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Abstract: We study “wild attractors” of polymodal negative Schwarzian interval maps
and prove that they auper persistently recurrerfa polymodal version gbersistent
recurrencg. We also prove that if a map has an attractor which is a cycle of intervals
then at almost every point of this cycle the map has properties similar to the Markov
property introduced by Martens. Thus, the lack of super persistent recurrence at a critical
pointc can be considered as a mild topological expanding property, and this expansion
preventsu(c) from being a wild attractor (in the previous paper we have shown that it
also prevents the map from beigf-stable).

1. Introduction

In his paper [Mi] Milnor suggested a new approach to the dynamics based on the notion
of attractor. He showed that a smooth dynamical system has a unique sogtaliat
attractorand posed a problem of decomposing it into minimal attractors, closely related
to that of describing-limit sets of almost all points.

Since then many papers have appeared dealing with the problem (see our list of refer-
ences, which is of course far from being complete). We continue this study and consider
piecewise monotone (polymodal) negative Schwarzian maps of an interval. The results
can be extended to one-dimensional branched manifolds, but to avoid complications
we restrict our attention to the interval case (and thus give definitions only in this case,
although some of them are more general). Precise and full definitions of some notions,
as well as a lot of standard definitions, are given later.
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Mostly, we consider two spaces of maps. The siggceonsists of all maps of [a]
into itself of clas<C? with finite number of critical points, all of them non-flat. The space
S consists of those maps fra@; that have negative Schwarzian. We denotedtHienit
set of a pointc by w(z) and call it simply thdimit set ofz.

Let f € C%. Then for a setd C [0, 1], the set rld) = {z : w(x) C A} is called
therealm of attractionof the setA. Also, the set RLA) = {z : w(z) = A} is called the
realm of exact attractionf the setd. Denote the Lebesgue measure of adiy | X|.

A closed invariant sefl is called amattractor if

(1) |ri(A)| > O;
(2) |rI(A)\ rl(A")| > 0O for any proper closed invariant sét C A.

Clearly, if |RL(A)| > 0 thenA is an attractor; such attractor is callpdmitive. An
attractorA is calledglobalif |[0, 1] \ rI(A)| = 0. In [Mi] it is shown thatf has a unique
global attractor. It is denoted b4(f). The same holds for the restriction pfo a closed
invariant set.

Let us describe types of primitive attractors which can be considered natural. The
firstis rather simple. A point is called aone-sided) periodic sini there exists: > 0
and a (one-sided) neighborhoad of x such thatf™(z) = =, f*(U) C U and the
diameter off*(U) tends to 0 ag — oo. The orbit of a periodic sink gives an example
(perhaps the easiest one) of a primitive attractor.

To introduce the next type of primitive attractors we need more definitions. A closed
interval I is calledperiodic (of periodn) if the interiors of the intervalg, . . ., (1)
are disjoint, whilef™(I) C I. Then the uniorU?:Bl fi(I) is called acycle of intervals
and denoted by cyéj. This includes also the casewf= 1; then cyc{) = I. Clearly, if
J C I and bothl, J are periodic then the period dfis a multiple of the period of (yet
these periods may well coincide). LRt O I; O ... be a nested sequence of periodic
intervals of periodsng < m1 < .... Then the intersectioX = (5, cyc(l;) is called
asolenoidal seand the cycles of intervals cykj are calledX -generating

The dynamics otX are well known (see, e.g., [B]) even whéiis just a continuous
interval map. In the smooth case it can be specified even further because of the absence
of wanderingintervals (an intervall C [0, 1] is calledwanderingfor f if its images
f™(J), n > 0, are pairwise disjoint and do not converge to a periodic orbit). The
following theorem was proven in a series of papers ([G, L1, BL1, MMS]).

Theorem 1.1. Maps fromC% have no wandering intervals.

Theorem 1.1 implies that the map dhis conjugate to a minimal translation in a
compactinfinite zero-dimensional Abelian group. In this case for every p@ibsorbed
by all X-generating cycles of intervals we havér) = X (a pointz is absorbediy an
invariant setD if f™(x) € D for somem).

Let us sketch the proof of the fact that any solenoidal sgtisfindeed a primitive
attractor. By a theorem of Martens, de Melo and van Strien [MMS] forjatinere exists
a numberV such that all attracting or neutral periodic pointsfdfave periods less than
N. Now, if S is a solenoidal set of then we can choose a generating cycle of intervals
cyc(l) of period greater thaiV, so that there will be no attracting/neutral periodic orbits
in cyc(l). Also, if C' is the set of all critical points of belonging toS then we can
also assume thdt’ is the set of all critical points of belonging to cycl). Let us now
apply a theorem of M@ [Man], according to which almost all points of cygcontain
a critical point fromC” in their limit sets. Thusw(z) = S for a.e.z € cyc(l), which
proves our claim.
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It may also happen that there exist a cycle of intervals Bys(@ch thatf|cyc) is
transitive. This case plays an important role in one-dimensional dynamics. If the set of
pointsz € cyc(l) such thatv(x) = cyc(l) is of positive Lebesgue measure then @yc(
is a primitive attractor.

These three examples may be considered natural for the following reason: they all
are also topological attractors in the sense that the seiRfiof them is topologically
big (of typeGs, dense in some intervals). In fact it is proven in [B] that if a continuous
interval map has no wandering intervals then for a dé€ngseet of points their limit set
is either a periodic orbit, or a solenoidal set, or a cycle of intervals, on which the map
is transitive. Hence, if there is a limit sét such that the set of pointsattracted byD
(i.e. such thaty(z) = D) is G5 and dense in some interval théhis necessarily of one
of these types.

However, an amazing fact is that for Milnor attractors there is a fourth possibility.
A primitive attractor which does not belong to any of the three classes described above
is called awild attractor. In other words, a wild attractor is an infinite nowhere dense
and non-solenoidal primitive attractor. In [BKNS] an example of a wild attractor for a
unimodal map was given.

In the series of papers ([BL2, BL3] for polymodal negative Schwarzian maps, [BL4]
for unimodal negative Schwarzian maps, and [L2] for polymétfamaps) the following
theorem was proven.

Theorem 1.2. The global attractorA(f) of a mapf € CZ is the union of all sinks of

f and finitely many infinite primitive attractord; which are either solenoidal sets, or
cycles of intervals on which a map is transitive, conservative and ergodic (with respect
to Lebesgue measure) or wild attractors (on whjcts minimal). Each se#l; contains

a critical point of f and intersections between two of them are possible only if they are
cycles of intervals with a few common boundary points.

Unlike other primitive attractors, wild attractors are not well understood other than
for the unimodal negative Schwarzian maps. Our work was motivated by this, and is an
attempt to study wild attractors of polymodal negative Schwarzian maps. Hence, first
we describe that case in more detail.

Letf: [0, 1] — [0, 1] be a piecewise monotone map. kog [0, 1] let us denote by
H,(z) the maximal interval containingon which /™ is monotone and let”(H,,(z)) =
M, (z). Letr,(z) be the minimal distance betwe¢gfi(z) and the endpoints a¥7,, (x).

