . . . . Then the intersectionX =

⋂∞
i=0 cyc(Ii) is called

asolenoidal setand the cycles of intervals cyc(Ii) are calledX-generating.
The dynamics onX are well known (see, e.g., [B]) even whenf is just a continuous

interval map. In the smooth case it can be specified even further because of the absence
of wanderingintervals (an intervalJ ⊂ [0, 1] is calledwanderingfor f if its images
fn(J), n ≥ 0, are pairwise disjoint and do not converge to a periodic orbit). The
following theorem was proven in a series of papers ([G, L1, BL1, MMS]).

Theorem 1.1. Maps fromC2
nf have no wandering intervals.

Theorem 1.1 implies that the map onX is conjugate to a minimal translation in a
compact infinite zero-dimensional Abelian group. In this case for every pointx absorbed
by all X-generating cycles of intervals we haveω(x) = X (a pointx is absorbedby an
invariant setD if fm(x) ∈ D for somem).

Let us sketch the proof of the fact that any solenoidal set off is indeed a primitive
attractor. By a theorem of Martens, de Melo and van Strien [MMS] for anyf there exists
a numberN such that all attracting or neutral periodic points off have periods less than
N . Now, if S is a solenoidal set off then we can choose a generating cycle of intervals
cyc(I) of period greater thanN , so that there will be no attracting/neutral periodic orbits
in cyc(I). Also, if C ′ is the set of all critical points off belonging toS then we can
also assume thatC ′ is the set of all critical points off belonging to cyc(I). Let us now
apply a theorem of Mãné [Man], according to which almost all points of cyc(I) contain
a critical point fromC ′ in their limit sets. Thus,ω(x) = S for a.e.x ∈ cyc(I), which
proves our claim.
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It may also happen that there exist a cycle of intervals cyc(I) such thatf |cyc(I) is
transitive. This case plays an important role in one-dimensional dynamics. If the set of
pointsx ∈ cyc(I) such thatω(x) = cyc(I) is of positive Lebesgue measure then cyc(I)
is a primitive attractor.

These three examples may be considered natural for the following reason: they all
are also topological attractors in the sense that the set RL(A) for them is topologically
big (of typeGδ, dense in some intervals). In fact it is proven in [B] that if a continuous
interval map has no wandering intervals then for a denseGδ set of points their limit set
is either a periodic orbit, or a solenoidal set, or a cycle of intervals, on which the map
is transitive. Hence, if there is a limit setD such that the set of pointsx attracted byD
(i.e. such thatω(x) = D) is Gδ and dense in some interval thenD is necessarily of one
of these types.

However, an amazing fact is that for Milnor attractors there is a fourth possibility.
A primitive attractor which does not belong to any of the three classes described above
is called awild attractor. In other words, a wild attractor is an infinite nowhere dense
and non-solenoidal primitive attractor. In [BKNS] an example of a wild attractor for a
unimodal map was given.

In the series of papers ([BL2, BL3] for polymodal negative Schwarzian maps, [BL4]
for unimodal negative Schwarzian maps, and [L2] for polymodalC2-maps) the following
theorem was proven.

Theorem 1.2. The global attractorA(f ) of a mapf ∈ C2
nf is the union of all sinks of

f and finitely many infinite primitive attractorsAi which are either solenoidal sets, or
cycles of intervals on which a map is transitive, conservative and ergodic (with respect
to Lebesgue measure) or wild attractors (on whichf is minimal). Each setAi contains
a critical point off and intersections between two of them are possible only if they are
cycles of intervals with a few common boundary points.

Unlike other primitive attractors, wild attractors are not well understood other than
for the unimodal negative Schwarzian maps. Our work was motivated by this, and is an
attempt to study wild attractors of polymodal negative Schwarzian maps. Hence, first
we describe that case in more detail.

Let f : [0, 1] → [0, 1] be a piecewise monotone map. Forx ∈ [0, 1] let us denote by
Hn(x) the maximal interval containingx on whichfn is monotone and letfn(Hn(x)) =
Mn(x). Let rn(x) be the minimal distance betweenfn(x) and the endpoints ofMn(x).
If fn has a local extremum atx, there is an ambiguity in the choice ofHn(x) andMn(x),
but rn(x) = 0 independently of this choice. Moreover, in that caserm(x) = 0 for all
m ≥ n. Also, if x = 0 or 1, thenrn(x) = 0 for all n. Thus either for somem we have
rm(x) = 0 (and thenrn(x) = 0 for all n ≥ m) or rn(x) 6= 0 for anyn, in which case
x is neither a preimage of a turning point nor 0, 1. A recurrent critical pointc ∈ [0, 1]
of a unimodal map is calledpersistently recurrentif rn(f (c)) → 0. Now we summarize
some information known about unimodal negative Schwarzian maps; by Theorem 1.2
in this casef has at most one infinite primitive attractorA = ω(c).

We say that a map ispurely dissipativeif it is not conservative on any set of positive
measure (we use the terms “conservative” and “dissipative” with respect to the Lebesgue
measure).

Theorem 1.3. Letf ∈ S be unimodal with the critical pointc. Then the following holds.

(1) ([BL4, GJ, Ma])If A is a wild attractor off thenc is persistently recurrent. Moreover,
there exists a cycle of intervalscyc(I) such thatA ⊂ cyc(I), f |cyc(I) is purely
dissipative andrn(x) → 0 asn → ∞ for a.e.x ∈ cyc(I).
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(2) ([Ma]) Let cyc(I) be an attractor. Then there isε > 0 such thatlim suprn(x) > ε
for a.e.x.

Our main result generalizes Theorem 1.3 to the polymodal case. To state it we need
more notions. To shorten the introduction we do this in brief, at least with respect to
well-known notions (precise definitions will be given later).

First we need the notion of a chain introduced in [L1] for polymodal negative
Schwarzian maps. In that paper they helped to prove non-existence of wandering intervals
for such maps. Later chains were used to prove an analogous result for smooth polymodal
interval maps (see [BL1, MMS]) and became a popular tool in one-dimensional dynam-
ics. A sequence (Gi)li=0 of closed intervals is called achain if Gi is a maximal interval
such thatf (Gi) ⊂ Gi+1, i = 0, . . . , l − 1. Given a pointx and an intervalI 3 fn(x)
we construct a chain of intervals (Gi)ni=0 whose last intervalGn is equal toI and whose
first intervalG0 containsx. If such a chain exists, it is unique. We call it thepull-back
chain ofI alongx, . . . , fn(x). The number of intervals of the chain containing critical
points off is called theorder of the chain.

For a mapf of classC1 with finitely many critical points let Cr(f ) = Cr be its
set of critical points. For every pointx andε > 0 we construct the pull-back chain of
[fn(x) − ε, fn(x) + ε] alongx, . . . , fn(x). We definerk

n(x) as the supremum of allε
such that we get a chain of orderk or less. LetEk,ε(f ) be the set of all pointsy with
lim supn→∞ rk

n(y) > ε. We call a pointx such that for everyk we haverk
n(x) → 0 as

n → ∞ critically super persistentor Cr-super persistent. If x is additionally recurrent,
we call it critically super persistently recurrentor Cr-super persistently recurrent(cf.
[BM1]). An important property of limit sets of Cr-super persistently recurrent points is
that they are minimal ([BM2], see also Theorem 2.5 below). Also, ifrn(x) 6→ 0 then
we callx critically reluctantor Cr-reluctant. Now we can state our main theorem.