If f™has alocal extremum at there is an ambiguity in the choice Bf, (x) andM,, (x),

but () = 0 independently of this choice. Moreover, in that cagéx) = 0 for all

m > n. Also, if z = 0 or 1, thenr,,(x) = O for all n. Thus either for some: we have
rm(z) = 0 (and then-,(x) = 0 for alln > m) or r,,(x) # O for anyn, in which case

x is neither a preimage of a turning point nQrlO A recurrent critical point: € [0, 1]

of a unimodal map is callegersistently recurrenf r,,(f(c)) — 0. Now we summarize
some information known about unimodal negative Schwarzian maps; by Theorem 1.2
in this casef has at most one infinite primitive attractdr= w(c).

We say that a map jsurely dissipativeéf it is not conservative on any set of positive
measure (we use the terms “conservative” and “dissipative” with respect to the Lebesgue
measure).

Theorem 1.3. Letf € S be unimodal with the critical point Then the following holds.

(1) ([BL4,GJ, Ma))If Aisawild attractor off thencis persistently recurrent. Moreover,
there exists a cycle of intervats/c(f) such thatA C cyc(l), fleyer) is purely
dissipative and-,,(x) — 0 asn — oo for a.e.z € cyc(l).
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(2) ([Ma]) Letcyc(l) be an attractor. Then there s> 0 such thatim supr,(z) > ¢
for a.e.x.

Our main result generalizes Theorem 1.3 to the polymodal case. To state it we need
more notions. To shorten the introduction we do this in brief, at least with respect to
well-known notions (precise definitions will be given later).

First we need the notion of a chain introduced in [L1] for polymodal negative
Schwarzian maps. Inthat paper they helped to prove non-existence of wandering intervals
for such maps. Later chains were used to prove an analogous result for smooth polymodal
interval maps (see [BL1, MMS]) and became a popular tool in one-dimensional dynam-
ics. A sequence({i)ﬁzo of closed intervals is calledéhainif G; is a maximal interval
such thatf(G;) C G;+1,7 =0,...,1 — 1. Given a point: and an interval > f"(x)
we construct a chain of interval&()]-, whose last intervalr,, is equal tol and whose
first interval Gy containse. If such a chain exists, it is unique. We call it thell-back
chain of alongx, ..., f"(z). The number of intervals of the chain containing critical
points of f is called theorder of the chain.

For a mapf of classC* with finitely many critical points let Cr{) = Cr be its
set of critical points. For every pointande > 0 we construct the pull-back chain of
[f*(x) — ¢, f*(z) + €] alongx, . .., f*(z). We definert(z) as the supremum of adl
such that we get a chain of orderor less. LetEy, .(f) be the set of all pointg with
limsup,_,. 7%(y) > . We call a pointr such that for every: we haver®(z) — 0 as
n — oo critically super persistendr Cr-super persistentf x is additionally recurrent,
we call it critically super persistently recurrerdr Cr-super persistently recurrerftf.
[BM1]). An important property of limit sets of Cr-super persistently recurrent points is
that they are minimal ([BM2], see also Theorem 2.5 below). Alse, (ft) 4~ 0 then
we callz critically reluctantor Cr-reluctant Now we can state our main theorem.

Theorem 5.3. For every f € S and a primitive attractorA that is neither a periodic
orbit nor a solenoidal set, one of the following holds.

(1) The attractorA is wild. ThenA = w(c) for someCr-super persistently recurrent
critical point c. Furthermore A is contained in a basic sé(cyc(/)) such thatf|s
is purely dissipative,A| = 0, and almost all points oB are Cr-super persistent.

(2) The attractorA equalsB(cyc(l)) = cyc(l) and if I is of periodm then f™ |, ;) is
exact for0 < j < m — 1, f|eyeqr is ergodic, conservative antyc(l) C Eyq . for
somes > 0 up to a set of measure zero (almost all pointsdcfire Cr-reluctant).
Moreover, there exists a finite SBtC I such that:

@ Cr()nIgY,;

(b) for any two intervald/ C int(V) disjoint fromY and for almost every: € I
there is an arbitrarily largen and two intervals: € W’ C W such thatf™ |y~
has no critical pointsf*(W") =V and f*(W') = U.

In Sect. 4 prove Theorem 4.6 which is a version of Theorem 5.3 with a milder
statement (2) and then in Sect. 5 we strengthen it in Proposition 5.2 by establishing mild
expanding properties for polymodal negative Schwarzian maps on their attractors which
are cycles of intervals. These properties are similar to the ones proved by [Ma] for the
unimodal case. Itis this expansion that prevents the attractor from being wild. Similarly,
such mild expansion along the trajectory of a critical point cad&emstability of the
map.

Note that just like we define Cr-super persistent points, we can defipeSistent
points To avoid trivial cases we assume that not an eventual preimage of a critical
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point of f and call it Crpersistentf r,(z) — 0 and Crpersistently recurrenif z is
also recurrent.

While it could seem that for the polymodal maps the natural thing is to use Cr-
persistent recurrence (as for unimodal maps), it is not so. Sometimes it is crucial that
the Cr-super persistent recurrence and related notions are used instead. One such place
is the proof of Theorem 4.6, where we have to use thd¢), and not a similar set
defined for Cr-persistent recurrence.

Actually, the results of this paper hold if we replace in the definitiols dhe as-
sumption thatf is of classC? by the assumption that it is of clag&. The reason for
this is that the assumption on negative Schwarzian is quite strong. However, with this
weaker assumption (thgtis of classC'!) we would not be able to invoke several results
that we need and that are proved in the literature for functions of ¢lasgvhile we
could reprove them for functions of clagg with negative Schwarzian (by repeating
existing proofs with some estimates changed), this would make this paper considerably
longer and the results only slightly stronger. Therefore we choose not to do it.

2. Topological Properties of Chains

In this section we first summarize well-known facts about chains. Then we introduce
some new notions and state new results, the main one establishing the minimality of
the limit sets of super persistently recurrent pointg afith arbitrarily small nice smart
neighborhoods (see definitions below). This section contains almost no proofs. They can
be found elsewhere, mainly in [BM2].

Throughout this section we assume tlial0, 1] — [0, 1] is a piecewise monotone
continuous map, strictly monotone on any lap. We call the local extrenfa(@ekcept
0 and 1)turning points Let K; be the closure of the convex hull of the union of the
trajectories of the turning points g¢f. Clearly, Ky is a closed invariant interval. This
is where the important things from the dynamical point of view happen. We want to
have some extra space arouig, so we assume that 0 ¢ K. We call suchf loosely
packed This assumption is not restrictive at all, since one can exteng amy loosely
packed map on a slightly larger interval, preserving smoothness and negative Schwarzian
if necessary. This means that the properties of limit sets established with an additional
assumption that is loosely packed, hold also without this assumption.

Thus, from now on we assume thats a loosely packed map. Also, we fix a finite
set of pointsC' C Ky containing all turning points of, call these pointexceptional
(cf. [BM2]) and assume that together with a mAphere always comes the sétof
exceptional points. In the smooth caSes usually chosen as the set Cr of all critical
points of f. However, we would like to emphasize that the results of this section hold
for any setC' C Ky containing all turning points of, mainly because the definitions
and arguments are topological.

If ¢ is aturning point off, let us take the largest intervai,[p] such thatz < ¢ < b,

f(a) = f(b) and f is monotone on each of the intervails ¢] and [c, b]. Then there is
a unigue continuous function : [a, b] — [a,b] such thatf o 7 = f and f(x) # « for
x 7 c. This function is an involution, that is? is the identity.

Although we are not dealing with smooth functions in this section, it is convenient to
give some definitions related to them. We call an interval thag'’2-map with non-flat
critical points(and denote the class of such map<fy if f is of classC? with critical
points{c;} such that the inequalitied;|z — c|* < |f'(z)] < Az|z — cx|?* hold in
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neighborhoods of the pointg with positive A1, Az, 8 (the inequalities are callatbn-
flatness inequalitigs Clearly, this implies thaf has finitely many critical points and
for some constank > 0 we have YR > |7.| > R in the corresponding neighborhood
of any turning point.

Now for given loosely packed andC' we choose a positive constamatsuch that

(A1) the distance between any two exceptional pointg isfgreater than,

(A2) for any turning point of f, the »c-neighborhood ot is contained in the domain
of .,

(A3) for two exceptional points, c either f(b) = c or | f(b) — ¢| > »,

(Ad) Ky C (52,1 — ),

(A5) if f € CZ% then non-flatness inequalities holdsaneighborhoods of;.

Clearly, any sufficiently smabl satisfies the above conditions.

Now we define a chain modifying traditional definitions (see [L1, BL1, MMS]) to
serve our purposes (for instance, we add (B3) below).

We call an intervabmartif it does not contain any set of the foriif (1), where
k > 0 andV is a one-sided:-neighborhood of an exceptional point ffNote that any
subinterval of a smart interval is also smart.

A sequence@;)., of closed intervals is calledehainif

(B1) G;is a maximal interval such thg{(G;) C G;+1,i=0,...,1—1,
(B2) GoN Ky Z 0,
(B3) G, is smart.

The numbet is called thdengthof the chain( is called thdirstinterval of a chain,
and @, is called thelastinterval of the chain. The typical situation in which we deal
with a chain of intervals is the following. Given a pointand an interval > f"(x) we
construct a chain of interval&:()!., whose last intervalr,, is equal to/ and whose first
interval G containse. If such chain exists, it is unique. We call it tpall-back chain of
I alongz, ..., f™(x) or just thepull-back chain off. Any G; is called gpull-backof I.

Construction of a pull-back is straightforward. Once we h@yewve choose a§'; 1
the component of ~1(G;) containingf*~*(z). The only obstructions in the construction
may be that (B2) or (B3) are not satisfied. However, condition (B2) is satisfied i
and this will be always the case in the sequel. Condition (B3) sayd tlsamart. This
is not a great problem, because of the following lemma.

Lemma 2.1 (BM2]). Assume thatf has no wandering intervals. Then every non-
periodic point has a smart neighborhood.

When we have a chairG()..,, we cannot avoid the situation whe¥, contains
exceptional points of . However, we have the following lemma.

Lemma 2.2 Gee, e.g., [BM2] An interval G; from a chain contains at most one ex-
ceptional pointc of f, and if so therx is neitherO nor 1. Moreover, if a turning point:
of f belongs to&; andi < [ thent.(G;) = G;.

The intervals of a chain that contain element§’gflay a special role. Their number
in a chain is called th€’-order (or justorder) of the chain.

The next lemma follows immediately from Lemma 2.2 and the definition of a chain.
To state it we need the following definition. L&tbe an intervall’ be a component
of f=1(I) such that eitheif|;, is monotone ang'(I’) = I or f| is unimodal, both
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endpoints ofl’ are mapped into one endpoint baind (in the case af*-map f) non-
flatness inequalities are satisfiedlin Then we say that’ is aregular component of
the preimage of.

Lemma 2.3 Gee, e.g., [BM2] The intervalG; is a regular component of the preimage
Of Gi+]_.

Let us now repeat with more details the definition of super persistent recurrence. Let
us fix the setC of exceptional points of (recall thatC must contain all turning points
of f) and consider the following construction. Fix a paing K. For everye > 0 we
try to construct the pull-back chain of f(x) — ¢, f*(z) + €] along«, . .., f*(z) and
denote bym, ,(¢) its order. Clearlym, () grows monotonically witte. If there are
no exceptional points among f(z), ..., f™*(z) then for sufficiently smalk we have
mg n(€) = 0, otherwise even for arbitrarily smallwe havem,, ,,(¢) > 0. We define
¥ (x) as the supremum of allsuch thatn,. ,,(¢) exists and is smaller than or equakto
In other wordsg is the biggest number such that for evefy ¢ thee’-neighborhood
of f"(z) can be pulled back along, . .., f*(x) with order at mosk. Note thatr” (x)
depends orf andC, yet for the sake of simplifying notation we avoid referring to them.
We call a pointz such that for every: we haver®(z) — 0 asn — oo C-super
persistentIf x is additionally recurrent, we call if’-super persistently recurrer{tf.
[BM1]). If we only claim the existence of a sét of exceptional points for which is
C-super persistently recurrent, but do not fix it, we ecallimply asuper persistently
recurrentpoint. Finally, if the mapf is smooth then Cif) = Cr denotes its set of critical
points, so we get Cr-super persistent and Cr-super persistently recurrent points which
will be the main focus of our study.
Let E(f) = U, Erc(f); recall that Ey .(f) is the set of all pointgy with

limsuprf(y) > ¢ (whereC = Cr). Thus, the set of Cr-super persistent points is
[0, 1]\ E(f).

We will call an intervall C [0, 1] niceif for everyn > 0 and an endpoint of 7
the pointf™(a) does not belong to the closure bfln other words, the positive orbits
of both endpoints of miss the closure of. A setA C [0, 1] is calledminimalif f|4
is minimal.

Theorem 2.4 (BM2]). Letz be a super persistently recurrent point phaving arbi-
trarily small smart nice neighborhoods. Theilfz) is minimal.

We also need some facts about so-called basic sets (see [B]) which will be used later
on. LetM = cyc(l) be a cycle of intervals. Consider a et € M : for any relative
neighborhood’ of z in M the orbit of U is dense inM }; it is easy to see that this is
a closed invariant set. It is calledbasic setand denoted by3(M) (or simply by B)
provided it is infinite.

LetF : I — IandG: J — J be two interval maps, let : I — J be a (hon-strict)
monotone semiconjugacy betweErandG and letB C I be anF'-invariant closed set
such thatp(B) = J andy~1(z) N B = 9p~1(x) for anyx € J. Then we say thap
almost conjugate$’| 5 to G. HeredZ is theboundaryof a setZ.

Now we can list some of the properties of basic sets of interval maps.

Theorem 2.5 (B]). Letcyc(l) be acycle of intervals of periadof a continuous interval
map f and letB = B(cyc(l)) be the corresponding basic set. Then the following holds.

(1) There exists a mixing map: [0, 1] — [0, 1] and a monotone map : I — [0, 1]
such thatp almost conjugateg™ |z t0 g. In particular, f maps complementary
to B intervals one into another and also their boundaries one into another.
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(2) The mapf| is transitive.

(3) The setB is perfect.

(4) The setB is contained in the closure of the set of periodic pointg .of

(5) If K is a compact set contained in the interior $f(I) and U is an open set
intersectingB N I then there exists a numbésuch thatf™"*(U) > K for all
m > 1.