Theorem 5.3. For everyf ∈ S and a primitive attractorA that is neither a periodic
orbit nor a solenoidal set, one of the following holds.

(1) The attractorA is wild. ThenA = ω(c) for someCr-super persistently recurrent
critical point c. Furthermore,A is contained in a basic setB(cyc(I)) such thatf |B
is purely dissipative,|A| = 0, and almost all points ofB areCr-super persistent.

(2) The attractorA equalsB(cyc(I)) = cyc(I) and if I is of periodm thenfm|fj (I) is
exact for0 ≤ j ≤ m − 1, f |cyc(I) is ergodic, conservative andcyc(I) ⊂ E0,ε for
someε > 0 up to a set of measure zero (almost all points ofA are Cr-reluctant).
Moreover, there exists a finite setY ⊂ I such that:
(a) Cr(f ) ∩ I 6⊂ Y ;
(b) for any two intervalsU ⊂ int(V ) disjoint fromY and for almost everyx ∈ I

there is an arbitrarily largen and two intervalsx ∈ W ′ ⊂ W ′′ such thatfn|W ′′

has no critical points,fn(W ′′) = V andfn(W ′) = U .

In Sect. 4 prove Theorem 4.6 which is a version of Theorem 5.3 with a milder
statement (2) and then in Sect. 5 we strengthen it in Proposition 5.2 by establishing mild
expanding properties for polymodal negative Schwarzian maps on their attractors which
are cycles of intervals. These properties are similar to the ones proved by [Ma] for the
unimodal case. It is this expansion that prevents the attractor from being wild. Similarly,
such mild expansion along the trajectory of a critical point causesC2 instability of the
map.

Note that just like we define Cr-super persistent points, we can define Cr-persistent
points. To avoid trivial cases we assume thatx is not an eventual preimage of a critical
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point of f and call it Cr-persistentif rn(x) → 0 and Cr-persistently recurrentif x is
also recurrent.

While it could seem that for the polymodal maps the natural thing is to use Cr-
persistent recurrence (as for unimodal maps), it is not so. Sometimes it is crucial that
the Cr-super persistent recurrence and related notions are used instead. One such place
is the proof of Theorem 4.6, where we have to use the setE(f ), and not a similar set
defined for Cr-persistent recurrence.

Actually, the results of this paper hold if we replace in the definition ofS the as-
sumption thatf is of classC2 by the assumption that it is of classC1. The reason for
this is that the assumption on negative Schwarzian is quite strong. However, with this
weaker assumption (thatf is of classC1) we would not be able to invoke several results
that we need and that are proved in the literature for functions of classC2. While we
could reprove them for functions of classC1 with negative Schwarzian (by repeating
existing proofs with some estimates changed), this would make this paper considerably
longer and the results only slightly stronger. Therefore we choose not to do it.

2. Topological Properties of Chains

In this section we first summarize well-known facts about chains. Then we introduce
some new notions and state new results, the main one establishing the minimality of
the limit sets of super persistently recurrent points off with arbitrarily small nice smart
neighborhoods (see definitions below). This section contains almost no proofs. They can
be found elsewhere, mainly in [BM2].

Throughout this section we assume thatf ; [0, 1] → [0, 1] is a piecewise monotone
continuous map, strictly monotone on any lap. We call the local extrema off (except
0 and 1)turning points. Let Kf be the closure of the convex hull of the union of the
trajectories of the turning points off . Clearly,Kf is a closed invariant interval. This
is where the important things from the dynamical point of view happen. We want to
have some extra space aroundKf , so we assume that 0, 1 /∈ Kf . We call suchf loosely
packed. This assumption is not restrictive at all, since one can extend anyf to a loosely
packed map on a slightly larger interval, preserving smoothness and negative Schwarzian
if necessary. This means that the properties of limit sets established with an additional
assumption thatf is loosely packed, hold also without this assumption.

Thus, from now on we assume thatf is a loosely packed map. Also, we fix a finite
set of pointsC ⊂ Kf containing all turning points off , call these pointsexceptional
(cf. [BM2]) and assume that together with a mapf there always comes the setC of
exceptional points. In the smooth caseC is usually chosen as the set Cr of all critical
points off . However, we would like to emphasize that the results of this section hold
for any setC ⊂ Kf containing all turning points off , mainly because the definitions
and arguments are topological.

If c is a turning point off , let us take the largest interval [a, b] such thata < c < b,
f (a) = f (b) andf is monotone on each of the intervals [a, c] and [c, b]. Then there is
a unique continuous functionτc : [a, b] → [a, b] such thatf ◦ τ = f andf (x) 6= x for
x 6= c. This function is an involution, that isτ2

c is the identity.
Although we are not dealing with smooth functions in this section, it is convenient to

give some definitions related to them. We call an interval mapf aC2-map with non-flat
critical points(and denote the class of such maps byC2

nf ) if f is of classC2 with critical
points{ck} such that the inequalitiesA1|x − ck|βk ≤ |f ′(x)| ≤ A2|x − ck|βk hold in
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neighborhoods of the pointsck with positiveA1, A2, βk (the inequalities are callednon-
flatness inequalities). Clearly, this implies thatf has finitely many critical points and
for some constantR > 0 we have 1/R > |τ ′

c| > R in the corresponding neighborhood
of any turning pointc.

Now for given loosely packedf andC we choose a positive constantκ such that

(A1) the distance between any two exceptional points off is greater thanκ,
(A2) for any turning pointc of f , theκ-neighborhood ofc is contained in the domain

of τc,
(A3) for two exceptional pointsb, c eitherf (b) = c or |f (b) − c| > κ,
(A4) Kf ⊂ (κ, 1 − κ),
(A5) if f ∈ C2

nf then non-flatness inequalities hold inκ-neighborhoods ofck.

Clearly, any sufficiently smallκ satisfies the above conditions.
Now we define a chain modifying traditional definitions (see [L1, BL1, MMS]) to

serve our purposes (for instance, we add (B3) below).
We call an intervalsmart if it does not contain any set of the formfk(V ), where

k ≥ 0 andV is a one-sidedκ-neighborhood of an exceptional point off . Note that any
subinterval of a smart interval is also smart.

A sequence (Gi)li=0 of closed intervals is called achain if

(B1) Gi is a maximal interval such thatf (Gi) ⊂ Gi+1, i = 0, . . . , l − 1,
(B2) G0 ∩ Kf 6= ∅,
(B3) Gl is smart.

The numberl is called thelengthof the chain,G0 is called thefirst interval of a chain,
andGl is called thelast interval of the chain. The typical situation in which we deal
with a chain of intervals is the following. Given a pointx and an intervalI 3 fn(x) we
construct a chain of intervals (Gi)ni=0 whose last intervalGn is equal toI and whose first
intervalG0 containsx. If such chain exists, it is unique. We call it thepull-back chain of
I alongx, . . . , fn(x) or just thepull-back chain ofI. Any Gi is called apull-backof I.

Construction of a pull-back is straightforward. Once we haveGi, we choose asGi−1
the component off−1(Gi) containingf i−1(x). The only obstructions in the construction
may be that (B2) or (B3) are not satisfied. However, condition (B2) is satisfied ifx ∈ Kf

and this will be always the case in the sequel. Condition (B3) says thatI is smart. This
is not a great problem, because of the following lemma.

Lemma 2.1 ([BM2] ). Assume thatf has no wandering intervals. Then every non-
periodic point has a smart neighborhood.

When we have a chain (Gi)li=0, we cannot avoid the situation whenGi contains
exceptional points off . However, we have the following lemma.

Lemma 2.2 (see, e.g., [BM2]). An intervalGi from a chain contains at most one ex-
ceptional pointc of f , and if so thenc is neither0 nor 1. Moreover, if a turning pointc
of f belongs toGi andi < l thenτc(Gi) = Gi.

The intervals of a chain that contain elements ofC play a special role. Their number
in a chain is called theC-order (or justorder) of the chain.

The next lemma follows immediately from Lemma 2.2 and the definition of a chain.
To state it we need the following definition. LetI be an interval,I ′ be a component
of f−1(I) such that eitherf |I′ is monotone andf (I ′) = I or f |I′ is unimodal, both
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endpoints ofI ′ are mapped into one endpoint ofI and (in the case ofC1-mapf ) non-
flatness inequalities are satisfied inI ′. Then we say thatI ′ is a regular component of
the preimage ofI.

Lemma 2.3 (see, e.g., [BM2]). The intervalGi is a regular component of the preimage
of Gi+1.

Let us now repeat with more details the definition of super persistent recurrence. Let
us fix the setC of exceptional points off (recall thatC must contain all turning points
of f ) and consider the following construction. Fix a pointx ∈ Kf . For everyε > 0 we
try to construct the pull-back chain of [fn(x) − ε, fn(x) + ε] alongx, . . . , fn(x) and
denote bymx,n(ε) its order. Clearly,mx,n(ε) grows monotonically withε. If there are
no exceptional points amongx, f (x), . . . , fn(x) then for sufficiently smallε we have
mx,n(ε) = 0, otherwise even for arbitrarily smallε we havemx,n(ε) > 0. We define
rk
n(x) as the supremum of allε such thatmx,n(ε) exists and is smaller than or equal tok.

In other words,ε is the biggest number such that for everyε′ < ε theε′-neighborhood
of fn(x) can be pulled back alongx, . . . , fn(x) with order at mostk. Note thatrk

n(x)
depends onf andC, yet for the sake of simplifying notation we avoid referring to them.

We call a pointx such that for everyk we haverk
n(x) → 0 asn → ∞ C-super

persistent. If x is additionally recurrent, we call itC-super persistently recurrent(cf.
[BM1]). If we only claim the existence of a setC of exceptional points for whichx is
C-super persistently recurrent, but do not fix it, we callx simply asuper persistently
recurrentpoint. Finally, if the mapf is smooth then Cr(f ) = Cr denotes its set of critical
points, so we get Cr-super persistent and Cr-super persistently recurrent points which
will be the main focus of our study.

Let E(f ) =
⋃

k,ε Ek,ε(f ); recall that Ek,ε(f ) is the set of all pointsy with
lim suprk

n(y) > ε (whereC = Cr). Thus, the set of Cr-super persistent points is
[0, 1] \ E(f ).

We will call an intervalI ⊂ [0, 1] nice if for every n > 0 and an endpointa of I
the pointfn(a) does not belong to the closure ofI. In other words, the positive orbits
of both endpoints ofI miss the closure ofI. A setA ⊂ [0, 1] is calledminimal if f |A
is minimal.

Theorem 2.4 ([BM2] ). Let x be a super persistently recurrent point off having arbi-
trarily small smart nice neighborhoods. Thenω(x) is minimal.

We also need some facts about so-called basic sets (see [B]) which will be used later
on. LetM = cyc(I) be a cycle of intervals. Consider a set{x ∈ M : for any relative
neighborhoodU of x in M the orbit ofU is dense inM}; it is easy to see that this is
a closed invariant set. It is called abasic setand denoted byB(M ) (or simply byB)
provided it is infinite.

Let F : I → I andG : J → J be two interval maps, letϕ : I → J be a (non-strict)
monotone semiconjugacy betweenF andG and letB ⊂ I be anF -invariant closed set
such thatϕ(B) = J andϕ−1(x) ∩ B = ∂ϕ−1(x) for anyx ∈ J . Then we say thatϕ
almost conjugatesF |B to G. Here∂Z is theboundaryof a setZ.

Now we can list some of the properties of basic sets of interval maps.

Theorem 2.5 ([B] ). Letcyc(I) be a cycle of intervals of periodnof a continuous interval
mapf and letB = B(cyc(I)) be the corresponding basic set. Then the following holds.

(1) There exists a mixing mapg : [0, 1] → [0, 1] and a monotone mapϕ : I → [0, 1]
such thatϕ almost conjugatesfn|(B∩I) to g. In particular,f maps complementary
to B intervals one into another and also their boundaries one into another.
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(2) The mapf |B is transitive.
(3) The setB is perfect.
(4) The setB is contained in the closure of the set of periodic points off .
(5) If K is a compact set contained in the interior off j(I) and U is an open set

intersectingB ∩ I then there exists a numberl such thatfmn+j(U ) ⊃ K for all
m ≥ l.

(6) Any limit set is contained in either a periodic orbit, or a solenoidal set, or a basic
set.

The main properties here are (1) and (6). The rest can be deduced from it, yet in
order to have convenient references we also include Properties (2)–(5).

Theorem 2.5 implies the following corollary for maps without wandering intervals
(here by(pre)periodicwe mean points which are periodic or preperiodic).

Corollary 2.6. Letf be a map without wandering intervals, and letB = B(cyc(I)) be
its basic set. Then the following holds.

(1) If J is a complementary toB interval then it is eventually mapped into a periodic
complementary toB interval and its endpoints are (pre)periodic.

(2) If ω(x) ⊂ B is infinite thenfk(x) ∈ B for somek and, moreover, for nok is fk(x)
an endpoint of a complementary toB interval.

(3) If x is not an endpoint of a complementary toB interval andε is less than the minimal
length of an interval fromcyc(I) then the maximal length of a neighborhoodU of
x such that|fN (U )| ≤ ε converges to0 asN → ∞.

Proof. (1) LetJ = (a, b) be a complementary toB interval. Then we may assume that
J ⊂ I. Suppose for the sake of definiteness that the period ofI is m and consider
the almost conjugacyϕ betweenfm|I and a mixing mapg : [0, 1] → [0, 1]. Then
ϕ(J) = {x} is a point. Ifx is not (pre)periodic forg thenJ is wandering, a contradiction.
So,x is (pre)periodic forg which implies thatJ is eventually mapped into a periodic
complementary toB intervalK. Since endpoints of complementary toB intervals are
mapped into endpoints of complementary toB intervals by Theorem 2.5 (1) we see that
endpoints ofJ are (pre)periodic.

(2) Suppose thatω(x) ⊂ B(cyc(I)) is infinite. Then for somek we havefk(x) ∈ I. If
fk(x) ∈ J whereJ is a complementary toB interval then by (1)x is eventually mapped
into a periodic complementary toB interval. Since the limit set ofx is contained inB
thenω(x) is contained in the union of the endpoints of the intervals from cyc(K) which
contradicts the fact thatω(x) is infinite. Also, by (1) all endpoints of complementary
to B intervals are (pre)periodic, sofk(x) cannot be such an endpoint becauseω(x) is
infinite.

(3) If the claim fails then there is a semi-neighborhoodV of x and a sequence of
integersNi → ∞ such that|fNi(V )| ≤ ε. Choose closed subintervals off j(I) for all
0 ≤ j ≤ n so that the length of any such subinterval is greater thanε. By Theorem 2.5 (5)
for somek and allm ≥ k the setfm(V ) contains at least one of these subintervals and
therefore has length greater thanε; a contradiction. �
Theorem 2.7 (cf. [BM2]). If f has no wandering intervals then any super persistently
recurrent pointc of f has minimal limit set.