(6) Any limit set is contained in either a periodic orbit, or a solenoidal set, or a basic
set.

The main properties here are (1) and (6). The rest can be deduced from it, yet in
order to have convenient references we also include Properties (2)—(5).

Theorem 2.5 implies the following corollary for maps without wandering intervals
(here by(pre)periodicwe mean points which are periodic or preperiodic).

Corollary 2.6. Let f be a map without wandering intervals, and Iet= B(cyc(/)) be
its basic set. Then the following holds.

(1) If J is a complementary t® interval then it is eventually mapped into a periodic
complementary t@ interval and its endpoints are (pre)periodic.

(2) If w(z) C Bisinfinite thenf*(z) € B for somek and, moreover, for né is f*(z)
an endpoint of a complementary Binterval.

(3) If zisnotan endpoint of a complementarydnterval and: is less than the minimal
length of an interval frontyc(/) then the maximal length of a neighborhotdof
x such thaf fV(U)| < e converges t@ as N — oc.

Proof. (1) Let J = (a, b) be a complementary tB interval. Then we may assume that
J C I. Suppose for the sake of definiteness that the period iefm and consider
the almost conjugacy betweenf™|; and a mixing magy : [0,1] — [0, 1]. Then
©(J) = {z} isapoint. Ifz is not (pre)periodic foy thenJ is wandering, a contradiction.
So,x is (pre)periodic forg which implies that/ is eventually mapped into a periodic
complementary td interval K. Since endpoints of complementaryfintervals are
mapped into endpoints of complementaryantervals by Theorem 2.5 (1) we see that
endpoints of/ are (pre)periodic.

(2) Suppose that(x) C B(cyc(l)) is infinite. Then for somé we havef*(z) € 1. If
f¥(x) € JwhereJ is acomplementary t& interval then by (1) is eventually mapped
into a periodic complementary 8 interval. Since the limit set of is contained inB
thenw(z) is contained in the union of the endpoints of the intervals from &jafhich
contradicts the fact that(x) is infinite. Also, by (1) all endpoints of complementary
to B intervals are (pre)periodic, spF(z) cannot be such an endpoint becauge) is
infinite.

(3) If the claim fails then there is a semi-neighborhdoaf = and a sequence of
integersN; — oo such that fVi(V)| < e. Choose closed subintervals pf(I) for all
0 < j < nsothatthe length of any such subinterval is greaterdhBy Theorem 2.5 (5)
for somek and allm > k the setf™ (V') contains at least one of these subintervals and
therefore has length greater thgra contradiction. [

Theorem 2.7 €f. [BM2]). If f has no wandering intervals then any super persistently
recurrent pointc of f has minimal limit set.

Remark.In [BM2] we prove the same statement under the assumption that thecpoint
is a turning point off. The main reason for such restriction was that we only needed the
result for turning points; in what follows we get rid of this restriction for maps without
wandering intervals.
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Proof of Theorem 2.7First of all notice that ifc is a periodic point or belongs to a
solenoidal set thew(c) is indeed minimal. Thus we may assume from the very begin-
ning thatc has an infinite limit set which is not solenoidal. By Theorem 2.5 (6) then
w(c) € B(cyc(l)) for some basic seB(cyc(l)). Sincec is recurrent we conclude that

¢ € B. Moreover, by Corollary 2.6 (2) no point of the orbit efs an endpoint of a
complementary td interval.

We claim thatc can be approximated from both sides by the preimages of any point
a from the interior ofl. Indeed, since € B is not an endpoint of a complementary to
B interval then any semi-neighborhoodwf non-disjoint fromB. By Theorem 2.5 (5)
images of this semi-neighborhood covewhich proves our claim.

Our aim is to construct an arbitrarily small nice neighborhood &frst observe that
considering small neighborhood@sof ¢ we may assume that there is a lot of periodic
points with pairwise disjoint orbits which do not entérindeed, by Theorem 2.5 (4
is contained in the closure of the set of periodic pointg,afo there are a lot of periodic
points in B. We can choose several such points and then ch@asebe disjoint from
the union of their orbits. Now, take a periodic point I. By the previous paragraph
for n sufficiently large there are points bf-, f ~“(a) in U at both sides of very close
to c. Choose the closest ones from both sides, ¢ < y; we may assume that the orbit
of a is disjoint from [z, y].

The neighborhoody, y) of c is nice unless one of the pointsy is an image (under
some iterate of) of the other one. In this case choose a periodic pgowmhose orbit is
disjoint from both the orbit of: and the seti, y]. Take the minimak such thatf —*(b)
intersects, y). If f=%(b) intersects, c), replacer by the element of ~*(b) closest
to ¢; similarly for (¢, y) andy. The new neighborhood efis nice. This is clear if we
replaced only one of the poinis y. If we replaced both of them, the endpoints of the
new neighborhood belong 6~*(b) with the samek. However, in this case none of
them can be an image of the other one under any itergtdoetause otherwise the orbit
of b would not be disjoint from, y).

On the other hand it is proven in [BM2] thahas arbitrarily small smart neighbor-
hoods. We complete the proof by applying Theorem 2.4 to the point [

A setA will be calledC-super persistently recurreiftfor someC-super persistently
recurrent pointt € A we havew(z) = A. In view of the next proposition, it does not
matter which point: € A we choose.

Proposition 2.8 (BM2]). Let f have no wandering intervals and be a set of excep-
tional points. LetX C [0, 1] be an infinite minimal set fof. Then either every point of
X is C-super persistently recurrent or no point &fis C-super persistently recurrent.

So far in Sect. 2 we have stated standard facts concerning chains or useful for us
results from [BM2]. The nextlemma establishes invariance of thesfgtsandEj, . (f).
By Cr(f) we denote the union of all big orbits of the set of all exceptional points of
(that is of all their images and preimages).

Lemma 2.9. The setFy, .(f) \ Cr(f) is invariant and the sef/(f) is fully invariant.

Proof. This follows from the fact that if@; i:o is a chain of intervals of ordern then
the order of the chain®;)._, is eithermorm — 1. O
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3. Distortion Lemmas

Normally, one defines thechwarziarfor Schwarzian derivatiyeof a functionf of class
C3asSf=f"/f —(3/2)(f"/f)? Itis defined outside the set Gi{ Thennegative
SchwarzianmeansSf < 0 at all non-critical points. As can be easily checked, this
implies strict convexity of the function/4 /| f/| on each component of the complement
of the set Crf), which requires onlyC* smoothness. Moreover, it is well known that
distortion properties similar to those of mapof classC® with Sf < 0 away from
critical points hold for the maps of clags' described above as well. Thus we adopt
this property as the definition of negative Schwarzian maps as was done in [BM2]: a
negative Schwarzian mapa map of class at least' such that the function/L/| f'| is
strictly convex on each component of the complement of the s¢f) Crfie space of all
negative Schwarzian maps fra@; will be denoted byS. Note that we allow critical
inflection points.