Remark.In [BM2] we prove the same statement under the assumption that the pointc
is a turning point off . The main reason for such restriction was that we only needed the
result for turning points; in what follows we get rid of this restriction for maps without
wandering intervals.
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Proof of Theorem 2.7.First of all notice that ifc is a periodic point or belongs to a
solenoidal set thenω(c) is indeed minimal. Thus we may assume from the very begin-
ning thatc has an infinite limit set which is not solenoidal. By Theorem 2.5 (6) then
ω(c) ⊂ B(cyc(I)) for some basic setB(cyc(I)). Sincec is recurrent we conclude that
c ∈ B. Moreover, by Corollary 2.6 (2) no point of the orbit ofc is an endpoint of a
complementary toB interval.

We claim thatc can be approximated from both sides by the preimages of any point
a from the interior ofI. Indeed, sincec ∈ B is not an endpoint of a complementary to
B interval then any semi-neighborhood ofc is non-disjoint fromB. By Theorem 2.5 (5)
images of this semi-neighborhood covera which proves our claim.

Our aim is to construct an arbitrarily small nice neighborhood ofc. First observe that
considering small neighborhoodsU of c we may assume that there is a lot of periodic
points with pairwise disjoint orbits which do not enterU . Indeed, by Theorem 2.5 (4)B
is contained in the closure of the set of periodic points off , so there are a lot of periodic
points inB. We can choose several such points and then chooseU to be disjoint from
the union of their orbits. Now, take a periodic pointa ∈ I. By the previous paragraph
for n sufficiently large there are points of

⋃n
i=0 f−i(a) in U at both sides ofc very close

to c. Choose the closest ones from both sides,x < c < y; we may assume that the orbit
of a is disjoint from [x, y].

The neighborhood (x, y) of c is nice unless one of the pointsx, y is an image (under
some iterate off ) of the other one. In this case choose a periodic pointb whose orbit is
disjoint from both the orbit ofa and the set [x, y]. Take the minimalk such thatf−k(b)
intersects (x, y). If f−k(b) intersects (x, c), replacex by the element off−k(b) closest
to c; similarly for (c, y) andy. The new neighborhood ofc is nice. This is clear if we
replaced only one of the pointsx, y. If we replaced both of them, the endpoints of the
new neighborhood belong toG−k(b) with the samek. However, in this case none of
them can be an image of the other one under any iterate off because otherwise the orbit
of b would not be disjoint from (x, y).

On the other hand it is proven in [BM2] thatc has arbitrarily small smart neighbor-
hoods. We complete the proof by applying Theorem 2.4 to the pointc. �

A setA will be calledC-super persistently recurrentif for someC-super persistently
recurrent pointx ∈ A we haveω(x) = A. In view of the next proposition, it does not
matter which pointx ∈ A we choose.

Proposition 2.8 ([BM2] ). Letf have no wandering intervals andC be a set of excep-
tional points. LetX ⊂ [0, 1] be an infinite minimal set forf . Then either every point of
X is C-super persistently recurrent or no point ofX is C-super persistently recurrent.

So far in Sect. 2 we have stated standard facts concerning chains or useful for us
results from [BM2]. The next lemma establishes invariance of the setsE(f ) andEk,ε(f ).
By Cr (f ) we denote the union of all big orbits of the set of all exceptional points off
(that is of all their images and preimages).

Lemma 2.9. The setEk,ε(f ) \ Cr (f ) is invariant and the setE(f ) is fully invariant.

Proof. This follows from the fact that if (Gi)li=0 is a chain of intervals of orderm then
the order of the chain (Gi)li=1 is eitherm or m − 1. �



406 A. Blokh, M. Misiurewicz

3. Distortion Lemmas

Normally, one defines theSchwarzian(orSchwarzian derivative) of a functionf of class
C3 asSf = f ′′′/f ′ − (3/2)(f ′′/f ′)2. It is defined outside the set Cr(f ). Thennegative
SchwarzianmeansSf < 0 at all non-critical points. As can be easily checked, this
implies strict convexity of the function 1/

√|f ′| on each component of the complement
of the set Cr(f ), which requires onlyC1 smoothness. Moreover, it is well known that
distortion properties similar to those of mapsf of classC3 with Sf < 0 away from
critical points hold for the maps of classC1 described above as well. Thus we adopt
this property as the definition of negative Schwarzian maps as was done in [BM2]: a
negative Schwarzian mapis a map of class at leastC1 such that the function 1/

√|f ′| is
strictly convex on each component of the complement of the set Cr(f ). The space of all
negative Schwarzian maps fromC2

nf will be denoted byS. Note that we allow critical
inflection points.

Some uniform estimates on distortion can be made for all negative Schwarzian
diffeomorphisms. Also, iterates of negative Schwarzian maps have negative Schwarzian
as well. This allows one to estimate distortion of an iterate of a negative Schwarzian map
restricted to an interval where it has no critical points. Estimates of distortion for one
iterate of a map in the presence of a critical point are necessary too. Since the “one-step”
estimates can be made without negative Schwarzian assumptions, in Lemmas 3.1–3.3
we consider general maps from the classC2

nf .
We need some notions. Thedensityof a setX in an intervalI is

ρ(X|I) =
|X ∩ I|

|I| .

In the probability theory it is calledconditional measure, but we prefer a more geomet-
rical namedensity.

As in [BM1], we introduce a functionr : [0, 1]2 → R ∪ {∞} as follows:

r(x, y) =
|f (x) − f (y)|
|x − y| |f ′(x)|

if x 6= y, andr(x, x)=1 and call the infimum ofr(x, y) over the pairs of pointsx, y from
the same lap theshrinkabilityof f . We denote its(f ) (“s” is a shrunken “s”). It is proven
in [BM1] that maps fromC2

nf have non-zero shrinkability.
Let us now state our first distortion lemma.

Lemma 3.1. Assume thatf ∈ C2
nf , X is a measurable set andI is an interval such that

f is monotone onI. Then

ρ(X|I) ≥ ρ(f (X)|f (I)) s(f ).

Proof. If I = [a, b] anda < x < b then by the definition ofs(f ) we have

|f (b) − f (x)| ≥ s(f )|f ′(x)| |b − x|
and

|f (x) − f (a)| ≥ s(f )|f ′(x)| |x − a|.
Hence,

|f (I)|
|I| =

|f (b) − f (a)|
|b − a| ≥ s(f )|f ′(x)|.
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This holds for everyx ∈ (a, b), so taking into account that|f (X ∩ I)|/|X ∩ I| is the
mean value of|f ′(x)| overX ∩ I, we get

|f (I)|
|I| ≥ s(f )

|f (X ∩ I)|
|X ∩ I| .

This inequality is equivalent to the one we wanted to prove.�

The next lemma relies upon Lemma 3.1. To state it we need the following definitions.
A point x ∈ I is said to beη-centeredin an intervalI if the distance ofx from the
boundary ofI is η|I| or larger. An intervalK ⊃ I is said to be aδ-scaled neighborhood
of I if the distance of both endpoints ofK from I is at leastδ|I|.
Lemma 3.2. Letf ∈ C2

nf . Then there exists a positive constantξ (depending only onf )
such that ifI ′ is a regular component of the preimage of an intervalI, x ∈ I ′, andf (x)
is η-centered inI then:

(1) the pointx is ξη-centered inI ′;
(2) if a setA has density at leastα in both components ofI \ {f (x)} thenf−1(A) has

density at leastξηα in both components ofI ′ \ {x}.

Proof. If f is monotone onI ′, by Lemma 3.1 both (1) and (2) hold withξ = s(f )
(observe thatη ≤ 1/2).

Assume now thatf is unimodal onI ′. Let I = [a, b] andI ′ = [a′, b′]. Without loss
of generality we may assume thatf (a′) = f (b′) = a and that there isc′ ∈ (a′, b′) such
thatf is increasing on [a′, c′] and decreasing on [b′, c′]. Setc = f (c′).

Recall that forτ = τc′ we have 1/R ≤ |τ ′| ≤ R, whereR = R(f ) depends only onf .
Sinceτ ([a′, c′]) = [c′, b′] andτ ([c′, b′]) = [a′, c′], we get 1/R ≤ |c′ −a′|/|b′ − c′| ≤ R.
Therefore|c′ − a′|/|I ′| ≥ 1/(R + 1) and similarly|b′ − c′|/|I ′| ≥ 1/(R + 1).

Assume thatx ∈ I ′ andf (x) is η-centered inI. Without loss of generality we may
assume thatx ∈ [a′, c′]. We have|f (x) − a| ≥ η|I| ≥ η|c − a|, so by Lemma 3.1 and
the preceding paragraph we get

|x − a′| ≥ s(f )η|c′ − a′| ≥ s(f )
R + 1

η|I ′|.

On the other hand (sinces(f ) ≤ 1 andη ≤ 1),

|x − b′| ≥ |b′ − c′| ≥ 1
R + 1

|I ′| ≥ s(f )
R + 1

η|I ′|.

This means that (1) holds in this case withξ = s(f )/(R + 1).
Assume now that a setA has density at leastα in [a, f (x)]. Then by Lemma 3.1

f−1(A) has density at leasts(f )α in both [a′, x] and [τ (x), b′]. Sincef (τ (x)) = f (x),
by the preceding paragraph the pointτ (x) is η s(f )/(R + 1)-centered inI ′, and hence

|b′ − τ (x)|
|b′ − x| ≥ |b′ − τ (x)|

|I ′| ≥ η s(f )
R + 1

.

Thereforef−1(A) has density at leastαη(s(f ))2/(R + 1) in [x, b′]. This means that (2)
holds in this case withξ = (s(f ))2/(R + 1).

Thus, the whole lemma holds withξ = (s(f ))2/(R + 1). �
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Lemma 3.3. Let f ∈ C2
nf . Then there exists a positive constantζ < 1 (depending only

on f ) such that ifI ′ is a regular component of the preimage of the intervalI, J is an
interval such thatI is its δ-scaled neighborhood withδ ≤ 1, andJ ′ is a component of
(f |I′ )−1(J), thenI ′ is a ζδ-scaled neighborhood ofJ ′.

Proof. In the monotone case from Lemma 3.1 it follows thatI ′ is aδ′-scaled neighbor-
hood ofJ ′, where

δ′

1 + δ′ = s(f )
δ

1 + δ
.

Sinceδ ≤ 1, we getδ′ ≥ s(f )δ/2, so we can takeζ = s(f )/2 in this case.
Assume now thatf is unimodal onI ′ and use the same assumptions and notation

as in the preceding proof. Suppose first thatf (c′) does not belong toJ ′. Then we may
assume thatJ ′ = [d′, e′] ⊂ [a′, c′] and then we get (as in the monotone case)

|d′ − a′|
|J ′| ≥ s(f )

2
δ.

On the other hand,

|b′ − e′|
|J ′| ≥ |b′ − c′|

|c′ − a′| =
|τ ([c′, a′])|
|[c′, a′]| ≥ 1

R
≥ δ

R
.

Hence, in this case we can takeζ = min(s(f )/2, 1/R).
Suppose now thatf (c′) belongs toJ ′ = [d′, e′]. Thenf ([d′, c′]) = f ([c′, e′]) = J ,

so by the preceding caseI ′ is a min(s(f )/2, 1/R)δ-scaled neighborhood of both [d′, c′]
and [c′, e′]. However,|c′ − d′| ≥ |J ′|/(R + 1) and|e′ − c′| ≥ |J ′|/(R + 1), soI ′ is a
min(s(f )/2, 1/R)δ/(R + 1)-scaled neighborhood ofJ ′. Hence we can take in this case
(and in all cases)ζ = min(s(f )/2, 1/R)/(R + 1). �

So far we have proven one step distortion lemmas which apply tof but not to its
iterates. The famous Koebe Lemma fills this gap. Unlike Lemmas 3.1–3.3, it applies
only to maps of negative Schwarzian and only if the interval contains no critical points
in its interior. However, the estimates of the distortion do not depend on the map, which
allows us to apply them to iterates of maps and makes the lemma very important. We
state it in a form equivalent to the one from [BM2].

Koebe Lemma. If I is an interval,h : I → R is a negative Schwarzian map without
critical points in the interior ofI, andJ ⊂ I is an interval such thath(I) is a δ-scaled
neighborhood ofh(J) then:

(1) for every pointsx, y ∈ J we have

h′(x)
h′(y)

≤
(

1 + δ

δ

)2

;

(2) the intervalI is a δ3/(2(3δ + 2)2)-scaled neighborhood ofJ .

The next lemma shows what consequences similar to Lemma 3.2 can be drawn from
the Koebe Lemma.

Lemma 3.4. If I is an interval,h : I → R a negative Schwarzian map without crit-
ical points in the interior ofI, and J ⊂ I an interval such thath(I) is a δ-scaled
neighborhood ofh(J) then:
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(1) if x ∈ J andh(x) is η-centered inh(J) thenx is (δ/(1 + δ))2η-centered inJ ;
(2) for any measurable setA,

ρ(f−1(A)|J) ≥
(

δ

1 + δ

)2

ρ(A|f (J)).

Proof. From the Koebe Lemma it follows thats(f |J ) ≥ (δ/(1 + δ))2. Now (2) follows
from this and Lemma 3.1 and (1) follows from (2). �

The next lemma is a distortion lemma for chains, which we will use in the next
section. The Koebe Lemma shows that within segments of a chain which consist of
intervals containing no critical points the distortion of the map remains bounded on
smaller intervals. Therefore to estimate the distortion in the entire chain it is important
to know how many intervals containing critical points it includes. Thus from now on we
always consider mapsf with the set of exceptional pointsC = Cr(f ), and estimate the
distortion of a map along a chain provided that the order of the chain is known. Note
that due to our definition of chain and Lemma 2.1 we do not have to include 0 and 1 in
the set of exceptional points. If chains (Gi)li=0 and (Hi)li=0 are such thatGi ⊃ Hi for
everyi then we say that the chain (Gi)li=0 containsthe chain (Hi)li=0 and denote this by
(Gi)li=0 ⊃ (Hi)li=0.

Lemma 3.5. Assume thatf ∈ S, ν is a natural number,δ ≤ 1, α andη are positive
numbers. Then there exist positive numbersγ ≤ 1, ϑ andβ (all of them depending onf ,
ν andδ; additionallyϑ depends onη, andβ depends onη andα), such that whenever
(Gi)li=0 ⊃ (Hi)li=0 are chains of orderν or smaller andGl is a δ-scaled neighborhood
of Hl, the following holds:

(1) G0 is aγ-scaled neighborhood ofH0;
(2) if x ∈ H0 andf l(x) is η-centered inHl thenx is ϑ-centered inH0;
(3) if x is as above and the density of a setA in both components ofHl \ {f l(x)} is at

leastα then the density off−l(A) in both components ofH0 \ {x} is at leastβ.