Some uniform estimates on distortion can be made for all negative Schwarzian
diffeomorphisms. Also, iterates of negative Schwarzian maps have negative Schwarzian
as well. This allows one to estimate distortion of an iterate of a negative Schwarzian map
restricted to an interval where it has no critical points. Estimates of distortion for one
iterate of a map in the presence of a critical point are necessary too. Since the “one-step”
estimates can be made without negative Schwarzian assumptions, in Lemmas 3.1-3.3
we consider general maps from the cldss

We need some notions. Thlensityof a setX in an intervall is

| X NI
1|

p(X|I) =

In the probability theory it is calledonditional measurgbut we prefer a more geomet-
rical namedensity
As in [BM1], we introduce a function : [0, 1]> — R U {oo} as follows:

o) = @~ )

’ |z —y[ [f"(2)]
if z Zy, andr(z, )=1 and call the infimum of (z, ) over the pairs of points, y from
the same lap thehrinkabilityof f. We denote it(f) (“s” is a shrunken §”). Itis proven

in [BM1] that maps fromC% have non-zero shrinkability.
Let us now state our first distortion lemma.

Lemma 3.1. Assume thaf € C%, X is a measurable set andis an interval such that
f is monotone ord. Then

p(X|I) = p(f(X) (D)) =(f).
Proof. If I =[a,b] anda < = < bthen by the definition of(f) we have

1) = (@) = s(N|f' (@) [b - 2]
and
|f(@) = f(a)] = s(N|f'(@)] |z — al.
Hence,
LFD)] _ 1f(0) = f(a)]
1] b — al

> s(NIf'@)]-
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This holds for every: € (a,b), so taking into account thaf(X N I)|/|X N I] is the
mean value of f'(x)| over X N I, we get

|f(1)
W>S(f)

(X NI
| X NI

This inequality is equivalent to the one we wanted to prove.(]

The nextlemmarelies upon Lemma 3.1. To state it we need the following definitions.
A point x € I is said to bep-centeredin an intervall if the distance oft from the
boundary ofl is7|1| or larger. An intervalK’ D I is said to be a-scaled neighborhood
of I if the distance of both endpoints &f from I is at least|I|.

Lemma 3.2. Let f € C%. Then there exists a positive constértlepending only orf)
such that ifl’ is a regular component of the preimage of an interiat € I’, and f (z)
is n-centered in/ then:

(1) the pointz is £n-centered inl’;
(2) if a setA has density at least in both components df\ {f(z)} thenf~1(4) has
density at leas§n« in both components df \ {z}.

Proof. If f is monotone on/’, by Lemma 3.1 both (1) and (2) hold with = s(f)
(observe thay < 1/2).

Assume now thaf is unimodal on/’. Let I = [a,b] andI’ = [a’, b’]. Without loss
of generality we may assume thia’) = f(b') = a and that there ig’ € (da/, ') such
that f is increasing ond’, ¢'] and decreasing o', ¢']. Setc = f(c).

Recall that forr = 7- we have ¥R < |7'| < R, whereR = R(f) depends only off.
Sincer([a’,c]) = [¢/,V']andT([,b]) = [/, ], we get YR < | —d'|/|V/ — /| < R.
Thereforeld — a'|/|I'| > 1/(R + 1) and similarly|p’ — ¢'|/|I’'| > 1/(R + 1).

Assume thatr € I’ and f(z) is n-centered inl. Without loss of generality we may
assume that € [d/, ¢']. We have| f(x) — a| > n|I| > n|c — a|, so by Lemma 3.1 and
the preceding paragraph we get

s(/f)

o= a'| 2 (Pl — | = 2%

I’
On the other hand (sine€f) < 1 andn < 1),
1 s(f)

YIS = > >

bl ==l = g 2 7

This means that (1) holds in this case w4tk s(f)/(R + 1).

Assume now that a set has density at least in [a, f(z)]. Then by Lemma 3.1
f~Y(A) has density at leas(f)a in both [¢/, 2] and [r(z), b']. Since f(r(x)) = f(x),
by the preceding paragraph the poitit) is n s(f)/(R + 1)-centered in’, and hence

o =@ =@ ne()
-2 = ] <~ R+1

nlIl'|.

Thereforef ~1(A) has density at leastn(s(f))?/(R + 1) in [z, b']. This means that (2)
holds in this case with = (s(f))?/(R + 1).
Thus, the whole lemma holds with= (s(f))?/(R + 1). 0
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Lemma 3.3. Let f € C%. Then there exists a positive constgnt. 1 (depending only
on f) such that ifI’ is a regular component of the preimage of the interfal is an
interval such thaf is its §-scaled neighborhood with < 1, and.J’ is a component of
(fl1/)~Y(J), thenI’ is a(é-scaled neighborhood of’.

Proof. In the monotone case from Lemma 3.1 it follows thaits ad’-scaled neighbor-
hood of J’, where
o' 5
vy D
Sinced < 1, we getd’ > s(f)d/2, so we can take = s(f)/2 in this case.
Assume now thaj is unimodal on/’ and use the same assumptions and notation
as in the preceding proof. Suppose first tfigt) does not belong td’. Then we may
assume thaf’ = [d’, ¢’] C [d/, ¢'] and then we get (as in the monotone case)

) s
&' —d| () 5
'] 2

On the other hand,

W =] =] _ (e aDl S 1

= > >
e =al Il T R T

9
7
Hence, in this case we can take min(s(f)/2, 1/ R).

Suppose now that(c’) belongs toJ’ = [d',¢']. Then f([d’,]) = f([¢,€']) = J,
so by the preceding cagéis a ming(f)/2,1/ R)o-scaled neighborhood of bott'[ ¢']
and [, ¢']. However,|¢ — d'| > |J'|/(R+ 1) andle’ — /| > |J'|/(R+1),sol’ is a
min(s(f)/2,1/R)d/(R + 1)-scaled neighborhood of . Hence we can take in this case
(and in all cases) = min(s(f)/2,1/R)/(R + 1). d

So far we have proven one step distortion lemmas which appfyhkot not to its
iterates. The famous Koebe Lemma fills this gap. Unlike Lemmas 3.1-3.3, it applies
only to maps of negative Schwarzian and only if the interval contains no critical points
in its interior. However, the estimates of the distortion do not depend on the map, which
allows us to apply them to iterates of maps and makes the lemma very important. We
state it in a form equivalent to the one from [BMZ2].

Koebe Lemma. If I is an interval,h : I — R is a negative Schwarzian map without
critical points in the interior off, andJ C I is an interval such that(7) is a-scaled
neighborhood of(J) then:

(1) for every pointse, y € J we have

W) _ (M)2
o) S\ )

(2) the intervall is aé3/(2(30 + 2)?)-scaled neighborhood of.

The next lemma shows what consequences similar to Lemma 3.2 can be drawn from
the Koebe Lemma.

Lemma 3.4. If I is an interval,h : I — R a negative Schwarzian map without crit-
ical points in the interior of/, and J C I an interval such that.(I) is a §-scaled
neighborhood ofi(J) then:
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(1) if z € J andh(x) is n-centered in(J) thenz is (5/(1 + 6))?n-centered inJ;
(2) for any measurable set,

2
AN = (145 ) PAIFD,

Proof. From the Koebe Lemma it follows thaff|;) > (5/(1 +6))2. Now (2) follows
from this and Lemma 3.1 and (1) follows from (2). O

The next lemma is a distortion lemma for chains, which we will use in the next
section. The Koebe Lemma shows that within segments of a chain which consist of
intervals containing no critical points the distortion of the map remains bounded on
smaller intervals. Therefore to estimate the distortion in the entire chain it is important
to know how many intervals containing critical points it includes. Thus from now on we
always consider mapg with the set of exceptional points = Cr(f), and estimate the
distortion of a map along a chain provided that the order of the chain is known. Note
that due to our definition of chain and Lemma 2.1 we do not have to include 0 and 1 in
the set of exceptional points. If chain§,('_, and {H,)', are such that; > H; for
everyi then we say that the chaiti{)!_, containsthe chain {;)!_, and denote this by
(Gi)ieo D (Hi)=o.

Lemma 3.5. Assume thaf € S, v is a natural numberjy < 1, o andn are positive
numbers. Then there exist positive numbess 1, ¢ and 5 (all of them depending ofj,

v and¢; additionally v depends om, and 3 depends om and «), such that whenever
(Gi)l= D (H,)l, are chains of order or smaller andG, is a §-scaled neighborhood
of H;, the following holds:

(1) Gy is a~v-scaled neighborhood dfp;

(2) if z € Ho and f!(z) is n-centered inH; thenz is 9-centered infy;

(3) if z is as above and the density of a gein both components df; \ {f!(z)} is at
leasta then the density of ~/(A) in both components df, \ {z} is at leasts.

Proof. We decompose our chait)._, into 2v + 1 (or less) pieces. Each piece corre-
sponds either tg restricted to somé/; that contains one exceptional point (Case 1) or
to an iteratef” restricted toG; such that there is no exceptional pointfdfin G; and
17|, has negative Schwarzian (Case 2).

We go back along the chain piece by piece, using inductively appropriate statements
of Lemmas 3.2 and 3.3 in Case 1, and of the Koebe Lemma and Lemma 3.4 in Case 2.
In this way when we get t6: and Hp, we obtain (1)—(3) for some constantss and
9. In order to have these constants independent of the choice of chains (for given chains
we may have a decomposition into less thar+2 pieces) we have to apply alternately
Case 2 and Case 1, together®1 times, starting with Case 2. O

4. Super Persistent Recurrence of Wild Attractors

In this section we consider maps from our classvith the set of exceptional points
coinciding with the set of critical points Cf}. We study wild attractors and specify the
dynamics on them. The main result of this section is that they are Cr-super persistently
recurrent.
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We begin with a simple observation. By Theorem 2.5 (6) limit sets of points for
interval maps are either periodic orbits, or are contained in solenoidal sets, or are con-
tained in basic sets. The definitions imply that wild attractors are subsets of basic sets.
Since by Theorem 1.2 a wild attractdris the limit set of a recurrent critical pointwe
may assume thate A C B, whereB is a basic set.

Now we need a number of standard definitions from ergodic theory which we include
here for the sake of completeness. Tdie a nonsingular map oX{, B, 1) (the measure
1 here is finite but not assumed to be invariant). Theset X is calledfully invariant
if T-XD) = D. The mapT is said to beergodicif all its fully invariant sets have
either measure 0 or full measure. The NMafs calledconservativef for any setR of
positive measure there existsuch thatl(R) N R #Z (; the map[ is conservative on
its invariant setD if T|p is conservative in the above sense. The rfiap said to be
purely dissipativef there are no invariant subsets on which it is conservative. The map
T is said to beexactif )., 7"~ "(B) contains only sets of measure OqrX). Clearly,
if a map is exact then it is ergodic.

A useful tool in studying exactnesslis sup fullsets and maps introduced by Julia
Barnes in [Ba). Letl" be a nonsingular map oX( B, i). A setY C X is calledlim
sup full provided lim su@™(Y) = u(X). The mapT is said to bdim sup fullif every
subset of positive measure is lim sup full. In her paper [Ba] Barnes proved the following
theorem (the theorem is proven under the assumption that th&nsap non-singular
d-to-1 map but the same argument goes through in a more general situation).

Theorem 4.1 (Ba]). LetT : X — X be a non-singular surjective map that is lim sup
full with respect to a finite measuye Moreover, suppose that there exists a partition
of X into finitely many subsets on each of whiCls one-to-one. Theft is exact (and
therefore ergodic) and conservative.

Remark.If X = U;’;O’l X;, T(X;) = X+ for all < and pairwise intersections of the
sets{X;} have zerqu-measure then one can consider the question of whétfiek,

is lim sup full for all . It is easy to see (we leave verification to the reader) that then if
T™|x, is lim sup full for some; thenT™|x, is lim sup full for all and exact, while

T : X — X is ergodic and conservative.

In the sequel” will be our interval mapf, B will be thes-field of all Borel subsets
of [0, 1], andy will be the Lebesgue measure.
In the following lemma we establish a sufficient condition for the restriction of a
map f to its basic set to be lim sup full. A poigtis said to be a point ademi-density
of a setX if for componentd —, I of the setl \ {y}, wherel is an interval centered at
y we have max{(X|I~), p(X|I")) — 1 as|I| — O.

Lemma 4.2. Let B = B(cyc(l)) be a basic set of a map e S, wherel is of periodm.
Then the following holds.

(1) Suppose thata poigte E(f)NBNI isa point of semi-density of some 3etC B.
ThenX is lim sup full for f™|; (in particular if X is invariant thenX = cyc(l) up
to a set of measure zero).

(2) Supposethatthe set= E(f)NBis of positive measure. Théh= cyc(l), ™| i)
is lim sup full for anyj, and thusf™ | is exact andf|cycq) is ergodic and
conservative. Moreover, then there exisinde > 0 such thatEy, .(f) N cyc(l) =
cyc(l) up to a set of measure zero.
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Proof. (1) We may assume that C I. Sincey € E(f), there exists a sequence

of integersn; — oo and a numbee > 0 such that the pull back chain of the-4
neighborhood of i (y) alongy, . . ., f™(y) has order at mo#t Choosing a subsequence
we may assume thdt*: (y) — z and|f™i(y) — z| < e for alli. Then the pull back chains

of the Z-neighborhood= of z alongy, . .., /™ (y) have order at mogt. Together with
these chains we consider the pull back chains of thaélghborhoodH of z along

Y, ..., f"(y), whose first interval we denote h§f{. Observe that above may be
chosen sufficiently small; in particular we can choose it smaller than the one half of the
minimal length of the intervals from cyg). Then Corollary 2.6 (3) applies, so we see
that|Hi| — 0 asn; — oo.

First we prove that for some semi-neighborhdbdf > and a subsequence of iterates
n; the measure of the seis\ /™ (X) converges to 0. Let us check if appropriate claims
of Lemma 3.5 can be applied to the two constructed pull back chains. Obser¢githat
a 1/4-scaled neighborhood @& and that the orders of the pull back chaingbélong
y,..., fM(y) are at mosk. Also, all pointsf™i(y) are J/4-centered ind. Hence we
can apply Lemma 3.5 with = k£, 6 = 1/4 andn = 1/4. We setd; = [0,1] \ f™(X)
and suppose that thereds > 0 such that for all the setA on both components of
H\ {f™(y)} has density greater than

By Lemma 3.5 there are positive constaftand such that for alk the pointy is
¥-centered inf§ and the density of ~"*(4;) in both components off} \ {y} is at least
3. Lets; < t; be the lengths of the componentsif \ {y}. SetW; = [y — t;,y + ;]
Sincey is ¥-centered inHg, we haves; /(s; +t;) > 9, and hence; /t; > /(1 — V).
The density off ~™(A;) in the component diV’; which is also a component &f} \ {y}
is at least3; in the other component itis at least; /t; > $9/(1 — ). Sinced < 1/2,
we haved/(1 — 9) < 1, so the density of ~"i(A4;) in each half ofW; is at least
BY/(1—19). The setf ~"i(4;) is disjoint from X . Since| Hi| — 0, we have;; — 0, and
this contradicts the fact thatis the point of semi-density oX.