Proof. We decompose our chain (Gi)li=0 into 2ν + 1 (or less) pieces. Each piece corre-
sponds either tof restricted to someGi that contains one exceptional point (Case 1) or
to an iteratef j restricted toGi such that there is no exceptional point off j in Gi and
f j |Gi

has negative Schwarzian (Case 2).
We go back along the chain piece by piece, using inductively appropriate statements

of Lemmas 3.2 and 3.3 in Case 1, and of the Koebe Lemma and Lemma 3.4 in Case 2.
In this way when we get toG0 andH0, we obtain (1)–(3) for some constantsγ, β and
ϑ. In order to have these constants independent of the choice of chains (for given chains
we may have a decomposition into less than 2ν + 1 pieces) we have to apply alternately
Case 2 and Case 1, together 2ν + 1 times, starting with Case 2. �

4. Super Persistent Recurrence of Wild Attractors

In this section we consider maps from our classS with the set of exceptional points
coinciding with the set of critical points Cr(f ). We study wild attractors and specify the
dynamics on them. The main result of this section is that they are Cr-super persistently
recurrent.
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We begin with a simple observation. By Theorem 2.5 (6) limit sets of points for
interval maps are either periodic orbits, or are contained in solenoidal sets, or are con-
tained in basic sets. The definitions imply that wild attractors are subsets of basic sets.
Since by Theorem 1.2 a wild attractorA is the limit set of a recurrent critical pointc we
may assume thatc ∈ A ⊂ B, whereB is a basic set.

Now we need a number of standard definitions from ergodic theory which we include
here for the sake of completeness. LetT be a nonsingular map on (X, B, µ) (the measure
µ here is finite but not assumed to be invariant). The setD ⊂ X is calledfully invariant
if T−1(D) = D. The mapT is said to beergodic if all its fully invariant sets have
either measure 0 or full measure. The mapT is calledconservativeif for any setR of
positive measure there existsn such thatTn(R) ∩ R 6= ∅; the mapT is conservative on
its invariant setD if T |D is conservative in the above sense. The mapT is said to be
purely dissipativeif there are no invariant subsets on which it is conservative. The map
T is said to beexactif

⋂
n≥0 T−n(B) contains only sets of measure 0 orµ(X). Clearly,

if a map is exact then it is ergodic.
A useful tool in studying exactness islim sup fullsets and maps introduced by Julia

Barnes in [Ba]. LetT be a nonsingular map on (X, B, µ). A setY ⊂ X is calledlim
sup fullprovided lim supTn(Y ) = µ(X). The mapT is said to belim sup full if every
subset of positive measure is lim sup full. In her paper [Ba] Barnes proved the following
theorem (the theorem is proven under the assumption that the mapT is a non-singular
d-to-1 map but the same argument goes through in a more general situation).

Theorem 4.1 ([Ba]). LetT : X → X be a non-singular surjective map that is lim sup
full with respect to a finite measureµ. Moreover, suppose that there exists a partition
of X into finitely many subsets on each of whichT is one-to-one. ThenT is exact (and
therefore ergodic) and conservative.

Remark.If X =
⋃m−1

i=0 Xi, T (Xi) = Xi+1 for all i and pairwise intersections of the
sets{Xi} have zeroµ-measure then one can consider the question of whetherTm|Xi

is lim sup full for all i. It is easy to see (we leave verification to the reader) that then if
Tm|Xi

is lim sup full for somei thenTm|Xi
is lim sup full for all i and exact, while

T : X → X is ergodic and conservative.

In the sequelT will be our interval mapf , B will be theσ-field of all Borel subsets
of [0, 1], andµ will be the Lebesgue measure.

In the following lemma we establish a sufficient condition for the restriction of a
mapf to its basic set to be lim sup full. A pointy is said to be a point ofsemi-density
of a setX if for componentsI−, I+ of the setI \ {y}, whereI is an interval centered at
y we have max(ρ(X|I−), ρ(X|I+)) → 1 as|I| → 0.

Lemma 4.2. LetB = B(cyc(I)) be a basic set of a mapf ∈ S, whereI is of periodm.
Then the following holds.

(1) Suppose that a pointy ∈ E(f )∩B∩I is a point of semi-density of some setX ⊂ B.
ThenX is lim sup full forfm|I (in particular if X is invariant thenX = cyc(I) up
to a set of measure zero).

(2) Suppose that the setY = E(f )∩B is of positive measure. ThenB = cyc(I), fm|fj (I)
is lim sup full for anyj, and thusfm|fj (I) is exact andf |cyc(I) is ergodic and
conservative. Moreover, then there existk andε > 0 such thatEk,ε(f ) ∩ cyc(I) =
cyc(I) up to a set of measure zero.
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Proof. (1) We may assume thatX ⊂ I. Sincey ∈ E(f ), there exists a sequence
of integersni → ∞ and a numberε > 0 such that the pull back chain of the 4ε-
neighborhood offni(y) alongy, . . . , fni(y) has order at mostk. Choosing a subsequence
we may assume thatfni(y) → z and|fni(y)−z| < ε for all i. Then the pull back chains
of the 3ε-neighborhoodG of z alongy, . . . , fni(y) have order at mostk. Together with
these chains we consider the pull back chains of the 2ε-neighborhoodH of z along
y, . . . , fni(y), whose first interval we denote byHi

0. Observe thatε above may be
chosen sufficiently small; in particular we can choose it smaller than the one half of the
minimal length of the intervals from cyc(I). Then Corollary 2.6 (3) applies, so we see
that|Hi

0| → 0 asni → ∞.
First we prove that for some semi-neighborhoodU of z and a subsequence of iterates

ni the measure of the setsU \fni(X) converges to 0. Let us check if appropriate claims
of Lemma 3.5 can be applied to the two constructed pull back chains. Observe thatG is
a 1/4-scaled neighborhood ofH and that the orders of the pull back chains ofG along
y, . . . , fni(y) are at mostk. Also, all pointsfni(y) are 1/4-centered inH. Hence we
can apply Lemma 3.5 withν = k, δ = 1/4 andη = 1/4. We setAi = [0, 1] \ fni(X)
and suppose that there isα > 0 such that for alli the setA on both components of
H \ {fni(y)} has density greater thanα.

By Lemma 3.5 there are positive constantsϑ andβ such that for alli the pointy is
ϑ-centered inHi

0 and the density off−ni(Ai) in both components ofHi
0 \{y} is at least

β. Let si ≤ ti be the lengths of the components ofHi
0 \ {y}. SetWi = [y − ti, y + ti].

Sincey is ϑ-centered inHi
0, we havesi/(si + ti) ≥ ϑ, and hencesi/ti ≥ ϑ/(1 − ϑ).

The density off−ni(Ai) in the component ofWi which is also a component ofHi
0 \{y}

is at leastβ; in the other component it is at leastβsi/ti ≥ βϑ/(1 − ϑ). Sinceϑ ≤ 1/2,
we haveϑ/(1 − ϑ) ≤ 1, so the density off−ni(Ai) in each half ofWi is at least
βϑ/(1−ϑ). The setf−ni(Ai) is disjoint fromX. Since|Hi

0| → 0, we haveti → 0, and
this contradicts the fact thaty is the point of semi-density ofX.

Hence, after choosing a subsequence and without loss of generality we may assume
that the density offni(X) on the left componentV = [a, fni(y)] of H \ {fni(y)}
approaches 1. Sincefni(y) → z we see that the density offni(X) on [a, z] approaches
1. This proves our claim forU = [a, z].

Now, by Theorem 2.5 (5) there existsj0 such that|I \ fmj(U )| is arbitrarily small
for all j ≥ j0. This means that the measure offmj+ni(X) can be made arbitrarily close
to that ofI with the appropriate choice ofj andi (choosej first andi next), and thus
thatX is lim sup full forfm|I . This completes the proof of (1).

(2) Let us apply (1) to the setX = Y . ThenY = cyc(I) up to a set of measure zero,
and sinceY ⊂ B we haveB = cyc(I). Moreover,E(f ) has full measure inI. We can
now apply (1) to an arbitrary subsetX of E(f ) ∩ I of positive measure. We see thatX
is lim sup full for fm|I . Since this holds for all positive measure setsX, we conclude
that the mapfm|I is lim sup full. Therefore by Theorem 4.1 and the remark after it
fm|fj (I) is exact for 0≤ j ≤ m− 1 andf |cyc(I) is ergodic and conservative. The rest of
the statement follows now easily from the invariance of sets (Ek,ε(f ) \ Cr (f )) ∩ cyc(I)
(Lemma 2.9) and ergodicity off |cyc(I). �

It remains to consider a basic setB with |E(f ) ∩ B| = 0, which is exactly the
situation where wild attractors appear. We do this in a sequence of lemmas.

Lemma 4.3. Let A be a wild attractor contained in a basic setB = B(cyc(I)). Then
for very ε > 0 there exists an invariant nowhere dense setX ⊂ B, contained in the
ε-neighborhood ofA, such that|X| > 0 and all pointsz with ω(z) = A are eventually
mapped intoX.
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Proof. We may assume thatε > 0 is so small that the compactε-neighborhoodU of A
does not cover cyc(I). To see that, recall that wild attractors are always nowhere dense
by the definition. Consider the setX = {x : x ∈ B, the orbit ofx is contained inU and
ω(x) = A}. For any pointz such thatω(z) = A there isj0 such thatf j(z) ∈ U for all
j ≥ j0. By Corollary 2.6 (2) there isj ≥ j0 such thatf j(z) ∈ B. Thereforef j(z) ∈ X.
Since the realm of exact attraction ofA has positive measure, it follows that|X| > 0.
Clearly,X is invariant.

Let us show thatX ⊂ B is nowhere dense in cyc(I). This is obvious ifB itself is a
nowhere dense subset of cyc(I). OtherwiseB = cyc(I) and by Theorem 2.5 (2)f |cyc(I)
is transitive. Hence, ifx ∈ X then the orbit of every neighborhood ofx intersects
cyc(I) \ U . ThereforeX is nowhere dense. �

We need an important estimate on the density ofX.

Lemma 4.4 ([L2] ). Letx be a point of density of an invariant setX absorbed by a basic
setB. Then any point ofω(x) is a point of semi-density ofX.

Now we are ready to prove the main result of this section.

Theorem 4.5. LetA be a wild attractor of a mapf ∈ S. ThenA isCr-super persistently
recurrent.

Proof. By Theorem 1.2 we may assume thatA = ω(c), wherec is a recurrent critical
point. LetX be the set from Lemma 4.3. By Lemma 4.4c is a point of semi-density of
X. Thus, ifc is not Cr-super persistently recurrent then by Lemma 4.2 (1)X = cyc(I)
up to a set of measure zero, while on the other hand it is nowhere dense in cyc(I) by
Lemma 4.3, a contradiction. �

The following theorem unites Lemma 4.2, Theorem 4.5 and some new arguments,
thus giving a fuller description of Milnor attractors which are neither periodic orbits
nor solenoidal sets. Note that if an attractorA is contained in a basic setB then since
| rl(A)| > 0 and by Corollary 2.6 (2) the measure ofB is positive.

Theorem 4.6. For everyf ∈ S and a primitive attractorA that is neither a periodic
orbit nor a solenoidal set, one of the following holds.

(1) The attractorA is wild. ThenA = ω(c) for someCr-super persistently recurrent
critical point c. Furthermore,A is contained in a basic setB(cyc(I)) such thatf |B
is purely dissipative,|A| = 0, and almost all points ofB areCr-super persistent.

(2) The attractorA is equal toB(cyc(I)) = cyc(I) and ifI is of periodm thenfm|fj (I)
is exact for0 ≤ j ≤ m−1 andf |cyc(I) is ergodic and conservative. Moreover, there
existk andε > 0 such thatEk,ε ⊃ cyc(I) up to a set of measure zero.

Proof. Let A be an attractor which is neither a periodic orbit nor a solenoidal set. By
Theorem 2.5 (6) there is a basic setB = B(cyc(I)) such thatA ⊂ B. If |E(f ) ∩ B| > 0
then by Lemma 4.2 (2) we have the case (2).

Suppose that|E(f ) ∩B| = 0 (that is, almost every point ofB is Cr-super persistent)
and show that this corresponds to the case (1) of the theorem. First we claim that in
this case the set of recurrent points off |B whose limit set is not minimal is of zero
measure. Indeed, if the set of such recurrent points is of positive measure then almost all
of them are not inE(f ) and thus are Cr-super persistently recurrent which by Theorem
2.7 implies that their limit sets are minimal, a contradiction. In particular, the set of
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points with the orbit dense inB is of zero measure (by Theorem 2.5 (1),B cannot be
minimal). ThereforeA cannot coincide withB and is a wild attractor.

Let us prove the rest of the statements of claim (1) of the theorem. The fact that
|A| = 0 follows from the results of [Va] (note that we actually need a weaker version of
results of [Va], since we apply them only in the negative Schwarzian case for which a
significant part of the arguments from [Va] can be omitted).

It remains to show thatf |B is purely dissipative, i.e. that there are no invariant
subsets ofB of positive measure on whichf is conservative. To do this notice that by
Theorem 1.2 there are finitely many primitive attractorsAi, 0 ≤ i ≤ k such that for
almost every pointx ∈ B the setω(x) is one of them. Since|E(f ) ∩ B| = 0, all of them
are wild. Now, suppose thatD ⊂ B is a set such thatf |D is conservative and show that
then it is contained in

⋃
Ai modulo a set of measure zero. Indeed, otherwise there exist

a numberε > 0 and a setD′ ⊂ D of positive measure disjoint from theε-neighborhood
of

⋃
Ai. By choosing a subset we may assume thatD′ consists of pointsz such that

ω(z) = A0. Consider the setX constructed in Lemma 4.3 for thisε. By Lemma 4.3
all points ofD′ are eventually mapped intoX and therefore will only be mapped into
D′ finitely many times. On the other hand by the Poincaré Recurrence Theorem if a
mapf |D is conservative then almost all points ofD′ return toD′ infinitely many times.
ThusD ⊂ ⋃

Ai. However then by the results of [Va] quoted above we have|D| = 0, a
contradiction. �

5. Markov Maps

Consider in more detail the case (2) of Theorem 4.6. We want to strengthen the last
property of the attractorA = cyc(I) according to which cyc(I) ⊂ Ek,ε up to a set of
measure zero. This means that for almost every point of cyc(I) we can find a largen
and a neighborhoodV of fn(x), “big” on both sides offn(x), which can be pulled back
with small order. Our stronger version of this property says that we can findV which is
independent ofx andn, and the order of the pull-back is 0. Moreover, we can chooseV
as a neighborhood of any given point outside some finite set. Since in the weaker version
fn(x) is the midpoint ofV , we mimic this property in the stronger version. Thus, we will
not only specifyV , but also its subintervalU and require thatfn(x) ∈ U . This allows
us to constructMarkov mapsintroduced in the unimodal case by Martens in [Ma] and
shows that the results of that paper related to Markov maps can be deduced from ours.