Hence, after choosing a subsequence and without loss of generality we may assume
that the density off™:(X) on the left componenV = [a, f™i(y)] of H \ {f™(y)}
approaches 1. Sing&i (y) — z we see that the density ¢f'i(X) on [a, z] approaches
1. This proves our claim fot/ = [a, z].

Now, by Theorem 2.5 (5) there existgsuch thail \ f™J(U)| is arbitrarily small
for all j > jo. This means that the measurefdf/*:(X) can be made arbitrarily close
to that of I with the appropriate choice gfand: (choose;j first andi next), and thus
that X is lim sup full for f™|;. This completes the proof of (1).

(2) Let us apply (1) to the set =Y. ThenY = cyc(l) up to a set of measure zero,
and since&y” C B we haveB = cyc(l). Moreover,E(f) has full measure id. We can
now apply (1) to an arbitrary subs&t of E(f) N I of positive measure. We see that
is lim sup full for f™|;. Since this holds for all positive measure s&swe conclude
that the mapf™|; is lim sup full. Therefore by Theorem 4.1 and the remark after it
™ iy is exact for 0< j < m — 1 andf|cycqr) is ergodic and conservative. The rest of
the statement follows now easily from the invariance of sBfs.(f) \ Cr(f)) N cyc(l)
(Lemma 2.9) and ergodicity of|cyc(r). O

It remains to consider a basic sBtwith |E(f) N B| = 0, which is exactly the
situation where wild attractors appear. We do this in a sequence of lemmas.

Lemma 4.3. Let A be a wild attractor contained in a basic s& = B(cyc(l)). Then
for verye > 0 there exists an invariant nowhere dense XetC B, contained in the
e-neighborhood of4, such thai X | > 0 and all pointsz with w(z) = A are eventually
mapped intaX .



412 A. Blokh, M. Misiurewicz

Proof. We may assume that> 0 is so small that the compascineighborhood/ of A
does not cover cyé). To see that, recall that wild attractors are always nowhere dense
by the definition. Consider the s&t = {x : « € B, the orbit ofz is contained iU/ and
w(z) = A}. For any pointz such thatu(z) = A there isjo such thatf’(z) € U for all
j > jo. By Corollary 2.6 (2) there i > jo such thatf’(z) € B. Thereforef’(z) € X.
Since the realm of exact attraction dfhas positive measure, it follows that'| > 0.
Clearly, X is invariant.

Let us show thal C B is nowhere dense in cyE). This is obvious ifB itself is a
nowhere dense subset of cyi(OtherwiseB = cyc(l) and by Theorem 2.5 (2f|cycq)
is transitive. Hence, ift € X then the orbit of every neighborhood ofintersects
cyc(l) \ U. ThereforeX is nowhere dense. [

We need an important estimate on the densityof

Lemma 4.4 (L2]). Letz be a point of density of an invariant s€tabsorbed by a basic
setB. Then any point af(x) is a point of semi-density of .

Now we are ready to prove the main result of this section.

Theorem 4.5. Let A be awild attractor of amay € S. ThenA is Cr-super persistently
recurrent.

Proof. By Theorem 1.2 we may assume that= w(c), wherec is a recurrent critical
point. Let X be the set from Lemma 4.3. By Lemma 4.&% a point of semi-density of
X. Thus, ifcis not Cr-super persistently recurrent then by Lemma 4.Z(8 cyc(l)
up to a set of measure zero, while on the other hand it is nowhere dense i loyc(
Lemma 4.3, a contradiction. [

The following theorem unites Lemma 4.2, Theorem 4.5 and some new arguments,
thus giving a fuller description of Milnor attractors which are neither periodic orbits
nor solenoidal sets. Note that if an attractbis contained in a basic sét then since
| rI(4)] > 0 and by Corollary 2.6 (2) the measure®fs positive.

Theorem 4.6. For every f € S and a primitive attractorA that is neither a periodic
orbit nor a solenoidal set, one of the following holds.

(1) The attractorA is wild. ThenA = w(c) for someCr-super persistently recurrent
critical point c. Furthermore A is contained in a basic sé(cyc(/)) such thatf|s
is purely dissipative,A| = 0, and almost all points oB are Cr-super persistent.

(2) The attractorA is equal toB(cyc(l)) = cyc(l) and if I is of periodm then ™| ¢y
is exactfor0 < j < m—1and flcyc() iS ergodic and conservative. Moreover, there
existk ande > 0 such thatE, . O cyc(l) up to a set of measure zero.

Proof. Let A be an attractor which is neither a periodic orbit nor a solenoidal set. By
Theorem 2.5 (6) there is a basic #&t B(cyc(l)) suchthatd C B.If |[E(f)nB| >0
then by Lemma 4.2 (2) we have the case (2).

Suppose thdtZ(f) N B| = 0 (that is, almost every point @ is Cr-super persistent)
and show that this corresponds to the case (1) of the theorem. First we claim that in
this case the set of recurrent points fif; whose limit set is not minimal is of zero
measure. Indeed, if the set of such recurrent points is of positive measure then almost all
of them are not irE(f) and thus are Cr-super persistently recurrent which by Theorem
2.7 implies that their limit sets are minimal, a contradiction. In particular, the set of
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points with the orbit dense iR is of zero measure (by Theorem 2.5 (B)cannot be
minimal). Therefored cannot coincide witlB and is a wild attractor.

Let us prove the rest of the statements of claim (1) of the theorem. The fact that
|A| = 0 follows from the results of [Va] (note that we actually need a weaker version of
results of [Va], since we apply them only in the negative Schwarzian case for which a
significant part of the arguments from [Va] can be omitted).

It remains to show thaf|s is purely dissipative, i.e. that there are no invariant
subsets ofB of positive measure on whichis conservative. To do this notice that by
Theorem 1.2 there are finitely many primitive attractdrsO < ¢ < k such that for
almost every point: € B the setu(x) is one of them. Sincg'(f) N B| = 0, all of them
are wild. Now, suppose th@ C B is a set such thaf|; is conservative and show that
then it is contained ih ) A; modulo a set of measure zero. Indeed, otherwise there exist
anumbee > 0 and aseD’ C D of positive measure disjoint from theneighborhood
of | A;. By choosing a subset we may assume thatonsists of points such that
w(z) = Ao. Consider the seX constructed in Lemma 4.3 for this By Lemma 4.3
all points of D’ are eventually mapped intd and therefore will only be mapped into
D’ finitely many times. On the other hand by the PoigcRecurrence Theorem if a
map f|p is conservative then almost all pointsiof return toD’ infinitely many times.
ThusD c |J 4;. However then by the results of [Va] quoted above we H&@je= 0, a
contradiction. O

5. Markov Maps

Consider in more detail the case (2) of Theorem 4.6. We want to strengthen the last

property of the attractod = cyc(/) according to which cyd) C Ej . up to a set of

measure zero. This means that for almost every point of/gyweé can find a large:

and a neighborhoot of f"(x), “big” on both sides off"(x), which can be pulled back

with small order. Our stronger version of this property says that we cafvfndich is

independent of andn, and the order of the pull-back is 0. Moreover, we can chédse

as a neighborhood of any given point outside some finite set. Since in the weaker version

f™(x) is the midpoint ofi”, we mimic this property in the stronger version. Thus, we will

not only specifyl/, but also its subintervdl’ and require that”(x) € U. This allows

us to construcMarkov mapsntroduced in the unimodal case by Martens in [Ma] and

shows that the results of that paper related to Markov maps can be deduced from ours.
To simplify notation, assume that the period/a$ 1. The arguments can be repeated

for any period almost literally. Amag: I — I is calledtopologically exactf for every

intervalJ C Ithereisiwith g"(J) = I. Theorem 2.5 (5) implies thét; is topologically

exact since the endpoints bfare images of some critical points from the interior/of

(otherwise there would be an invariant proper subintervdl) ofVe start with a simple

lemma.

Lemmab.1. Let f : I — I be topologically exact. Then for evegy> 0O there exists
N(€) such that every subinterval éfof length¢ is mapped by V€ onto 1.

Proof. If the lemma is false then we can find (by compactnesk) af subinterval off
that is not mapped ontbby arbitrarily large iterates of, contrary to the exactness pf
O

To state the next proposition we need the following notation. (g f) be the set
of all critical points of ¥ and the endpoints of the interval on whi¢hs defined. Let

Yn(f) = fH(Cn (1))
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Proposition 5.2. Let f € S be topologically exact on an invariant interval Assume
also that! C E}, .- for somek ands’ > 0 up to a set of measure zero. ThEr Ep .
for some= > 0. Moreover, there iV such that for every pair of intervalg, V' disjoint
from the finite se¥” = Y (f|;) C I and such thal/ is contained in the interior oV,
for almost everyr € I there exists an arbitrarily large: such thatf™(z) € U and the
pull-back ofV alongx, ..., f™(x) has order0.

Proof. By Lemma 5.1 there existd = N(g/2"*1) such that every subintervdl of
lengthe /25*1 is mapped by onto[. Fix intervalsU, V disjoint fromY and such that
U is contained in the interior df . If .J is a subinterval of of lengthe/2**1 then it is
mapped byf" onto, and thus there is an interval C .J such thatfV (K) = V. Note
that sinceV/ is disjoint fromY’, we can choos& that is contained in the interior of.

Denote byD,, the setof all points € I for which there exists > n such thaif!(z) €
U and the pull-back oV alongz, . .., f'(z) has order 0. The séd,, is measurable. We
show that it has full measure ih Otherwise, there exists € Ej, . which is a point of
density of the complement d,,. Thus, it is enough to show that there are arbitrarily
small neighborhoods of everye E . in which the density oD,, is larger than some
fixed 3 > 0.

Fixy € E.. Thereis an arbitrarily large> n such thaGG; = [fi(y) —¢, fi(y) +¢]
can be pulled back along . . ., f(y) with order at mosk. Let the corresponding chain
be Go,...,Gy). Also, letG), = [fi(y) — /2, fi(y) + £/2]. The mapft has at most
2% — 1 critical points inGo. Hence, there are interval®; C [f(y) — /2, f(y)] and
Wa C [fi(y), fi(y) + /2] of lengthe /21 whose interiors are disjoint froi, (f|g,).-
Thus, every component gf~*(;) contained iniip is mapped byt ontoT; and there
are no critical points off? in its interior. Also, since the endpoints 6f, are mapped
by f* to the endpoint(s) ofi;, each point off ~t(1W;) N Gy is contained in one of these
components.

Now we can choose interval$; contained in the interior dfi’; (for 7 = 1, 2) which
are mapped by"Y onto V. SinceV is disjoint fromY = f¥(C), there are no critical
points of f in Ry or Ry. LetQ; be the subinterval oR; that is mapped by ontoU
fori = 1,2. The set«); and(, are two of the finitely many components 6t ¥ (U).
Thus,|Q;| > §, whered is the minimum length of these components. L&} (. .., G})
be the pull-back chain of; alongy, ..., fi(y). SinceG} is 1/2 centered inG,, the
point f*(y) is 1/2 centered inG; and the density of) = Q1 U Q; in G} is atleast 3 /e,
by Lemma 3.5 there exist$ > 0, depending only oi ande, such that the density
of f74(Q) in Gy is at least3. By the construction, for every € f~(Q) we have
f*N(z) € U c V and the pull-back o¥ alongz, ..., f**N(z) has order 0. Thus,
f74Q) c D,,. By Lemma 5.1|G}| can be made arbitrarily small by taking sufficiently
larget. This completes the proof tha&,, has full measure.

The intersection of all set®,,, n > 0 has also full measure and every pairftom
this intersection has the desired property. O

Note thatf in Proposition 5.2 has no periodic critical points. Therefore there is at
least one critical point which is not an eventual critical image. Denote this poiat by
Thenc ¢ Y and therefore we can choose as intenfd$” small neighborhoods of
c. By Proposition 5.2 for almost every point € U there existsi(x) and a pair of
neighborhood$V’(z) ¢ W (z) such thatf™®) mapsW” (z) onto V, has no critical
points in the interior oV (z) andf*)(W’(z)) = U. By the Koebe Lemma the quotient
I(F™Y ()|/1(fF™) (2)] is bounded from above for any z € W’'(z) by a constant which
depends only o/ and V. Choosing nice neighborhoods ofve see that the map
defined ag™®) on intervals¥’(x) is exactly the so-calleMlarkov magpdefined in [Ma]
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inthe unimodal case. Therefore the results of [Ma] related to Markov maps indeed follow
from Theorem 4.6 and Proposition 5.2. Replacing the second part of Theorem 4.6 by
Proposition 5.2 we finally get Theorem 5.3.

Theorem 5.3. For every f € S and a primitive attractorA that is neither a periodic
orbit nor a solenoidal set, one of the following holds.

(1) The attractorA is wild. ThenA = w(c) for someCr-super persistently recurrent
critical point c. Furthermore A is contained in a basic sé¥(cyc(/)) such thatf|s
is purely dissipativelA| = 0, and almost all points oB are Cr-super persistent.

(2) The attractorA equalsB(cyc(l)) = cyc(/) and if I is of periodm then f™ |, ;) is
exact for0 < j < m — 1, f|eyer) is ergodic, conservative angyc(l) C Ep . for
somes > 0 up to a set of measure zero (almost all pointsdoére Cr-reluctant).
Moreover, there exists a finite SBtC I such that:

@ Cr(HnIgy,

(b) for any two intervald/ C int(V) disjoint fromY and for almost every: € I
there is an arbitrarily largen and two intervals: € W’ C W such thatf™ |y~
has no critical points/*(W") =V and f»(W’) = U.
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