To simplify notation, assume that the period ofI is 1. The arguments can be repeated
for any period almost literally. A mapg : I → I is calledtopologically exactif for every
intervalJ ⊂ I there isnwith gn(J) = I. Theorem 2.5 (5) implies thatf |I is topologically
exact since the endpoints ofI are images of some critical points from the interior ofI
(otherwise there would be an invariant proper subinterval ofI). We start with a simple
lemma.

Lemma 5.1. Let f : I → I be topologically exact. Then for everyξ > 0 there exists
N (ξ) such that every subinterval ofI of lengthξ is mapped byfN (ξ) ontoI.

Proof. If the lemma is false then we can find (by compactness ofI) a subinterval ofI
that is not mapped ontoI by arbitrarily large iterates off , contrary to the exactness off .
�

To state the next proposition we need the following notation. LetCN (f ) be the set
of all critical points offN and the endpoints of the interval on whichf is defined. Let
YN (f ) = fN (CN (f )).
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Proposition 5.2. Let f ∈ S be topologically exact on an invariant intervalI. Assume
also thatI ⊂ Ek,ε′ for somek andε′ > 0 up to a set of measure zero. ThenI ⊂ E0,ε

for someε > 0. Moreover, there isN such that for every pair of intervalsU, V disjoint
from the finite setY = YN (f |I ) ⊂ I and such thatU is contained in the interior ofV ,
for almost everyx ∈ I there exists an arbitrarily largen such thatfn(x) ∈ U and the
pull-back ofV alongx, . . . , fn(x) has order0.

Proof. By Lemma 5.1 there existsN = N (ε/2k+1) such that every subintervalI of
lengthε/2k+1 is mapped byfN ontoI. Fix intervalsU, V disjoint fromY and such that
U is contained in the interior ofV . If J is a subinterval ofI of lengthε/2k+1 then it is
mapped byfN ontoI, and thus there is an intervalK ⊂ J such thatfN (K) = V . Note
that sinceV is disjoint fromY , we can chooseK that is contained in the interior ofJ .

Denote byDn the set of all pointsx ∈ I for which there existsl > n such thatf l(x) ∈
U and the pull-back ofV alongx, . . . , f l(x) has order 0. The setDn is measurable. We
show that it has full measure inI. Otherwise, there existsy ∈ Ek,ε which is a point of
density of the complement ofDn. Thus, it is enough to show that there are arbitrarily
small neighborhoods of everyy ∈ Ek,ε in which the density ofDn is larger than some
fixedβ > 0.

Fix y ∈ Ek,ε. There is an arbitrarily larget > n such thatGt = [f t(y)−ε, f t(y)+ε]
can be pulled back alongy, . . . , f t(y) with order at mostk. Let the corresponding chain
be (G0, . . . , Gt). Also, let G′

t = [f t(y) − ε/2, f t(y) + ε/2]. The mapf t has at most
2k − 1 critical points inG0. Hence, there are intervalsW1 ⊂ [f t(y) − ε/2, f t(y)] and
W2 ⊂ [f t(y), f t(y) + ε/2] of lengthε/2k+1 whose interiors are disjoint fromYt(f |G0).
Thus, every component off−t(Wi) contained inG0 is mapped byf t ontoWi and there
are no critical points off t in its interior. Also, since the endpoints ofG0 are mapped
by f t to the endpoint(s) ofGt, each point off−t(Wi) ∩ G0 is contained in one of these
components.

Now we can choose intervalsRi contained in the interior ofWi (for i = 1, 2) which
are mapped byfN ontoV . SinceV is disjoint fromY = fN (C), there are no critical
points offN in R1 or R2. LetQi be the subinterval ofRi that is mapped byfN ontoU
for i = 1, 2. The setsQ1 andQ2 are two of the finitely many components off−N (U ).
Thus,|Qi| ≥ δ, whereδ is the minimum length of these components. Let (G′

0, . . . , G
′
t)

be the pull-back chain ofG′
t alongy, . . . , f t(y). SinceG′

t is 1/2 centered inGt, the
pointf t(y) is 1/2 centered inG′

t and the density ofQ = Q1 ∪ Q2 in G′
t is at least 2δ/ε,

by Lemma 3.5 there existsβ > 0, depending only onδ andε, such that the density
of f−t(Q) in G′

0 is at leastβ. By the construction, for everyx ∈ f−t(Q) we have
f t+N (x) ∈ U ⊂ V and the pull-back ofV alongx, . . . , f t+N (x) has order 0. Thus,
f−t(Q) ⊂ Dn. By Lemma 5.1,|G′

0| can be made arbitrarily small by taking sufficiently
larget. This completes the proof thatDn has full measure.

The intersection of all setsDn, n ≥ 0 has also full measure and every pointx from
this intersection has the desired property. �

Note thatf in Proposition 5.2 has no periodic critical points. Therefore there is at
least one critical point which is not an eventual critical image. Denote this point byc.
Then c /∈ Y and therefore we can choose as intervalsU, V small neighborhoods of
c. By Proposition 5.2 for almost every pointx ∈ U there existsn(x) and a pair of
neighborhoodsW ′(x) ⊂ W ′′(x) such thatfn(x) mapsW ′′(x) ontoV , has no critical
points in the interior ofW ′′(x) andfn(x)(W ′(x)) = U . By the Koebe Lemma the quotient
|(fn)′(y)|/|(fn)′(z)| is bounded from above for anyy, z ∈ W ′(x) by a constant which
depends only onU andV . Choosing nice neighborhoods ofc we see that the mapT
defined asfn(x) on intervalsW ′(x) is exactly the so-calledMarkov mapdefined in [Ma]
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in the unimodal case. Therefore the results of [Ma] related to Markov maps indeed follow
from Theorem 4.6 and Proposition 5.2. Replacing the second part of Theorem 4.6 by
Proposition 5.2 we finally get Theorem 5.3.

Theorem 5.3. For everyf ∈ S and a primitive attractorA that is neither a periodic
orbit nor a solenoidal set, one of the following holds.

(1) The attractorA is wild. ThenA = ω(c) for someCr-super persistently recurrent
critical point c. Furthermore,A is contained in a basic setB(cyc(I)) such thatf |B
is purely dissipative,|A| = 0, and almost all points ofB areCr-super persistent.

(2) The attractorA equalsB(cyc(I)) = cyc(I) and if I is of periodm thenfm|fj (I) is
exact for0 ≤ j ≤ m − 1, f |cyc(I) is ergodic, conservative andcyc(I) ⊂ E0,ε for
someε > 0 up to a set of measure zero (almost all points ofA are Cr-reluctant).
Moreover, there exists a finite setY ⊂ I such that:
(a) Cr(f ) ∩ I 6⊂ Y ;
(b) for any two intervalsU ⊂ int(V ) disjoint fromY and for almost everyx ∈ I

there is an arbitrarily largen and two intervalsx ∈ W ′ ⊂ W ′′ such thatfn|W ′′

has no critical points,fn(W ′′) = V andfn(W ′) = U .
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